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1 Introduction

Network architectures in which the control plane is de-
coupled from the data plane have been growing in pop-
ularity. Among the main arguments for this approach is
that it provides a more structured software environment
for developing network-wide abstractions while poten-
tially simplifying the data plane. As has been adopted
elsewhere [11], we refer to this split architecture as
Software-Defined Networking (SDN).

While it has been argued that SDN is suitable for some
deployment environments (such as homes [17, 13], data
centers [1], and the enterprise [5]), delegating control
to a remote system has raised a number of questions on
control-plane scaling implications of such an approach.
Two of the most often voiced concerns are: (a) how fast
can the controller respond to data path requests?; and
(b) how many data path requests can it handle per sec-
ond?

There are some references to the performance of
SDN systems in the literature [16, 5, 3]. For example,
an oft-cited study shows that a popular network con-
troller (NOX) handles around 30k flow initiation events1

per second while maintaining a sub-10ms flow install
time [14].

Unfortunately, recent measurements of some deploy-
ment environments suggests that these numbers are far
from sufficient. For example, Kandula et al. [9] found
that a 1500-server cluster has a median flow arrival rate
of 100k flows per second. Also, Benson et al. [2] show
that a network with 100 switches can have spikes of 10M
flows arrivals per second in the worst case. In addition,
the 10ms flow setup delay of an SDN controller would
add a 10% delay to the majority of flows (short-lived) in
such a network.

This disconnect between relatively poor controller per-
formance and high network demands has motivated a

1Throughout this paper we use flow initiation and requests
interchangeably.

spate of recent work (e.g., [6, 18]) to address perceived
architectural inefficiencies. However, there really has
been no in-depth study on the performance of a tradi-
tional SDN controller. Rather, most published results
were gathered from systems that were never optimized
for performance. To underscore this point, as we de-
scribe in more detail below, we were able to improve
the performance of NOX, an open source controller for
OpenFlow networks, by more than 30 times.

Therefore, the goal of this paper is to offer a better
understanding of the controller performance in the SDN
architecture. The specific contributions are:
We present NOX-MT a publicly-available multi-
threaded successor of NOX [8]. The purpose of NOX-
MT is to establish a new lower bound on the maximum
throughput. Unlike previous studies and implementa-
tions that were not tuned for performance, NOX-MT uses
well-known optimization techniques (e.g., I/O batching)
to improve the baseline performance. These optimiza-
tions lets NOX-MT outperform NOX by a factor of 33
on a server with two quad-core 2GHz processors.
We design a series of flow-based benchmarks embod-
ied in our tool, cbench, that we make freely available
for others use. Cbench emulates any number of Open-
Flow switches to measure different performance aspects
of the controller including the minimum and maximum
controller response time, maximum throughput, and the
throughput and latency of the controller with a bounded
number of packets on the fly.
We present a study of SDN controller performance
using four publicly-available OpenFlow controllers:
NOX, NOX-MT, Beacon, and Maestro [4]. We consider
NOX as the baseline for our performance study since it
has been previously used in different papers [14, 18, 6].

2 NOX-MT

NOX – whose measured performance motivated several
recent proposals on improving control plane efficiency



– has a very low flow setup throughput and large flow
setup latency. Fortunately, this is not an intrinsic limita-
tion of the SDN control plane: NOX is not optimized for
performance and is single-threaded.

We present NOX-MT, a slightly modified multi-
threaded successor of NOX, to show that with simple
tweaks we were able to significantly improve NOX’s
throughput and response time. The techniques we used
to optimize NOX are quite well-known including: I/O
batching to minimize the overhead of I/O, porting the
I/O handling harness to Boost Asynchronous I/O (ASIO)
library (which simplifies multi-threaded operation), and
using a fast multiprocessor-aware malloc implementa-
tion that scales well in a multi-core machine. Despite
these modifications, NOX-MT is far from perfect. It does
not address many of NOX’s performance deficiencies,
including but not limited to: heavy use of dynamic mem-
ory allocation and redundant memory copies on a per-
request basis, and using locking were robust wait-free
alternatives exist. Addressing these issues would signif-
icantly improve NOX’s performance. However, they re-
quire fundamental changes to the NOX code base and we
leave them to future work.

To the best of our knowledge, NOX-MT was the first
effort in enhancing controller performance and motivated
other controllers to improve. The experiments presented
in this paper were performed in May 2011. Ever since
all controllers studied in this paper have significantly
changed and have different performance characteristics.
We emphasize that our goal in this paper is to show that
SDN controllers can be optimized to be very fast.

3 Experiment Setup

In an effort to quantify controller performance, we cre-
ate a custom tool, cbench [12], to measure the number
of flow setups per second that a controller can handle.
In SDN, the OpenFlow controller 2 must setup and tear
down flow-level forwarding state in OpenFlow switches.
This “flow setup” process can happen statically before
packets arrive (“proactively”) or dynamically as part of
the next hop lookup process (“reactively”). Reactive flow
setups are particularly sensitive because they add latency
to the first packet in a flow. Once set up, the flow for-
warding state remains cached on the OpenFlow switch
so that this process is not repeated for subsequent packets
in the same flow. The OpenFlow controller also commu-
nicates how long to cache the state: either indefinitely,
after a fixed timeout, or after a period of inactivity. We
choose to focus on the flow setup process because both

2While the specifics of this description use an OpenFlow-based ter-
minology, the flow setup operation is common to all flow-based net-
work architectures, e.g., setting up virtual circuits in ATM, configuring
labels in MPLS, or physical circuits in optical networks.

because it is integral to SDN and because it is perceived
to be the likeliest source of performance bottleneck.

Our tool, cbench [12], measures various performance
issues related to flow setup time. Cbench emulates a con-
figurable number of OpenFlow switches that all commu-
nicate with a single OpenFlow controller. Each emulated
switch sends a configurable number of new flow (Open-
Flow packet in) messages to the OpenFlow controller,
waits for the appropriate flow setup (OpenFlow flow mod
or packet out) responses, and records the difference in
time between request and response.

Cbench supports two modes of operation: latency
and throughput mode. In latency mode, each emulated
switch maintains exactly one outstanding new flow re-
quest, waiting for a response before soliciting the next
request. Latency mode measures the OpenFlow con-
troller’s request processing time under low-load condi-
tions. By contrast, in throughput mode, each switch
maintains as many outstanding requests as buffering will
allow, that is, until the local TCP send buffer blocks.
Thus, throughput mode measures the maximum flow
setup rate that a controller can maintain. Cbench also
supports a hybrid mode with n-new flow requests out-
standing, to explore between these two extremes.

We analyzed cbench to ensure that it is not a bot-
tleneck in our experiments. For that, we instrumented
cbench to report the average number of requests on the
fly for different experiments. Cbench also reports av-
erage throughput and response time. According to Lit-
tle’s theorem (L = λW ) [10] the average number of out-
standing requests must match the product of the system
throughput and the average response time. Throughout
our experiments these numbers were in agreement. The
slight differences are an artifact of taking the average
over the samples collected in each run.

Using cbench, we evaluated the flow setup throughput
and latency of four publicly available OpenFlow con-
trollers using cbench: (a) NOX [8] is a single-threaded
C++ OpenFlow controller adopted by both industry and
academia. (b) NOX-MT is an optimized multi-threaded
successor of NOX we developed and presented in this
paper. (c) Maestro [4] is a multi-threaded Java-based
controller from Rice university. (d) Beacon3 is a multi-
threaded Java-based controller from Stanford university
and Big Switch Networks. We used the latest available
version of each controller available as of May 2011.

In all the experiments, each controller runs the L2
switching application provided by the controller.4 For

3Through private correspondence with Beacon’s author, we were
informed that Beacon performs twice better on a 64-bit OS. We note
that the results reported in this paper are for 32-bit runs. However, we
are not aware of the reason for this gap in performance.

4We choose to use L2 switching for our evaluation for two primary
reasons. First, it provides a lower-bound for lookup since the full for-
warding decision can be accomplished with a hash followed by a sin-



each switch on the path, the switch application performs
MAC address learning. Each packet is forwarded out
of the last port on which the traffic from the destination
MAC address is seen. Packets with unknown destina-
tions are flooded. In NOX, for each switch, the map-
ping between the MAC-switch tuple and the port num-
ber is stored in a hash table. The switch application has
mostly read-only work load: only requests with newly
observed source MAC addresses trigger an insert/update
in the hash table, and the number of such events is pro-
portional to the product of the number of hosts in the
network and the number of switches.

To minimize interference, we run the controller and
cbench on two separate servers (8 × 2GHz and 4 ×
2.13GHz CPU cores respectively, both with 4GB of
DDR2 ram)5. Each server has two Gigabit ports di-
rectly connected to the other server. The Gigabit links are
teamed together to provide a 2Gbps control bandwidth
required for some experiments. Throughout our experi-
ments cbench’s CPU utilization is consistently less than
50%. We occasionally run multiple parallel instances of
cbench on different processors to verify cbench’s fairness
in serving different emulated switches (sockets) as well
as its accuracy.

Each test consists of 4 loops each lasting 5 seconds.
The first five seconds (first loop) is considered as con-
troller warm-up and its results are discarded. Each test
uses 100k unique MAC addresses (representing 100k
emulated end hosts). For experiments with fixed number
of switches, we chose to present the results for 32 em-
ulated switches because we do not expect a large num-
ber of switches to be stressing the network simultane-
ously. To maximize the stress on the controller and to
ensure that the bandwidth is not the bottleneck to the ex-
tent possible, we use 82-byte sized OpenFlow packet-in
messages (referred to as requests in the graphs).6

gle lookup. Thus, the test is not heavily augmented by overhead of
the lookup (which could be the case with something like longest-prefix
match implemented in software). And secondly, basic switching has
been implemented in all the controllers we tested.

5All servers run Debian Squeeze with Linux
2.6.32-5-686-bigmem, gcc 4.4.5, GNU libc 2.11, GNU
libC++ 3, Boost 1.42, Sun Java 1.6, and TCMalloc 1.5. NOX and
NOX-MT are compiled with no support for python and with debugging
disabled. All controllers are run with logging disabled and no verbose
output. For NOX, NOX-MT, and Maestro threads are bound to distinct
CPUs. We used TCMalloc [7] malloc implementation since it provides
a faster alternative to GNU libc’s malloc with better scalability in
multi-threaded programs. Also, unless otherwise noted, we run the
experiments with default sizes for Linux networking stack buffers
as well as NIC drivers’ ring buffers. Cubic is the default congestion
control algorithm on Linux 2.6.32.

6All our estimates on the bandwidth usage is based on this size.
For instance, throughout the paper we map 1.45M requests to 1Gbps
control bandwidth. That is because 1.45 Mreq

sec × 82 bytes
req × 8 bits

byte =

951.2Mbps and assuming that the majority of Ethernet frames are
MTU-sized (to account for Ethernet+IP+TCP overhead), this number
roughly corresponds to 1Gbps.

4 Controller Throughput

Individual controllers’ throughput is an important factor
in deciding the overall number of controllers required to
handle the network control load. Our focus in this sec-
tion is to study the maximum throughput in the system in
various settings.

Maximum throughput:
Figure 1 shows the average maximum throughput of dif-
ferent controllers with different number of threads. The
results suggest that: (a) NOX-MT shows a significantly
better performance compared to the other controllers. It
saturates 1Gbps control bandwidth with four 2GHz CPU
cores. (b) As expected, all the multi-threaded controllers
achieve near-linear scalability with the number of threads
(cores), because the controller’s workload is mostly read-
only minimizing the amount of required serialization.

Figure 1: Average maximum throughput achieved with differ-
ent number of threads. We use 32 emulated switches and 100k
unique MAC addresses per switch. NOX-MT saturates 1Gbps
(1.45Mreq/sec) of control bandwidth using four 2GHz CPU
cores. Since NOX is single-threaded it only has a single point
in this and similar graphs.

Relation with the number of active switches:
Ideally, controller’s aggregate throughput should not be
affected by the number of switches connected to it. How-
ever, increased contention across threads, TCP dynam-
ics, and task scheduling overhead within the controller
are factors that can lead to a degraded performance if we
have a large number of highly active switches.

To study the impact of the number of switches on con-
troller performance, we measure the average maximum
throughput with different number of switches and threads
in Figure 2. We observe that, adding more threads be-
yond the number of active switches does not improve
throughput. Also, increase in the number of switches
beyond a threshold reduces the overall throughput, be-
cause: (a) I/O handling overhead increases, (b) con-
tention on the task queue and other shared resources in-
creases, and (c) I/O and job batching become less effec-
tive. We note that the number of switches presented in



our experiments only reflects the highly active (i.e. pro-
ducing an extremely large number of requests per sec-
ond) switches. In a typical network it is very unlikely
that all the switches are highly active at the same time,
so each controller should be able to manage a far larger
number of switches.

Relation with the load level:
Cbench’s throughput mode effectively keeps the pipe be-
tween itself and the controller full all the time. However,
since we have large buffers across all layers in the net-
working stack (e.g., network adapter’s ring buffer, net-
work interface’s send and receive queues, TCP buffers,
etc.), this pipe is quite large.

Our experiments verify that average maximum
throughputs with 212 outstanding requests are very close
to the ones with unlimited number of outstanding re-
quests (see Figure 3). With the same throughput, it fol-
lows from the Little’s law that doubling the number of
requests in the system doubles the response time. In our
experiments, the average delay with unlimited outstand-
ing requests is almost an order of magnitude larger than
the limited ones even though they achieve the same level
of throughput. We study the controller response time cor-
responding to different load levels in Section 5.

Effect of write-intensive workload:
Write-intensive workloads increase the contention in the
network control applications. For the switch control ap-
plication, having a large number of unique source MAC
addresses result in a write-intensive workload. As shown
in Figure 4, both Maestro and Beacon are significantly
affected by this workload. However, NOX-MT does
not exhibit a similar behavior. That is because NOX-
MT’s switch application minimizes contention in such
scenarios by partitioning the network’s MAC address ta-
ble among a pool of hash tables selected by the hash of
the MAC address.

Figure 4: Average maximum throughput for various levels of
write-intensive workloads with 32 switches and 4 threads.

5 Controller Response Time

In a software-defined network where flow setup is per-
formed reactively, controller response time directly af-
fects the flow completion times. In this section, we
present benchmarks to measure minimum (least load)
and maximum controller (maximum load) response time
of SDN controllers. Then, we study the relation between
the load level and response time as well as the number of
switches and response time.

Minimum response time:
To measure minimum control plane response time, we
constrain the number of packets on the fly to be exactly
one. Besides controller service time, this minimum re-
sponse time includes traversal of networking stacks on
both the controller and cbench sides twice, as well as
the processing time of the controller. Average response
times of all controllers are between 100 and 150 mi-
croseconds.

Maximum response time:
Maximum response time for each controller is observed
when the maximum number of packets on the fly is not
bounded (i.e., when the benchmakrer exhausts all the
buffers in between the emulated switch and the con-
troller). Since NOX-MT has the highest throughput, it
has the least response time compared to others. As we
see in Table 1, the average number of packets on the
fly across these experiments is inversely proportional to
the controller throughput (in accordance with the Little’s
law)

Relation with the load level:
To better understand the relation between controller load
and response time, we plotted the response time CDFs
fixing the load level to 212 requests on the fly (see Fig-
ure 5) and the response time varying the load level (see
Figure 6). We find that for the same workload adding
more threads decreases the response time. Also, dou-
bling the number of outstanding requests doubles the re-
sponse time, but does not significantly affect the through-
put (see Section 4).

Relation with the number of active switches:
Varying the number of active switches (see Table 2), we
observe the same pattern for delay as we observed for
throughput in Figure 2. Adding more CPUs beyond the
number of switches does not improve latency, and serv-
ing far larger number of switches than available CPUs
results in a noticeable increase in the response time.



(a) NOX-MT (b) Beacon (c) Maestro

Figure 2: Average maximum throughput with different number of switches. NOX-MT shows nearly identical average maximum
throughput for 16, 32 and 64 emulated switches. With 256 emulated switches the performance of all three controllers degrades.

(a) NOX-MT (b) Beacon (c) Maestro

Figure 3: Average maximum throughput with different number of threads and limits on the maximum overall number of requests
on the fly. It is possible to achieve an almost maximum throughput even with limited number of requests on the fly for all three
controllers.

1 2 4 8
NOX 631.87±44.62 - - -

NOX-MT 349.44±127.45 143.55±63.19 92.59±42.40 66.34±38.32
Beacon 1028.51±175.32 634.83±204.99 394.21±205.59 293.80±233.33
Meastro 1268.58±84.38 783.56±56.56 558.40±338.04 361.01±301.68

Table 1: Worst-case average response time and standard deviation (milliseconds) for various number of threads with 32 switches
and unlimited number of outstanding flow setup requests.

(a) Single-threaded (b) Four threads (c) Eight threads

Figure 5: Response time CDF for different controllers with 32 switches, and 212 maximum requests on the fly. NOX-MT has the
lowest response time for 1, 4 and 8 threads.

1 4 16 32 64 256
NOX-MT 9.92±6.39 3.80±0.69 3.51±1.10 3.84±2.51 4.63±6.65 8.63±18.73
Beacon 30.47±14.99 14.85±18.69 11.89±26.22 11.86±35.69 18.74±85.57 30.48±116.02
Meastro 22.75±10.55 15.98±10.18 15.97±11.08 26.09±43.76 23.35±49.69 29.84±57.88

Table 2: Response time (milliseconds) varying the number of switches for runs with 4 threads and 212 requests on the fly.



(a) NOX-MT (b) Beacon (c) Maestro

Figure 6: Response time CDF for various maximum number of requests on the fly with 32 switches, and four threads.

6 Concluding Remarks

We present NOX-MT that establishes a new lower bound
on the maximum throughput for SDN controllers. Our
microbenchmarks demonstrate that existing controllers
all perform significantly better than what current liter-
ature assumes. On an eight-core machine with 2GHz
CPUs, NOX-MT handles 1.6 million requests per sec-
ond with an average response time of 2ms. We empha-
size that controller responsiveness is the primary factor
to decide if additional controllers should be deployed.

We are not, however, suggesting that a single physi-
cal controller is enough to manage a sizeable network.
High availability and maintaining low response times are
among the reasons that a network needs multiple con-
trollers. However, given the low frequency of failures
and changes to the network topology, it seems that main-
taining a consistent logically centralized view of the net-
work across controllers (e.g., [15]) is feasible.

Finally, we note that understanding overall SDN per-
formance remains an open research problem. System-
wide performance is likely a complex function of topol-
ogy, work load, equipment, and forwarding complexity.
Our single-controller microbenchmarks presented in this
paper are just a first step towards the understanding of
the performance implications of SDN.
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