
Facade: High-Throughput, Deniable Censorship
Circumvention Using Web Search

Ben Jones Sam Burnett Nick Feamster
Sean Donovan Sarthak Grover Sathya Gunasekaran Karim Habak

Georgia Institute of Technology

Abstract
Censorship circumvention systems that use HTTP as
cover traffic make tradeoffs between deniability and per-
formance by offering either deniability at the expense of
performance (e.g., Infranet) or performance at the expense
of deniability (e.g., StegoTorus). These systems do so be-
cause HTTP is typically very asymmetric, with very little
capacity to carry covert data in each HTTP GET request;
higher throughput channels achieve performance by gen-
erating sequences of HTTP GET requests that do not
mimic normal user traffic patterns. Fortunately, the emer-
gence of new web services makes it increasingly common
for any individual HTTP GET requests to contain more
entropy. For example, site-specific search services cre-
ate GET requests that contain sequences of search terms
that can encode more bits than a single deniable HTTP
request otherwise would. In this paper, we design a new
encoding technique that uses web search terms to encode
hidden messages in an upstream channel for censorship
circumvention; implement the encoding technique in a
system that resists fingerprinting attacks; and compare the
security and performance of Facade to existing censorship
circumvention systems that use HTTP as cover traffic.

1 Introduction
Censorship restricts the autonomy of citizens and may
even be considered a violation of human rights [9]; it is
also becoming increasingly pervasive. The Open Net Ini-
tiative reports that 38 of 74 countries tested showed signs
of Internet censorship [11] of political, religious, or social
content. Researchers have developed circumvention tools
to help users, but most of these tools would not work if
the censor blocked all traffic except HTTP. To enable free
speech and empower citizens in light of the ubiquity of
HTTP communications, researchers have designed vari-
ous covert channels that operate over HTTP [4,13]. These
systems must operate in the face of a censor who may
seek to either detect that a user is requesting censored
content or disrupt the communications between a client
and a censored destination.

Systems that build covert channels into HTTP must
make design choices concerning the tradeoff between de-
niability and performance. Deniability gives a user the

ability to disavow the use of a particular system; typically,
systems attain deniability by encoding data inside cover
traffic that masquerades as innocuous traffic; this traffic
must both conform to standard protocol behavior to resist
fingerprinting attacks [5] and reflect the traffic patterns
that would be generated by a “normal” user [1, 4]. Ex-
isting systems provide covert channels that either offer
performance at the expense of deniability (e.g., Stego-
Torus [13]) or deniability at the expense of performance
(e.g., Infranet [4], Collage [1]). In particular, these chan-
nels lack good ways to communicate data from client to
server and thus offer very poor upstream performance.
Many of these systems are also not resistant to “finger-
printing attacks”, whereby a censor can detect an attempt
to emulate a protocol by its unorthodox responses to error
conditions [5].

In this paper, we develop a covert communication chan-
nel in HTTP that provides the deniability of previous
circumvention systems such as Infranet and Collage but
with significantly better upstream throughput. We take ad-
vantage of the growing ubiquity of Web search to encode
more information into upstream HTTP GET requests, in
the form of search queries. Infranet and Collage achieve
deniability by encoding upstream messages in a sequence
of Web requests whose pattern matches that of a normal
web user, yet the encoding of these messages relies on us-
ing individual Web requests or tasks that map to symbols,
both of which require several Web requests to convey a
single covert message. (For example, a visible HTTP
request in Infranet maps to a symbol that is lg(k) bits,
where k is the number of links on a webpage.)

In contrast, our new encoding takes advantage of
the fact that many pages have site-specific search (e.g.,
Wikipedia), and that user searches generate HTTP GET
requests that contain these search terms. HTTP GET
requests containing search terms are good cover traffic be-
cause they are higher entropy than individual link clicks;
thus, they make it possible to encode more data than ex-
isting schemes. Because the set of possible search terms
provides much more entropy than a selection from a set
of possible links, any individual visible HTTP request
thus encodes a symbol with many more bits. As in In-
franet, these symbols can be mapped either directly to
bits that encode a hidden message or as an index into a

1



dictionary of known URLs. To make the visible request
stream resemble normal user activity, we can also insert
GET requests that represent “dummy clicks” that do not
represent any hidden information.

We implement this new encoding in a tool called Fa-
cade, which tunnels hidden messages (e.g., censored
URLs) through a Selenium-driven Chrome browser as a
sequence of protocol-compliant HTTP GET requests con-
taining plausible sequences of search terms. Houmansadr
et al. showed that protocol emulations or even implemen-
tations can be fingerprinted by their responses to error
conditions [5]. By tunneling requests through Chrome,
Facade’s requests can resist these fingerprinting attacks.
To demonstrate the feasibility of Facade’s encoding, we
build a message channel on top of OpenSearch [2], a
popular search format that allows websites to offer site-
specific search. Though Facade could only be deployed
on sites with sufficiently high cover search traffic, our
analysis of search and click sequences based on a public
web search corpus shows that Facade can offer signifi-
cantly higher throughput than Infranet while achieving
comparable deniability properties

The rest of the paper proceeds as follows. Section 2
presents the threat model we consider. Section 3 describes
Facade’s encoding mechanisms for upstream communi-
cation; Section 4 describes the Facade system design and
prototype. Section 5 performs a security and performance
evaluation, and Section 6 outlines various limitations and
avenues for future work. Section 7 surveys related work,
and Section 8 concludes.

2 Threat Model
We consider a censor that can mount various passive and
active attacks in an attempt to either discover users of Fa-
cade or otherwise disrupt communication. A censor may
mount a passive attack to determine if a client is running
Facade and block the traffic. The censor can monitor any
traffic between these two regions and may also attempt
to actively disrupt communications. The censor will not,
however, disrupt communications if it interferes with le-
gitimate, uncensored communications. We also assume
that the attacker can store one HTTP request/response
pair and can allow, block, modify, or generate traffic. Pas-
sive attacks do not modify existing traffic, and they do
not generate additional traffic. Active identification, on
the other hand, includes probing and scanning potential
Facade clients and servers; for example, an attacker might
actively probe clients or modify traffic to determine how
clients respond to error conditions. A client that merely
mimics a protocol but does not tunnel traffic through it
may be vulnerable to active attacks [5].

Facade’s threat model is similar to the threat models
considered in the design of other circumvention systems,
including StegoTorus [13], Infranet [4], and Scramble-

<method> /<path>?<query>#<fragment> HTTP/1.1
Host: <host>
Connection: keep-alive
Accept: text/html
User-Agent: Mozilla/5.0
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Cookie: <cookie>

Figure 1: An example HTTP request. There are several possi-
ble sources of entropy in a request that we can use for covert
upstream communication, indicated in italics.

Suit [15]. In Facade’s threat model, a client in a censored
country communicates with a server outside the censored
region. The threat model is comparable to (if not more
powerful than) that of real-world adversaries, as a case
study of the Great Firewall of China (GFW) shows. The
GFW retains limited state, only monitors HTTP requests,
and actively scans suspicious addresses to determine if
they are running Tor [6, 14].

3 Deniable Upstream Encoding
This section develops techniques for encoding data in
HTTP requests. We focus on improving upstream com-
munication because HTTP requests contain few oppor-
tunities for encoding covert data and are thus usually a
bottleneck, particularly for symmetric communication.

3.1 Design Goals and Considerations
In designing a covert communications channel, we aim to
achieve the following design goals:

• Robust: The tool should be able to continue opera-
tion despite attacks from the censor.
• Deniable: It should be difficult to distinguish Facade

and normal traffic.
• Expensive to block: The channel should be too ex-

pensive for the censor to block, either in terms of
resources to fingerprint the tool or collateral damage
to legitimate traffic.
• Real-time: Latency between the client and server

should be at most on the order of seconds.

Achieving deniability requires identifying sources of en-
tropy in HTTP requests into which we can embed covert
data. Figure 1 shows an example HTTP request. The
host, path, query string, fragment, cookie, and body may
be modified in various ways to encode data on the up-
stream channel, only the path, query string, and fragment
are deniable. The host and cookie fields must generally
remain constant between connections to the same server
because changes to them are not deniable. Storing data
in the body field is also not robust it is only available in

2



POST requests and constantly sending POST requests
would look suspicious. Although data can be hidden in
the cookie field under certain threat models, we assume
that the attacker could identify clients that send cookies
that the server did not previously set. We also assume that
the adversary might enumerate all possible domain names
for an IP address, making the host field ineligible for data
encoding. By encoding data in only the path and query
string, we modify the HTTP request header in a way that
is robust to statistical analysis techniques.

Although simple encodings over the given fields (e.g.,
direct Base64 encoding of data) are sufficient to evade
detection under weaker threat models [13], we target a
more powerful adversary and instead exploit sources of
entropy from real web services. Web service protocols
are ubiquitous, so there is significant legitimate traffic for
each protocol, making this covert channel more difficult to
distinguish. Additionally, disrupting or blocking access to
a Web service might induce significant collateral damage
to legitimate users of that service. Censors are typically
governments and may not wish to harm local businesses
that rely on or make money from web services.

3.2 Search Encoding
We use the OpenSearch Web service protocol as an ex-
ample of how to build a covert channel in HTTP requests.
The OpenSearch interface enables web sites to specify an
interface for searching the website [2], thereby enabling
users to search the site without navigating to a search
engine. The OpenSearch protocol adds search terms
to the query string for a template URL. For example,
the URL https://duckduckgo.com/?q=hello
searches www.duckduckgo.com for the term “hello.”
These search terms are the source of entropy that we
exploit to increase upstream covert channel throughput.
We assume that the censor will not directly block the
OpenSearch protocol because doing so would cause sig-
nificant collateral damage.

We create a deniable covert channel within the
OpenSearch protocol using a dictionary encoding of
search terms with the same entropy as real search queries.
A dictionary encoding relates words to bytes of the covert
message. For example, if the dictionary is {“hello”,
“goodbye”}, then “hello” could represent a 0 and “good-
bye” could represent a 1. In the case of the OpenSearch
covert channel, the client and server could prenegoti-
ate a dictionary to use with the same entropy as real
searches. Depending upon the desired level of secu-
rity, the client and server could negotiate a client specific
dictionary out of band so that the encoded requests per-
fectly match the entropy of the user’s real searches. To
transmit data to the server, the client joins these terms
with +’s and adds them to the query string of the URL.
The exact form of the path and the query string vari-

ables depend on the site, but we use a standard struc-
ture: <hostname>/?q=<terms>. In the given for-
mat, we replace hostname with the address of the server
and terms with the dictionary encoded search terms. For
example, one possible encoding would generate the URL
http://www.example.com/q?=objections+law to
encode the covert text “hello”.

3.3 Click Range Mapping Encoding
As our evaluation in Section 5 will show, the search encod-
ing improves on Infranet’s upstream performance while
maintaining its deniability. However, we can squeeze
more information out of the channel and make the proto-
col seem more realistic by encoding data with links that
we click on from the response HTML. For example, if the
server returns a page with 8 links and the client selects
the 4th link, then the client will communicate a 3 back
to the server. If there are k links ordered on a page, then
the client can encode lg(k) bits by selecting the link on
the page whose order corresponds to the data the client
wants to send back to the server. This is Infranet [4]’s
main technique for encoding data; by combining search
encoding and click range mapping, we can significantly
improve the upstream performance that Infranet achieves.
Using both techniques also increases deniability because
it allows the client to model a real user who will likely
switch between searching and selecting results.

4 Facade
We now describe the design of Facade, a prototype sys-
tem that implements the encoding mechanisms that we
described in Section 3.

Figure 2 shows the design of Facade, which is com-
prised of three layers. The framing layer communicates
with the tunneled application via SOCKS, manages the
authentication of clients to servers, and provides trans-
port and session layer functionality for Facade. Specifi-
cally, the framing layer breaks the application’s traffic into
frames, and handles the transmission and reassembly of
these frames. The encoding layer accepts frames of data
from the framing layer, encrypts them, and encodes the
data within HTTP requests and responses. This layer en-
codes downstream (server to client) and upstream (client
to server) traffic differently. The transmission layer takes
encoded HTTP requests and responses and tunnels the
data through existing HTTP tools in a manner that avoids
fingerprinting attacks.
Framing. The framing layer provides an interface be-
tween applications which send hidden messages; and
the encoding layer, which encodes each message as a
sequence of web search requests. It also manages au-
thentication. Facade frames each hidden message from
the application in a four-byte header. The header has a
two-byte sequence number, a one-byte session ID, and a

3



Figure 2: Facade uses multiple layers to encode and send data.

one-byte field for individual flags. The sequence number
allows application data units from the application to be
fragmented into smaller units. The MORE flag allows the
server to indicate to the client that the server has more
data to send; this mechanism is useful because the server
cannot send HTTP responses without first being prompted
with HTTP requests from the client. The SYN flag sig-
nals that the client wishes to authenticate a new session.
Facade relies on the application’s transport layer (above
the framing layer) to provide the reliability guarantees
that a particular application requires. Facade uses the
ScrambleSuit session authentication protocol [15], which
relies on a shared secret to authenticate users before using
an extension of the Uniform Diffie-Hellman handshake
to establish a session key.

Encoding. The encoding layer uses the methods de-
scribed in Section 3 to hide data within HTTP requests
and responses. After receiving data to send from the fram-
ing layer, the encoding layer encrypts the data, encodes
it, and passes it to the transmission layer. To receive data,
the server side reverses this process.

Transmission. To defend against fingerprinting [5], Fa-
cade must tunnel the encoded data through software that
uses a real HTTP implementation. To generate the re-
quests that the encoding layer produces, Facade uses Sele-
nium’s [10] ChromeDriver, which is a testing framework
that integrates Chrome’s automation functionality with
Python bindings. The server side uses Apache, a widely
deployed web server, with WSGI for integration with
Python. Because both of these applications are widely
used, the censor cannot block all traffic using those imple-
mentations and they provide the requisite fingerprinting
resistance. By integrating with existing tools, Facade also
makes it easier for web site operators to deploy our tool,
thereby increasing adoption and making Facade more
difficult to block.

5 Evaluation
We analyze Facade’s robustness and deniability in the
face of both passive and active attacks from the censor.
We then analyze Facade’s performance and compare it to
other systems that design covert channels based on HTTP,
including StegoTorus [13] and Infranet [4].

5.1 Security Evaluation
We enumerate a variety of passive and active attacks that
a censor could mount against Facade under our threat
model (Section 2) and argue that Facade is robust against
these attacks.

Passive attacks. Facade resists passive attacks that aim to
either identify Facade traffic or determine that a particular
user is sending Facade traffic.

• Request pattern analysis. To prevent the censor from
blocking traffic based upon a regular expression, Fa-
cade’s encoding layer uses dictionary encodings to
generate URLs based on real search terms. Because
Facade’s transmission layer generates traffic using a
Chrome browser, Facade’s traffic is normal HTTP traf-
fic.

• Blacklisting and filtering. A censor could block traffic
using IP or port blacklists. Deploying Facade on legiti-
mate web servers would make it difficult for a censor to
deploy a blacklist that blocks Facade, presuming that
the censor does not want to also block access to the le-
gitimate site and the legitimate site has sufficient cover
search traffic. The censor cannot block port 80, and
our threat model assumes that the censor is not willing
to block arbitrary web traffic without ensuring that the
web server is running Facade. Because Facade is de-
signed to be indistinguishable from real HTTP traffic
and resistant to active fingerprinting attacks, discover-
ing and blacklisting Facade servers would be difficult.
Even if the censor could determine that if a server were
running Facade, we could move Facade servers to Ama-
zon AWS and assume that the censor is unwilling to
block all AWS services.

• Entropy-based traffic analysis. The censor could block
Facade if the entropy of a sequence of search results
differed from that of a normal user’s search query se-
quence. A censor could also observe that the pattern of
searches and “clicks” did not match that of a normal
user. To defend against this type of analysis, Facade
generates search request sequences that have similar
entropy to existing search queries; to defend against
analysis that looks for deviations in click sequences on
search results, Facade can insert false clicks that match
normal request patterns and use those clicks to perform
range mapping (as described in Section 3.3). Depend-
ing upon the level of security the user wants, Facade

4



could also be tailored with a user specific dictionary or
click sequence.

Active attacks. Facade also resists censors who may
actively probe the client or server or otherwise actively
modify Facade in an attempt to disrupt communication.

• Reordering, replaying, dropping, or disrupting HTTP
messages. A censor could disrupt the communications
channel by manipulating the visible HTTP traffic. How-
ever, its options for doing so are limited presuming its
unwillingness to disrupt legitimate HTTP transactions.
Because modifying the order of search terms or the
terms themselves would modify the semantic content
of a query, we assume that the censor is unwilling to
change the search string. Should this become a signifi-
cant attack from the censor, an erasure code may also
offer additional security at the cost of performance.

• Server discovery via session initiation probing. The
censor cannot detect Facade servers with active scan-
ning that attempts to initiate Facade sessions because
Facade uses a pre-shared secret for authentication. Fa-
cade uses ScrambleSuit’s [15] key exchange and in-
herits the properties of that authentication mechanism
(and is thus robust against preplay and replay attacks).
• HTTP fingerprinting. The censor cannot fingerprint

Facade’s HTTP implementation (i.e., using a “parrot”
attack [5]) because Facade uses a popular browser and
web server; therefore, all messages that the censor ob-
serves are protocol-compliant, and both endpoints re-
spond to active probing as a normal client or server.

5.2 Performance Evaluation
In this section, we quantify the highest capacity Facade
can encode data at and maintain deniablity comparable to
existing circumvention systems (e.g., Infranet). We also
analyze the tradeoff between performance and deniability
as clients choose to encode data in search queries vs. click
range mapping. Finally, we compare the performance of
Facade to two existing real-time HTTP covert channels:
StegoTorus and Infranet.
Entropy of Facade encodings. Using standard entropy
calculations, we can quantify the maximum amount of
information that Facade can encode in a single HTTP
request and still remain deniable. Using the AOL search
corpus [8], we calculated that the average length of a
search query was 17.42 bytes and that the average infor-
mation content of per byte, or the entropy, was 4.48 bits.
Thus, a search query can encode 78.04 bits of information
while maintaining deniability.

In contrast, click range mapping encodes lgk bits per
URL, which is three bits with k = 8 from Infranet; k could
be set to a larger value, but k = 8 was the value used in
the Infranet evaluation. Because these entropies differ by

Protocol Encoded Bits per URL Deniability
Facade 78.04 statistical

deniability
Infranet 3 statistical

deniability
Stego-
Torus

12,000 N/A

Table 1: Facade communicates more information than Infranet,
but StegoTorus significantly outperforms Facade.

so much and better deniability requires a balance between
click range mapping and search encoding, Facade faces
a tradeoff between performance and deniability; there is
an inverse relationship between the fraction of messages
encoded with click-based range mapping and Facade’s
throughput. Although Facade would perform best when
only using the search encoding, such an encoding would
not model normal user behavior and might trigger detec-
tion of Facade. On the other hand, it is not necessary to
encode all traffic with click range mapping because users
do some searching while browsing.

Comparison to existing tools. Although Infranet and
StegoTorus both achieve reasonable throughput, Facade
achieves better performance than Infranet for comparable
levels of deniability (StegoTorus, on the other hand, does
not provide statistical deniability). Infranet used range
mapping to encode data, encoding lg(k) bits per URL
with k = 8. Infranet boosted throughput by proportion-
ally weighting URLs according to their likelihood and
correlated these more probable visible URLs with more
probable covert URLs (arithmetic coding). Unfortunately,
this optimization only works when the probability distri-
bution over hidden messages (i.e., the set of URLs that a
client might request) is known in advance; this distribu-
tion is incredibly difficult to model in general.

Facade performs significantly better than existing ap-
proaches on encrypted data: it encodes ˜26 times as much
information as Infranet without a loss in deniability. Un-
like Infranet, StegoTorus does not evaluate the entropy
of their encoding. However, StegoTorus uses Base64 en-
coding, so if StegoTorus were to include 2,000 Base64
encoded bytes in each URL, the maximum length many
web servers will accept, then the average entropy per
URL is 6 ·2,000 = 12,000 bits. Obviously, StegoTorus
can transmit significantly more data for each URL, but,
unlike either Facade or Infranet, it offers no statistical
deniability if a censor were to analyze the user’s request
patterns. Table 1 summarizes these results.

5



6 Discussion
We discuss possibilities for improving the performance
and deniability of Facade, as well as improving Facade’s
resistance to fingerprinting attacks.

Improving performance. Facade’s upstream communi-
cations channel currently relies on search terms that are
embedded in HTTP GET requests. Although such search
terms provide a reasonable source of entropy, other web
services may offer deniable encoding mechanisms with
even higher entropy. For example, a web service that
permits sequences of HTTP POST requests may be able
to send more bits per symbol with comparable deniability.
Additionally, because Facade’s encoding layer relies on
HTTP requests and responses, sending data from client
to server may be slower than necessary if downstream
data is “clocked” on the client’s HTTP requests. To im-
prove performance, the framing layer might send multiple
HTTP responses downstream in parallel.

Better deployability. Facade’s transmission layer en-
sures that Facade is resistant to fingerprinting attacks. Al-
though Facade’s current implementation uses Selenium to
integrate with Chrome, this integration poses deployment
hurdles, especially for tools like Tor who may wish to use
Facade as a pluggable transport. In the future, we plan to
eliminate these dependencies by integrating Facade with
browsers through a JavaScript shim layer.

7 Related Work
We briefly discuss systems that have built covert channels
in HTTP. We then survey other methods of obfuscation
and communication channels that mimic other protocols.

Covert channels in HTTP. The three systems that are
most similar to Facade are StegoTorus [13], Infranet [4],
and Collage [1], all of which encode hidden messages
(i.e., HTTP requests) in sequences of other visible HTTP
traffic. StegoTorus [13] was designed as a pluggable trans-
port for Tor. It fragments Tor traffic into chunks and hides
them in HTTP by filling the cookie, path, and query string
fields of the URL with base-64 encoded data. StegoTorus
is vulnerable to active probing attacks because it does
not attempt to generate a deniable request stream, nor
does it generate protocol-compliant HTTP traffic. There-
fore, although StegoTorus offers higher throughput than
other circumvention systems based on HTTP, it is neither
deniable nor resistant to fingerprinting attacks.

Infranet [4] encodes hidden messages as sequences of
visible HTTP requests that mimic plausible user request
sequences, thus providing better deniability than Facade.
On the other hand, each request from an Infranet client
only transmits a few bytes; using arithmetic encoding
based on a known distribution of hidden messages, In-
franet can improve the upstream throughput, but Facade

can send significantly more bits per request for compara-
ble levels of deniability. Collage [1] is an circumvention
tool that also encodes hidden messages using sequences
of HTTP requests. Its throughput is similar to Infranet,
but it uses user-generated content sites as intermediaries
for exchanging hidden messages.

Protocol mimicry. Several systems encode hidden mes-
sages within a protocol. For example, SkypeMorph [7]
encodes hidden messages as a traffic stream where packet
sizes and timings resemble Skype. Although SkypeMorph
accurately mirrors Skype’s distribution, Houmansadr et
al. [5] observe that SkypeMorph fails to emulate Skype’s
UDP control channel and is thus vulnerable to finger-
printing. Format Transforming Encryption (FTE) [3] also
emulates protocols by encrypting data to match a regu-
lar expression and may produce non-compliant packets.
Although mimicry is sufficient for some threat models,
Facade defends against a stronger adversary.

Traffic randomization. Censorship circumvention sys-
tems aim to generate traffic that evades detection by a
censor and although mimicking a protocol is generally
considered more deniable than generating random traffic,
several systems opt for the latter approach. obfs3 [12] has
such a threat model and merely adds another encryption
layer on top of Tor, as such, this protocol is still vulnerable
to fingerprinting attacks. ScrambleSuit [15] extends this
encryption layer with randomized packet sizes, timings,
and payloads and active probing resistance. Although ran-
domizing traffic patterns can defeat some forms of DPI,
traffic analysis could detect and block these systems.

8 Conclusion
We have presented Facade, a proxy system that hides cen-
sored data inside HTTP cover traffic. Facade achieves
deniability by encoding messages in visible HTTP re-
quests and responses from a real web browser (Chrome)
and whose traffic patterns mimic normal user behavior.
In contrast to Infranet, which achieves deniability by en-
coding messages in sequences of plausible web requests,
Facade achieves deniability by encoding messages in plau-
sible query strings. Though Facade is limited to deploy-
ment on websites with sufficient cover search traffic, it
offers similar deniability with much greater throughput
than Infranet.

We have implemented Facade by tunneling hidden
messages (e.g., censored URLs) through a Selenium-
driven Chrome browser that issues a sequence of protocol-
compliant HTTP GET requests containing plausible se-
quences of search terms. Facade’s deniability and per-
formance properties—as well as its lightweight imple-
mentation and SOCKS interface—make it well-suited for
use in a variety of settings, including as a Tor pluggable
transport.

6



References
[1] S. Burnett, N. Feamster, and S. Vempala. Chipping away

at censorship firewalls with user-generated content. In
Presented as part of the 19nd USENIX Security Symposium
(USENIX Security 10), pages 453–469. USENIX, 2010.
(Cited on pages 1 and 6.)

[2] D. Clinton. Opensearch specification. http:
//www.opensearch.org/Specifications/
OpenSearch/1.1. (Cited on pages 2 and 3.)

[3] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton. Proto-
col misdentification made easy with format-transforming
encryption. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security,
pages 61–72. ACM, 2013. (Cited on page 6.)

[4] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan,
and D. R. Karger. Infranet: Circumventing web censorship
and surveillance. In USENIX Security Symposium, pages
247–262, 2002. (Cited on pages 1, 2, 3, 4 and 6.)

[5] A. Houmansadr, C. Brubaker, and V. Shmatikov. The
parrot is dead: Observing unobservable network commu-
nications. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, 2013. (Cited on pages 1, 2, 4, 5
and 6.)

[6] S. Khattak, M. Javed, P. D. Anderson, and V. Paxson.
Towards illuminating a censorship monitor’s model to fa-
cilitate evasion. In Presented as part of the 3rd USENIX
Workshop on Free and Open Communications on the In-
ternet, Berkeley, CA, 2013. USENIX. (Cited on page 2.)

[7] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg. Skypemorph: Protocol obfuscation for tor
bridges. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 97–108.
ACM, 2012. (Cited on page 6.)

[8] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In Proceedings of the 1st International Confer-
ence on Scalable Information Systems, InfoScale ’06, New
York, NY, USA, 2006. ACM. (Cited on page 5.)

[9] M. Rundle and M. Birdling. Filtering and the international
system: A question of commitment. In Access Denied.
MIT Press, 2008. (Cited on page 1.)

[10] Selenium Developers. Seleniumhq browser automa-
tion. http://docs.seleniumhq.org/. (Cited on
page 4.)

[11] The OpenNet Initiative. Filtering data.
http://opennet.net/sites/opennet.net/files/ONI data-
20121029.zip, 2012. (Cited on page 1.)

[12] The Tor Project. Tor pluggable transports.
https://www.torproject.org/projects/
obfsproxy.html.en, 2002. (Cited on page 6.)

[13] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister,
S. Cheung, F. Wang, and D. Boneh. Stegotorus: a camou-
flage proxy for the tor anonymity system. In Proceedings
of the 2012 ACM Conference on Computer and Communi-
cations Security, pages 109–120, 2012. (Cited on pages 1,
2, 3, 4 and 6.)

[14] P. Winter and S. Lindskog. How the great firewall of
china is blocking tor. In Presented as part of the 2nd
USENIX Workshop on Free and Open Communications
on the Internet, Berkeley, CA, 2012. USENIX. (Cited on
page 2.)

[15] P. Winter, T. Pulls, and J. Fuss. Scramblesuit: A poly-
morphic network protocol to circumvent censorship. In
Proceedings of the 12th ACM Workshop on Workshop on
Privacy in the Electronic Society, WPES ’13, pages 213–
224, New York, NY, USA, 2013. ACM. (Cited on pages 2,
4, 5 and 6.)

7

http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://docs.seleniumhq.org/
https://www.torproject.org/projects/obfsproxy.html.en
https://www.torproject.org/projects/obfsproxy.html.en

	Introduction
	Threat Model
	Deniable Upstream Encoding
	Design Goals and Considerations
	Search Encoding
	Click Range Mapping Encoding

	Facade
	Evaluation
	Security Evaluation
	Performance Evaluation

	Discussion
	Related Work
	Conclusion

