
How the Great Firewall of China is Blocking Tor

Philipp Winter and Stefan Lindskog
Karlstad University

{philwint, steflind}@kau.se

Abstract
Internet censorship in China is not just limited to the
web: the Great Firewall of China prevents thousands
of potential Tor users from accessing the network. In
this paper, we investigate how the blocking mechanism
is implemented, we conjecture how China’s Tor block-
ing infrastructure is designed and we propose circumven-
tion techniques. Our work bolsters the understanding of
China’s censorship capabilities and thus paves the way
towards more effective circumvention techniques.

1 Introduction

On October 4, 2011 a user reported to the Tor bug tracker
that unpublished bridges stop working after only a few
minutes when used from within China [17]. Bridges are
unpublished Tor relays and their very purpose is to help
censored users to access the Tor network if the “main
entrance” is blocked [4]. The bug report indicated that
the Great Firewall of China (GFC) has been enhanced
with the potentiality of dynamically blocking Tor.

This censorship attempt is by no means China’s first
attempt to block Tor. In the past, there have been efforts
to block the website [27], the public Tor network [24, 22]
and parts of the bridges [18]. According to a report [27],
these blocks were realised by simple IP blacklisting and
HTTP header filtering. All these blocking attempts had
in common that they were straightforward and inflexible.

In contrast to the above mentioned censorship at-
tempts, the currently observable block appears to be
much more flexible and sophisticated. The GFC blocks
bridges dynamically without simply enumerating their IP
addresses and blacklisting them (cf. [7]).

In this paper, we try to deepen the understanding of
the infrastructure used by the GFC to block the Tor
anonymity network. Our contributions are threefold: (1)
we reveal how users within China are hindered from ac-
cessing the Tor network, (2) we conjecture how China’s

Tor blocking infrastructure is designed and (3) we dis-
cuss and propose circumvention techniques.

We also point out that censorship is a fast moving tar-
get. Our results are only valid at the time of writing1 and
might—and probably will—be subject to change. Nev-
ertheless, we believe that a detailed understanding of the
GFC’s current capabilities, a “censorship snapshot”, is
important for future circumvention work.

2 Related Work

In [28], Wilde revealed first crucial insights about the
block of Tor traffic. Over a period of one week in Decem-
ber 2011, Wilde analysed how unpublished Tor bridges
are getting scanned and, as a result, blocked by the GFC.

Wilde’s results showed that when a Tor user in China
establishes a connection to a bridge or relay, deep packet
inspection (DPI) boxes identify the Tor protocol. Shortly
after a Tor connection is detected, active scanning is ini-
tiated. The scanning is done by seemingly random Chi-
nese IP addresses. The scanners connect to the respec-
tive bridge and try to establish a Tor connection. If it
succeeds, the bridge is blocked.

Wilde was able to narrow down the suspected cause
for active scanning to the cipher list sent by the Tor client
inside the TLS client hello2. This cipher list appears to
be unique and only used by Tor although for a long time
it was identical to the cipher list advertised by Firefox
3. That gives the GFC the opportunity to easily identify
Tor connections. Furthermore, Wilde noticed that active
scanning is started at the beginning of multiples of 15
minutes. An analysis of the Tor debug logs yielded that
Chinese scanners initiate a TLS connection, conduct a
renegotiation and start building a Tor circuit, once the
TLS connection was set up. After the scan succeeded, the

1The data was mostly gathered in March 2012 and the paper written
in April 2012.

2The TLS client hello is sent by the client after a TCP connection
has been established. Details can be found in the Tor design paper [5].

1

mailto:philwint@kau.se
mailto:steflind@kau.se


IP address together with the associated port (we hereafter
refer to this as “IP:port tuple”) of the freshly scanned
bridge is blocked resulting in users in China not being
able to use the bridge anymore.

With respect to Wilde’s contribution, we (1) revisit
certain experiments in greater detail and with signif-
icantly more data, we (2) rectify observations which
changed since Wilde’s analysis, and we (3) answer yet
open questions.

3 Experimental Setup

During the process of preparing and running our experi-
ments we took special care to not violate any ethical stan-
dards and laws. In addition, all our experiments were
in accordance with the terms of service of our service
providers. In order to ensure reproducibility and en-
courage further research, we publish our gathered data
and developed code3. The data includes Chinese IP ad-
dresses which were found to conduct active scanning
of our bridge. We carefully configured our Tor bridges
to remain unpublished and we always picked randomly
chosen high ports to listen to so that we can be sure that
the data is free from legitimate Tor users.

3.1 Vantage Points
In order to ensure a high degree of confidence in our re-
sults, we used different vantage points. We had a relay
in Russia, bridges in Singapore and Sweden and clients
in China. There is, however, no technical reason why we
chose Russia, Singapore and Sweden.

Bridge in Singapore: A large part of our experiments
was conducted with our Tor bridge located in Singapore.
The bridge was running inside the Amazon EC2 cloud
[1, 23]. The OpenNet Initiative reports Singapore as a
country conducting minimal Internet filtering involving
only pornography [9]. Hence, we assume that our ex-
perimental results were not interfered with by Internet
filtering in Singapore.

Bridge in Sweden: To reproduce certain experiments,
we set up Tor bridges located at our institution in Swe-
den. Internet filtering for these bridges was limited to
well-known malware ports, so we can rule out filtering
mechanisms interfering with our results.

Relay in Russia: A public Tor relay located in a Rus-
sian data center was used to investigate the type of block,
public Tor relays are undergoing. The relay served as a
middle relay, meaning that it is not picked as the first hop
in a Tor circuit and it does not see the exit traffic of users.

Clients in China: To avoid biased results, we used
two types of vantage points inside China: open SOCKS

3http://www.cs.kau.se/philwint/static/gfc/

proxies and a VPS. We compiled a list of public Chi-
nese SOCKS proxies by searching Google. We were
able to find a total of 32 SOCKS proxies which were dis-
tributed amongst 12 distinct autonomous systems. We
connected to these SOCKS proxies from computers out-
side of China and used them to rerun certain experiments
on a smaller scale to rule out phenomena limited to our
VPS.

Our second vantage point and primary experimental
machine is a VPS we rented. The VPS ran Linux and
resided in the autonomous system number (ASN) 4808.
We had full root access to the VPS which made it pos-
sible for us to sniff traffic and conduct experiments be-
low the application layer. Most of our experiments were
conducted from our VPS, whereas the SOCKS proxies’
primary use was to verify the results.

3.2 Shortcomings
Active analysis of a censorship system can easily attract
the censor’s attention if no special care is taken to “stay
under the radar”. Due to the fact that China is a sophis-
ticated censor with the potential power to actively fal-
sify measurement results, we have to point out potential
shortcomings in our experimental setup.

We have no reliable information about the owners of
our public SOCKS proxies. Whois lookups did not yield
anything suspicious but the information in the records
can be spoofed. It might even be possible that the
SOCKS proxies are operated by Chinese authorities.
Second, our VPS was located in a data center where Tor
connections typically do not originate. We also had no
information about whether our service provider conducts
Internet filtering and the type or extent thereof.

4 Analysis

4.1 How Are Bridges and Relays Blocked?
The first step in bootstrapping a Tor connection requires
connecting to the directory authorities to download the
consensus which contains all public relays. We noticed
that seven of all eight directory authorities are blocked
on the IP layer. These machines responded neither to
TCP, nor to ICMP packets. One authority turned out to
be reachable and it was possible for us to download the
consensus. We have no explanation why this particular
machine was unblocked.

After the consensus has been downloaded, clients can
start creating a circuit. Using our Russian relay, we
found out that when a client in China connects to a re-
lay, the GFC lets the TCP SYN pass through but drops
the SYN/ACK sent by the bridge to the client. The
same happens when a client tries to connect to a blocked

2

http://www.cs.kau.se/philwint/static/gfc/


bridge. However, clients are still able to connect to dif-
ferent TCP ports as well as ping the bridge. We believe
that the reason for the GFC blocking relays and bridges
by IP:port tuples rather than by IPs is to minimise collat-
eral damage.

4.2 How Long Do Bridges Remain
Blocked?

To answer this question, we started two Tor bridges on
our machine in Singapore. Both Tor processes were pri-
vate bridges and listening on TCP port 27418 and 23941,
respectively. Both ports were chosen randomly.

In the next step, we made the GFC block both IP:port
tuples by initiating Tor connections to them from our
VPS in China. After both tuples were blocked, we set
up iptables [16] rules on our machine in Singapore to
whitelist our VPS in China to port 23941 and drop all
other connections to the same port. That way, the tuple
appeared unreachable to the GFC but not to our Chinese
VPS. Port 27418 remained unchanged and hence reach-
able to the GFC. We then started monitoring the reach-
ability of both Tor processes by continuously trying to
connect to them using telnet from our VPS.

After approximately 12 hours, the Tor process behind
port 23941 (which appeared to be unreachable to the
GFC) became reachable again whereas connections to
port 27418 still timed out and continued to do so. In
our iptables logs we could find numerous connection at-
tempts originating from Chinese scanners. This obser-
vation shows that once a Tor bridge has been blocked,
it only remains blocked if Chinese scanners are able to
continuously connect to the bridge. If they cannot, the
block is removed.

4.3 Is the Public Network Reachable?

To verify how many public relays are reachable from
within China, we downloaded the consensus published
at February 23 at 08:00 (UTC). At the time, the consen-
sus contained descriptors for a total of 2819 relays. Then,
from our Chinese VPS we tried to establish a TCP con-
nection to the Tor port of every single relay. If we were
able to successfully establish a TCP connection we clas-
sified the relay as reachable, otherwise unreachable.

We found that our VPS could successfully establish
TCP connections to 47 out of all 2819 (1.6%) public re-
lays. We manually inspected the descriptors of the 47
relays, but could not find any common property which
could have been responsible for the relays being un-
blocked. We checked the availability of the reachable
relays again after a period of three days. Only one out of
the original 47 unblocked relays was still reachable.

4.4 Where Does the Fingerprinting Hap-
pen?

We want to gain a better understanding of where the Chi-
nese DPI boxes are looking for the Tor fingerprint. In
detail, we tried to investigate whether the DPI boxes also
analyse domestic and ingress traffic.

We used six open Chinese SOCKS proxies (in ASN
4134, 4837, 9808 and 17968) as well as six PlanetLab
nodes (in ASN 4538 and 23910) to investigate domestic
fingerprinting. We simulated the initiation of a Tor con-
nection multiple times to randomly chosen TCP ports on
our VPS, but could not attract any active scans.

Previous research confirmed that HTTP keyword fil-
tering done by the GFC is bidirectional [2], i.e., key-
words are scanned in ingress as well as in egress traffic.
We wanted to find out whether this holds true for the Tor
DPI infrastructure too. To verify that, we tried to initiate
Tor connections to our Chinese VPS from our vantage
points in Sweden, Russia and Singapore. Despite multi-
ple attempts we were not able to attract a single scan.

The above mentioned results indicate that Tor finger-
printing is probably not done in domestic traffic and only
with traffic going from inside China to the outside world.
We believe that there are two reasons for that. First, fin-
gerprinting domestic traffic in addition to international
traffic would dramatically increase the amount of data to
analyse since domestic traffic is believed to be the largest
fraction of Chinese traffic [12]. Second, at the time of
this writing there are no relays in China so there is no
need to fingerprint domestic or ingress traffic. Tor us-
age in China means being able to connect to the outside
world.

4.5 Where Are the Scanners Coming
From?

To get extensive data for answering this question, we
continuously attracted scanners over a period of 17 days
ranging from March 6 to March 23. We attracted scan-
ners by simulating Tor connections from within China to
our bridge in Singapore4. To simulate a Tor connection,
we developed a small tool whose sole purpose was to
send the Tor TLS client hello to the bridge and terminate
after receiving the response. We could also have used
the original Tor client to do so, but our tool was much
more lightweight which was helpful, given our resource-
constrained VPS. After every Tor connection simulation,
our program remained inactive for a randomly chosen
value between 9 and 14 minutes. The experiment yielded
3295 scans of our bridge. Our findings described below
are based on this data.

4We reproduced this experiment with a bridge in Sweden and with
open Chinese SOCKS proxies. Our findings were the same.

3



4.5.1 Scanner IP Address Distribution

We are interested in the scanner’s IP address distribution,
i.e., how often can we find a particular IP address in our
logs? Our data exhibits two surprising characteristics:

1. More than half of all connections—1680 of 3295
(51%)—were initiated by a single IP address:
202.108.181.70.

2. The second half of all addresses is almost uniformly
distributed. Among all 1615 remaining addresses,
1584 (98%) were unique.

The IP address 202.108.181.70 clearly stands out from
all observed scanners. Aside from its heavy activity we
could not observe any other peculiarities in its scanning
behaviour. The whois record of the address states a com-
pany named “Beijing Guanda Technology Co.Ltd” as
owner. We could only find a company named “Guanda
Technology Amusement Equipment Co., Ltd” on the In-
ternet. It is not clear whether this is the same company.
However, as explained below, we have reason to believe
that the scanner’s IP addresses are spoofed by the GFC so
the owner of the IP address, assuming that it even exists,
might not be aware of the scanning activity.

Whois and reverse DNS lookups of all the seemingly
random IP addresses suggested that the IP addresses
were coming from ISP pools. For example, all valid re-
verse DNS lookups contained either the strings adsl or
dynamic.

4.5.2 Autonomous System Origin

We used the IP to ASN mapping service provided by
Team Cymru [15] to get the autonomous system num-
ber for every observed scanner. The result reveals that
all scanners come from one of three ASes5 with the re-
spective percentage in parantheses:

• AS4837: CHINA169-BACKBONE CNCGROUP
China169 Backbone (65.7%)

• AS4134: CHINANET-BACKBONE No.31,Jin-
rong Street (30.5%)

• AS17622: CNCGROUP-GZ China Unicom
Guangzhou network (3.8%)

AS4134 is owned by China Telecom while AS4837
and AS17622 is owned by China Unicom. AS4134 and
AS4837 are the two largest ASes in China [13] and play a
crucial role in the country-wide censorship as pointed out
by Xu, Mao and Halderman [29]. Furthermore, Roberts
et al. [13] showed that China’s AS level structure is far
from uniform with a significant fraction of the countries
traffic being routed through AS4134 or AS4837.

5Recent research efforts by Roberts et al. showed that China oper-
ates 177 autonomous systems [13].

TTL difference

A
m

ou
nt

 o
f I

P
 a

dd
re

ss
es

0
10

20
30

40
50

−2 −1 0 1 2 3 4

(a) The IP TTL difference between
after and during the scan.

Minutes until ping reply

A
m

ou
nt

 o
f I

P
 a

dd
re

ss
es

0
2

4
6

8
10

2 4 6 8 10 12 14

(b) The amount of minutes until
the hosts started replying to pings.

Figure 1: IP TTL difference (a) and duration until ping
replies (b).

4.5.3 IP Address Spoofing

During manual tests we noticed that sometimes shortly
after a scan, the respective IP address starts replying to
pings6, but with a different IP Time-to-Live (TTL) than
during the scan. In order to have more data for our anal-
ysis, we wrote a script to automatically collect additional
data as soon as a scanner connects and again some min-
utes afterwards. In particular, the script (1) runs TCP,
UDP and ICMP traceroutes immediately after a scan and
again 15 minutes later, (2) continuously pings the scan-
ning IP address for 15 minutes and (3) captures all net-
work traffic during these 15 minutes using tcpdump.

Between March 21 and 26 we started an independent
experiment to attract scanners and let our script gather
the above mentioned data. We caused a total of 429
scans coming from 427 unique IP addresses. From all
429 scans we then extracted all connections where the
continuous 15 minutes ping resulted in at least one ping
reply. This process yielded a subset of 85 connections
which corresponds to approximately 20% of all observed
connections. We analysed the 85 connections by com-
puting the amount of minutes until the respective IP ad-
dress started replying to our ping requests and the IP TTL
difference (new TTL – old TTL) between packets during
the scan and ping replies.

The results are shown in Figure 1(a) and 1(b). Figure
1(b) illustrates how long it took for the hosts to start re-
plying to the ping requests. No clear pattern is visible.
Figure 1(a) depicts all IP TTL differences after the scan
(when the host starts replying to ping packets) and dur-
ing the scan. We had 14 outliers with a TTL difference
of 65 and 192 but did not list them in the histogram. It
is clearly noticeable that the difference was mostly one,
meaning that after the scan, the TTL was by one more
than during the scan.

One explanation for the changing TTL, but definitely

6Note that this is never the case during or immediately after scans.
All ICMP packets are being dropped.

4



●
●●
●

●
●●
●

●●
●
●

●●
●

●
●●
●

●●
●
●

●
●

●

●●
●

●

●
●
●●

●
●●

●
●●
●

●
●●

●●
●
●

●●
●●

●●
●●

●
●●●

●●
●

●
●●
●

●●
●●

●●
●●

●
●●●●
●

●
●
●●

●●
●●

●
●●
●

●●
●
●

●
●●

●●
●
●

●●
●●

●●●
●

●●
●
●

●●
●

●

●●
●

●

●●
●
●

●●
●
●

●
●●
●

●●
●
●

●●
●
●

●
●●
●

●
●
●

●
●●
●

●●●
●
●

●
●●
●

●
●●
●

●
●●
●

●●
●
●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●●●

●

●●
●●

●
●●
●

●●
●
●

●●●●

●●
●
●

●
●

●
●●

●

●●
●
●

●●
●
●

●
●●●●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●
●
●●

●●
●
●

●
●

●
●
●
●

●●
●
●

●●
●●

●
●
●

●
●●
●

●●
●
●

●●
●●

●●
●●

●●
●●

●
●●
●

●●
●
●

●●
●●

●
●●

●
●●
●

●
●●

●

●
●
●

●●
●
●

●
●●
●

●
●●

●

●
●●

●

●●
●●

●
●●
●

●●
●
●

●●
●●

●

●
●

●
●
●

●
●●
●

●●
●
●

●●
●
●

●●
●

●●
●
●

●

●

●●
●
●

●●
●
●

●
●●●

●

●●
●

●
●●
●

●
●●
●

●●●
●
●

●●
●
●

●●
●●

●●
●
●

●
●●

●

●●
●

●

●●●
●

●
●●

●

●
●●

●

●
●●

●

●●
●

●
●
●

●●
●
●

●
●●
●

●●
●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●

●●

●

●●
●
●

●●
●
●

●●
●
●

●
●
●●

●●
●
●

●
●●
●

●●
●●

●●
●

●●
●●

●●
●
●

●●
●
●

●●
●●

●●
●●

●●●
●

●●
●
●

●
●
●

●●●
●●
●

●●
●
●

●●
●●

●
●●
●

●
●●
●

●●
●●

●●
●●

●●
●●

●●●
●

●
●
●●

●●
●
●

●●●
●

●●
●●

●●
●
●

●●
●

●●
●●

●
●

●

●●●
●

●●●
●

●●
●
●

●
●●
●

●
●●

●

●
●
●●

●●
●
●

●●
●
●

●
●●
●

●
●●
●

●●
●●

●●
●●

●
●
●

●●
●
●

●●
●●

●●
●
●

●●
●●

●●●
●

●
●●
●

●
●●
●

●●
●
●

●●
●
●

●●●
●

●●
●●

●●
●
●

●●
●●

●●
●

●●
●
●

●●
●●

●●
●
●

●●
●
●

●●
●●

●●
●●

●
●●
●

●●
●

●

●
●●
●

●
●●
●

●●
●
●

●●
●
●

●
●
●

●
●

●●
●
●

●
●●●

●●
●
●

●
●●

●●
●●

●●
●

●●
●●

●●●
●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●
●

●●
●
●

●
●
●●

●●
●
●

●●
●
●

●●
●

●

●●
●
●

●●
●
●

●●
●
●

●
●
●●

●●
●
●

●●●
●

●

●●
●

●

●●●
●

●●
●
●

●●
●●

●
●●
●

●●
●
●

●●●
●

●●
●
●

●●
●●

●

●
●

●●
●
●

●
●●
●

●●
●
●

●●
●
●

●●
●

●
●●
●

●●
●
●

●●
●
●

●●
●●

●●
●
●

●●
●
●

●●
●●

●●
●
●

●
●●
●

●●
●
●

●
●●
●

●●
●●

●●
●●

●●
●●

●●
●
●

●●
●
●

●●
●●

●
●
●●

●
●●●

●●
●
●

●●
●
●

●●
●●

●●
●●

●●
●
●

●●
●
●

●●●
●●

●●
●
●

●
●●
●

●
●●
●

●●
●
●

●
●●
●

●
●●
●

●●
●
●

●●
●

●

●●
●
●

●●●
●
●

●
●●

●

●●
●

●

●●
●
●

●●●
●

●●
●
●

●●
●●

●
●●
●

●
●●
●

●●
●●

●●
●
●

●●
●
●

●●
●●

●
●
●●

●
●●
●

●●
●
●

●●
●
●

●
●●
●

●●
●
●

●
●●
●

●
●●
●

●
●●
●

●●
●●

●
●●
●

●●
●
●

●●
●●

●
●
●
●

●●
●
●

●

●●
●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●●

●●
●
●

●
●●
●

●●
●●

●
●●●

●●●
●

●●●
●

●
●
●

●
●●
●

●●
●
●

●
●
●●

●
●
●●

●●
●●

●●
●●

●
●●●

●●
●●

●
●
●

●●
●●

●●
●
●

●●●

●

●
●
●
●

●
●●
●

●
●●
●

●●
●
●

●●
●

●

●●
●
●

●●
●
●

●
●●

●●
●
●

●●
●
●

●
●●
●

●●
●
●

●
●●
●

●●
●

●

●
●●
●

●
●
●●

●
●
●
●

●●
●
●

●●
●●

●●●
●
●

●●
●
●

●●
●●

●●
●

●●

●

●
●●
●

●●
●

●

●
●●

●

●●
●
●

●●
●

●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●●
●●

●●
●
●

●●
●●

●
●●
●

●●●●
●●

●
●●
●

●
●●
●

●
●●
●

●●
●●

●
●●●

●●
●●

●●
●

●●
●●

●
●
●

●●
●
●

●●
●
●

●
●●
●

●
●●
●

●●
●
●

●
●●
●

●●
●●

●●
●
●

●●
●
●

●
●●

●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●
●
●
●

●
●●

●

●
●
●

●●
●
●

●●
●
●

●●
●

●

●●
●
●

●●
●

●

●●
●

●

●●
●
●

●
●●
●

●●
●
●

●
●●
●

●●
●●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●●●
●

●
●●
●

●●
●
●

●
●
●●

●
●●
●

●●
●
●

●●
●
●

●●

●

●
●●
●

●●
●
●

●●
●
●

●
●●
●

●
●●
●

●●
●
●

●
●●
●

●●
●
●

●
●
●

●●
●
●

●
●●

●

●
●

●
●●
●

●●

●
●●
●

●
●●
●

●
●●
●

●●
●●

●●
●
●

●
●●
●

●●
●
●

●
●
●

●
●●
●

●●
●

●

●
●●
●

●●
●
●

●●
●●

●
●●
●

●
●●
●

●●
●
●

●●
●●

●●

●
●
●

●
●●
●

●
●
●

●●
●
●

●●●
●

●●
●
●

●●
●●

●
●●
●

●●
●
●

●●
●●

●●
●
●

●●
●●

●●
●
●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●
●●
●

●
●●
●

●
●●
●

●●
●

●

●●
●

●

●
●●
●

●
●●
●

●
●●
●

●●
●●

●●
●
●

●
●●
●

●
●●
●

●
●●
●

●●
●●

●●
●

●

●
●●

●

●●
●
●

●●
●
●

●●
●
●

●●
●

●

●●
●
●

●
●●
●

●
●●
●

●●
●
●

●
●●
●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●●●
●

●●
●
●

●
●●
●

●●
●

●

●
●●
●

●
●●
●

●
●●
●

●
●●
●

●●
●
●

●●
●
●

●
●●
●

●●
●

●

●●●
●

●●
●
●

●●
●
●

●●
●●

●
●●
●

●●
●
●

●
●
●●

●●
●
●

●
●●
●

●
●●
●

●
●●
●

●
●●
●

●●
●●

●
●●
●

●●
●
●

●
●
●●

●
●●
●

●●
●
●

●
●●
●

●
●●

●

●●●
●
●

●
●●
●

●
●
●●

●●
●
●

●●
●
●

●●
●
●

●●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●
●
●

●●
●
●

●●
●
●

●●●
●

●●
●
●

●●
●
●

●●
●

●

●●
●
●

●●
●
●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●●

●
●●
●

●●
●
●

●●
●●

●●
●
●

●●
●●

●
●●
●

●●
●
●

●●
●●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●●

●
●●

●
●●
●

●
●
●●

●
●●
●

●
●●
●

●●
●

●

●
●●
●

●
●●
●

●●
●
●

●
●●
●

●●
●
●

●●
●

●

●●
●

●

●
●●
●

●
●
●
●

●●
●
●

●●
●
●

●
●
●

●
●
●

●●
●
●

●●
●
●

●●
●
●

●
●
●
●

●
●
●

●●
●
●

●
●●
●

●
●●

●

●●
●●

●●
●
●

●
●●
●

●●
●

●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●●

●
●●
●

●
●●
●

●
●●
●

●●
●
●

●
●

●●
●●

●●
●
●

●
●
●
●

●
●●
●

●
●
●●

●●
●
●

●●
●●

●
●●
●

●●
●●

●●
●●

●
●●
●

●
●●
●

●●
●
●

●●
●
●

●
●

●
●
●●

●●
●
●

●●
●
●

●●
●●

●●
●
●

●●
●●

●●
●
●

●
●●
●

●●
●●

●
●●
●

●●
●

●

●
●●
●

●●
●
●

●●
●
●

●●
●

●

●●
●
●

●
●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●

●

●●
●

●

●
●
●
●

●
●●
●

●●
●
●

●●
●
●

●

●
●

●●
●

●

●

●●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●

●●
●

●●
●
●

●
●●
●

●●
●●

●
●
●

●●
●
●

●●
●

●

●
●●
●

●
●●
●

●
●●

●

●
●●

●

●●
●

●

●
●●

●

●●
●
●

●
●●
●

●●
●
●

●●
●

●

●●
●
●

●●●
●

●
●●
●

●●
●
●

●●
●
●

●
●●
●

●●
●
●

●
●●
●

●
●●
●

●
●●

●

●
●
●

●●
●
●

●●
●●

●
●●
●

●●
●

●
●●
●

●
●●
●

●●
●

●
●●

●

●
●●

●

●●
●
●

●
●●

●

●
●●
●

●●
●
●

●
●●
●

●
●

●●
●
●

●
●●
●

●●
●●

●●
●
●

●
●●
●

●●
●●

●
●●
●

●●
●
●

●
●●
●

●●
●
●

●●
●
●

●
●●
●

●
●
●

●●
●

●

●●
●
●

●●
●
●

●
●●

●

●
●●
●

●●
●

●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●●
●
●

●●
●

●

●●
●
●

●
●●
●

●
●●
●

●
●●
●

●
●
●
●

●
●●
●

●●
●
●

●●
●
●

●
●●
●

●●
●●

●
●
●●

●●
●●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●●
●●

●●
●
●

●●
●

●●
●●

●
●●
●

●●
●
●

●
●●
●

●●
●
●

●●
●

●

●
●

●

●●
●

●

●●
●

●

●
●●
●

●●
●

●

●
●●
●

●
●●
●

●

●

●

●●
●

●

●●
●

●

●●
●●

●
●●
●

●
●

●
●
●
●

●
●●
●

●●
●
●

●●●
●

●●
●

●

●●
●
●

●●
●●

●●●
●

●
●●

●

●●
●
●

●●
●
●

●●
●
●

●●
●
●

●
●●
●

●●
●
●

●●
●

●

●
●

●●
●

●

●●
●
●

●●
●●

●●
●
●

●●
●
●

●
●●
●

●
●●

●

●
●●
●

●●
●
●

●●
●
●

●●
●●

●●
●
●

●●
●
●

●●
●●

●
●●●

●
●

●●●
●

●●
●●

●
●●
●

●
●●
●

●●●

●

●
●●
●

●●
●●

●●
●
●

●●
●●

●●
●
●

●●
●

●

●●
●
●

●●
●

●

●●
●
●

●
●●
●

●●
●

●

●
●●

●

●●
●

●

●●
●

●

●●
●
●

●●
●

●

●
●●

●

●
●●
●

●●
●
●

●●
●

●

●●
●●

Time

M
in

ut
es

Mar 06 Mar 11 Mar 16 Mar 21

0m

10m
15m

25m
30m

40m
45m

55m

Figure 2: Time points when scanners were found con-
necting to our bridge.

not the only one, is that the GFC could be spoofing IP ad-
dresses. The firewall could be abusing several IP address
pools intended for Internet users to allocate short-lived
IP addresses for the purpose of scanning.

4.6 When Do the Scanners Connect?

Figure 2 visualises when the scanners in our data set con-
nected. The y-axis depicts the minutes of the respective
hour. Contrary to December 2011, when Wilde ran his
experiments, the scanners now seem to use a broader
time interval to launch the scans. In addition, the data
contains two time intervals which are free from scanning.
These intervals lasted from March 8 at around 16:30 to
March 9 at 09:00 and from March 14 at 09:30 to March
16 at 3:30 (UTC). We have no explanation why the GFC
did not conduct scanning during that time.

Closer manual analysis yielded that the data exhibits a
diurnal pattern. In order to make the pattern visible, we
processed the data as four distinct time series with ev-
ery 15 minutes interval forming one time series, respec-
tively. We smoothed the time series’ data points using
simple exponential smoothing with a smoothing factor
α = 0.05. The result—a subset of the data ranging from
March 16 to March 23—is shown in Figure 3. Each of
the four diagrams represents one of the 15 minutes inter-
vals. The diagrams show that depending on the time of
the day, on average, scanners connect either close to the
respective 15 minutes multiple or a little bit later.

We conjecture that the GFC maintains scanning
queues. When the DPI boxes discover a potential Tor
connection, the IP:port tuple of the suspected bridge is
added to a queue. Every 15 minutes, these queues are
processed and all IP:port tuples in the queue are being
scanned. We believe that during the day, the GFC needs
more time to process the queues since there are proba-
bly more Chinese users trying to access the Tor network
which leads to more scans.

Time

M
in

ut
es

Mar 17 Mar 21
1m

2m

3m

Time

M
in

ut
es

Mar 17 Mar 21

18m

19m

20m

Time

M
in

ut
es

Mar 17 Mar 21

33m

34m

Time

M
in

ut
es

Mar 17 Mar 21

47m

48m

49m

50m

Figure 3: Diurnal scanning connection pattern.

4.7 Blocking Malfunction
During our experiments we noticed several sudden disap-
pearences of active scanning. This lack of scanning made
it possible for us to successfully initiate Tor connections
without causing bridges to get scanned and blocked. The
Tor bridge usage statistics between January and June
2012 contain several usage spikes which confirm outages
in the blocking infrastructure [26]. Another downtime
was observed by Wilde [19].

5 Circumvention

While there is a large body of work dedicated to anti-
censorship, we limit this section to the discussion of the
recently developed obfsproxy [21] and propose a novel
way to evade the GFC’s DPI boxes.

5.1 Obfsproxy
The Tor Project is developing a tool called obfsproxy.
The tool runs independently of Tor and is obfuscating the
network traffic it receives from the Tor process. As long
as both, the bridge and the client, are running the tool, the
Tor traffic transmitted between them can be obfuscated
so that the Chinese DPI boxes are not able to identify the
TLS cipher list anymore.

Obfsproxy implements a pluggable transport layer
which means that modules can be written that support
different types of obfuscation7. At the time of this writ-
ing, obfsproxy contains an obfuscation module called
obfs2 [20] which is based on Leidl’s obfuscated ssh [6].
Obfs2 relies on a key establishment phase which is fol-
lowed by the two involved parties exchanging superen-
ciphered messages. A passive woman-in-the-middle is

7An overview of currently developed modules can be found at [25].

5



able to decrypt obfs2’s obfuscation layer and reveal the
encapsulated data8 but this is more complex than con-
ducting simple pattern matching as it is frequently done
by DPI boxes.

As of March 24, the official obfsproxy bundle [21]
contained a list of 13 hard-coded obfsproxy bridges in its
configuration file. From our VPS we tested the reachabil-
ity of all of these bridges by trying to connect to them via
telnet. We found that not a single connection succeeded.
One bridge seemed to be offline and the connection to
the remaining 12 bridges was aborted by spoofed RST
segments.

The above result raises the question whether the GFC
is able to block all obfsproxy connections or just the 13
hard-coded bridges. To answer this question, we set up
a private obfsproxy bridge in Sweden and connected to
it from within China. We initiated several connections to
it over several hours and we could always successfully
establish a Tor circuit. We conclude that the IP:port tu-
ples of the 13 hard-coded obfsproxy bridges were added
to a blacklist to prevent widespread use of the official
obfsproxy bundle. However, private obfsproxy bridges
remain undetected by the GFC.

Similar to obfs2, Moghaddam et al. proposed a plug-
gable transport for Tor to mimic Skype video traffic [8].
This concept will make it significantly harder to block
Tor by fingerprinting because DPI boxes would have to
distinguish between legitimate and camouflaged Skype
traffic.

5.2 Packet Fragmentation
One circumvention technique described by Ptacek and
Newsham [11] is packet fragmentation which exploits
the fact that some network intrusion detection systems
do not conduct packet reassembly. Crandall et al. also
considered fragmentation to evade the GFC’s keyword-
based detection [3].

We used the tool fragroute [14] to enforce packet frag-
mentation on our VPS in China. We configured fragroute
to split the TCP stream to segments of 16 bytes each.
In our test it took 5 TCP segments to transmit the frag-
mented cipher list to our bridge. Despite initiating sev-
eral fragmented Tor connections, we never observed any
active scanning and could use Tor without interference.
This experiment indicates that the GFC does not conduct
packet reassembly. A similar observation was made by
Park and Crandall [10].

However, client side fragmentation is an unpractical
solution given that this method must be supported by all
connecting Chinese users. A single user who does not
use fragmentation, triggers active scanning which then

8We note that this does not affect the security of the TLS connection
used by Tor.

leads to the block of the respective bridge. Another dis-
advantage is the significant protocol overhead due to the
shortened TCP segments which leads to a decrease in
throughput.

Due to these shortcomings, we propose a way to re-
alise server side fragmentation. We developed a tool9

which transparently rewrites the TCP window size an-
nounced by the bridge to the client inside the SYN/ACK
segment. The diminished window size makes the client
split its TLS cipher list across two TCP segment. That
way, the DPI boxes are not able to identify the Tor con-
nection. At the time of this writing, the tool is already
deployed to several bridges. So far, these bridges were
not scanned and keep getting connections from legiti-
mate users in China.

Our server side fragmentation tool has the advantage
that it is easy to deploy and it only interferes with Tor
connections by rewriting the announced TCP window
during the TCP handshake. Hence, there are virtually
no performance implications.

6 Conclusions

We showed how access to Tor is being denied in China
and we conjectured how the blocking infrastructure is de-
signed. In addition, we discussed countermeasures in-
tended to “unblock” the Tor network. Our findings in-
clude that the Great Firewall of China might spoof IP
addresses for the purpose of scanning Tor bridges and
that domestic as well as ingress traffic does not seem to
be subject to Tor fingerprinting. We also showed that
the firewall is easily circumvented by fragmented pack-
ets. Tor traffic is currently distinguishable from what is
regarded as harmless traffic in China. Since Tor is being
used more and more as censorship circumvention tool, it
is crucial that this distinguishability is minimised.

Acknowledgments

We thank the Tor developers for their helpful feedback
and support, the anonymous reviewers for their valu-
able suggestions, Harald Lampesberger, Simone Fischer-
Hübner and Rose-Mharie Åhlfeldt for feedback and
Fabio Pietrosanti for helping with the experiments.

The work conducted by the second author has been
supported by the Compare Business Innovative Centre
phase 3 (C-BIC 3) project, funded partly by the European
Regional Development Fund (ERDF).

Our raw data and code are available at:
http://www.cs.kau.se/philwint/static/gfc/.

9The tool is available on our project website: http://www.cs.

kau.se/philwint/static/gfc/

6

http://www.cs.kau.se/philwint/static/gfc/
http://www.cs.kau.se/philwint/static/gfc/
http://www.cs.kau.se/philwint/static/gfc/


References
[1] AMAZON WEB SERVICES LLC. Amazon Elastic Compute

Cloud (Amazon EC2). https://aws.amazon.com/ec2/ [Ac-
cessed: Jun. 29, 2012].

[2] CLAYTON, R., MURDOCH, S. J., AND WATSON, R. N. M. Ig-
noring the Great Firewall of China. In Privacy Enhancing Tech-
nologies (Cambridge, 2006), Springer, pp. 20–35.

[3] CRANDALL, J. R., ZINN, D., BYRD, M., BARR, E., AND
EAST, R. ConceptDoppler: A Weather Tracker for Internet Cen-
sorship. In Computer and Communications Security (Alexandria,
VA, 2007), ACM, pp. 352–365.

[4] DINGLEDINE, R., AND MATHEWSON, N. Design of a blocking-
resistant anonymity system. Tech. rep., The Tor Project, 2006.

[5] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The Second-Generation Onion Router. In USENIX Security Sym-
posium (San Diego, CA, 2004), USENIX Association, pp. 303–
320.

[6] LEIDL, B. obfuscated-openssh. https://github.com/

brl/obfuscated-openssh/blob/master/README.

obfuscation, [Accessed: Jun. 29, 2012].

[7] LING, Z., FU, X., YU, W., LUO, J., AND YANG, M. Extensive
Analysis and Large-Scale Empirical Evaluation of Tor Bridge
Discovery. In International Conference on Computer Commu-
nications (Orlando, FL, 2012), IEEE.

[8] MOGHADDAM, H. M., LI, B., DERAKHSHANI, M., AND
GOLDBERG, I. SkypeMorph: Protocol Obfuscation for Tor
Bridges. Tech. rep., University of Waterloo, 2012.

[9] OPENNET INITIATIVE. Singapore. http://opennet.net/

research/profiles/singapore [Accessed: Jun. 29, 2012].

[10] PARK, J. C., AND CRANDALL, J. R. Empirical Study
of a National-Scale Distributed Intrusion Detection System:
Backbone-Level Filtering of HTML Responses in China. In Dis-
tributed Computing Systems (Genova, 2010), IEEE, pp. 315–326.

[11] PTACEK, T. H., AND NEWSHAM, T. N. Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection. Tech.
rep., Secure Networks, Inc., 1998.

[12] ROBERTS, H. Local Control: About 95% of Chinese Web Traffic
is Local. https://blogs.law.harvard.edu/hroberts/

2011/08/15/local-control-about-95-of-chinese-

web-traffic-is-local/ [Accessed: Jun. 29, 2012].

[13] ROBERTS, H., LAROCHELLE, D., FARIS, R., AND PALFREY, J.
Mapping Local Internet Control. In Computer Communications
Workshop (Hyannis, CA, 2011), IEEE.

[14] SONG, D. fragroute. http://monkey.org/~dugsong/

fragroute/ [Accessed: Jun. 29, 2012].

[15] TEAM CYMRU, INC. IP to ASN Mapping. https:

//www.team-cymru.org/Services/ip-to-asn.html [Ac-
cessed: Jun. 29, 2012].

[16] THE NETFILTER.ORG PROJECT. netfilter/iptables project home-
page. http://www.netfilter.org [Accessed: Jun. 29, 2012].

[17] THE TOR PROJECT. Bridge easily detected by GFW. https://
trac.torproject.org/projects/tor/ticket/4185 [Ac-
cessed: Jun. 29, 2012].

[18] THE TOR PROJECT. China blocking Tor: Round Two.
https://blog.torproject.org/blog/china-blocking-

tor-round-two [Accessed: Jun. 29, 2012].

[19] THE TOR PROJECT. Knock Knock Knockin’ on Bridges’ Doors.
https://blog.torproject.org/blog/knock-knock-

knockin-bridges-doors [Accessed: Jun. 29, 2012].
[20] THE TOR PROJECT. obfs2 (The Twobfuscator). https:

//gitweb.torproject.org/obfsproxy.git/blob/HEAD:

/doc/obfs2/protocol-spec.txt [Accessed: Jun. 29, 2012].

[21] THE TOR PROJECT. obfsproxy. https://www.torproject.

org/projects/obfsproxy [Accessed: Jun. 29, 2012].

[22] THE TOR PROJECT. Picturing Tor censorship in China.
https://blog.torproject.org/blog/picturing-tor-

censorship-china [Accessed: Jun. 29, 2012].

[23] THE TOR PROJECT. Tor Cloud. https://cloud.

torproject.org [Accessed: Jun. 29, 2012].

[24] THE TOR PROJECT. Tor partially blocked in China.
https://blog.torproject.org/blog/tor-partially-

blocked-china [Accessed: Jun. 29, 2012].

[25] THE TOR PROJECT. Tor: Pluggable Transports. https://

www.torproject.org/docs/pluggable-transports, [Ac-
cessed: Jul. 1, 2012].

[26] THE TOR PROJECT. Tor users via bridges. https:

//metrics.torproject.org/users.html?graph=

bridge-users&start=2012-01-01&end=2012-06-

18&country=cn&dpi=72#bridge-users [Accessed: Jun.
29, 2012].

[27] THE TOR PROJECT. Torproject.org Blocked by GFW in China:
Sooner or Later? https://blog.torproject.org/blog/

torprojectorg-blocked-gfw-china-sooner-or-later

[Accessed: Jun. 29, 2012].

[28] WILDE, T. Great Firewall Tor Probing Circa 09 DEC
2011. https://gist.github.com/da3c7a9af01d74cd7de7
[Accessed: Jun. 29, 2012].

[29] XU, X., MAO, Z. M., AND HALDERMAN, J. A. Internet Cen-
sorship in China: Where Does the Filtering Occur? In Pas-
sive and Active Measurement Conference (Atlanta, GA, 2011),
Springer, pp. 133–142.

7

https://aws.amazon.com/ec2/
https://github.com/brl/obfuscated-openssh/blob/master/README.obfuscation
https://github.com/brl/obfuscated-openssh/blob/master/README.obfuscation
https://github.com/brl/obfuscated-openssh/blob/master/README.obfuscation
http://opennet.net/research/profiles/singapore
http://opennet.net/research/profiles/singapore
https://blogs.law.harvard.edu/hroberts/2011/08/15/local-control-about-95-of-chinese-web-traffic-is-local/
https://blogs.law.harvard.edu/hroberts/2011/08/15/local-control-about-95-of-chinese-web-traffic-is-local/
https://blogs.law.harvard.edu/hroberts/2011/08/15/local-control-about-95-of-chinese-web-traffic-is-local/
http://monkey.org/~dugsong/fragroute/
http://monkey.org/~dugsong/fragroute/
https://www.team-cymru.org/Services/ip-to-asn.html
https://www.team-cymru.org/Services/ip-to-asn.html
http://www.netfilter.org
https://trac.torproject.org/projects/tor/ticket/4185
https://trac.torproject.org/projects/tor/ticket/4185
https://blog.torproject.org/blog/china-blocking-tor-round-two
https://blog.torproject.org/blog/china-blocking-tor-round-two
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://gitweb.torproject.org/obfsproxy.git/blob/HEAD:/doc/obfs2/protocol-spec.txt
https://gitweb.torproject.org/obfsproxy.git/blob/HEAD:/doc/obfs2/protocol-spec.txt
https://gitweb.torproject.org/obfsproxy.git/blob/HEAD:/doc/obfs2/protocol-spec.txt
https://www.torproject.org/projects/obfsproxy
https://www.torproject.org/projects/obfsproxy
https://blog.torproject.org/blog/picturing-tor-censorship-china
https://blog.torproject.org/blog/picturing-tor-censorship-china
https://cloud.torproject.org
https://cloud.torproject.org
https://blog.torproject.org/blog/tor-partially-blocked-china
https://blog.torproject.org/blog/tor-partially-blocked-china
https://www.torproject.org/docs/pluggable-transports
https://www.torproject.org/docs/pluggable-transports
https://metrics.torproject.org/users.html?graph=bridge-users&start=2012-01-01&end=2012-06-18&country=cn&dpi=72#bridge-users
https://metrics.torproject.org/users.html?graph=bridge-users&start=2012-01-01&end=2012-06-18&country=cn&dpi=72#bridge-users
https://metrics.torproject.org/users.html?graph=bridge-users&start=2012-01-01&end=2012-06-18&country=cn&dpi=72#bridge-users
https://metrics.torproject.org/users.html?graph=bridge-users&start=2012-01-01&end=2012-06-18&country=cn&dpi=72#bridge-users
https://blog.torproject.org/blog/torprojectorg-blocked-gfw-china-sooner-or-later
https://blog.torproject.org/blog/torprojectorg-blocked-gfw-china-sooner-or-later
https://gist.github.com/da3c7a9af01d74cd7de7

	Introduction
	Related Work
	Experimental Setup
	Vantage Points
	Shortcomings

	Analysis
	How Are Bridges and Relays Blocked?
	How Long Do Bridges Remain Blocked?
	Is the Public Network Reachable?
	Where Does the Fingerprinting Happen?
	Where Are the Scanners Coming From?
	Scanner IP Address Distribution
	Autonomous System Origin
	IP Address Spoofing

	When Do the Scanners Connect?
	Blocking Malfunction

	Circumvention
	Obfsproxy
	Packet Fragmentation

	Conclusions

