
Protecting Free and Open Communications on the Internet Against

Man-in-the-middle Attacks on Third-party Software: We’re FOCI’d

Jeffrey Knockel
Dept. of Computer Science

University of New Mexico

jeffk@cs.unm.edu

Jedidiah R. Crandall
Dept. of Computer Science

University of New Mexico

crandall@cs.unm.edu

Abstract

In this position paper, we argue that the potential for
man-in-the-middle attacks on third-party software is a
significant threat to free and open communications on the
Internet (FOCI). The FOCI community has many chal-
lenges ahead, from the failure of the SSL system to pro-
tect Internet users from states that control the Internet
to the challenges inherent in measuring and cataloging
Internet censorship. It is already well-known in the com-
munity that man-in-the-middle attacks are a threat, and
such attacks are already being used by nation states.

In this paper we discuss our experiences discovering
two vulnerabilities in software update mechanisms (in
Impulse SafeConnect and Sun Java). What surprised us
was the relative ease of finding such vulnerabilities and
exploiting them. Our argument is that automated tools
are needed to help users manage this threat more effec-
tively because the threat involves many third-party appli-
cations from many small vendors.

1 Introduction

Vulnerabilities in systems will always exist, and there
will always be so-called “arms races” between attackers
and defenders in environments where information secu-
rity matters. When large software and communications
infrastructures are developed over many years and then
suddenly exposed to threats from a new angle that was
never part of the design, however, this moves beyond
“arms race” and can become a significant source of at-
tacks that persists for many years. For example, when
Windows systems were suddenly thrust onto the Inter-
net with routable IP addresses, it took almost a decade
before a user could (arguably) put a Windows machine
on the Internet with a reasonable level of confidence that
the machine would not be quickly compromised through
open ports using memory corruption attacks.

In the context of free and open communications on the
Internet (FOCI), it is important for users to be able to pro-
tect their systems from state actors that control most of
the networking infrastructure. It is well known that this
control enables man-in-the-middle attacks, and it is also
known that man-in-the-middle attacks can include at-
tacks on the integrity of executable downloads and third-
party software updates. Our argument in this paper is that
this kind of attack has the potential to become a persistent
and widespread threat to free and open communications
on the Internet, because the vulnerabilities are relatively
easy to find and exploit compared to other types of vul-
nerabilities. Because many small, third-party software
vendors may be affected, automated tools are needed to
help users protect themselves without relying on the ven-
dors.

We will not argue in this paper that the capability to
carry out man-in-the-middle attacks is something that
state actors will increasingly utilize. We will point out,
however, that among the SSL certificates that Iran is
suspected to have forged were several software update
servers [24]. In this paper we will focus on arguing that
typical Internet users are vulnerable to attacks on soft-
ware updates by third-party software.

We also will not explore in depth the incentives of ven-
dors who do not properly secure their software against
man-in-the-middle attacks. It is worth pointing out that
even the largest vendors can take years to fix known vul-
nerabilities of this type. Apple took more than three
years to fix the vulnerability in iTunes updates that Fin-
Fisher exploited [17], and this exploit is believed to have
been used against Egyptian dissidents [25]. Microsoft
was prompted by the Flame worm to fix a vulnerability
in its Windows update mechanism [18] that was based
on weaknesses of certificates that use the MD5 hashing
algorithm that had been known for almost four years at
the time of Microsoft’s fix [21]. These examples were
simply a matter of major vendors not taking the man-in-
the-middle threat seriously enough.



Even if the major vendors take this threat seriously,

however, there are many small third party software

vendors whose software performs automatic updates

with administrator privileges. Depending on what the
profile of programs installed on the average user’s com-
puter is, this problem may run much deeper than Mi-
crosoft and Apple. One of the vulnerabilities we dis-
covered and describe in this paper, for example, was
for a software program that is marketed specifically to
U.S. universities. Many dissidents, journalists, and oth-
ers who may be targeted by governments have ties to
U.S. universities, so even if a software program is used
only by a small segment of the population it may still be
a fruitful endeavor for a government to develop a man-in-
the-middle exploit for that software, especially given the
relative ease of finding and exploiting man-in-the-middle
vulnerabilities in software updates.

To support the statement above that finding and ex-
ploiting this type of vulnerability is relatively easy com-
pared to, e.g., 0-day memory corruption vulnerabilities
for web browsers, we first describe two vulnerable third-
party applications. In Section 2, we describe a man-in-
the-middle vulnerability in Impulse SafeConnect. Safe-
Connect is software that many universities require all
users of certain campus networks to install. Then in Sec-
tion 3 we describe a man-in-the-middle vulnerability in
a more pervasive program: Sun Java. Section 4 summa-
rizes our findings from a few other programs, followed
by discussion in Section 5, after which we conclude.

2 Impulse SafeConnect

Impulse SafeConnect is software that many universities
require users of their networks to download and install as
a prerequisite for using the network. It performs network
access control and can scan a user’s machine for patches,
peer-to-peer activity, and other information.

In July 2011, we discovered that the automatic up-
dating built into SafeConnect 5036.223 is vulnerable to
man-in-the-middle attacks. When it detects that it has
an Internet connection, SafeConnect attempts to connect
to 198.31.193.211, a hard-coded IP address that, when
connected to the University’s wireless network, routes to
an on-campus server. If connected, it begins commu-
nicating with the server via XML over insecure HTTP
encrypted using the 12-byte Blowfish key in ECB mode:

\x4f\xbd\x06\x00\x00\xca

\x9c\x18\x03\xfc\x91\x3f

Among other things, information regarding software
updates is sent by the server to the SafeConnect client,
including the version of the update and both URL’s and
hex-encoded MD5 hashes for each updated file. If the
version is newer than that currently installed, each file
is then downloaded, its MD5 hash verified against the

XML-provided hash, and the files are verified to have
an “Impulse Point LLC” Authenticode digital signature.
If these verifications pass, then SafeConnect silently re-
places its files with the downloaded files and restarts it-
self.

We can exploit this update process via a man-in-the-
middle attack. We first leverage that SafeConnect only
uses symmetric encryption to protect its network com-
munication. Thus, by reverse engineering the encryption
key used by a SafeConnect client to decrypt update infor-
mation, we also knew the key used to encrypt the update
information. We also leverage that we also had analyzed
an older version of SafeConnect, version 4250.121, that
had a similar update process, that was also signed by
Impulse Point, but that performed no digital signature
verification on updated files. Thus, when SafeConnect
attempts to connect to 198.31.193.211, we then exploit
SafeConnect 5036.223 by spoofing an “update” to ver-
sion 4250.121. After this version is installed, we can then
spoof an update containing any arbitrary executable.

This vulnerability has been fixed by version 5059.242,
which now uses HTTPS to perform all network commu-
nication. However, one must be on-campus to receive
this update, so, e.g., students who have graduated and
moved away will remain vulnerable indefinitely.

3 Sun Java

In September 2011, we discovered that the automatic up-
dater built into Sun Java 6 and 7 for Windows is vulner-
able to man-in-the-middle attacks that enable arbitrary
code execution as an Administrator. We will describe the
vulnerability for Java 6 (Java 7’s vulnerability is analo-
gous).

The automatic updater in Java 6 periodically down-
loads update information from the following URL via
insecure HTTP:

javadl-esd.sun.com/update/1.6.0/map-m-1.6.0.xml

This XML file maps older versions of Java 6 to the URL
of another XML file with update information. For in-
stance, the update information for Java 6 Update 30 to
Update 31 is retrieved from the following URL via inse-
cure HTTP:

javadl-esd.sun.com/update/1.6.0/au-descriptor-1.6.0_
31-b79.xml

This XML file includes a textual description of the up-
date presented to the user, a URL used to download the
updater executable and the command-line options with
which to execute it, and a hex-encoded SHA1 hash of
the updater executable.

If an update is available, then the user is prompted with
the description of the update. If the user accepts the up-
date, then the executable is downloaded. Its SHA1 hash



is then verified against the XML-provided hash. Then
the downloaded executable is verified to have a “Sun Mi-
crosystems, Inc.” Authenticode digital signature and to
have a PE version at least as high as the present version of
Java installed. If the executable passes all verifications,
then it is executed with the XML-provided command-
line options.

We can exploit this update process via a man-in-the-
middle attack. When a user downloads the XML file con-
taining the specific update information, we can provide
an XML file with our own executable URL, command-
line options, and SHA1 hash. However, we must still
provide an executable signed by Sun Microsystems with
a version at least as high as the present version of Java
installed. Moreover, we would like to be able to run ar-
bitrary code if we pass it appropriate command-line op-
tions.

We found that a file named javaws.exe installed
with Java meets these requirements. This executable is
used to launch Java Web start applications from the Web.
Thus, when the Java updater inquires about updates, we
spoof a URL to a javaws.exe with the same version
as the inquiring version of Java installed and spoof the
following command-line options:

-Xnosplash -J-Djava.security.policy=

http://url/to/grantall.jp

http://url/to/hello.jnlp -open

where http://url/to/grantall.jp is a URL to
a file containing

grant {

permission

java.security.AllPermission;

};

granting all permissions, including to run na-
tive code, to the target Web start application.
http://url/to/hello.jnlp is a URL to a
Web start application running arbitrary native code. The
-Xnosplash option causes the Web start application
to be executed silently. The -open option is used to
pass arguments directly to the Web start application. We
use it to “eat up” additional options that are uncondi-
tionally passed to the downloaded executable that would
otherwise be considered by javaws.exe as erroneous
and cause it to fail.

This vulnerability has been fixed in Sun Java 6 Update
31 and Java 7 Update 3 [3]. These versions download
both XML files via HTTPS. Although the executable
itself is still downloaded via insecure HTTP, since its
SHA1 hash is downloaded securely, the downloaded ex-
ecutable is securely verified.

4 Other third-party software

Here we describe other third-party software that we
looked at. Exploiting VirtualBox’s update mechanism
on certain platforms was trivial, since there was no at-
tempt to secure the update mechanism on these plat-
forms. Adobe Flash appears to have a substantial attack
surface, but we were unable to exploit it. Google Chrome
has a relatively simple mechanism with a small attack
surface, that we were also unable to exploit.

VirtualBox 4.1.0 queries over insecure HTTP

update.virtualbox.org/query.php

for available updates with a query string indicating the
user’s operating system and the currently installed ver-
sion. If an update is available, a clickable link is provided
to download the installer for the updated version using
the user’s default browser. This installer is also down-
loaded over insecure HTTP. After being downloaded, on
Windows, a user can then personally verify Oracle’s Au-
thenticode digital signature before executing the installer.
On Ubuntu Linux, the downloaded Debian package pro-
vides no digital signature.

The Adobe Flash 10.3.181.3 automatic updater
queries over insecure HTTP

fpdownload2.macromedia.com/get/flashplayer/update/
current/xml/version_en_win_pl.xml

for the latest version of Flash. If an update is available,
the updater downloads from the following hard-coded
URL via insecure HTTP:

http://fpdownload.macromedia.com/get/flashplayer/
update/current/install/install_all_win_pl_sgn.z

This URL is expected to contain the latest version. Al-
though this file has no Authenticode signature, it is
signed using Windows’ Crypt32 API, and, after it is
downloaded, its signature is verified using a public key
built into the automatic updater. Although the version
number of the download is not verified by the automatic
updater, all signed installers released since we began test-
ing, once executed, check to see if a version of Flash
newer than the one being installed is already present. We
do not know if there exist older versions of the installer
that are signed but that do not perform this version check
after being executed.

Google Chrome 18.0.1025.168 performs updates ac-
cording to the Open Client Update Protocol [2], which
we have found to perform secure updates even over inse-
cure HTTP. The essence of the protocol is that, for each
update request, the client randomly generates a shared,
symmetric key. It is encrypted using the update server’s
public key. The client sends its update request and the
encrypted shared symmetric key to the update server.



The update server decrypts the shared symmetric key us-
ing its private key and sends a response signed with the
shared symmetric key. As an enhancement, to avoid the
computational cost of the server having to perform asym-
metric decryption responding to future update requests
from the client, the server also responds with a cookie
that can be used by the client to make future update re-
quests that will not require the server to perform asym-
metric cryptography to generate a response.

We found that the responses returned by the update
server were XML files containing whether an update was
available and, if so, an insecure HTTP URL at which
to download the updater and its base64-encoded SHA1
hash. After download, the hash of the updater is verified
against the XML-provided hash before being executed.

5 Discussion

In this section, we first enumerate potential fixes to the
problem of man-in-the-middle vulnerabilities on soft-
ware updates, with some thoughts about each, and then
we suggest a few avenues for further research that could
be performed to understand the scope of this problem and
begin to address it. We also briefly discuss the role of
open source software and some ethical disclosure issues.

What was most surprising to us was the relative ease
with which we were able to find man-in-the-middle at-
tacks on software updates. Originally, we had been
reverse-engineering SafeConnect for privacy concerns,
but the potential for a man-in-the-middle attack of some
kind became apparent upon viewing a TCP dump that
showed no evidence of asymmetric cryptography. It took
some work to find that arbitrary executables could be in-
stalled, but within a week of beginning our analysis of
SafeConnect we had developed an exploit capable of in-
stalling a backdoor on the computer of almost any mem-
ber of our university community (or many other univer-
sities that used the same software). Months later, re-
searchers at the Electronic Frontier Foundation and the
University of Michigan independently found the same
vulnerability [11, 5].

After discovering the vulnerability and the process of
alerting the vendor, university, and university commu-
nity about the vulnerability in SafeConnect had played
out [16, 9, 15], we became interested in man-in-the-
middle attacks on software updates and within a week we
had several exploits, including one for Sun Java which
is one of the most commonly installed third-party ap-
plications on any platform. Although we had indepen-
dently discovered this vulnerability, we next discovered
that a similar (but not as powerful) exploit was part of
a toolset [13] put together by security researchers in Ar-
gentina [14] for exploiting man-in-the-middle attacks on
third-party software updates. At this point it became
apparent to us that finding the vulnerabilities was not a

challenging research problem and that the vulnerabilities
were not generally unknown to vendors nor attackers, so
we directed our efforts elsewhere.

The question that remains is, what can we do to protect
users in environments where man-in-the-middle attacks
by state actors are probable? Possible mitigations for this
type of attack on software updates include:

✎ Find vulnerabilities and pressure vendors to fix

them: This approach does not scale well because
of the number of third-party vendors and the time-
consuming nature of reverse-engineering. Also,
the Digital Millennium Copyright Act (DMCA) ap-
pears to allow for this kind of research, but exemp-
tions are not automatic and may require adherence
to certain processes.

✎ Give users tools to detect unsafe updates by

third-party software on their machines: Even
just from the relatively small number of third-party
programs we have looked at, it is apparent that
distinguishing secure automatic updates vs. inse-
cure automatic updates is an extremely challeng-
ing problem. Compare, for example, the sophis-
ticated and insecure signature checking of vulner-
able versions of Sun Java to the relatively secure
scheme of Google Chrome, which in the end is
downloading an executable binary over plain HTTP.
A tool that used dynamic analysis on machine code
and memory and was able to determine which of
these schemes was secure and which not seems well
beyond the reach of current dynamic analysis re-
search. For efforts to automatically detect cryptog-
raphy in binary code see [26, 12, 10].

✎ Educate users: There are already many efforts to
educate users who are using technology in countries
that control the Internet, such as the Tor project [23]
or the Open Net Initiative [19]. These are very im-
portant and effective efforts that hopefully can reach
many users, but within the specific context of man-
in-the-middle attacks on software updates comple-
menting these efforts with technologies that help
protect users should be a priority for the FOCI com-
munity.

✎ Re-think trust in distributed systems: Efforts to
re-think the SSL system [8, 6] or build trust from
social networks may be very valuable in address-
ing the threat of man-in-the-middle attacks on third-
party applications. The reason for this is that the
SSL system, which is currently the most viable way
for third-party software vendors to perform secure
updates, creates a cost barrier and is based on less
than ideal notions of trust. Any improvements in



this space will give third-party software vendors
more options to do updates securely.

✎ Some type of service that handles updates se-

curely without cooperation from the third-party

vendors: It may be possible to use a host-based fire-
wall or routing table configuration to re-route out-
going connections that may be related to updates
and then tunnel and encrypt them and handle them
in a secure way, even if the software trying to do the
update is itself using plain HTTP. Note that Tor [7]
can be configured to route all outgoing connections
through the Tor network, but might not be the ideal
solution in the specific case of handling third-party
updates for day-to-day use of normal users. The
Update Framework [20, 22] is a framework for se-
curing software updates that is aimed at developers.

Potential avenues of research to understand and miti-
gate this problem include:

✎ How vulnerable are average Internet users to

man-in-the-middle attacks on third-party soft-

ware updates? This is largely a function of what
the distribution of third-party software used by users
is and how vulnerable various third-party programs
are. In terms of the latter, we analyzed a relatively
small number of third-party programs and found
several serious vulnerabilities. For the former, this
question can be answered statistically by collecting
data at a large network gateway. This would have
to be done in a privacy-preserving way, which is
challenging because identifying an unknown third-
party software update in HTTP traffic is not possible
without saving many details about the HTTP flow.
Note that simply downloading an executable EXE
file puts users at risk, so a first-order approximation
of how at-risk the average user is could be measured
by searching for a signature of HTTP-encoded PE
headers or other indications of executable binaries
being downloaded.

✎ What forensic procedures and mechanisms must

be put in place? There is a great deal of activity and
expertise surrounding the problem of taking apart
malicious binary programs and finding out about
their purposes, origins, etc. Is there anything special
we need to anticipate with respect to detecting and
analyzing state-sponsored backdoors? One prece-
dent for analysis of a state-sponsored backdoor was
the Chaos Computer Club’s analysis of Bundestro-
janer, which was used by law enforcement in Ger-
many [4].

✎ What is or is not feasible with respect to inform-

ing users about potential insecure third-party

software updates on their systems? Dynamic
analysis to determine the security of third-party up-
dates with reasonable false positive and false neg-
ative rates seems infeasible, based off of the exam-
ples we have shown in this paper. However, it might
be possible to combine dynamic analysis with visu-
alization and research in human-computer interac-
tion to make a best effort to inform users about what
is happening on their systems.

Open source software projects tend to cooperate with
one another so that open source operating system distri-
butions, e.g., Ubuntu, have a unified software distribution
model where most software a user needs is installed and
updated securely through a package management sys-
tem. This does not mean that open source operating sys-
tem users are not vulnerable to attack (the VirtualBox
vulnerability was particularly eye-opening to us because
we were ourselves vulnerable to man-in-the-middle at-
tacks on our personal machines). It does mean, however,
that open source operating systems make it much more
feasible for a user, with the help of the open source com-
munity, to know what is happening on their machines and
protect themselves against man-in-the-middle attacks.

Walled garden approaches such as that of Apple’s iOS
App Store enforce that all applications receive updates
only securely through the App Store. However, walled
garden approaches can also be used to restrict freedom
on the Internet by enforcing censorship of what soft-
ware you are allowed to run. Apple’s iOS App Store
guidelines explicitly prohibit applications that contain
defamation, violence, objectionable content, pornogra-
phy, mean-spirited or inaccurate religious references, or
any content that is “over the line” [1]. These guide-
lines also explicitly prohibit applications that launch ex-
ecutable code or that do not use Apple’s WebKit layout
and Javascript engine. This precludes much of the soft-
ware that we analyzed, including virtual machine tech-
nologies like Java and Flash and competitor browsers
like Google Chrome.

An interesting issue that came up in our research
is ethical disclosure. Leaving aside the many issues
that ethical disclosure raises, one aspect of man-in-the-
middle attacks that raised questions for us was: what
kinds of vulnerabilities can really be “disclosed?” A
very carefully crafted input that causes a remote buffer
overflow does raise issues of “disclosure” since vendors,
attackers, and affected users probably will not know this
information on their own without investing resources and
time into a research effort (e.g., fuzz testing). On the
other hand, is the lack of asymmetric cryptography in
a software update something that can be “disclosed” to
anybody but the affected users? It is well known that
network communications that do not utilize asymmet-



ric cryptography are susceptible to man-in-the-middle at-
tacks. The vendor should already know the behavior of
their own software, and a skilled attacker can spot the
vulnerability with relatively little effort in many cases.

6 Conclusion

We have argued that man-in-the-middle attacks on third-
party software updates are a significant threat to free and
open communications on the Internet that could prove to
be persistent and widespread. This threat goes beyond
major vendors, so that automated tools are needed to
help users protect themselves from insecure third-party
updates performed by the programs they install on their
computer. More research is needed to understand the
scope of this threat and start taking steps to address it.

Acknowledgments
We would like to thank the FOCI anonymous review-

ers and our shepherd, Nicholas Weaver, for valuable
feedback. We owe gratitude to several people at the Uni-
versity of New Mexico office of Information Technolo-
gies for helping with vendor notification. This material
is based upon work supported by the National Science
Foundation under Grant Nos. #0844880, #0905177, and
#1017602. Jed Crandall is also supported by the Defense
Advanced Research Projects Agency.

References

[1] App Store Review Guidelines. Retrieved May 3,
2012, from https://developer.apple.com/appstore/
resources/approval/guidelines.html.

[2] Open Client Update Protocol. http://omaha.
googlecode.com/svn/wiki/cup.html.

[3] Vulnerability Summary for CVE-2012-0504.
Available at http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2012-0504.

[4] Chaos Computer Club analyzes government
malware. http://www.ccc.de/en/updates/2011/
staatstrojaner.

[5] COHN, C., AND SCHOEN, S. Safecon-
nect, Universities, P2P, Network Security and
Risk: The Tangled World of “Policy Enforce-
ment” on Other People’s Computers. Avail-
able at https://www.eff.org/deeplinks/2011/10/
safeconnect-universities-peer-peer-file-sharing,
October 6 2011.

[6] Convergence. http://convergence.io/.

[7] DINGLEDINE, R., MATHEWSON, N., AND

SYVERSON, P. Tor: The second-generation onion
router, 2004.

[8] Electronic Fontier Foundation SSL Observatory.
https://www.eff.org/observatory.

[9] ERVEN, C. IT: SafeConnect glitch-free, don’t
uninstall. Daily Lobo, 30 August 2011, Available
at http://www.dailylobo.com/index.php/article/
2011/08/it_safeconnect_glitchfree_dont_uninstall.

[10] GRÖBERT, F., WILLEMS, C., AND HOLZ, T.
Automated identification of cryptographic primi-
tives in binary programs. In Proceedings of the

14th international conference on Recent Advances

in Intrusion Detection (Berlin, Heidelberg, 2011),
RAID’11, Springer-Verlag, pp. 41–60.

[11] GUERRA, C. How Safe is SafeConnect? The
New School Free Press, 29 March 2012, Avail-
able at http://www.newschoolfreepress.com/2012/
03/29/how-safe-is-safeconnect/.

[12] GUILFANOV, I. Findcrypt. http://www.hexblog.
com/?p=27.

[13] INFOBYTE. ISR-evilgrade readme. Avail-
able at http://www.infobytesec.com/down/
isr-evilgrade-Readme.txt.

[14] INFOBYTE. Java exploit demo for Windows
7. Available at http://www.infobyte.com.ar/demo/
java_win7.htm.

[15] KNOCKEL, J., AND CRANDALL, J. SafeCon-
nect now fixed through legal curiosity. Daily
Lobo, 6 September 2012, Available at http:
//www.dailylobo.com/index.php/article/2011/09/
safeconnect_now_fixed_through_legal_curiosity.

[16] KNOCKEL, J., AND CRANDALL, J. Security
vulnerability plagues SafeConnect. New Mex-
ico Daily Lobo, 29 August 2011, Available at
http://www.dailylobo.com/index.php/article/2011/
08/security_vulnerability_plagues_safeconnect.

[17] KREBS, B. Apple took 3+ years to
fix FinFisher trojan hole. Available
at http://krebsonsecurity.com/2011/11/
apple-took-3-years-to-fix-finfisher-trojan-hole/.

[18] KREBS, B. Flame malware prompts
Microsoft patch. Available at
http://krebsonsecurity.com/2012/06/
flame-malware-prompts-microsoft-patch/.

[19] The Open Net Initiative. http://opennet.net.



[20] SAMUEL, J., MATHEWSON, N., CAPPOS, J., AND

DINGLEDINE, R. Survivable key compromise in
software update systems. In Proceedings of the

17th ACM conference on Computer and communi-

cations security (New York, NY, USA, 2010), CCS
’10, ACM, pp. 61–72.

[21] SOTIROV, A., STEVENS, M., APPELBAUM, J.,
LENSTRA, A., MOLNAR, D. A., OSVIK, D. A.,
AND DE WEGER, B. MD5 considered harmful
today: Creating a rogue CA certificate, Decem-
ber 2008. 25th Chaos Communications Congress,
Berlin, Germany.

[22] TUF: The Update Framework. https://www.
updateframework.com/.

[23] The Tor project. https://www.torproject.org.

[24] TOR BLOG. DigiNotar Damage Disclosure.
Available at https://blog.torproject.org/blog/
diginotar-damage-disclosure.

[25] WIKIPEDIA. FinFisher. Available at http://en.
wikipedia.org/wiki/FinFisher.

[26] WRIGHT, J. L., AND MANIC, M. Neural network
approach to locating cryptography in object code.
In Proceedings of the 14th IEEE international con-

ference on Emerging technologies & factory au-

tomation (Piscataway, NJ, USA, 2009), ETFA’09,
IEEE Press, pp. 1658–1661.


