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Abstract
Existing RAID solutions partition large disk enclosures
so that each RAID group uses its own disks exclusively.
This achieves good performance isolation across under-
lying disk groups, at the cost of disk under-utilization and
slow RAID reconstruction from disk failures.

We propose RAID+, a new RAID construction mech-
anism that spreads both normal I/O and reconstruction
workloads to a larger disk pool in a balanced man-
ner. Unlike systems conducting randomized placement,
RAID+ employs deterministic addressing enabled by the
mathematical properties of mutually orthogonal Latin
squares, based on which it constructs 3-D data templates
mapping a logical data volume to uniformly distributed
disk blocks across all disks. While the total read/write
volume remains unchanged, with or without disk fail-
ures, many more disk drives participate in data service
and disk reconstruction. Our evaluation with a 60-drive
disk enclosure using both synthetic and real-world work-
loads shows that RAID+ significantly speeds up data re-
covery while delivering better normal I/O performance
and higher multi-tenant system throughput.

1 Introduction

For the past 30 years, Redundant Array of Inexpen-
sive Disks (RAID) [40] has been used pervasively in
servers and shared computing platforms. With parity-
based RAID levels (e.g., RAID-5 and RAID-6), users
obtain high performance via parallel accesses and reli-
ability via data redundancy.

With continued advance in disk capacity and slow im-
provement in speed, however, RAID rebuild time keeps
increasing [13, 54]. For example, a recent NetApp docu-
ment specifies that a 2TB SATA 7200-RPM disk takes
12.8 hours to rebuild on an idle system [12]. When
performed online on a heavily loaded system, rebuild
can take dramatically longer. Such slow rebuild brings
two consequences. First, it raises the risk of a second
failure and consequently data loss. Second, prolonged

recovery subjects foreground applications to long peri-
ods of I/O performance degradation. Note that high-
performance solid-state drives (SSDs) actually exacer-
bate this problem, as their growing deployment promotes
storage system construction using more high-density,
low-performance hard disks [43].

One inherent reason for such slow recovery is that,
with conventional RAID, each disk drive involved in
RAID reconstruction is read or written entirely. Despite
the growing width of RAID arrays (with each array typ-
ically containing several to around a dozen disks), the
recovery time is determined by reading/writing an en-
tire disk. No matter how many disk arrays coexist in a
shared/virtual storage system, resources are isolated be-
tween underlying RAID arrays. Idle or lightly-loaded
disks cannot offer help to peers in other RAID arrays,
who might be overwhelmed by high access traffic, RAID
recovery, or, in the worst case, both.

Many approaches to enhancing the reconstruction per-
formance have been proposed [3, 18, 21, 28, 42, 52, 55,
56], which fall into three categories: 1) designing bet-
ter data layout in a disk group [18, 48, 52, 56], 2) op-
timizing the reconstruction workflow [19, 31, 45, 54],
and 3) improving the rate control of RAID reconstruction
[32, 44, 47]. Most methods focused on a single RAID
group, and to our best knowledge, no solution yet has
eliminated load imbalance both in normal operations and
during RAID reconstruction. While random data place-
ment can utilize larger groups of disks [12, 16, 41, 51], it
requires extra book keeping and lookup, and does not de-
liver load balance within shorter ranges of blocks (crucial
for sequential access and RAID rebuild performance, as
shown in our experiments).

This paper presents RAID+, a new RAID construction
mechanism that spreads both normal and reconstruction
I/O to effectively utilize emerging commodity enclosures
(such as the NetAPP DE6600 and EMC VNX-series)
with dozens of or even 100+ disks. Unlike systems
conducting random placement, RAID+ employs a deter-
ministic addressing algorithm that leverages the mathe-
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matical properties of mutually orthogonal Latin squares.
Such properties allow RAID+ to construct 3-D data tem-
plates, each employing a user-specified RAID level and
stripe width, that map logical data extents to uniformly
distributed disk blocks within a larger disk pool.

While the total read/write volume remains unchanged,
with or without disk failures, RAID+ enlists many more
disk drives in data service and disk reconstruction. This
allows it to provide more consistent performance, much
faster recovery, and better protection from permanent
data loss. In addition, in multi-tenant settings it automat-
ically lends elastic resources to individual workloads’
varying intensity, via a flexible and scalable integration
of multiple disk groups. We find that this often leads
to higher overall resource utilization, though like most
schemes for workload consolidation, in the worst case
it may incur I/O interference. Such elasticity, combined
with the capability of constructing multiple logical vol-
umes adopting different RAID levels and stripe widths
within the same physical pool, makes RAID+ especially
attractive to cloud and shared datacenter environments
employing large disk enclosures/trays.

We implemented a RAID+ prototype by modifying
the Linux MD (Multiple Devices) driver, and evaluated
it using a 60-drive disk enclosure. Results show that
RAID+ in most cases outperforms both RAID-50 and
randomized RAID-5 placement schemes, while offering
faster reconstruction (2.1-7.5× over RAID-50, 1.0-2.5×
over hash-based random placement). Like randomized
placement, it significantly improves overall throughput
in multi-tenant environments (average 2.1× over RAID-
5). But unlike randomized placement, RAID+’s deter-
ministic addressing allows simple implementation and
delivers better sequential performance (for application
and rebuild I/O) by guaranteeing uniform data distribu-
tion within smaller extents and retaining spatial locality.

2 RAID+ Overview

2.1 Latin Square Based Data Organization
With conventional k-disk RAID arrays, each data stripe
is exactly k-block wide (including both data and par-
ity), squarely striking through all disks. The RAID type
(level) and stripe width both remain fixed throughout a
given disk array. RAID+, instead, uses Latin-square-
based templates to allocate space from a larger n-disk ar-
ray. A template constructs n×(n−1) k-block stripes, each
mapped to a k-subset of the n disks. Different k values
and RAID types can be adopted by different templates
sharing the same n disks. Like conventional RAID,
RAID+ arrays can be hardware- or software-based, of-
fered as RAID+ enclosures with special RAID adapters
or formed by software on top of connected disks.

Figure 1(a) portrays conventional RAIDs, where disks
are physically partitioned into two RAID groups, with
potentially different RAID settings. Each disk belongs to
one fixed RAID array, except the shared hot spares. One
can integrate multiple underlying RAID groups (likely
homogeneous in this case) into a logical volume, by
concatenating them, or striping data across them. The
widely adopted RAID-50, for example, belongs to the
latter case. Alternatively, one can build a logical vol-
ume on each underlying RAID group, separately serving
different workloads sharing the disk pool. These two op-
tions are used in our experiments for single- and multi-
workload evaluation, respectively.

With conventional RAID organization, when a failure
happens, the recovery process only involves disks within
the same RAID group, reading from the k−1 surviving
drives and reconstructing lost data on a spare drive in its
entirety. As a result, the rebuild speed is capped by the
slower between read and write speeds of a single disk.

Figure 1(b) shows an alternative approach, where
RAID volumes are built by distributing blocks in each
k-block RAID stripe to randomly selected k disks. This
retains the fault tolerance of RAID yet spreads each vol-
ume to all n disks within the pool.

Figure 1(c) shows our proposed RAID+, also a flat or-
ganization of the same n-disk pool, where two data tem-
plates are used to carve space uniformly from all disks.
Each template is designed by “stacking” a sequence of
k n×n mutually orthogonal Latin squares, whose defini-
tion is given in the next section. Each Latin square cell
stores a disk ID within [0,n−1]. Cells at the same loca-
tion through the k layers then form a k-width data stripe
(highlighted). Given such a set of k Latin-squares, one
can easily compute the locations of any stripe’ blocks, on
a k-subset of the n drives. The mathematical properties
of mutually orthogonal Latin squares guarantee the uni-
form data distribution on all working drives, either for
normal or single-failure recovery accesses. Since data
distribution by each template is always uniform, users
can host different RAID organizations within the same n-
drive disk pool, such as RAID-5 using the red and RAID-
6 using the blue template.

When a disk failure occurs, both random placement
and RAID+ allow all surviving disks to equally partici-
pate in reconstruction, cutting theoretical RAID rebuild
time to k/(n−1) of that of conventional RAID. Also, hot
spares are optional with these organizations. However, as
we shall see later in the paper, RAID+’ deterministic and
uniform data placement enables it to achieve perfect load
balance within smaller address extents and retain spatial
locality, both significant advantages (crucial to sequen-
tial access and RAID rebuild) over random schemes.

In addition, a RAID+ pool can perform in an interim
mode with multiple disk failures, by continuously main-
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Figure 1: Different ways of utilizing a disk pool much larger than typical RAID array sizes

Application I/O Rebuild I/O
Isol. T hrp Trebuild Interf. MT T DL

RAID-5C High T · k C/B Part-High t
RAID-50 Low T · (n− s) C/B Part-High t
RAID+ Low T ·n C·k/(B·(n−1)) Univ-Low > t · (k−1)/k

Table 1: Comparison of RAID-5 organizations

taining its uniform or near-uniform data distribution. In
fact, RAID+ reserves space for data recovery and always
performs a fast all-to-all reconstruction. When hot spares
are available or failed disks are repaired, the recovered
data will be replicated to replacement disk(s) in back-
ground, hiding the slow single-disk writing latency.

2.2 Comparison of RAID Usage Modes
Table 1 gives several major metrics, comparing RAID+
with common existing solutions utilizing larger disk
pools. s denotes the number of hot spare disks, while
C and B denote single-disk capacity and bandwidth, re-
spectively. Without loss of generality, we use RAID-5 as
the elementary RAID level. Here RAID-5C and RAID-50
refer to the aforementioned “concatenated” and “striped”
volume construction modes. We omit random placement
schemes as they are similar to RAID+ in these aspects
(but suffer from inferior load balance and locality).

For application I/O, RAID-5C has good inter-
application isolation, as different workloads are more
likely to involve separate underlying RAID-5 arrays,
while both RAID-50 and RAID+ would be subject to per-
formance interference from concurrent workloads. The
tradeoff is aggregate performance per volume: files on
RAID-5C can only utilize 1-2 physical k-disk RAID ar-
ray at a time, while RAID-50 and RAID+ could enlist
most or all disks. This applies to both sequential accesses
(in bandwidth) and random ones (in IOPS).

For RAID rebuild I/O, both RAID-5C and RAID-50
limit reconstruction to the physical array with the disk
failure. Their recovery time (Trebuild) is equivalent to a
single-disk full scan, assuming perfect read-write over-
lap. In contrast, RAID+ enlists all n−1 surviving disks in
the read-write of the k-disk capacity (C·k), making recov-
ery itself much faster. Regarding application-perceived
interference, with RAID-5C the RAID reconstruction
process is only visible to accesses to the same physi-
cal array. RAID-50 gets similar partial exposure with
random accesses, but could be universally affected with

larger, sequential reads/writes, as shown in our evalua-
tion (Table 3). With RAID+’s all-to-all data recovery,
reconstruction traffic can be perceived by most user re-
quests, but the interference is lighter and lasts shorter.

Finally, the MT T DL column describes mean time to
data loss, considering the probability of non-recoverable
failures (such as second disk failure before reconstruc-
tion completes with RAID-5). We find RAID-5C and
RAID-50 with the same MT T DL and give a conservative
lower bound for RAID+ relative to it. The bound is fairly
close to 1 and configurable by k. With RAID-6, however,
we found that RAID+ actually enjoys a significant im-
provement in MT T DL over conventional systems [49],
by prioritizing the reconstruction of significantly fewer
yet more vulnerable stripes.

3 Latin Squares for Data Distribution

We first introduce basic concepts and theorems of mutu-
ally orthogonal Latin squares (MOLS), followed by an
example illustrating its use in constructing RAID+.

L0

a: (1, 2, 3)
b: (2, 3, 4)
c: (3, 4, 0)
d: (4, 0, 1)
e: (0, 1, 2)
f: (2, 4, 1)
g: (3, 0, 2)
h: (4, 1, 3)
i: (0, 2, 4)
j: (1, 3, 0)
k: (3, 1, 4)
l: (4, 2, 0)

m: (0, 3, 1)
n: (1, 4, 2)
o: (2, 0, 3)
p: (4, 3, 2)
q: (0, 4, 3)
r: (1, 0, 4)
s: (2, 1, 0)
t: (3, 2, 1)
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11
2

22
4

33

Figure 2: RAID+ layout (n = 5, k = 3)

Definition 1. A Latin square of order n is an n×n array
filled with n different items, each occurring exactly once
in each row and column.

Definition 2. Let L1 and L2 be two n-order Latin
squares. L1 and L2 are mutually orthogonal if, when su-
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perimposed, each of the n2 ordered pairs occur exactly
once across the overlapping cells of the two squares.

Definition 3. Given a set of Latin squares, if all its mem-
ber pairs are mutually orthogonal, we call it a set of mu-
tually orthogonal Latin squares (MOLS).

For example, the left side in Figure 2 gives three sam-
ple 5-order MOLS. Here the item set I = {0,1,2,3,4}
has each member appearing strictly once in any
row/column of the three 5×5 squares. When any two of
these MOLS are stacked together and one reads through
the 25 aligned cell-pairs, each unique pair 〈i, j〉(i ∈ I, j ∈
I) also appears exactly once.

Theorem 1. With any given order n, there can be at most
(n−1) MOLS, with this upper bound achieved when n is
a power of a prime number.

Theorem 2. When n is a power of a prime number, a
complete set of (n−1) MOLS can be constructed by fill-
ing the ith square Li (0 < i < n) using Li[x,y] = i·x+ y.1

With such construction, the first row of all n−1 MOLS
are identical, as shown in Figure 2. However, below the
first row, the corresponding values at coordinates [x,y]
across all or any subset of the n− 1 MOLS are guaran-
teed to be distinct.

Next we reuse the Latin squares shown in Figure 2 to
illustrate how RAID+ works. With RAID+ templates,
the order of Latin squares (n, 5 in this case) corresponds
to the disk pool size. The number of Latin squares
“stacked together” (k, 3 in this case) corresponds to the
RAID stripe width. Suppose we now construct a logical
RAID-5 volume, distributing data blocks with a stripe
width of 3 across 5 disks.

We ignore the first row of all squares and construct
n(n−1) stripes by copying contents from the remaining
n(n− 1) cells across all three squares. The middle col-
umn in Figure 2 gives a full list of these 20 stripes. The
derived n(n−1) stripe sequence guides block assignment
onto the n disks: each item maps to the corresponding
disk ID. E.g., the first stripe (“stripe a”) is made by look-
ing up the [1,0] cell of L0, L1, and L2, resulting in tuple
〈1,2,3〉. Its 3 blocks (2 data and 1 parity) will thus reside
on disks (1, 2, 3), respectively, while those from “stripe
b” will reside on disks (2, 3, 4), and so on.

The right column in Figure 2 gives the resulted data
layout from the disks’ point of view. As these 20 3-block
stripes guarantee a uniform distribution of disk ID num-
bers, the 60 blocks form a 5×12 RAID+ template, to be
repeatedly used in distributing data to the 5 disks.

The intuition is that aside from the first row, k MOLS
give us uniform and deterministic data distribution across
n disks, with k-block stripes. Unlike traditional RAID

1“·” and “+” here denote finite field multiplication and addition [7].

systems, where the disk array size equals the stripe
width, our MOLS-based design allows k (and the RAID
type) to be decoupled from n, enabling the construction
of different virtual RAID volumes with small or moder-
ate stripe widths on top of much larger disk pools.

As to be discussed in more details later, another desir-
able feature of MOLS is that, when one of the disks fails,
blocks needed to recover the lost data are also uniformly
distributed among the n−1 surviving disks. This allows
for quick read, reproduction, and write of the (temporar-
ily) lost data in parallel by these n−1 disks.

4 Normal Data Layout

4.1 Valid Disk Pool Sizes of RAID+
The precondition of building a RAID+ system is that we
can construct (k+m) n-order MOLS, k of which used to
construct the normal data layout and m reserved as spare
MOLS for data redistribution in the face of disk failures
(details in Section 5). m should be large enough to sup-
port the highest fault tolerance level among all RAID vol-
umes within this RAID+ pool. For example, if a volume
adopts RAID-6, then we need m≥2.

Although the number of n-order MOLS for general n
remains an open problem, (n−1) is known to exist when
n is a power of a prime number [7]. Therefore, as long
as n, the total number of disks, is one such valid pool
size, one can perform the deterministic calculation of n−
1 MOLS using the algorithm given in Theorem 2. Also,
with these valid n values, the corresponding MOLS set
possesses several attractive properties for balanced data
and recovery load distribution.

The requirement may sound demanding, but it turns
out qualifying numbers are abundant and not far apart.
For example, between 4 and 128, we have the following
42 valid n values: 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25
27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71,
73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125,
127, and 128. Since our envisioned RAID+ disk pools
contain dozens of to 100+ disks, there are plenty of valid
n values to choose from.

The density of valid n values further allows physi-
cal performance isolation should it be desired. Multi-
ple RAID+ logical sub-pools can be constructed within
a larger physical pool. E.g., a 60-disk pool can sup-
port sub-pools with configuration (11+49), (23+37),
(8+11+41), etc., all with valid sub-pool n values.

4.2 Stripes-to-Disks Mapping
RAID+ supports two modes, a normal layout, with guar-
anteed uniform distribution across all disks, and an in-
terim layout, with uniform or slightly skewed data dis-
tribution among surviving disks, under one or more disk
failures. Below we give more formal discussion of data
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Figure 3: Stripe order for a 5-disk array (k = 3). Gray indi-
cates parity blocks. The head of each stripe equals the tail of the
previous one added by 0 (read-friendly) or 1 (write-friendly).

organization with RAID+ under normal operation with a
valid initial disk pool size n, with failure recovery and
interim layout discussed in the next section.

Given k MOLS of order n, {L0,L1, ...,Lk−1}, a RAID+
template is constructed by traversing these k Latin
squares simultaneously in a row-major order from the
second row on. For each position [x,y] (0 < x < n,
0 ≤ y < n), the k-block stripe Sx,y is obtained by listing
the corresponding values of Li at this position: Sx,y =
{L0[x,y],L1[x,y], ...,Lk−1[x,y]}, giving the disk IDs to
place the k blocks of Sx,y. Since n− 1 rows with n
columns in the Latin squares are traversed, there are
n(n−1) stripes in a full cycle of this RAID+ template.

Below are the major properties of MOLS-based data
layout. The proofs are omitted due to the space limit.

Property 1. With normal data layout, any two blocks
within a data stripe are placed on separate disk drives.

This property guarantees that (1) the I/O workload in
accessing each k-block stripe is uniformly distributed to
k disks, and (2) a single disk failure results in the loss of
at most one data block within any stripe.

Property 2. With normal data layout, the n disks are
assigned equal shares of both data and parity blocks.

This property guarantees the same read-write load bal-
ancing as with RAID-5, allowing equal distribution of
both data and parity blocks. This is particularly im-
portant to storage devices with asymmetric read-write
performance and/or write leveling requirement, such as
NAND flash disks. Unlike RAID-5, though, RAID+ de-
couples the stripe size k from a potentially much larger
pool size n, allowing load balancing to be performed at a
much wider scope, without sacrificing the fault tolerance
allowed by the adopted RAID level.

4.3 Throughput-Friendly Addressing
So far, the RAID+ template gives a deterministic map-
ping from data blocks in any k-block stripe to n disks.
However, since each stripe will be mapped to a k-subset

of n disks, the ordering of the n× (n− 1) stripes within
the logical address space has impact on disk contention,
I/O parallelism utilization, and spatial locality.

To this end, RAID+ allows stripe ordering (block
addressing) to be done in different ways considering
workload-specific needs. In particular, different RAID+
volumes sharing the same physical n-disk pool can each
adopt its own addressing strategy. Below we describe
two sample addressing algorithms targeting large se-
quential reads and writes, respectively (considering that
block addressing matters less with random accesses). For
the ease of illustration, we adopt simple RAID-4, where
the first two blocks in each stripe are data blocks and
the last one parity. The key difference between the two
patterns here is that with RAID redundancy, sequential
reads will skip parity blocks while sequential writes need
to update both data and parity.

RAID+ performs stripe ordering by rows in the
MOLS, with the process repeated at each row. To form
the n-stripe sequence for the xth row (Sx,0, Sx,1, ...,
Sx,n−1), RAID+ starts by setting Sx,0 as the stripe given
at the [x,0] position of the MOLS, walking through the
remainder of the row as follows:
• Sequential-read friendly ordering The head of each

subsequent stripe is the tail of its predecessor (Fig-
ure 3(a)). I.e., we choose Sx,i such that Sx,i(0) =
Sx,i−1(k− 1). The rationale here is that the last block
within a RAID-4 stripe is a parity block, which will
not be involved in user read operations.

• Sequential-write friendly ordering The head of each
subsequent stripe is the sum of the tail of the previous
one and x (Figure 3(b)). I.e., we choose Sx,i such that
Sx,i(0) = Sx,i−1(k−1)+x. This is considering that for
full-stripe writes resulted from sequential write work-
loads, all the blocks within a stripe will be updated.

Finally, such logical ordering of stripes within a
RAID+ volume also corresponds to the relative order-
ing of blocks on each disk. E.g., the middle column in
Figure 2 gives a “plain” row-major stripe ordering (nei-
ther read- nor write-optimized). This ordering uniquely
defines the block ordering on each of the 5 disks (the col-
umn below each disk ID). In this case, D0 carries blocks
assigned to “0”: the 3rd block in stripe c, the 2nd in d, the
1st in e, ..., etc. Given n, k, the block addressing scheme,
and the RAID level adopted, the logical to physical block
mapping within any RAID+ template can be completed
by simple calculation. Our implementation uses a tiny
lookup table (sized 93KB for n = 59 and k = 7) to accel-
erate such in-template data addressing.

4.4 Multi-Template Storage/Addressing
One major advantage of RAID+ is to accommo-
date multiple virtual RAID arrays (volumes) within
the same shared disk pool, each servicing different
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users/workloads. Every such virtual array comes with
its own MOLS-based template, stripe width ki and RAID
level, block size, as well as block addressing scheme.
Within the large n-disk physical address space, capacity
is allocated at the granularity of RAID+ templates.

RAID+ uses a per-volume index table to store the
physical locations of its template instantiation. Since
the templates are rather large, containing n(n−1)× ki
blocks for the ith volume, maintaining such mapping (one
“base address” per template instance) brings little over-
head. Logical blocks of a given volume can then be
easily mapped to its physical location by coupling the
proper template instance offset with in-template address-
ing discussed earlier. Compared to random data distribu-
tion [12, 16, 41, 51], RAID+ offers uniform data distri-
bution and direct addressing while only requiring single-
step, template-level offset maintenance and lookup.

5 Data Recovery and Interim Layout

L3

a: (1, 2, 3);
b: (2, 3, 4);
c: (3, 4, 0);1
d: (4, 0, 1);2
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Figure 4: Interim data layout for a 5-disk RAID+ array when
one disk fails. RAID+ uses the fourth MOLS, L3, to generate
uniform data distribution.

The MOLS-based RAID+ data distribution offers all-
to-all fast data recovery involving all surviving disks in
a disk pool, directly into an interim layout. When the
failed disk gets repaired or replaced, the normal data lay-
out can be restored in background.

5.1 Interim Layout under 1-disk Failure
Upon a disk failure in an n-disk pool, RAID+ performs
fast data recovery to recalculate the lost blocks and dis-
tribute them to the (n−1) surviving disks. Thanks again
to MOLS properties, when n is a valid pool size (power
of prime), the resulted interim data layout preserves uni-
form data distribution. Suppose disk D f ( f ∈ [0,n−1])
fails, below we describe the construction of the interim

layout with k-block stripes, reusing the former example.
Figure 4 illustrates this process, where D f is D0.

Let R be the set of stripes affected by D f ’s failure,
which contain the item f (0 in this example). For any
template, there are a total of n(n−1)k/n= (n−1)k blocks
on each disk. As each stripe cannot have two blocks as-
signed to the same disk, these (n−1)k blocks correspond
to the same number of stripes that are involved in data
recovery, as shown in the middle column of Figure 4.

Recall that a valid pool size n allows for (n−1) n-order
MOLS, out of which k are used for the normal layout.
Now we select any one from the remaining (n−k−1)
MOLS, as Lk (Latin square L3 in Figure 4). This addi-
tional Latin square will be used to guide the placement
of blocks assigned to D f , with the item f in the affected
stripes replaced with a new surviving disk ID.

The intuition is that when we append the new Latin
square to the back of the existing k MOLS “stack” and
read through each position [x,y], we extend the k-block
stripes to (k+1)-block ones, with again uniformly dis-
tributed item-set permutations. Now take each affected
stripe, and replace the (now missing) f with the item r at
the corresponding position in Lk, we relocate the missing
block used to be assigned to D f to the surviving disk Dr.
E.g., in Figure 4, each “0” in these 12 stripes would be re-
placed with another integer in {1,2,3,4}, such as stripe c
transforming from (3,4,0) to (3,4,1), as the correspond-
ing position in the additional Latin square (L3[1,2]) has
item “1”. The first two blocks in this affected stripe, on
D3 and D4 respectively, would not need to move.

Below are the major properties associated with
MOLS-based data layout concerning data recovery and
the interim layout, assuming a valid pool size n.

Property 3. With the n-disk normal layout, all blocks
correlated with those on any given drive (i.e., blocks
sharing stripes with blocks on this disk) are distributed
evenly among the other disks.

The implication here is that when the first disk fails,
the read workload to recover unavailable blocks is evenly
distributed among all surviving disks.

Property 4. With the (n−1)-disk interim layout, any
two blocks within a data stripe are still placed on sep-
arate disk drives.

Property 5. All the (n−1)k missing blocks on any sin-
gle failed disk can be redistributed to all the surviving
(n−1) disks evenly, each receiving k additional blocks.

These two properties imply that (1) the write workload
involved in RAID+ recovery from a single-disk failure is
also uniformly distributed among all surviving disks, (2)
data stripes in the (n−1)-disk interim layout preserves
the same RAID fault tolerance as in the normal layout,
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and (3) the (n−1)-disk interim layout also retains the
uniform data distribution to allow perfectly balanced I/O
servicing even after losing one disk.

The particular significance of (n−1)-disk interim lay-
out lies in the fact that the probability of single-disk fail-
ure is much higher than that of having two or more failed
disks, especially when hot spares are available. Consid-
ering this, plus that disk capacity is relatively abundant
in typical server environments, RAID+ performs an ad-
ditional performance optimization by reserving recovery
data space with normal data layout. More specifically,
RAID+ actually allocates n×k physical blocks per disk
for a data template. (n−1)k of them are used to store
data/parity blocks in the normal layout, while the remain-
ing k blocks (the green area in Figure 4) are reserved for
storing reconstructed data whenever there is a single-disk
failure. This way, under such a failure, the reconstructed
data are physically adjacent to the normal layout blocks,
preserving spatial locality in data accesses. In our im-
plementation, the content of the aforementioned small
lookup table is modified to support fast interim data ad-
dressing, without additional space overhead.

5.2 Parallel Data Recovery
Under a single disk failure, the MOLS-based design lets
both read and write workloads involved in RAID re-
construction and temporary relocation be uniformly dis-
tributed to the entire pool. This breaks the performance
limit of conventional RAID systems, where the recovery
work is only distributed within the RAID array affected.

However, even with uniform data distribution, the par-
allel read/write operations in data recovery could still
generate resource contention, transient load imbalance,
or unnecessary disk seeks, if care is not taken. To this
end, RAID+ orchestrates its all-to-all data reconstruction
by letting the surviving disks work on a subset of the
(n−1)k affected stripes at a time, alternating between
reader and writer roles. Barriers are used in between such
iterations, creating a natural break point for RAID+ to
check upon user I/O requests, potentially slowing down
or temporarily suspending the recovery depending on the
current application request intensity, QoS specifications,
and configurable system policies (such as starvation pre-
vention to ensure the completion of data recovery).

5.3 Multiple Disk Failures
MOLS-based design also handles multiple failures
gracefully. If another disk failure occurs after data recov-
ery from a disk failure, we repeat the process described
in Section 5.1 with another spare Latin square. When
m disks are lost but tolerated by the adopted RAID level,
by appending m spare MOLS to the stack of k used in the
normal layout, we can calculate the eventual (n−m)-disk
interim layout. Recognizing that the affected data stripes

have different degrees of data loss, RAID+ prioritizes the
reconstruction of the more vulnerable stripes.

Due to space limit, we give a brief summary of related
results: when a RAID+ pool keeps losing disks (with-
out disk replacement), Monte Carlo simulation shows
very slight imbalance in data distribution (CoV of up to
0.29%), while system experiments show application per-
formance degradation of up to 6% (except with sequen-
tial read, where RAID+ loses the benefit of its unique
read-friendly addressing when more disks fail).

6 Evaluation

We implemented RAID+ in the MD (Multiple Devices)
driver in Linux Kernel 3.14.35, a software RAID system
that forms a common framework for all RAID systems
tested in our evaluation. Despite theoretical properties
appearing sophisticated, MOLS-based addressing is sim-
ple to implement, taking a mere 12 lines of code.
Test platform Our testbed uses a SuperMicro 4U stor-
age server with two 12-core Intel XEON E5-2650 V4
processors and 128GB DDR4 memory, running Ubuntu
14.04 with Linux kernel v3.14.35. Two AOC-S3008L-
L8I SAS JBOD adapters, each connected to a 30-bay
SAS3 expander backplane via two channels, host 60 Sea-
gate Constellation 7200RPM 2TB HDDs. The I/O chan-
nels afford a total I/O bandwidth of 24GB/s (400MB/s
for each disk), significantly exceeding the aggregate se-
quential bandwidth from the disks. In all experiments,
50GB capacity of each disk is used.
RAID configurations Unless otherwise noted, our tests
use 59 out of the aforementioned 60-disk pool (n = 59).
The stripe width k is set at 7 (6+1 RAID).

For comparison, we evaluate two commonly adopted
conventional RAID organizations utilizing such large
disk pools, both of which build eight 6+1 RAID-5 arrays
with 64KB stripe unit size, consuming 56 disks with the
last 3 reserved as hot spares. RAID-5C divides each ar-
ray into multiple 1GB extents and concatenates them in a
round-robin manner, while RAID-50 stripes across these
8 arrays at block size of 12MB (2MB×6).

We also evaluate two randomized data placement
schemes, RAIDR and RAIDH. Both place blocks within
each stripe to different disks while aiming for balanced
data distribution to all n disks. To assign a block to a
disk, RAIDR utilizes the system random number gener-
ator (with system time as seed) and is therefore nonde-
terministic. RAIDH, instead, uses the Jenkins hash func-
tion [26] adopted by systems such as Ceph [9, 50]. If
a block is mapped to a disk already used in the current
stripe, mapping will be recalculated until collision free
(following CRUSH [51] for RAIDH). Our experiments
find the two schemes often perform similarly, in which
case we show only results of the better one.
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# of disks RAID-50 RAIDR RAIDH RAID+
56+3 307s 60s 102s 41s
28+3 307s 99s 143s 83s

Table 2: Offline rebuild time comparison

Both RAID+ and the random schemes build (6+1)
RAID-4 arrays, with 64KB stripe unit size. Such strip-
ing continues on the same set of disks until a 2MB space
allocation unit is filled per disk, before starting a new 7-
block stripe. We have also implemented RAID-6 and ob-
served similar performance trends, but omit results here
due to space limit.
I/O Workloads We use three types of I/O workloads:

• Synthetic workloads: we use fio [15], a widely used
I/O workload generator to produce four representa-
tive elementary workloads: sequential read, sequential
write, random read, and random write.

• I/O traces: We use 8 public block-level I/O traces,
namely src1 1, usr 1, prn 0, prn 1, proj 0, and
prxy 1 from MSR Cambridge [37], plus Fin2 and
WebS 2 from SPC [1]. Based on load level observed,
we followed existing practice in prior research [17, 27,
48] and accelerated the SPC traces (Fin2 by 5× and
WebS 2 by 3×) while replaying all others a tempo.

• I/O-intensive applications: we also use four I/O-
heavy real applications: GridGraph [60] (an out-of-
core graph engine), TPC-C [46] (in-house implemen-
tation of the well-known RDBMS transaction bench-
mark standard), a Facebook-like photo access work-
load (synthesized using Facebook’s published work-
load characteristics [4, 24]), and a MongoDB [35]
NoSQL workload from the YCSB suite [11].

6.1 Reconstruction Performance
We start by evaluating reconstruction performance, one
major advantage of RAID+ over alternative schemes,
with disk failures created by unplugging random disk(s).
Offline rebuild Table 2 gives the offline rebuild time
with a single-disk failure. RAID+ is tested with two valid
n values, 59 and 31 (shared by the random schemes). The
same pools would give RAID-50 3 hotspares each, with
8 and 4 RAID-5 arrays respectively. RAID-5C results
would be identical to RAID-50 here.

In both cases, RAID+ consistently outperforms RAID-
50, delivering a speedup of 7.5× and 3.7×. Such results
approach the theoretical speedup of 8.29 and 4.29, re-
spectively, given in Table 1. The gap is mainly due to
less sequential reconstruction read/write patterns com-
pared with RAID-50, as RAID+’s recovery load per
disk is much smaller yet non-contiguous. Unlike RAID-
50, with rebuild time independent of the disk pool size,
RAID+ spreads the rebuild workload to larger pools uni-
formly and lowers the rebuild time proportionally.

The two random schemes outperform RAID-50 here
also by having more disks participate in recovery. How-
ever, their rebuild takes significantly longer than that
of RAID+. Further examination reveals that though
they achieve overall balanced data distribution, random
schemes suffer much higher skewness within each win-
dow of dozens/hundreds of blocks. E.g., within a RAID+
template size, the RAIDH has CoV of rebuild read/write
load distribution of 31.9%/38.9%, while RAIDR has
12.72%/33.87%.2 Such “local load balance” is crucial
for RAID rebuild, with sequential and synchronized op-
erations, where overloaded stragglers could easily drag
down the entire array’s recovery progress. RAID+, in
contrast, retains its absolute load balance within such
smaller windows and delivers much higher rebuild speed.

Finally, this advantage grows with the disk pool size
n, as such perfect local load balance gives RAID+
higher profit margin by evenly utilizing n disks. In this
sense, RAID-50 has recovery bandwidth independent of
n by utilizing a small fixed-size sub-pool. The random
schemes perform between these two extremes, achieving
good global yet poor local load balance.
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Figure 5: TPC-C online rebuild w. single-disk failure

Single-workload online rebuild Next, we examine on-
line rebuild by creating a single-disk failure and perform-
ing reconstruction without stopping the execution of ap-
plication(s). Figure 5 illustrates one sample test case
(TPC-C). It plots the number of transactions committed
per 10-second episode along the timeline, with a disk
failure incurred at 300 seconds into the execution.

First, results demonstrate that RAID+ matches the
TPC-C throughput of RAID-50 and RAIDH (all beat-
ing RAID-5C, unsurprisingly) in normal operation. Sec-
ond, RAID+ offers much shorter online rebuild time
than conventional RAID (396 seconds vs. RAID-5C’s
1137 and RAID-50’s 858). RAIDH comes closer, but
still takes 11.4% longer than RAID+. Third, RAID+,
RAID-50, and RAIDH bring similar degrades to TPC-
C performance during rebuild. Although RAID-5C sees
smaller relative performance impact, its degraded perfor-
mance still lags behind due to its lower baseline. Overall,

2Here RAIDR has more even read distribution due to larger read
volume than write in rebuild. RAIDH however exhibits more skewed
distribution of blocks to read involved in recovery, with CoV level ap-
pearing to be dependent on the hash function used.
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App RAID-50 RAID-5C RAIDH RAID+

FaceBook
app perf 1 1.02 1.41 1.42
reb perf 1 1.05 2.29 2.36

TPC-C
app perf 1 0.61 1.00 1.03
reb perf 1 0.75 1.94 2.17

GridGraph
app perf 1 0.27 1.22 1.23
reb perf 1 3.14 2.05 2.06

MongoDB
app perf 1 0.89 0.99 1.01
reb perf 1 1.05 1.60 2.08

Table 3: Online rebuild performance comparison, in
terms of speedup against corresponding RAID-50 results

during the 900 seconds following the disk failure’s on-
set, RAID+ manages to complete 44.43%, 139.70%, and
5.11% more transactions than RAID-50, RAID-5C, and
RAIDH, respectively. TPC-C throughput stays consistent
as recovery progresses, as its degradation is dominated
by the rebuild I/O activities rather than transactions that
happen to hit the failed disk.

Table 3 summarizes online reconstruction perfor-
mance, giving both the application performance and the
rebuild speed, all in the form of speedup with respect
to corresponding RAID-50 results (the higher the bet-
ter). We use the same RAID rebuild rate setting (minimal
at 80MB/s and maximum at 200 MB/s) within the MD
driver for RAID-50 and RAID-5C, and configure RAID+
and RAIDH to avoid application performance degrada-
tion from the RAID-50 baseline during rebuild (with
only one exception where RAIDH achieves 99% of the
baseline performance). The results reveal that RAID+
and RAIDH simultaneously improve both the applica-
tion and rebuild performance from RAID-50. Between
them, RAID+ is consistently better, with significantly
faster rebuild and slightly better application performance
for TPC-C and NoSQL. RAID-5C, at least with the de-
fault rate control setting, loses on both fronts (except for
FaceBook, where it slightly outperforms RAID-50).
Multi-workload online rebuild For multi-workload
evaluation, we use a smaller pool size of 29,3 with stripe
width remaining at 7, to construct 4 logical RAID vol-
umes. RAID-5 builds 4 disjoint 6+1 arrays, plus one
last disk reserved as hot spare. RAID+ constructs 4 vol-
umes with the same deterministic template (n = 29,k =
7) across the entire pool. RAIDH randomly distributes
blocks from 4 virtual 6+1 array volumes to all 29 disks.

In each experiment, we sample 4 out of 8 MSR/SPC
I/O traces as a workload mix to run simultaneously on
the RAID volumes, for 28 minutes. The requests are
replayed using the original timestamps, therefore iden-
tical sets of requests are issued across tests. We create a
single-disk failure in the whole pool at time 0 and per-
form reconstruction without stopping user applications.

3Considering the moderate request levels in test programs/traces,
the smaller pool size allows us to test smaller (and higher number of)
workload mixes, with results easier to plot and analyze.

Figure 6 illustrates one such test case, showing the av-
erage I/O request latency in 60-second episodes along
the execution timeline, for each workload. With RAID-
5, the failure is contained within one volume (running
Fin2 in Figure 6(a)), while with other schemes, it affects
all volumes. The vertical lines indicate time points when
each scheme finishes online rebuild. Similar to single-
workload results, RAID+ has slightly faster rebuild than
RAIDH, both beating RAID-5 by almost 4 times. In-
tuitively, RAID+ and RAIDH excel by spreading re-
build work to all 4 volumes rather than only one, which
also enables them to eliminate dramatic latency increases
brought by RAID-5’s online rebuild (Figure 6(a)). Thus
compared with RAID-5, during the entire reconstruction,
RAID+ and RAIDH reduces the Fin2 workload average
latency by over 90%, and the 99% tail latency by 89%
(48ms vs. 418ms).

As expected, involving all disks expose the failure to
all 4 volumes, roughly doubling the average latency of
RAID+/RAIDH before rebuild completes over RAID-5
for the prxy 1 and WebS 2 workloads. However, the
much shorter rebuild time not only reduces system vul-
nerability, but also prevents any volume to be under dra-
matic performance degradation for prolonged periods.
Note that while inter-volume isolation is broken here,
disk failures are not user application artifacts but anoma-
lies from the underlying platform. Therefore, RAID+ al-
lows a larger disk pool to become more resilient, recover
faster from failures, and provide more consistent perfor-
mance during recovery.

6.2 Normal I/O Performance
Single-workload evaluation Figure 7 gives the normal
synthetic workload performance running fio, with vary-
ing request sizes. The access footprint is large enough to
span all RAID-5 arrays with RAID-5C. All RAID sys-
tems, including RAID+, perform very similarly in ran-
dom read/write tests. Therefore, we only show sequen-
tial performance here.

RAID+ slightly outperforms RAID-50 in most cases,
by using 59 rather than 56 disks. Compared to them,
RAIDH offers moderately lower sequential performance,
again due to poor local load balance and inferior spa-
tial locality within each disk. RAID-5C predictably lags
behind others with sequential accesses, as in most cases
only one RAID-5 array is utilized.

Figure 8 shows results with two sample MSR traces,
plotting latency data points (averaged over 60-second
episodes) along the execution timeline. Again RAID+
outperforms RAID-50, with an average improvement of
6.23% under prxy 1 and 87.04% under usr 1. This
is because RAID+ uses all 59 disks (rather than 56)
and usr 1 is read-dominant [37], with RAID+ adopts
read-friendly addressing in this set of tests. For similar
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Figure 6: Sample multi-workload performance w. online rebuild
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Figure 7: Normal fio sequential performance
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Figure 8: Normal trace workload performance

reasons, RAIDR loses slightly to RAID+ under usr 1,
and wins slightly under prxy 1, as it also uses all disks
and the read-friendly addressing may bring minor side-
effects for the more write-intensive prxy 1 workload.

Finally, Table 4 compares application performance.
Note that unlike other cases, TPC-C uses transactions per
minute committed, the higher the better. With Facebook-
like photo and MongoDB, both having primarily ran-
dom accesses, all four RAID organizations have data
distributed to all disks and report very similar perfor-
mance results. Since GridGraph is primarily sequential,
RAID-5C can mostly utilize only one or two underlying
RAID-5 arrays. Therefore, all three other schemes have
a more than 4-fold speedup over RAID-5C, and RAID+
has minor advantage over RAID-50 by using slightly
more disks, and over RAIDH by having better spatial lo-
cality. With TPC-C, which has both random and sequen-
tial accesses, RAID+ slightly outperforms both RAID-50
and RAIDH. Again RAID-5C clearly underperforms.
Multi-workload system throughput Now we examine
normal performance with multiple workloads sharing the

RAID-5C RAID-50 RAIDH RAID+
FaceBook (s) 168.18 165.85 176.20 168.8
MongoDB (s) 160.85 150.76 147.02 147.34
GridGraph (s) 1021.86 236.96 236.85 220.98

TPC-C (TpmC) 1345.2 2193 2192 2265

Table 4: Normal application performance
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Figure 9: Case study with sample 4-workload mix

underlying disk pool, using the 29-disk, 4-volume set-
ting similar to that in online reconstruction tests (Fig-
ure 6). We evaluated all unique 4-workload combina-
tions from the 8 MSR/SPC traces, executing each of
these 70 workload mixes on 4 RAID volumes built with
RAID-5, RAIDH, and RAID+.

Here we adopt weighted speedup [14], a widely-used
multi-workload performance metric in computer archi-
tecture, to measure the overall system throughput. As
each workload is replayed at fixed speed (by timestamps
given in traces), we use 1/latency to replace the typ-
ical IPC (Instructions Per Cycle) measurement in ar-
chitecture studies, calculating the weighted speedup as
1
n ∑

n
i=1(L

c
i /Li) for an n-application workload mix. Here

Lc
i and Li denote the average latency of the ith workload

using conventional RAID (RAID-5) and the system to be
evaluated, respectively. I.e., RAID-5 is used as the base-
line for measuring performance speedup.

To summarize the results, both RAIDH and RAID+ de-
liver considerable weighted speedup in all 70 test cases,
demonstrating their capability of consistently improving
the overall system throughput by utilizing more disks
simultaneously. More specifically, RAIDH obtains an
average weighted speedup of 1.83 (over 1.33 in 80%
of cases) over the 4-volume RAID-5 baseline, while
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RAID+ performs better, with average weighted speedup
of 2.05 (over 1.5 in 80% of cases).

Figure 9 showcases one sample test case (running
src1 1, usr 1, prn 0, and Fin2), showing the speedup
(based on average latency in each one-minute episode)
of RAID+ over RAID-5 along the timeline. All but one
speedup data points are above 1, with prn 0 reaching
over 25 at one point. By zooming into the request pat-
terns, we find such large profit comes from the bursti-
ness in most workloads. Figure 9(b) illustrates this for
a 100ms-long window, 200ms into the execution, show-
ing the per-ms request count for each workload. At this
granularity, one clearly sees that the workloads have spo-
radic requests and often form interleaving bursts. The
most bursty workloads, prn 0 and src1 1, benefit more
from RAID+ and RAIDH, which use all disks to serve
each volume. In particular, during request peaks these
workloads see faster processing and lower I/O queue
wait time, as confirmed by our detailed profiling, hence
achieving the 25× (transient) speedup.

While the majority of the 70 mixes possess such “com-
plementary” request patterns, there are cases where two
or more workloads have sustained simultaneously inten-
sive I/O activities, leading to slowdown of individual
workload. However, among the total of 280 executions
(70 mixed runs with 4 workloads per mix), there are only
39 cases of slowdown. Again, if a workload has to be
guaranteed stronger performance isolation, RAID+ pools
can be physically partitioned (such as building 41+19
volumes within a 60-disk enclosure).

6.3 Sensitivity to Internal Parameters
Finally, we study the impact of RAID+’s key parameters.
Figure 10(a) shows both the aggregate random read and
write throughput (left y axis) and the offline rebuild time
(right y axis) with RAID+ pool size n, increased from 41
to 59, while fixing k at 7 and block size at 2MB.

These results show that the random read performance
increases linearly with n (by up to 39%), due to uni-
form load distribution to all disks in the pool. The write
throughput, though also growing steadily (by up to 24%),
is much lower, as each of these 64KB write will bring
at least four underlying I/O operations, for reading and
writing back both the concerned data and parity blocks.
In addition, such read-modify-write operations are syn-
chronized, further lowering the aggregate throughput.
The offline rebuild time, unsurprisingly, decreases as n
grows and conforms to the model shown in Table 1.

Figure 10(b) shows similar experiments, with n fixed
at 59 and varying k. With regard to user I/O perfor-
mance, as modeled in Table 1, the aggregate throughput
is mostly independent of k and the rebuild time grows
linearly with it. One unexpected exception is with k=3,
where the write bandwidth appears considerably higher

than any other k values. By using the iostat tool, we
find that with k = 3 there are significantly fewer disk
reads for parity calculation. Here with the 2+1 data-
parity setup, there are higher chances for parity data to
be reconstructed from cached data blocks.

Next, in Figure 10(c) we fix both n (59) and k (7) and
change the block size. As expected, the block size has lit-
tle impact on the random read/write performance. Mean-
while, the rebuild time decreases significantly, though
not linearly. As RAID+’s rebuild access pattern intro-
duces less regular access patterns compared with those of
conventional RAID systems, larger block sizes improve
performance by promoting sequential accesses.

Last, to examine the effect of throughput-friendly
block addressing (Section 4.3), we run the fio sequen-
tial read and write workloads, with I/O sizes of 2MB.
Figure 10(d) shows the results using four stripe order-
ing strategies: 1) “native”, original stripe ordering from a
RAID+ template (stripes a to t in Figure 2), 2) “random”,
randomized stripe ordering using a pseudo-random func-
tion, 3) “read-opt”, our proposed read-friendly ordering,
and 4) “write-opt”, our proposed write-friendly ordering.
Bandwidths shown are normalized to “native”. While the
native and randomized strategies almost perform identi-
cally, the read-friendly strategy does generate a 28% im-
provement with sequential reads. Write-friendly order-
ing, on the other hand, brings a much smaller profit (4%).
Again, unlike the “pure” sequential streams with reads,
writes are not exactly sequential due to read-modify-
write of both data and parity blocks.

7 Related Work

Data Layout Optimization Existing RAID layout op-
timizations roughly form two categories: 1) distributing
either data blocks or parity blocks evenly across all the
disks (e.g., RAID-5 vs. RAID-4), and 2) exploiting spa-
tial data locality (e.g., left-symmetric RAID-5 [30]). In-
spired by them, RAID+ spreads data and parity blocks in
a much larger shared pool, with its throughput-friendly
block addressing promoting access locality.

The parity declustering layout [36] utilizes as few
disks as possible in data reconstruction, further analysed
and extended/optimized by many [2, 10, 18, 20]. How-
ever, unlike with RAID+, rebuild is still capped by the
write speed of the replacement disk, though these solu-
tions do spread rebuild reads to remaining disks.

ZFS [6] uses “dynamic striping” to distribute load
across “virtual devices”, dynamically adjusting strip-
ing width and device selection to facilitate fast out-of-
place updates and balanced capacity utilization. Systems
such as IBM XIV [25] and the Flat Datacenter Stor-
age (FDS) [38] use pseudo-random algorithms to dis-
tribute replicated data across all drives. If used for build-
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Figure 10: Impact of several factors on RAID+’s performance

ing logical RAID volumes, in stripe placement ZFS and
FDS would follow round-robin order (with optimizations
on starting point selection), resulting in limited recov-
ery bandwidth as a fixed “neighborhood” of disks would
carry data relevant to recovery. XIV behaves similar to
the RAIDR/RAIDH schemes we evaluated.

Work also exists on designing data organizations sen-
sitive to workload characteristics or application scenar-
ios. E.g., Disk Caching Disk (DCD) [23, 39] uses an ad-
ditional disk as a cache to convert small random writes
into large log appends. HP’s AutoRAID [53] parti-
tions RAID storage and differentiates the handling of
hot and cold data. ALIS [22] and BORG [5] reorga-
nize frequently accessed blocks (and block sequences) to
place them sequentially in a dedicated area. These tech-
niques are orthogonal to ours and can be incorporated by
RAID+ to improve application performance.
Optimizations on RAID Reconstruction Prior stud-
ies have targeted improving reconstruction performance.
Many of them focus on designing better data layout in
a disk group [18, 29, 33, 52, 56], to minimize I/O for
recovery or distribute rebuild I/O as evenly as possi-
ble. Other approaches optimize the RAID reconstruc-
tion workflow to make full use of higher sequential
bandwidth, such as DOR (Disk-Oriented Reconstruc-
tion) [20], PR [31], and others [18, 42, 52, 55, 56]. In ad-
dition, PRO [45] rebuilds frequently-accessed areas first
and S2-RAID [48] optimizes reads and writes separately
for faster recovery. Finally, task scheduling techniques
optimize reconstruction rate control [32, 44, 47].

Except for WorkOut [54], which outsources part of
user requests to surrogate disks during reconstruction,
existing studies focus on improvement within one RAID
group. RAID+ takes a different path from all, with built-
in “backup” layouts to utilize all disks in a larger pool in
reconstruction, while maintaining the fault tolerance and
flexibility of smaller, logical RAID arrays.
RAID Scaling Adding disks to an array requires data
movement to regain uniform distribution. Zhang et al.
proposed batch movement and lazy metadata update to
speed up data redistribution [57, 58]. FastScale [59]
uses a deterministic function to minimize data migra-
tion while balancing data distribution. CRAID [34] uses
a dedicated caching partition to capture and redistribute

only hot data to incremental devices.
Another approach is randomized RAID, which ran-

domly chooses a fraction of blocks to be moved to newly
added disks. Prior work to this end [8, 16, 41] re-
duces migration, but produces unbalanced distribution
after several expansions [34]. Also, existing randomized
RAID systems require extra book keeping and look-up.

RAID+, in contrast, allows large disk enclosures to di-
rectly host user volumes, each using its own RAID con-
figuration, with templates stamping out allocations in all
shapes and sizes. Meanwhile, it is not designed for dy-
namic, heterogeneous distributed environments targeted
by methods like CRUSH [51].

8 Conclusion

This paper proposes RAID+, a new RAID architecture
that breaks the resource isolation between multiple co-
located RAID volumes and allows the decoupling of
stripe width k from disk group size n. It uses a novel
Latin-square-based data template to guarantee uniform
and deterministic data distribution of k-block stripes to
all n disks, where n could be much larger than k. It also
delivers near-uniform distribution in both user data and
RAID reconstruction content even after one or several
disk failures, as well as fast RAID rebuild.

With RAID+, users can deploy large disk pools with
virtual RAID volumes constructed and configured dy-
namically, according to different application demands.
By utilizing all disks evenly while maintaining spatial
locality, it enhances both multi-tenant system throughput
and single-workload application performance.
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