
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

The Full Path to Full-Path Indexing
Yang Zhan, The University of North Carolina at Chapel Hill; Alex Conway, Rutgers University;
Yizheng Jiao, The University of North Carolina at Chapel Hill; Eric Knorr, Rutgers University;

Michael A. Bender, Stony Brook University; Martin Farach-Colton, Rutgers University;
William Jannen, Williams College; Rob Johnson, VMware Research; Donald E. Porter,

The University of North Carolina at Chapel Hill; Jun Yuan, Stony Brook University

https://www.usenix.org/conference/fast18/presentation/zhan

https://www.usenix.org/conference/fast18/presentation/zhan

The Full Path to Full-Path Indexing
Yang Zhan, Alex Conway†, Yizheng Jiao, Eric Knorr†, Michael A. Bender‡,

Martin Farach-Colton†, William Jannen¶, Rob Johnson∗, Donald E. Porter, Jun Yuan‡

The University of North Carolina at Chapel Hill, †Rutgers University,
‡Stony Brook University, ¶Williams College, ∗VMware Research

Abstract
Full-path indexing can improve I/O efficiency for

workloads that operate on data organized using tradi-
tional, hierarchical directories, because data is placed on
persistent storage in scan order. Prior results indicate,
however, that renames in a local file system with full-
path indexing are prohibitively expensive.

This paper shows how to use full-path indexing in a
file system to realize fast directory scans, writes, and re-
names. The paper introduces a range-rename mechanism
for efficient key-space changes in a write-optimized dic-
tionary. This mechanism is encapsulated in the key-value
API and simplifies the overall file system design.

We implemented this mechanism in BetrFS, an in-
kernel, local file system for Linux. This new version,
BetrFS 0.4, performs recursive greps 1.5x faster and ran-
dom writes 1.2x faster than BetrFS 0.3, but renames
are competitive with indirection-based file systems for
a range of sizes. BetrFS 0.4 outperforms BetrFS 0.3, as
well as traditional file systems, such as ext4, XFS, and
ZFS, across a variety of workloads.

1 Introduction
Today’s general-purpose file systems do not fully utilize
the bandwidth of the underlying hardware. For exam-
ple, ext4 can write large files at near disk bandwidth but
typically creates small files at less than 3% of disk band-
width. Similarly, ext4 can read large files at near disk
bandwidth, but scanning directories with many small
files has performance that ages over time. For instance, a
git version-control workload can degrade ext4 scan per-
formance by up to 15× [14, 55].

At the heart of this issue is how data is organized, or
indexed, on disk. The most common design pattern for
modern file systems is to use a form of indirection, such
as inodes, between the name of a file in a directory and its
physical placement on disk. Indirection simplifies imple-
mentation of some metadata operations, such as renames
or file creates, but the contents of the file system can end
up scattered over the disk in the worst case. Cylinder
groups and other best-effort heuristics [32] are designed
to mitigate this scattering.

Full-path indexing is an alternative to indirection,
known to have good performance on nearly all opera-
tions. File systems that use full-path indexing store data
and metadata in depth-first-search order, that is, lexi-

cographic order by the full-path names of files and di-
rectories. With this design, scans of any directory sub-
tree (e.g., ls -R or grep -r) should run at near disk
bandwidth. The challenge is maintaining full-path order
as the file system changes. Prior work [15, 22, 23] has
shown that the combination of write-optimization [5–7,
9–11, 36, 43, 44] with full-path indexing can realize effi-
cient implementations of many file system updates, such
as creating or removing files, but a few operations still
have prohibitively high overheads.

The Achilles’ heel of full-path indexing is the perfor-
mance of renaming large files and directories. For in-
stance, renaming a large directory changes the path to
every file in the subtree rooted at that directory, which
changes the depth-first search order. Competitive rename
performance in a full-path indexed file system requires
making these changes in an I/O-efficient manner.

The primary contribution of this paper is showing that
one can, in fact, use full-path indexing in a file system
without introducing unreasonable rename costs. A file
system can use full-path indexing to improve directory
locality—and still have efficient renames.
Previous full-path indexing. The first version of Be-
trFS [22, 23] (v0.1), explored full-path indexing. Be-
trFS uses a write-optimized dictionary to ensure fast up-
dates of large and small data and metadata, as well as
fast scans of files and directory-tree data and metadata.
Specifically, BetrFS uses two Bε -trees [7, 10] as persis-
tent key-value stores, where the keys are full path names
to files and the values are file contents and metadata, re-
spectively. Bε -trees organize data on disk such that log-
ically contiguous key ranges can be accessed via large,
sequential I/Os. Bε -trees aggregate small updates into
large, sequential I/Os, ensuring efficient writes.

This design established the promise of full-path index-
ing, when combined with Bε -trees. Recursive greps run
3.8x faster than in the best standard file system. File cre-
ation runs 2.6x faster. Small, random writes to a file run
68.2x faster.

However, renaming a directory has predictably miser-
able performance [22, 23]. For example, renaming the
Linux source tree, which must delete and reinsert all the
data to preserve locality, takes 21.2s in BetrFS 0.1, as
compared to 0.1s in btrfs.
Relative-path indexing. BetrFS 0.2 backed away from
full-path indexing and introduced zoning [54, 55]. Zon-
ing is a schema-level change that implements relative-

USENIX Association 16th USENIX Conference on File and Storage Technologies 123

path indexing. In relative-path indexing, each file or di-
rectory is indexed relative to a local neighborhood in the
directory tree. See Section 2.2 for details.

Zoning strikes a “sweet spot” on the spectrum between
indirection and full-path indexing. Large file and di-
rectory renames are comparable to indirection-based file
systems, and a sequential scan is at least 2x faster than
inode-based file systems but 1.5x slower than BetrFS 0.1.

There are, however, a number of significant, diffuse
costs to relative-path indexing, which tax the perfor-
mance of seemingly unrelated operations. For instance,
two-thirds of the way through the TokuBench bench-
mark, BetrFS 0.2 shows a sudden, precipitous drop in
cumulative throughput for small file creations, which can
be attributed to the cost of maintaining zones.

Perhaps the most intangible cost of zoning is that it
introduces complexity into the system and thus hides op-
timization opportunities. In a full-path file system, one
can implement nearly all file system operations as simple
point or range operations. Adding indirection breaks this
simple mapping. Indirection generally causes file sys-
tem operations to map onto more key/value operations
and often introduces reads before writes. Because reads
are slower than writes in a write-optimized file system,
making writes depend upon reads forgoes some of the
potential performance benefits of write-optimization.

Consider rm -r, for example. With full-path in-
dexing, one can implement this operation with a single
range-delete message, which incurs almost no latency
and requires a single synchronous write to become per-
sistent [54, 55]. Using a single range-delete message
also unlocks optimizations internal to the key/value store,
such as freeing a dead leaf without first reading it from
disk. Adding indirection on some directories (as in Be-
trFS 0.2) requires a recursive delete to scatter reads and
writes throughout the keyspace and disk (Table 3).
Our contributions. This paper presents a Bε -tree vari-
ant, called a lifted Bε -tree, that can efficiently rename a
range of lexicographically ordered keys, unlocking the
benefits of full-path indexing. We demonstrate the ben-
efits of a lifted Bε -tree in combination with full-path in-
dexing in a new version of BetrFS, version 0.4, which
achieves:
• fast updates of data and metadata,
• fast scans of the data and metadata in directory sub-

trees and fast scans of files,
• fast renames, and
• fast subtree operations, such as recursive deletes.

We introduce a new key/value primitive called range
rename. Range renames are the keyspace analogue of
directory renames. Given two strings, p1 and p2, range
rename replaces prefix p1 with prefix p2 in all keys that
have p1 as a prefix. Range rename is an atomic modifi-
cation to a contiguous range of keys, and the values are

unchanged. Our main technical innovation is an efficient
implementation of range rename in a Bε -tree. Specifi-
cally, we reduce the cost from the size of the subtree to
the height of the subtree.

Using range rename, BetrFS 0.4 returns to a sim-
ple schema for mapping file system operations onto
key/value operations; this in turn consolidates all place-
ment decisions and locality optimizations in one place.
The result is simpler code with less ancillary metadata
to maintain, leading to better performance on a range of
seemingly unrelated operations.

The technical insight behind efficient Bε -tree range re-
name is a method for performing large renames by direct
manipulation of the Bε -tree. Zoning shows us that small
key ranges can be deleted and reinserted cheaply. For
large key ranges, range rename is implemented by slic-
ing the tree at the source and destination. Once the source
subtree is isolated, a pointer swing moves the renamed
section of keyspace to its destination. The asymptotic
cost of such tree surgery is proportional to the height,
rather than the size, of the tree.

Once the Bε -tree has its new structure, another chal-
lenge is efficiently changing the pivots and keys to their
new values. In a standard Bε -tree, each node stores the
full path keys; thus, a straightforward implementation of
range rename must rewrite the entire subtree.

We present a method that reduces the work of updat-
ing keys by removing the redundancy in prefixes shared
by many keys. This approach is called key lifting (§5).
A lifted Bε -tree encodes its pivots and keys such that
the values of these strings are defined by the path taken
to reach the node containing the string. Using this ap-
proach, the number of paths that need to be modified in
a range rename also changes from being proportional to
the size of the subtree to the depth of the subtree.

Our evaluation shows improvement across a range of
workloads. For instance, BetrFS 0.4 performs recur-
sive greps 1.5x faster and random writes 1.2x faster than
BetrFS 0.3, but renames are competitive with standard,
indirection-based file systems. As an example of sim-
plicity unlocked by full path indexing, BetrFS 0.4 im-
plements recursive deletion with a single range delete,
significantly out-performing other file systems.

2 Background
This section presents background on BetrFS, relevant to
the proposed changes to support efficient keyspace muta-
tions. Additional aspects of the design are covered else-
where [7, 22, 23, 54, 55].

2.1 Bε -Tree Overview
The Bε -tree is a write-optimized B-tree variant that
implements the standard key/value store interface: in-

124 16th USENIX Conference on File and Storage Technologies USENIX Association

sert, delete, point query, and predecessor and succes-
sor queries (i.e., range queries). By write-optimized, we
mean the insertions and deletions in Bε -trees are orders
of magnitude faster than in a B-tree, while point queries
are just as fast as in a B-tree. Furthermore, range queries
and sequential insertions and deletions in Bε -trees can
run at near disk bandwidth.

Because insertions are much faster than queries, the
common read-modify-write pattern can become bottle-
necked on the read. Therefore, Bε -trees provide an up-
sert that logically encodes, but lazily applies a read-
modify-write of a key-value pair. Thus, upserts are as
fast as inserts.

Like B-trees, Bε -trees store key/value pairs in nodes,
where they are sorted by key order. Also like B-trees,
interior nodes store pointers to children, and pivot keys
delimit the range of keys in each child.

The main distinction between Bε -trees and B-trees is
that interior Bε -tree nodes are augmented to include mes-
sage buffers. A Bε -tree models all changes (inserts,
deletes, upserts) as messages. Insertions, deletions, and
upserts are implemented by inserting messages into the
buffers, starting with the root node. A key technique
behind write-optimization is that messages can accumu-
late in a buffer, and are flushed down the tree in larger
batches, which amortize the costs of rewriting a node.
Most notably, this batching can improve the costs of
small, random writes by orders of magnitude.

Since messages lazily propagate down the tree, queries
may require traversing the entire root-to-leaf search path,
checking for relevant messages in each buffer along the
way. The newest target value is returned (after applying
pending upsert messages, which encode key/value pair
modifications).

In practice, Bε -trees are often configured with large
nodes (typically ≥4MiB) and fanouts (typically ≤16) to
improve performance. Large nodes mean updates are ap-
plied in large batches, but large nodes also mean that
many contiguous key/value pairs are read per I/O. Thus,
range queries can run a near disk bandwidth, with at most
one random I/O per large node.

The Bε -tree implementation in BetrFS supports both
point and range messages; range messages were intro-
duced in v0.2 [54]. A point message is addressed to a
single key, whereas a range message is applied to a con-
tiguous range of keys. Thus far, range messages have
only been used for deleting a range of contiguous keys
with a single message. In our experience, range deletes
give useful information about the keyspace that is hard
to infer from a series of point deletions, such as dropping
obviated insert and upsert messages.

The Bε -tree used in BetrFS supports transactions and
crash consistency as follows. The Bε -tree internally uses
a logical timestamp for each message and MVCC to im-

plement transactions. Pending messages can be thought
of as a history of recent modifications, and, at any point
in the history, one can construct a consistent view of the
data. Crash consistency is ensured using logical logging,
i.e., by logging the inserts, deletes, etc, performed on the
tree. Internal operations, such as node splits, flushes, etc,
are not logged. Nodes are written to disk using copy-
on-write. At a periodic checkpoint (every 5 seconds),
all dirty nodes are written to disk and the log can be
trimmed. Any unreachable nodes are then garbage col-
lected and reused. Crash recovery starts from the last
checkpoint, replays the logical redo log, and garbage col-
lects any unreachable nodes; as long as an operation is in
the logical log, it will be recoverable.

2.2 BetrFS Overview
BetrFS translates VFS-level operations into Bε -tree op-
erations. Across versions, BetrFS has explored schema
designs that map VFS-level operations onto Bε -tree op-
erations as efficiently as possible.

All versions of BetrFS use two Bε -trees: one for file
data and one for file system metadata. The Bε -tree imple-
mentation supports transactions, which we use internally
for operations that require more than one message. Be-
trFS does not expose transactions to applications, which
introduce some more complex issues around system call
semantics [25, 35, 39, 46].

In BetrFS 0.1, the metadata Bε -tree maps a full path
onto the typical contents of a stat structure, including
owner, modification time, and permission bits. The data
Bε -tree maps keys of the form (p, i), where p is the full
path to a file and i is a block number within that file, to
4KB file blocks. Paths are sorted in a variant of depth-
first traversal order.

This full-path schema means that entire sub-trees of
the directory hierarchy are stored in logically contiguous
ranges of the key space. For instance, this design en-
abled BetrFS 0.1 to perform very fast recursive directory
traversals (e.g. find or recursive grep).

Unfortunately, with this schema, file and directory re-
names do not map easily onto key/value store operations.
In BetrFS 0.1, file and directory renames were imple-
mented by copying the file or directory from its old loca-
tion to the new location. As a result, renames were orders
of magnitude slower than conventional file systems.

BetrFS 0.2 improved rename performance by replac-
ing the full-path indexing schema of BetrFS 0.1 with
a relative-path indexing schema [54, 55]. The goal of
relative path indexing is to get the rename performance
of inode-based file systems and the recursive-directory-
traversal performance of a full-path indexing file system.

BetrFS 0.2 accomplishes this by partitioning the di-
rectory hierarchy into a collection of connected regions
called zones. Each zone has a single root file or directory

USENIX Association 16th USENIX Conference on File and Storage Technologies 125

and, if the root of a zone is a directory, it may contain
sub-directories of that directory. Each zone is given a
zone ID (analogous to an inode number).

Relative-path indexing made renames on BetrFS 0.2
almost as fast as inode-based file systems and recursive-
directory traversals almost as fast as BetrFS 0.1.

However, our experience has been that relative-path
indexing introduces a number of overheads and pre-
cludes other opportunities for mapping file-system-level
operations onto Bε -tree operations. For instance, must
be split and merged to keep all zones within a target
size range. These overheads became a first-order per-
formance issue, for example, the Tokubench benchmark
results for BetrFS 0.2.

Furthermore, relative-path indexing also has bad
worst-case performance. It is possible to construct ar-
rangements of nested directories that will each reside in
their own zone. Reading a file in the deepest directory
will require reading one zone per directory (each with
its own I/O). Such a pathological worst case is not possi-
ble with full-path indexing in a Bε -tree, and an important
design goal for BetrFS is keeping a reasonable bound on
the worst cases.

Finally, zones break the clean mapping of directory
subtrees onto contiguous ranges of the key space, pre-
venting us from using range-messages to implement bulk
operations on entire subtrees of the directory hierarchy.
For example, with full-path indexing, we can use range-
delete messages not only to delete files, but entire sub-
trees of the directory hierarchy. We could also use range
messages to perform a variety of other operations on sub-
trees of the directory hierarchy, such as recursive chmod,
chown, and timestamp updates.

The goal of this paper is to show that, by making re-
name a first-class key/value store operation, we can use
full-path indexing to produce a simpler, more efficient,
and more flexible system end-to-end.

3 Overview
The goal of this section is to explain the performance
considerations behind our data structure design, and to
provide a high-level overview of that design.

Our high-level strategy is to simply copy small files
and directories in order to preserve locality—i.e., copy-
ing a few-byte file is no more expensive than updating
a pointer. Once a file or directory becomes sufficiently
large, copying the data becomes expensive and of dimin-
ishing value (i.e., the cost of indirection is amortized over
more data). Thus, most of what follows is focused on ef-
ficient rename of large files and directories, large mean-
ing at least as large as a Bε -tree node.

Since we index file and directory data and metadata
by full path, a file or directory rename translates into

a prefix replacement on a contiguous range of keys.
For example, if we rename directory /tmp/draft to
/home/paper/final, then we want to find all keys
in the Bε -tree that begin with /tmp/draft and replace
that prefix with /home/paper/final. This involves
both updating the key itself, and updating its location in
the Bε -tree so that future searches can find it.

Since the affected keys form a contiguous range in
the Bε -tree, we can move the keys to their new (logi-
cal) home without moving them physically. Rather, we
can make a small number of pointer updates and other
changes to the tree. We call this step tree surgery. We
then need to update all the keys to contain their new pre-
fix, a process we call batched key update.

In summary, the algorithm has two high-level steps:
Tree Surgery. We identify a subtree of the Bε -tree that
includes all keys in the range to be renamed (Figure 1).
Any fringe nodes (i.e., on the left and right extremes
of the subtree), which contain both related and unre-
lated keys, are split into two nodes: one containing only
affected keys and another containing only un-affected
keys. The number of fringe nodes will be at most log-
arithmic in the size of the sub-tree. At the end of the
process, we will have a subtree that contains only keys in
the range being moved. We then change the pivot keys
and pointers to move the subtree to its new parent.
Batched Key Updates. Once a subtree has been logi-
cally renamed, full-path keys in the subtree will still re-
flect the original key range. We propose a Bε -tree modi-
fication to make these key updates efficient. Specifically,
we modify the Bε -tree to factor out common prefixes
from keys in a node, similar to prefix-encoded compres-
sion. We call this transformation key lifting. This trans-
formation does not lose any information—the common
prefix of keys in a node can be inferred from the pivot
keys along the path from the root to the node by con-
catenating the longest common prefix of enclosing piv-
ots along the path. As a result of key lifting, once we
perform tree surgery to isolate the range of keys affected
by a rename, the prefix to be replaced in each key will
already be removed from every key in the sub-tree. Fur-
thermore, since the omitted prefixes are inferred from the
sub-tree’s parent pivots, moving the sub-tree to its new
parent implicitly replaces the old prefix with the new one.
Thus a large subtree can be left untouched on disk dur-
ing a range rename. In the worst case, only a logarithmic
number of nodes on the fringe of the subtree will have
keys that need to be updated.
Buffered Messages and Concurrency. Our range
move operation must also handle any pending messages
targeting the affected keys. These messages may be
buffered in any node along a search path from the root
to one of the affected keys. Our solution leverages the
fact that messages have a logical timestamp and are ap-

126 16th USENIX Conference on File and Storage Technologies USENIX Association

plied in logical order. Thus, it is sufficient to ensure that
pending messages for a to-be-renamed subtree must be
flushed into the subtree before we begin the tree surgery
for a range rename.

Note that most of the work in tree surgery involves
node splits and merges, which are part of normal Bε -tree
operation. Thus the tree remains a “valid” Bε -tree during
this phase of the range move. Only the pointer swaps
need to be serialized with other operations. Thus this
approach does not present a concurrency bottleneck.

The following two sections explain tree surgery and
lifting in more detail.

4 Tree Surgery
This section describes our approach to renaming a di-
rectory or large file via changes within the Bε -tree, such
that most of the data is not physically moved on disk.
Files that are smaller than 4MiB reside in at most two
leaves. We therefore move them by copying and perform
tree surgery only on larger files and, for simplicity of the
prototype, directories of any size.

For the sake of discussion, we assume that a rename is
moving a source file over an existing destination file; the
process would work similarly (but avoid some work) in
the case where the destination file does not exist. Our im-
plementation respects POSIX restrictions for directories
(i.e., you cannot rename over a non-empty destination di-
rectory), but our technique could easily support different
directory rename semantics. In the case of renaming over
a file, where a rename implicitly deletes the destination
file, we use transactions in the Bε -tree to insert both a
range delete of the destination and a range rename of the
source; these messages are applied atomically.

This section also operates primarily at the Bε -tree
level, not the directory namespace. Unless otherwise
noted, pointers are pointers within the Bε -tree.

In renaming a file, the goal is to capture a range of con-
tiguous keys and logically move these key/value pairs to
a different point in the tree. For anything large enough to
warrant using this rename approach, some Bε -tree nodes
will exclusively store messages or key/value pairs for the
source or destination, and some may include unrelated
messages or key/value pairs before and after in sort or-
der, corresponding to the left and right in the tree.

An important abstraction for tree surgery is the Lowest
Common Ancestor, or (LCA), of two keys: the Bε -tree
node lowest in the tree on the search path for both keys
(and hence including all keys in between). During a re-
name, the source and destination will each have an LCA,
and they may have the same LCA.

The first step in tree surgery is to find the source LCA
and destination LCA. In the process of identifying the
LCAs, we also flush any pending messages for the source

... ...

...

... ...

(a)

... ...

...

... ...

(b)

... ...

...

... ...

(c)

... ...

...

... ...

(d)

Figure 1: Slicing /gray between /black and /white.

or destination key range, so that they are buffered at or
below the corresponding LCAs.
Slicing. The second step is to slice out the source and
destination from any shared nodes. The goal of slicing
is to separate unrelated key-value pairs that are not being
moved but are packed into the same Bε -tree node as key-
value pairs that are being moved. Slicing uses the same
code used for standard Bε -tree node splits, but slicing
divides the node at the slicing key rather than picking a
key in the middle of the node. As a result, slicing may re-
sult in nodes that temporarily violate constraints on target
node size and fanout. However, these are performance,
not correctness, constraints, so we can let queries con-
tinue concurrently, and we restore these invariants before
completing the rename.

Figure 1 depicts slicing the sub-tree containing all gray
keys from a tree with black, gray, and white keys. The
top node is the parent of the LCA. Because messages
have been flushed to the LCA, the parent of the LCA
contains no messages related to gray. Slicing proceeds
up the tree from the leaves, and only operates on the left
and right fringe of the gray sub-tree. Essentially, each
fringe node is split into two smaller Bε -tree nodes (see
steps b and c). All splits, as well as later transplanting
and healing, happen when the nodes are pinned in mem-
ory. During surgery, they are dirtied and written at the
next checkpoint. Eventually, the left and right edge of
an exclusively-gray subtree (step d) is pinned, whereas
interior, all-grey nodes may remain on disk.

Our implementation requires that the source and desti-
nation LCA be at the same height for the next step. Thus,
if the LCAs are not at the same level of the tree, we slice
up to an ancestor of the higher LCA. The goal of this
choice is to maintain the invariant that all Bε -tree leaves
be at the same depth.
Transplant. Once the source and destination are both
sliced, we then swap the pointers to each sub-tree in the
respective parents of LCAs. We then insert a range-
delete message at the source (which now points to a sub-

USENIX Association 16th USENIX Conference on File and Storage Technologies 127

tree containing all the data in the file that used to reside
at the destination of the rename). The Bε -tree’s builtin
garbage collection will reclaim these nodes.
Healing. Our Bε -tree implementation maintains the in-
variant that all internal nodes have between 4 and 16
children, which bounds the height of the tree. After the
transplant completes, however, there may be a number of
in-memory Bε -tree nodes at the fringe around the source
and destination that have fewer than 4 children.

We handle this situation by triggering a rebalancing
within the tree. Specifically, if a node has only one child,
the slicing process will merge it after completing the
work of the rename.
Crash Consistency. In general, BetrFS ensures crash
consistency by keeping a redo log of pending messages
and applying messages to nodes copy-on-write. At pe-
riodic intervals, BetrFS ensures that there is a consistent
checkpoint of the tree on disk. Crash recovery simply
replays the redo log since the last checkpoint. Range re-
name works within this framework.

A range rename is logically applied and persisted as
soon as the message is inserted into the root buffer and
the redo log. If the system crashes after a range rename
is logged, the recovery will see a prefix of the message
history that includes the range rename, and it will be log-
ically applied to any queries for the affected range.

Tree surgery occurs when a range rename message is
flushed to a node that is likely an LCA. Until surgery
completes, all fringe nodes, the LCAs, and the parents of
LCAs are pinned in memory and dirtied. Upon comple-
tion, these nodes will be unpinned and written to disk,
copy-on-write, no later than the next Bε -tree checkpoint.

If the system crashes after tree surgery begins but be-
fore surgery completes, the recovery code will see a con-
sistent checkpoint of the tree as it was before the tree
surgery. The same is true if the system crashes after tree
surgery but before the next checkpoint (as these post-
surgery nodes will not be reachable from the checkpoint
root). Because a Bε -tree checkpoint flushes all dirty
nodes, if the system crashes after a Bε -tree checkpoint,
all nodes affected by tree surgery will be on disk.

At the file system level, BetrFS has similar crash con-
sistency semantics to metadata-only journaling in ext4.
The Bε -tree implementation itself implements full data
journaling [54, 55], but BetrFS allows file writes to be
buffered in the VFS, weakening this guarantee end-to-
end. Specifically, file writes may be buffered in the VFS
caches, and are only logged in the recovery journal once
the VFS writes back a dirty page (e.g., upon an fsync
or after a configurable period). Changes to the directory
tree structure, such as a rename or mkdir are persisted
to the log immediately. Thus, in the common pattern of
writing to a temporary file and then renaming it, it is pos-
sible for the rename to appear in the log before the writes.

In this situation and in the absence of a crash, the writes
will eventually be logged with the correct, renamed key,
as the in-memory inode will be up-to-date with the cor-
rect Bε -tree key. If the system crashes, these writes can
be lost; as with a metadata-journaled file system, the de-
veloper must issue an fsync before the rename to en-
sure the data is on disk.

Latency. A rename returns to the user once a log entry
is in the journal and the root of the Bε -trees are locked.
At this point, the rename has been applied in the VFS to
in-memory metadata, and as soon as the log is fsynced,
the rename is durable.

We then hand off the rest of the rename work to two
background threads to do the cutting and healing. The
prototype in this paper only allows a backlog of one
pending, large rename, since we believe that concur-
rent renames are relatively infrequent. The challenge in
adding a rename work queue is ensuring consistency be-
tween the work queue and the state of the tree.

Atomicity and Transactions. The Bε -tree in BetrFS
implements multi-version concurrency control by aug-
menting messages with a logical timestamp. Messages
updating a given key range are always applied in logical
order. Multiple messages can share a timestamp, giving
them transactional semantics.

To ensure atomicity for a range rename, we create an
MVCC “hazard”: read transactions “before” the rename
must complete before the surgery can proceed. Tree
nodes in BetrFS are locked with reader-writer locks. We
write-lock tree nodes hand-over-hand, and left-to-right to
identify the LCAs. Once the LCAs are locked, this seri-
alizes any new read or write transactions until the rename
completes. The lock at the LCA creates a “barrier”—
operations can complete “above” or “below” this lock
in the tree, although the slicing will wait for concur-
rent transactions to complete before write-locking that
node. Once the transplant completes, the write-locks on
the parents above LCAs are released.

For simplicity, we also ensure that all messages in
the affected key range(s) that logically occur before the
range rename are flushed below the LCA before the
range rename is applied. All messages that logically oc-
cur after the rename follow the new pointer path to the
destination or source. This strategy ensures that, when
each message is flushed and applied, it sees a point-in-
time consistent view of the subtree.

Complexity. At most 4 slices are performed, each from
the root to a leaf, dirtying nodes from the LCA along the
slicing path. These nodes will need to be read, if not
in cache, and written back to disk as part of the check-
pointing process. Therefore the number of I/Os is at most
proportional to the height of the Bε -tree, which is loga-
rithmic in the size of the tree.

128 16th USENIX Conference on File and Storage Technologies USENIX Association

5 Batched Key Updates
After tree-surgery completes, there will be a subtree
where the keys are not coherent with the new location in
the tree. As part of a rename, the prefixes of all keys in
this subtree need to be updated. For example, suppose we
execute ‘mv /foo /bar‘. After surgery, any mes-
sages and key/value pairs for file /foo/bas will still
have a key that starts with /foo. These keys need to
be changed to begin with /bar. The particularly con-
cerning case is when /foo is a very large subtree and
has interior nodes that would otherwise be untouched by
the tree surgery step; our goal is to leave these nodes un-
touched as part of rename, and thus reduce the cost of key
changes from the size of the rename tree to the height of
the rename tree.

We note that keys in our tree are highly redundant. Our
solution reduces the work of changing keys by reducing
the redundancy of how keys are encoded in the tree. Con-
sider the prefix encoding for a sequence of strings. In this
compression method, if two strings share a substantial
longest common prefix (lcp), then that lcp is only stored
once. We apply this idea to Bε -trees. The lcp of all keys
in a subtree is removed from the keys and stored in the
subtree’s parent node. We call this approach key lifting
or simply lifting for short.

At a high level, our lifted Bε -tree stores a node’s com-
mon, lifted key prefix in the node’s parent, alongside the
parent’s pointer to the child node. Child nodes only store
differing key suffixes. This approach encodes the com-
plete key in the path taken to reach a given node.

Lifting requires a schema-level invariant that keys
with a common prefix are adjacent in the sort order. As
a simple example, if one uses memcmp to compare keys
(as BetrFS does), then lifting will be correct. This invari-
ant ensures that, if there is a common prefix between any
two pivot keys, all keys in that child will have the same
prefix, which can be safely lifted. More formally:

Invariant 1 Let T ′ be a subtree in a Bε -tree with full-
path indexing. Let p and q be the pivots that enclose T ′.
That is, if T ′ is not the first or last child of its parent, then
p and q are the enclosing pivots in the parent of T ′. If T ′

is the first child of its parent, then q is the first pivot and
p is the left enclosing pivot of the parent of T ′.

Let s be the longest common prefix of p and q. Then
all keys in T ′ begin with s.

Given this invariant, we can strip s from the beginning
of every message or key/value pair in T ′, only storing
the non-lifted suffix. Lifting is illustrated in Figure 2,
where the common prefix in the first child is “/b/”, which
is removed from all keys in the node and its children
(indicated with strikethrough text). The common prefix
(indicated with purple) is stored in the parent. As one
moves toward leaves, the common prefix typically be-

pi
vo

ts
m

es
sa

ge

bu
ffe

r

... ...

pi
vo

ts
m

es
sa

ge

bu
ffe

r

/b/ /b/8

... ...

/a/x
/b/0

/b/9
/c/w

/b/2 /b/4/r
/b/7/r/b/4/j

/b/4/m /b/4/t

ke
y-

va
lu

e

en
tri

es
/b/4/m /b/4/p/z

/b/4/s/b/4/m/x

}in
te

rn
a
l
n
o
d

e
s

} le
a
f

Figure 2: Example nodes in a lifted Bε -tree. Since the
middle node is bounded by two pivots with common pre-
fix “/b/” (indicated by purple text), all keys in the middle
node and its descendants must have this prefix in com-
mon. Thus this prefix can be omitted from all keys in the
middle node (and all its descendants), as indicated by the
strike-through text. Similarly, the bottom node (a leaf)
is bounded by pivots with common prefix “/b/4/”, so this
prefix is omitted from all its keys.

comes longer (“/b/4/” in Figure 2), and each level of the
tree can lift the additional common prefix.

Reads can reconstruct the full key by concatenating
prefixes during a root-to-leaf traversal. In principle, one
need not store the lifted prefix (s) in the tree, as it can be
computed from the pivot keys. In our implementation,
we do memoize the lifted prefix for efficiency.

As messages are flushed to a child, they are modified
to remove the common prefix. Similarly, node splits and
merges ensure that any common prefix between the pivot
keys is lifted out. It is possible for all of the keys in T ′

to share a common prefix that is longer than s, but we
only lift s because maintaining this amount of lifting hits
a sweet spot: it is enough to guarantee fast key updates
during renames, but it requires only local information at
a parent and child during splits, merges, and insertions.

Lifting is completely transparent to the file system.
From the file system’s perspective, it is still indexing data
with a key/value store that is keyed by full-path; the only
difference from the file system’s perspective is that the
key/value store completes some operations faster.
Lifting and Renames. In the case of renames, lifting
dramatically reduces the work to update keys. During a
rename from a to b, we slice out a sub-tree containing
exactly those keys that have a as a prefix. By the lifting
invariant, the prefix a will be lifted out of the sub-tree,
and the parent of the sub-tree will bound it between two
pivots whose common prefix is a (or at least includes
a—the pivots may have an even longer common pre-

USENIX Association 16th USENIX Conference on File and Storage Technologies 129

fix). After we perform the pointer swing, the sub-tree
will be bounded in its new parent by pivots that have b
as a common prefix. Thus, by the lifting invariant, all
future queries will interpret all the keys in the sub-tree
has having b as a prefix. Thus, with lifting, the pointer
swing implicitly performs the batch key-prefix replace-
ment, completing the rename.
Complexity. During tree surgery, there is lifting work
along all nodes that are sliced or merged. However,
the number of such nodes is at most proportional to the
height of the tree. Thus, the number of nodes that must
be lifted after a rename is no more than the nodes that
must be sliced during tree surgery, and proportional to
the height of the tree.

6 Implementation Details
Simplifying key comparison. One small difference in
the BetrFS 0.4 and BetrFS 0.3 key schemas is that BetrFS
0.4 adjusted the key format so that memcmp is sufficient
for key comparison. We found that this change simpli-
fied the code, especially around lifting, and helped CPU
utilization, as it is hard to compare bytes faster than a
well-tuned memcmp.
Zone maintenance. A major source of overheads in
BetrFS 0.3 is tracking metadata associated with zones.
Each update involves updating significant in-memory
bookkeeping; splitting and merging zones can also be a
significant source of overhead (c.f., Figure 3). BetrFS 0.4
was able to delete zone maintenance code, consolidating
this into the Bε -tree’s internal block management code.
Hard Links. BetrFS 0.4 does not support hard links.
In future work, for large files, sharing sub-trees could
also be used to implement hard links. For small files,
zones could be reintroduced solely for hard links.

7 Evaluation
Our evaluation seeks to answer the following questions:
• (§7.1) Does full-path indexing in BetrFS 0.4 improve

overall file system performance, aside from renames?
• (§7.2) Are rename costs acceptable in BetrFS 0.4?
• (§7.3) What other opportunities does full-path index-

ing in BetrFS 0.4 unlock?
• (§7.4) How does BetrFS 0.4 performance on applica-

tion benchmarks compare to other file systems?
We compare BetrFS 0.4 with several file systems, in-

cluding BetrFS 0.3 [14], Btrfs [42], ext4 [31], nilfs2 [34],
XFS [47], and ZFS [8]. Each file system’s block size
is 4096 bytes. We use the versions of XFS, Btrfs, ext4
that are part of the 3.11.10 kernel, and ZFS 0.6.5.11,
downloaded from www.zfsonlinux.org. We use
default recommended file system settings unless other-
wise noted. For ext4 (and BetrFS), we disabled lazy in-
ode table and journal initialization, as these features ac-

celerate file system creation but slow down some oper-
ations on a freshly-created file system; we believe this
configuration yields more representative measurements
of the file system in steady-state. Each experiment was
run a minimum of 4 times. Error bars indicate mini-
mum and maximum times over all runs. Similarly, error
± terms bound minimum and maximum times over all
runs. Unless noted, all benchmarks are cold-cache tests
and finish with a file-system sync. For BetrFS 0.3, we
use the default zone size of 512 KiB.

In general, we expect BetrFS 0.3 to be the closest com-
petitor to BetrFS 0.4, and focus on this comparison but
include other file systems for context. Relative-path in-
dexing is supposed to get most of the benefits of full-
path indexing, with affordable renames; comparing Be-
trFS 0.4 with BetrFS 0.3 shows the cost of relative-path
indexing and the benefit of full-path indexing.

All experimental results were collected on a Dell Op-
tiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4
GB RAM, and a 500 GB, 7200 RPM SATA disk, with a
4096-byte block size. The system runs Ubuntu 14.04.5,
64-bit, with Linux kernel version 3.11.10. We boot from
a USB stick with the root file system, isolating the file
system under test to only the workload.

7.1 Non-Rename Microbenchmarks
Tokubench. The tokubench benchmark creates three
million 200-byte files in a balanced directory tree, where
no directory is allowed to have more than 128 children.

As Figure 3 shows, zone maintenance in BetrFS 0.3
causes a significant performance drop around 2 million
files. This drop occurs all at once because, at that point
in the benchmark, all the top-level directories are just un-
der the zone size limit. As a result, the benchmark goes
through a period where each new file causes its top-level
directory to split into its own zone. If we continue the
benchmark long enough, we would see this happen again
when the second-level directories reach the zone-size
limit. In experiments with very long runs of Tokubench,
BetrFS 0.3 never recovers this performance.

With our new rename implementations, zone mainte-
nance overheads are eliminated. As a result, BetrFS 0.4
has no sudden drop in performance. Only nilfs2 comes
close to matching BetrFS 0.4 on this benchmark, in part
because nilfs2 is a log-structured file system. BetrFS
0.4 has over 80× higher cumulative throughput than ext4
throughout the benchmark.
Recursive directory traversals. In these benchmarks,
we run find and recursive grep on a copy of the Linux
kernel 3.11.10 source tree. The times taken for these op-
erations are given in Table 1. BetrFS 0.4 outperforms Be-
trFS 0.3 by about 5% on find and almost 30% on grep. In
the case of grep, for instance, we found that roughly the
same total number of bytes were read from disk in both

130 16th USENIX Conference on File and Storage Technologies USENIX Association

www.zfsonlinux.org

0 1M 2M 3M
0

10,000

20,000

30,000

40,000

50,000

Files created

T
hr

ou
gh

pu
t(

fil
es

/s
ec

)
BetrFS 0.4 nilfs2
BetrFS 0.3 xfs
btrfs zfs
ext4

Figure 3: Cumulative file creation throughput during the
Tokubench benchmark (higher is better). BetrFS 0.4 out-
performs other file systems by orders of magnitude and
avoids the performance drop that BetrFS 0.3 experience
due to its zone-maintenance overhead.

File system find (sec) grep (sec)
BetrFS 0.4 0.233± 0.0 3.834± 0.2
BetrFS 0.3 0.247± 0.0 5.859± 0.1
btrfs 1.311± 0.1 8.068± 1.6
ext4 2.333± 0.1 42.526± 5.2
xfs 6.542± 0.4 58.040± 12.2
zfs 9.797± 0.9 346.904±101.5
nilfs2 6.841± 0.1 8.399± 0.2

Table 1: Time to perform recursive directory traversals
of the Linux 3.11.10 source tree (lower is better). BetrFS
0.4 is significantly faster than every other file system,
demonstrating the locality benefits of full-path indexing.

versions of BetrFS, but that BetrFS 0.3 issued roughly
25% more I/O transactions. For this workload, we also
saw higher disk utilization in BetrFS 0.4 (40 MB/s vs.
25 MB/s), with fewer worker threads needed to drive the
I/O. Lifting also reduces the system time by 5% on grep,
but the primary savings are on I/Os. In other words, this
demonstrates the locality improvements of full-path in-
dexing over relative-path indexing. BetrFS 0.4 is any-
where from 2 to almost 100 times faster than conven-
tional file systems on these benchmarks.

Sequential IO. Figure 4 shows the throughput of se-
quential reads and writes of a 10GiB file (more than
twice the size of the machine’s RAM). All file systems
measured, except ZFS, are above 100 MB/s, and the
disk’s raw read and write bandwidth is 132 MB/s.

Sequential reads in BetrFS 0.4 are essentially identical
to those in BetrFS 0.3 and roughly competitive with other
file systems. Both versions of BetrFS do not realize the
full performance of the disk on sequential I/O, leaving up
to 20% of the throughput compared to ext4 or Btrfs. This

read write

0

20

40

60

80

100

120

B
et

rF
S

0.
4

B
et

rF
S

0.
4

B
et

rF
S

0.
3

B
et

rF
S

0.
3

bt
rf

s

bt
rf

s

ex
t4

ex
t4

ni
lf

s2

ni
lf

s2xf
s

xf
s

zf
s

zf
s

B
an

dw
id

th
(M

B
/s

ec
)

Figure 4: Sequential IO bandwidth (higher is better).
BetrFS 0.4 performs sequential IO at over 100 MB/s but
up to 19% slower than the fastest competitor. Lifting
introduces some overheads on sequential writes.

is inherited from previous versions of BetrFS and does
not appear to be significantly affected by range rename.
Profiling indicates that there is not a single culprit for this
loss but several cases where writeback of dirty blocks
could be better tuned to keep the disk fully utilized. This
issue has improved over time since version 0.1, but in
small increments.

Writes in BetrFS 0.4 are about 5% slower than in Be-
trFS 0.3. Profiling indicates this is because node split-
ting incurs additional computational costs to re-lift a split
child. We believe this can be addressed in future work by
either better overlapping computation with I/O or inte-
grating key compression with the on-disk layout, so that
lifting a leaf involves less memory copying.
Random writes. Table 2 shows the execution time of
a microbenchmark that issues 256K 4-byte overwrites
at random offsets within a 10GiB file, followed by an
fsync. This is 1 MiB of total data written, sized to
run for at least several seconds on the fastest file system.
BetrFS 0.4 performs small random writes approximately
400 to 650 times faster than conventional file systems
and about 19% faster than BetrFS 0.3.
Summary. These benchmarks show that lifting and
full-path indexing can improve performance over
relative-path indexing for both reads and writes, from 5%
up to 2×. The only case harmed is sequential writes. In
short, lifting is generally more efficient than zone main-
tenance in BetrFS.

7.2 Rename Microbenchmarks
Rename performance as a function of file size. We
evaluate rename performance by renaming files of dif-
ferent sizes and measuring the throughput. For each file

USENIX Association 16th USENIX Conference on File and Storage Technologies 131

File system random write (sec)
BetrFS 0.4 4.9 ± 0.3
BetrFS 0.3 5.9 ± 0.1
btrfs 2147.5 ± 7.4
ext4 2776.0 ± 40.2
xfs 2835.7 ± 7.9
zfs 3288.9 ±394.7
nilfs2 2013.1 ± 19.1

Table 2: Time to perform 256K 4-byte random writes (1
MiB total writes, lower is better). BetrFS 0.4 is up to 600
times faster than other file systems on random writes.

size, we rename a file of this size 100 times within a di-
rectory and fsync the parent directory to ensure that the
file is persisted on disk. We measure the average across
100 runs and report this as throughput, in Figure 5a.

In both BetrFS 0.3 and BetrFS 0.4, there are two
modes of operation. For smaller objects, both versions
of BetrFS simply copy the data. At 512 KiB and 4 MiB,
BetrFS 0.3 and BetrFS 0.4, respectively, switch modes—
this is commensurate with the file matching the zone size
limit and node size, respectively. For files above these
sizes, both file systems see comparable throughput of
simply doing a pointer swing.

More generally, the rename throughput of all of these
file systems is somewhat noisy, but ranges from 30–120
renames per second, with nilfs2 being the fastest. Both
variants of BetrFS are within this range, except when a
rename approaches the node size in BetrFS 0.4.

Figure 5b shows rename performance in a setup care-
fully designed to incur the worst-case tree surgery costs
in BetrFS 0.4. In this experiment, we create two directo-
ries, each with 1000 files of the given size. The bench-
mark renames the interleaved files from the source di-
rectory to the destination directory, so that they are also
interleaved with the files of the given size in the destina-
tion directory. Thus, when the interleaved files are 4MB
or larger, every rename requires two slices at both the
source and destination directories. We fsync after each
rename.

Performance is roughly comparable to the previous ex-
periment for small files. For large files, this experiment
shows the worst-case costs of performing four slices.
Further, all slices will operate on different leaves.

Although this benchmark demonstrates that rename
performance has potential for improvement in some care-
fully constructed worst-case scenarios, the cost of re-
names in BetrFS 0.4 is nonetheless bounded to an av-
erage cost of 454ms. We also note that this line flat-
tens, as the slicing overheads grow logarithmically in the
size of the renamed file. In contrast, renames in BetrFS
0.1 were unboundedly expensive, easily getting into min-
utes; bounding this worst case is significant progress for

BetrFS 0.4 btrfs nilfs2 zfs
BetrFS 0.3 ext4 xfs

4K
iB

8K
iB

16K
iB

32K
iB

64K
iB

128K
iB

256K
iB

512K
iB

1M
iB

2M
iB

4M
iB

8M
iB

16M
iB

32M
iB

64M
iB

0

20

40

60

80

100

120

File Size (Bytes, Log Scale)

T
hr

ou
gh

pu
t(

R
en

am
es

Pe
rS

ec
on

d)

(a) Rename throughput as a function of file size. This ex-
periment was performed in the base directory of an otherwise
empty file system.

4K
iB

8K
iB

16K
iB

32K
iB

64K
iB

128K
iB

256K
iB

512K
iB

1M
iB

2M
iB

4M
iB

8M
iB

16M
iB

0

20

40

60

80

100

120

File Size (Bytes, Log Scale)

T
hr

ou
gh

pu
t(

R
en

am
es

Pe
rS

ec
on

d) BetrFS 0.4 btrfs nilfs2 zfs
BetrFS 0.3 ext4 xfs

(b) Rename throughput as a function of file size. This experi-
ment interleaves the renamed files with other files of the same
size in both the source and destination directories.

Figure 5: Rename throughput

the design of full-path-indexed file systems.

7.3 Full-path performance opportunities
As a simple example of other opportunities for full-path
indexing, consider deleting an entire directory (e.g., rm
-rf). POSIX semantics require checking permission to
delete all contents, bringing all associated metadata into
memory. Other directory deletion semantics have been
proposed. For example, HiStar allows an untrusted ad-
ministrator to delete a user’s directory but not read the
contents [56].

We implemented a system call that uses range-delete
messages to delete an entire directory sub-tree. This

132 16th USENIX Conference on File and Storage Technologies USENIX Association

File system recursive delete (sec)
BetrFS 0.4 (range delete) 0.053± 0.001
BetrFS 0.4 3.351± 0.5
BetrFS 0.3 2.711± 0.3
btrfs 2.762± 0.1
ext4 3.693± 2.2
xfs 7.971± 0.8
zfs 11.492± 0.1
nilfs2 9.472± 0.3

Table 3: Time to delete the Linux 3.11.10 source tree
(lower is better). Full-path indexing in BetrFS 0.4 can
remove a subtree in a single range delete, orders-of-
magnitude faster than the recursive strategy of rm -rf.

system call therefore accomplishes the same goal as rm
-rf, but it does not need to traverse the directory hier-
archy or issue individual unlink/rmdir calls for each file
and directory in the tree. The performance of this system
call is compared to the performance of rm -rf on mul-
tiple file systems in Table 3. We delete the Linux 3.11.10
source tree using either our recursive-delete system call
or by invoking rm -rf.

A recursive delete operation is orders of magnitude
faster than a brute-force recursive delete on all file sys-
tems in this benchmark. This is admittedly an unfair
benchmark, in that it foregoes POSIX semantics, but is
meant to illustrate the potential of range updates in a
full-path indexed system. With relative-path indexing,
a range of keys cannot be deleted without first resolving
the indirection underneath. With full-path indexing, one
could directly apply a range delete to the directory, and
garbage collect nodes that are rendered unreachable.

There is a regression in regular rm -rf performance
for BetrFS 0.4, making it slower than Btrfs and BetrFS
0.3. A portion of this is attributable to additional over-
head on un-lifting merged nodes (similar to the over-
heads added to sequential write for splitting); another
portion seems to be exercising inefficiencies in flushing
a large number of range messages, which is a relatively
new feature in the BetrFS code base. We believe this
can be mitigated with additional engineering. This ex-
periment also illustrates how POSIX semantics, that re-
quire reads before writes, can sacrifice performance in a
write-optimized storage system.

More generally, full-path indexing has the potential
to improve many recursive directory operations, such as
changing permissions or updating reference counts.

7.4 Macrobenchmark performance
Figure 6a shows the throughput of 4 threads on the Dove-
cot 2.2.13 mailserver. We initialize the mailserver with
10 folders, each contains 2500 messages, and use 4
threads, each performs 1000 operations with 50% reads
and 50% updates (marks, moves, or deletes).

Figure 6b measures rsync performance. We copy
the Linux 3.11.10 source tree from a source directory to
a destination directory within the same partition and file
system. With the --in-place option, rsync writes
data directly to the destination file rather than creating a
temporary file and updating via atomic rename.

Figure 6c reports the time to clone the Linux kernel
source code repository [28] from a clone on the local sys-
tem. The git diff workload reports the time to diff
between the v4.14 and v4.07 Linux source tags.

Finally, Figure 6d reports the time to tar and un-tar
the Linux 3.11.10 source code.

BetrFS 0.4 is either the fastest or a close second for
5 of the 7 application workloads. No other file system
matches that breadth of performance.

BetrFS 0.4 represents a strict improvement over Be-
trFS 0.3 for these workloads. In particular, we attribute
the improvement in the rsync --in-place, git
and un-tar workloads to eliminating zone maintenance
overheads. These results show that, although zoning rep-
resents a balance between full-path indexing and inode-
style indirection, full path indexing can improve applica-
tion workloads by 3-13% over zoning in BetrFS without
incurring unreasonable rename costs.

8 Related Work
WODs. Write-Optimized Dictionaries, or WODs, in-
cluding LSM-trees [36] and Bε -trees [10], are widely
used in key-value stores. For example, BigTable [12],
Cassandra [26], LevelDB [20] and RocksDB [41] use
LSM-trees; TokuDB [49] and Tucana [37] use Bε -trees.

A number of projects have enhanced WODs, includ-
ing in-memory component performance [4,19,44], write
amplification [30, 53] and fragmentation [33]. Like the
lifted Bε -tree, the LSM-trie [53] also has a trie structure;
the LSM-trie was applied to reducing write amplification
during LSM compaction rather than fast key updates.

Several file systems are built on WODs through
FUSE [17]. TableFS [40] puts metadata and small files in
LevelDB and keeps larger files on ext4. KVFS [45] uses
stitching to enhance sequential write performance on VT-
trees, variants of LSM-trees. TokuFS [15], a precursor
to BetrFS, uses full-path indexing on Bε -trees, showing
good performance for small writes and directory scans.
Trading writes for reads. IBM VSAM storage sys-
tem, in the Key Sequenced Data Set (KSDS) configu-
ration, can be thought of as an early key-value store us-
ing a B+ tree. One can think of using KSDS as a full-
path indexed file system, optimized for queries. Unlike
a POSIX file system, KSDS does not allow keys to be
renamed, only deleted and reinserted [29].

In the database literature, a number of techniques have
been developed that optimize for read-intensive work-

USENIX Association 16th USENIX Conference on File and Storage Technologies 133

0

50

100

150

B
et

rF
S

0.
4

B
et

rF
S

0.
3

bt
rf

s

ex
t4

ni
lf

s2 xf
s

zf
s

T
hr

ou
gh

pu
t(

op
/s

)

(a) IMAP server throughput.
Higher is better.

--in-place rename

0

20

40

60

B
et

rF
S

0.
4

B
et

rF
S

0.
4

B
et

rF
S

0.
3

B
et

rF
S

0.
3

bt
rf

s

bt
rf

s

ex
t4

ex
t4

ni
lf

s2

ni
lf

s2xf
s

xf
s

zf
s

zf
s

B
an

dw
id

th
(M

B
/s

ec
)

(b) Rsync throughput.
Higher is better.

clone diff

0

50

100

150

B
et

rF
S

0.
4

B
et

rF
S

0.
4

B
et

rF
S

0.
3

B
et

rF
S

0.
3

bt
rf

s

bt
rf

s

ex
t4

ex
t4

ni
lf

s2

ni
lf

s2xf
s

xf
s

zf
s

zf
s

Ti
m

e
(s

ec
)

(c) Git latency.
Lower is better.

tar untar

0

20

40

60

80

B
et

rF
S

0.
4

B
et

rF
S

0.
4

B
et

rF
S

0.
3

B
et

rF
S

0.
3

bt
rf

s

bt
rf

s

ex
t4

ex
t4

ni
lf

s2

ni
lf

s2xf
s

xf
s

zf
s

zf
s

Ti
m

e
(s

ec
)

(d) Tar latency.
Lower is better.

Figure 6: Application benchmarks. BetrFS 0.4 is the fastest file system, or essentially tied for fastest, in 4 out of
the 7 benchmarks. No other file system offered comparable across-the-board performance. Furthermore, BetrFS
0.4’s improvements over BetrFS in the in-place rsync, git clone, and untar benchmarks demonstrate that eliminating
zone-maintenance overheads can benefit real application performance.

loads, but make schema changes or data writes more ex-
pensive [1–3, 13, 21, 24]. For instance, denormalization
stores redundant copies of data in other tables, which
can be used to reduce the costs of joins during query,
but make updates more expensive. Similarly, material-
ized views of a database can store incremental results of
queries, but keeping these views consistent with updates
is more expensive.

Tree surgery. Most trees used in storage systems only
modify or rebalance nodes as the result of insertions and
deletions. Violent changes, such as tree surgery, are un-
common. Order Indexes [16] introduces relocation up-
dates, which moves nodes in the tree, to support dynamic
indexing. Ceph [52] performs dynamic subtree parti-
tioning [51] on the directory tree to adaptively distribute
metadata data to different metadata servers.

Hashing full paths. A number of systems store meta-
data in a hash table, keyed by full path, to lookup meta-
data in one I/O. The Direct Lookup File System (DLFS)
maps file metadata to on-disk buckets by hashing full
paths [27]. Hashing full paths creates two challenges:
files in the same directory may be scattered across disk,
harming locality, and DLFS directory renames require
deep recursive copies of both data and metadata.

A number of distributed file systems have stored file
metadata in a hash table, keyed by full path [18, 38, 48].
In a distributed system, using a hash table for metadata
has the advantage of easy load balancing across nodes,
as well as fast lookups. We note that the concerns of in-
dexing metadata in a distributed file system are quite dif-
ferent from keeping logically contiguous data physically
contiguous on disk. Some systems, such as the Google
File System, also do not support common POSIX opera-
tions, such as listing a directory.

Tsai et al. [50] demonstrate that indexing the in-
memory kernel directory cache by full paths can improve
path lookup operations, such as open.

9 Conclusion

This paper presents a new on-disk indexing structure,
the lifted Bε -tree, which can leverage full-path indexing
without incurring large rename overheads. Our proto-
type, BetrFS 0.4, is a nearly strict improvement over Be-
trFS 0.3. The main cases where BetrFS 0.4 does worse
than BetrFS 0.3 are where node splitting and merging is
on the critical path, and the extra computational costs of
lifting harm overall performance. We believe these costs
can be reduced in future work.

BetrFS 0.4 demonstrates the power of consolidating
optimization effort into a single framework. A critical
downside of zoning is that multiple, independent heuris-
tics make independent placement decisions, leading to
sub-optimal results and significant overheads. By using
the keyspace to communicate information about appli-
cation behavior, a single codebase can make decisions
such as when to move data to recover locality, and when
the cost of indirection can be amortized. In future work,
we will continue exploring additional optimizations and
functionality unlocked by full-path indexing.

Source code for BetrFS is available at betrfs.org.

Acknowledgments

We thank the anonymous reviewers and our shepherd
Ethan Miller for their insightful comments on ear-
lier drafts of the work. Part of this work was done
while Yuan was at Farmingdale State College of SUNY.
This research was supported in part by NSF grants
CNS-1409238, CNS-1408782, CNS-1408695, CNS-
1405641, IIS 1251137, IIS-1247750, CCF 1617618,
CCF 1439084, CCF-1314547, and by NIH grant NIH
grant CA198952-01. The work was also supported by
VMware, by EMC, and by NetApp Faculty Fellowships.

134 16th USENIX Conference on File and Storage Technologies USENIX Association

betrfs.org

References

[1] AHMAD, Y., KENNEDY, O., KOCH, C., AND
NIKOLIC, M. Dbtoaster: Higher-order delta
processing for dynamic, frequently fresh views.
PVLDB 5, 10 (2012), 968–979.

[2] AHMAD, Y., AND KOCH, C. Dbtoaster: A SQL
compiler for high-performance delta processing in
main-memory databases. PVLDB 2, 2 (2009),
1566–1569.

[3] ARASU, A., BABCOCK, B., BABU, S., DATAR,
M., ITO, K., NISHIZAWA, I., ROSENSTEIN, J.,
AND WIDOM, J. STREAM: the stanford stream
data manager. In Proceedings of the 2003 ACM
SIGMOD International Conference on
Management of Data, San Diego, California, USA,
June 9-12, 2003 (2003), A. Y. Halevy, Z. G. Ives,
and A. Doan, Eds., ACM, p. 665.

[4] BALMAU, O., GUERRAOUI, R., TRIGONAKIS,
V., AND ZABLOTCHI, I. Flodb: Unlocking
memory in persistent key-value stores. In
Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys 2017, Belgrade,
Serbia, April 23-26, 2017 (2017), G. Alonso,
R. Bianchini, and M. Vukolic, Eds., ACM,
pp. 80–94.

[5] BENDER, M. A., COLE, R., DEMAINE, E. D.,
AND FARACH-COLTON, M. Scanning and
traversing: Maintaining data for traversals in a
memory hierarchy. In Algorithms - ESA 2002,
10th Annual European Symposium, Rome, Italy,
September 17-21, 2002, Proceedings (2002), R. H.
Möhring and R. Raman, Eds., vol. 2461 of Lecture
Notes in Computer Science, Springer, pp. 139–151.

[6] BENDER, M. A., FARACH-COLTON, M.,
FINEMAN, J. T., FOGEL, Y. R., KUSZMAUL,
B. C., AND NELSON, J. Cache-oblivious
streaming b-trees. In SPAA 2007: Proceedings of
the 19th Annual ACM Symposium on Parallelism
in Algorithms and Architectures, San Diego,
California, USA, June 9-11, 2007 (2007), P. B.
Gibbons and C. Scheideler, Eds., ACM, pp. 81–92.

[7] BENDER, M. A., FARACH-COLTON, M.,
JANNEN, W., JOHNSON, R., KUSZMAUL, B. C.,
PORTER, D. E., YUAN, J., AND ZHAN, Y. An
introduction to Be-trees and write-optimization.
:login; Magazine 40, 5 (Oct 2015), 22–28.

[8] BONWICK, J. ZFS: the last word in file systems.
https://blogs.oracle.com/video/
entry/zfs_the_last_word_in, Sept.
2004.

[9] BRODAL, G. S., DEMAINE, E. D., FINEMAN,
J. T., IACONO, J., LANGERMAN, S., AND

MUNRO, J. I. Cache-oblivious dynamic
dictionaries with update/query tradeoffs. In
Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19,
2010 (2010), M. Charikar, Ed., SIAM,
pp. 1448–1456.

[10] BRODAL, G. S., AND FAGERBERG, R. Lower
bounds for external memory dictionaries. In
Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January
12-14, 2003, Baltimore, Maryland, USA. (2003),
ACM/SIAM, pp. 546–554.

[11] BUCHSBAUM, A. L., GOLDWASSER, M. H.,
VENKATASUBRAMANIAN, S., AND
WESTBROOK, J. On external memory graph
traversal. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms,
January 9-11, 2000, San Francisco, CA, USA.
(2000), D. B. Shmoys, Ed., ACM/SIAM,
pp. 859–860.

[12] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH,
W. C., WALLACH, D. A., BURROWS, M.,
CHANDRA, T., FIKES, A., AND GRUBER, R. E.
Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst. 26, 2
(2008), 4:1–4:26.

[13] CIPAR, J., GANGER, G. R., KEETON, K., III, C.
B. M., SOULES, C. A. N., AND VEITCH, A. C.
Lazybase: trading freshness for performance in a
scalable database. In European Conference on
Computer Systems, Proceedings of the Seventh
EuroSys Conference 2012, EuroSys ’12, Bern,
Switzerland, April 10-13, 2012 (2012), P. Felber,
F. Bellosa, and H. Bos, Eds., ACM, pp. 169–182.

[14] CONWAY, A., BAKSHI, A., JIAO, Y., JANNEN,
W., ZHAN, Y., YUAN, J., BENDER, M. A.,
JOHNSON, R., KUSZMAUL, B. C., PORTER,
D. E., AND FARACH-COLTON, M. File systems
fated for senescence? nonsense, says science! In
15th USENIX Conference on File and Storage
Technologies, FAST 2017, Santa Clara, CA, USA,
February 27 - March 2, 2017 (2017), G. Kuenning
and C. A. Waldspurger, Eds., USENIX
Association, pp. 45–58.

[15] ESMET, J., BENDER, M. A., FARACH-COLTON,
M., AND KUSZMAUL, B. C. The tokufs
streaming file system. In 4th USENIX Workshop
on Hot Topics in Storage and File Systems,
HotStorage’12, Boston, MA, USA, June 13-14,
2012 (2012), R. Rangaswami, Ed., USENIX
Association.

USENIX Association 16th USENIX Conference on File and Storage Technologies 135

https://blogs.oracle.com/video/entry/zfs_the_last_word_in
https://blogs.oracle.com/video/entry/zfs_the_last_word_in

[16] FINIS, J., BRUNEL, R., KEMPER, A.,
NEUMANN, T., MAY, N., AND FÄRBER, F.
Indexing highly dynamic hierarchical data.
PVLDB 8, 10 (2015), 986–997.

[17] File system in userspace.
http://fuse.sourceforge.net/, Last
Accessed May 16, 2015, 2015.

[18] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.
The google file system. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
2003, SOSP 2003, Bolton Landing, NY, USA,
October 19-22, 2003 (2003), M. L. Scott and L. L.
Peterson, Eds., ACM, pp. 29–43.

[19] GOLAN-GUETA, G., BORTNIKOV, E., HILLEL,
E., AND KEIDAR, I. Scaling concurrent
log-structured data stores. In Proceedings of the
Tenth European Conference on Computer Systems,
EuroSys 2015, Bordeaux, France, April 21-24,
2015 (2015), L. Réveillère, T. Harris, and
M. Herlihy, Eds., ACM, pp. 32:1–32:14.

[20] GOOGLE, INC. LevelDB: A fast and lightweight
key/value database library by Google.
http://github.com/leveldb/, Last
Accessed May 16, 2015, 2015.

[21] HONG, M., DEMERS, A. J., GEHRKE, J., KOCH,
C., RIEDEWALD, M., AND WHITE, W. M.
Massively multi-query join processing in
publish/subscribe systems. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14,
2007 (2007), C. Y. Chan, B. C. Ooi, and A. Zhou,
Eds., ACM, pp. 761–772.

[22] JANNEN, W., YUAN, J., ZHAN, Y.,
AKSHINTALA, A., ESMET, J., JIAO, Y., MITTAL,
A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M.,
JOHNSON, R., KUSZMAUL, B. C., AND PORTER,
D. E. Betrfs: A right-optimized write-optimized
file system. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies,
FAST 2015, Santa Clara, CA, USA, February
16-19, 2015 (2015), J. Schindler and E. Zadok,
Eds., USENIX Association, pp. 301–315.

[23] JANNEN, W., YUAN, J., ZHAN, Y.,
AKSHINTALA, A., ESMET, J., JIAO, Y., MITTAL,
A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M.,
JOHNSON, R., KUSZMAUL, B. C., AND PORTER,
D. E. Betrfs: Write-optimization in a kernel file
system. TOS 11, 4 (2015), 18:1–18:29.

[24] JOHNSON, C., KEETON, K., III, C. B. M.,
SOULES, C. A. N., VEITCH, A. C., BACON, S.,

BATUNER, O., CONDOTTA, M., COUTINHO, H.,
DOYLE, P. J., EICHELBERGER, R., KIEHL, H.,
MAGALHAES, G. R., MCEVOY, J., NAGARAJAN,
P., OSBORNE, P., SOUZA, J., SPARKES, A.,
SPITZER, M., TANDEL, S., THOMAS, L., AND
ZANGARO, S. From research to practice:
experiences engineering a production metadata
database for a scale out file system. In
Proceedings of the 12th USENIX conference on
File and Storage Technologies, FAST 2014, Santa
Clara, CA, USA, February 17-20, 2014 (2014),
B. Schroeder and E. Thereska, Eds., USENIX,
pp. 191–198.

[25] KIM, S., LEE, M. Z., DUNN, A. M., HOFMANN,
O. S., WANG, X., WITCHEL, E., AND PORTER,
D. E. Improving server applications with system
transactions. In Proceedings of the 7th ACM
European Conference on Computer Systems (New
York, NY, USA, 2012), EuroSys ’12, ACM,
pp. 15–28.

[26] LAKSHMAN, A., AND MALIK, P. Cassandra: a
decentralized structured storage system. Operating
Systems Review 44, 2 (2010), 35–40.

[27] LENSING, P. H., CORTES, T., AND
BRINKMANN, A. Direct lookup and hash-based
metadata placement for local file systems. In 6th
Annual International Systems and Storage
Conference, SYSTOR ’13, Haifa, Israel - June 30 -
July 02, 2013 (2013), R. I. Kat, M. Baker, and
S. Toledo, Eds., ACM, pp. 5:1–5:11.

[28] Linux kernel source tree.
https://github.com/torvalds/linux.

[29] LOVELACE, M., DOVIDAUSKAS, J., SALLA, A.,
AND SOKAI, V. VSAM Demystified.
http://www.redbooks.ibm.com/
redbooks/SG246105/wwhelp/wwhimpl/
js/html/wwhelp.htm, 2004.

[30] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Wisckey:
Separating keys from values in ssd-conscious
storage. In 14th USENIX Conference on File and
Storage Technologies, FAST 2016, Santa Clara,
CA, USA, February 22-25, 2016. (2016),
pp. 133–148.

[31] MATHUR, A., CAO, M., BHATTACHARYA, S.,
DILGER, A., TOMAS, A., AND VIVIER, L. The
new ext4 filesystem: current status and future
plans. In Ottowa Linux Symposium (OLS)
(Ottowa, ON, Canada, 2007), vol. 2, pp. 21–34.

[32] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J.,
AND FABRY, R. S. A fast file system for UNIX.
ACM Trans. Comput. Syst. 2, 3 (1984), 181–197.

136 16th USENIX Conference on File and Storage Technologies USENIX Association

http://fuse.sourceforge.net/
http://github.com/leveldb/
https://github.com/torvalds/linux
http://www.redbooks.ibm.com/redbooks/SG246105/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246105/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246105/wwhelp/wwhimpl/js/html/wwhelp.htm

[33] MEI, F., CAO, Q., JIANG, H., AND TIAN, L.
Lsm-tree managed storage for large-scale
key-value store. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, Santa
Clara, CA, USA, September 24-27, 2017 (2017),
pp. 142–156.

[34] NILFS: Continuous Snapshotting Filesystem.
https://nilfs.sourceforge.io/en/.

[35] OLSON, J. Enhance your apps with file system
transactions. MSDN Magazine (July 2007).
http://msdn2.microsoft.com/en-
us/magazine/cc163388.aspx.

[36] O’NEIL, P. E., CHENG, E., GAWLICK, D., AND
O’NEIL, E. J. The log-structured merge-tree
(lsm-tree). Acta Inf. 33, 4 (1996), 351–385.

[37] PAPAGIANNIS, A., SALOUSTROS, G.,
GONZÁLEZ-FÉREZ, P., AND BILAS, A. Tucana:
Design and implementation of a fast and efficient
scale-up key-value store. In 2016 USENIX Annual
Technical Conference, USENIX ATC 2016, Denver,
CO, USA, June 22-24, 2016. (2016), A. Gulati and
H. Weatherspoon, Eds., USENIX Association,
pp. 537–550.

[38] PEERY, C., CUENCA-ACUNA, F. M., MARTIN,
R. P., AND NGUYEN, T. D. Wayfinder:
Navigating and sharing information in a
decentralized world. In Databases, Information
Systems, and Peer-to-Peer Computing - Second
International Workshop, DBISP2P 2004, Toronto,
Canada, August 29-30, 2004, Revised Selected
Papers (2004), W. S. Ng, B. C. Ooi, A. M. Ouksel,
and C. Sartori, Eds., vol. 3367 of Lecture Notes in
Computer Science, Springer, pp. 200–214.

[39] PORTER, D. E., HOFMANN, O. S., ROSSBACH,
C. J., BENN, A., AND WITCHEL, E. Operating
systems transactions. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles
2009, SOSP 2009, Big Sky, Montana, USA,
October 11-14, 2009 (2009), J. N. Matthews and
T. E. Anderson, Eds., ACM, pp. 161–176.

[40] REN, K., AND GIBSON, G. A. TABLEFS:
enhancing metadata efficiency in the local file
system. In 2013 USENIX Annual Technical
Conference, San Jose, CA, USA, June 26-28, 2013
(2013), A. Birrell and E. G. Sirer, Eds., USENIX
Association, pp. 145–156.

[41] RocksDB. rocksdb.org, 2014. Viewed April
19, 2014.

[42] RODEH, O., BACIK, J., AND MASON, C.
BTRFS: the linux b-tree filesystem. TOS 9, 3
(2013), 9:1–9:32.

[43] SEARS, R., CALLAGHAN, M., AND BREWER,
E. A. Rose: compressed, log-structured
replication. PVLDB 1, 1 (2008), 526–537.

[44] SEARS, R., AND RAMAKRISHNAN, R. blsm: a
general purpose log structured merge tree. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012
(2012), K. S. Candan, Y. Chen, R. T. Snodgrass,
L. Gravano, and A. Fuxman, Eds., ACM,
pp. 217–228.

[45] SHETTY, P., SPILLANE, R. P., MALPANI, R.,
ANDREWS, B., SEYSTER, J., AND ZADOK, E.
Building workload-independent storage with
vt-trees. In Proceedings of the 11th USENIX
conference on File and Storage Technologies,
FAST 2013, San Jose, CA, USA, February 12-15,
2013 (2013), K. A. Smith and Y. Zhou, Eds.,
USENIX, pp. 17–30.

[46] SPILLANE, R. P., GAIKWAD, S., CHINNI, M.,
ZADOK, E., AND WRIGHT, C. P. Enabling
transactional file access via lightweight kernel
extensions. In 7th USENIX Conference on File and
Storage Technologies, February 24-27, 2009, San
Francisco, CA, USA. Proceedings (2009), M. I.
Seltzer and R. Wheeler, Eds., USENIX, pp. 29–42.

[47] SWEENEY, A., DOUCETTE, D., HU, W.,
ANDERSON, C., NISHIMOTO, M., AND PECK, G.
Scalability in the XFS file system. In Proceedings
of the USENIX Annual Technical Conference, San
Diego, California, USA, January 22-26, 1996
(1996), USENIX Association, pp. 1–14.

[48] THOMSON, A., AND ABADI, D. J. Calvinfs:
Consistent WAN replication and scalable metadata
management for distributed file systems. In
Proceedings of the 13th USENIX Conference on
File and Storage Technologies, FAST 2015, Santa
Clara, CA, USA, February 16-19, 2015 (2015),
pp. 1–14.

[49] TOKUTEK, INC. TokuDB v6.5 for MySQL and
MariaDB. http://www.tokutek.com/
products/tokudb-for-mysql/, 2013. See
https://web.archive.org/web/
20121011120047/http://www.tokutek.
com/products/tokudb-for-mysql/.

[50] TSAI, C., ZHAN, Y., REDDY, J., JIAO, Y.,
ZHANG, T., AND PORTER, D. E. How to get
more value from your file system directory cache.
In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015 (2015),
E. L. Miller and S. Hand, Eds., ACM,
pp. 441–456.

USENIX Association 16th USENIX Conference on File and Storage Technologies 137

https://nilfs.sourceforge.io/en/
rocksdb.org
http://www.tokutek.com/products/tokudb-for-mysql/
http://www.tokutek.com/products/tokudb-for-mysql/
https://web.archive.org/web/20121011120047/http://www.tokutek.com/products/tokudb-for-mysql/
https://web.archive.org/web/20121011120047/http://www.tokutek.com/products/tokudb-for-mysql/
https://web.archive.org/web/20121011120047/http://www.tokutek.com/products/tokudb-for-mysql/

[51] WEIL, S., POLLACK, K., BRANDT, S. A., AND
MILLER, E. L. Dynamic metadata management
for petabyte-scale file systems. In Proceedings of
the ACM/IEEE Conference on Supercomputing
(SC) (Nov. 2004).

[52] WEIL, S. A., BRANDT, S. A., MILLER, E. L.,
LONG, D. D. E., AND MALTZAHN, C. Ceph: A
scalable, high-performance distributed file system.
In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation
(OSDI) (2006), pp. 307–320.

[53] WU, X., XU, Y., SHAO, Z., AND JIANG, S.
LSM-trie: An LSM-tree-based ultra-large
key-value store for small data items. In
Proceedings of the USENIX Annual Technical
Conference (Santa Clara, CA, USA, July 8–10
2015), pp. 71–82.

[54] YUAN, J., ZHAN, Y., JANNEN, W., PANDEY, P.,
AKSHINTALA, A., CHANDNANI, K., DEO, P.,
KASHEFF, Z., WALSH, L., BENDER, M. A.,
FARACH-COLTON, M., JOHNSON, R.,
KUSZMAUL, B. C., AND PORTER, D. E.

Optimizing every operation in a write-optimized
file system. In 14th USENIX Conference on File
and Storage Technologies, FAST 2016, Santa
Clara, CA, USA, February 22-25, 2016. (2016),
A. D. Brown and F. I. Popovici, Eds., USENIX
Association, pp. 1–14.

[55] YUAN, J., ZHAN, Y., JANNEN, W., PANDEY, P.,
AKSHINTALA, A., CHANDNANI, K., DEO, P.,
KASHEFF, Z., WALSH, L., BENDER, M. A.,
FARACH-COLTON, M., JOHNSON, R.,
KUSZMAUL, B. C., AND PORTER, D. E. Writes
wrought right, and other adventures in file system
optimization. TOS 13, 1 (2017), 3:1–3:26.

[56] ZELDOVICH, N., BOYD-WICKIZER, S.,
KOHLER, E., AND MAZIÈRES, D. Making
information flow explicit in histar. In 7th
Symposium on Operating Systems Design and
Implementation (OSDI ’06), November 6-8,
Seattle, WA, USA (2006), B. N. Bershad and J. C.
Mogul, Eds., USENIX Association, pp. 263–278.

138 16th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background
	B^e-Tree Overview
	BetrFS Overview

	Overview
	Tree Surgery
	Batched Key Updates
	Implementation Details
	Evaluation
	Non-Rename Microbenchmarks
	Rename Microbenchmarks
	Full-path performance opportunities
	Macrobenchmark performance

	Related Work
	Conclusion

