
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

WAFL Iron: Repairing Live Enterprise File Systems
Ram Kesavan, NetApp, Inc.; Harendra Kumar, Composewell Technologies;

Sushrut Bhowmik, NetApp, Inc.

https://www.usenix.org/conference/fast18/presentation/kesavan

https://www.usenix.org/conference/fast18/presentation/kesavan

WAFL Iron: Repairing Live Enterprise File Systems

Ram Kesavan Harendra Kumar* Sushrut Bhowmik
NetApp, Inc. Composewell Technologies NetApp, Inc.

ram.kesavan@gmail.com harendra.kumar@gmail.com sushrut@netapp.com

Abstract
Consistent and timely access to an arbitrarily damaged
file system is an important requirement of enterprise-
class systems. Repairing file system inconsistencies is
accomplished most simply when file system access is
limited to the repair tool. Checking and repairing a file
system while it is open for general access present unique
challenges. In this paper, we explore these challenges,
present our online repair tool for the NetApp® WAFL®

file system, and show how it achieves the same results
as offline repair even while client access is enabled. We
present some implementation details and evaluate its per-
formance. To the best of our knowledge, this publica-
tion is the first to describe a fully functional online repair
tool.

1 Introduction
File system state can be corrupted by hardware failures
[9, 38, 41, 45, 35, 53] including misdirected or lost writes
and media errors, software bugs [4, 14, 51], and even hu-
man errors such as inserting a device in the wrong shelf
or slot. Journaling [25, 49, 37, 44, 10], shadow paging
[29, 13, 50], and soft updates [22] are all techniques that
provide file system crash consistency. Recon [21], in-
cremental checksum, and digest-based transaction audit
[34] are well-understood mechanisms to prevent some
hardware and software bugs from corrupting the file sys-
tem. Despite such defenses, corruptions are still an un-
fortunate reality for file systems, and our customer de-
ployment confirms that reality.

Corruption can affect both user data and metadata. A
corrupted user data block affects client access only to it
and not to the rest of the file system. However, a cor-
rupted metadata block not only affects access to user data
but can also compromise other metadata when client op-
erations are processed. Repair of user data is limited to
recovery from backup, whereas metadata can be repaired

*Research performed while working at NetApp.

using consistency properties of the file system. Corrup-
tion in metadata is detected either when a metadata block
fails some checks as it is read into memory or later when
some operation detects a violation of a file system invari-
ant. Some corruption can be fixed on-the-fly using tech-
niques such as RAID or erasure coding. If not, the file
system is placed in a restricted mode while it is repaired
by an offline repair tool, such as fsck [26]. Restricting
access serves two purposes: it greatly simplifies the task
of repair, and it prevents the inconsistency from causing
further damage.

Several approaches have been proposed to speed up or
to improve offline repair [36, 12, 27, 24] but the time to
completion remains proportional to the amount of meta-
data that must be checked, which in turn is a function of
the size of the file system. Enterprises require continuous
access to data; any disruption outside of scheduled main-
tenance windows is highly undesirable. The damaged
file system must be made completely available to clients
as soon as possible, and repair must therefore not pre-
clude client access. Repair should also not invalidate any
data that is accessed or modified by clients after repair is
initiated. Additionally, the impact to client performance
must be within acceptable limits.

The NetApp® WAFL® file system [29, 20] validates the
consistency of its data structures during normal opera-
tion. In the rare event of a detected inconsistency that can
be neither trivially recovered by RAID nor tolerated, the
file system is marked as inconsistent and taken offline.
WAFLIron [31] (henceforth called Iron) repairs the file
system even while allowing full access to clients. This
paper presents the challenges inherent to this mode of
file system repair. It describes the high-level design and
implementation of Iron, and evaluates its performance.
Most importantly, it explains the theory behind Iron to
show that it fixes file system inconsistencies with prac-
tically the same assurances as offline repair. Our field
experience has shown that Iron is extremely reliable, and
meets high performance goals. Although online repair
is available for ReFS [30], to the best of our knowledge,
there is no prior published work on this topic.

USENIX Association 16th USENIX Conference on File and Storage Technologies 33

2 Motivation

A file system can be damaged in several ways [52], but a
repair tool is required in only some cases.

2.1 When Is Repair Required?

NetApp is a storage and data management company that
offers software, systems, and services to manage and
store data, including the proprietary NetApp ONTAP®

software, which is built on the WAFL file system. Al-
though fsck [40] was originally designed to fix incon-
sistencies created by an unclean shutdown, WAFL and
other file systems use well-understood techniques such
as copy-on-write (COW) and journaling to guarantee
file system consistency after a crash. WAFL logs re-
cent client operations in a stand-alone nonvolatile jour-
nal, and those operations are replayed after a crash to
recover them [29]. Because the replay of each operation
re-creates all necessary file system state, a corruption of
the journal cannot corrupt the persistent file system; at
worst, it might result in the loss of logged operations.
Furthermore, this loss is limited because WAFL’s trans-
action mechanism ensures the journal typically has client
operations only from the past few seconds.

Each block in WAFL is written out to storage media
together with a checksum and with some file system
specific context that helps further identify the block
[8, 13, 48, 47]. If a write is misdirected or lost by the de-
vice or if a previously-persisted block is damaged, a sub-
sequent read results in a context or checksum mismatch.
The damaged block can be recomputed and fixed by us-
ing the underlying RAID [43, 15]. This fixup is done
on-the-fly when servicing a read or through a periodic
background scrub [3]. Other file systems such as ZFS
and Btrfs also leverage RAID or data mirroring [1, 5, 46]
to provide similar protection. In the rare case of mul-
tidevice failures, reconstruction of damaged blocks can
become impossible. If such blocks contain metadata that
are critical to the functioning of WAFL, the file system
is marked as inconsistent and is brought offline, so that it
can be repaired.

Despite rigorous testing and prevention mechanisms,
rarely occurring software bugs [4, 14, 51] and hardware
errors [9, 38, 41, 45, 35, 53] might corrupt a block be-
fore its checksum is computed. Such faults cannot be de-
tected by using the persistent checksum or context, and
they cannot be repaired by using underlying redundancy
[52]. WAFL detects such corruptions when it reads or
uses metadata, and if the code path is unable to navigate
past it, the file system is marked as inconsistent and is
brought offline, so that it can be repaired.

2.2 Traditional Offline Repair

Exclusive access to the file system greatly simplifies of-
fline repair, which walks the metadata of the file system
exhaustively, checks them for inconsistencies, lists out
each inconsistency with a recommended fix, and pro-
vides the choice to commit each fix [40]. Such an au-
dit requires accounting metadata to track progress. Re-
pair tools were designed to avoid writing to the physi-
cal storage that hosts the file system under repair until
the administrator chooses to commit the recommended
changes. Thus, the tools keep all their accounting data
structures in memory until that time. In general, the
amount of metadata increases with file system size,
which means an increase in the memory that is re-
quired by the tool. This increase is typically offset ei-
ther by breaking the file system into disjointed chunks
of storage [28] or by the tool making multiple passes of
the file system, thereby lowering memory requirements.
WAFLCheck, the first and now obsolete offline tool for
repairing the WAFL file system, suffered from similar
drawbacks.

2.3 Enterprise Needs

Enterprise file systems are usually hundreds of TiB in
size, and depending on the features supported their meta-
data can be both large (several GiB) and complex. Thus,
the repair of a 100 TiB file system can take hours or
even weeks depending on the I/O capability of the un-
derlying media. Businesses require uninterrupted data
availability; an hour-long outage can cost millions in lost
revenue. Furthermore, an enterprise storage system typ-
ically hosts and exports multiple file systems. Because
CPU and memory on such a system are shared resources,
the repair of one file system can affect the performance
of the others. Therefore, NetApp invested in building on-
line repair instead of making incremental improvements
to WAFLCheck. NetApp support staff get involved when
a WAFL file system is marked as inconsistent and is
taken offline. Under their supervision, the file system
is brought online with an option to enable Iron. Clients
gain full access to the data even while the persistent file
system is checked and repaired. Iron logs its progress
and completion, at which point the file system is marked
as consistent. The time required for completion depends
on several factors, such as file system size and client load
on the system. All client ops that were logged in the non-
volatile journal are replayed; as implied earlier, Iron does
not repair any corruptions in the journal.

One version of “online” repair [39] argues that orphaned
blocks and inodes are the primary outcomes of file sys-
tem inconsistency. Hence, a snapshot of the file system is
taken, the file system is made available, and background

34 16th USENIX Conference on File and Storage Technologies USENIX Association

fsck runs on the snapshot to reclaim orphaned blocks
and inodes into the active version of the file system. In
general, the WAFL file system easily survives orphaned
blocks and inodes, and is taken offline only when it en-
counters an inconsistency that prevents continued opera-
tion. Therefore, this approach does not apply.

2.4 Considerations With Online Repair

[1] Unconditional commit: Iron fixes corruptions as it
encounters them so that the file system can continue op-
erations. This means, unlike fsck, the administrator is
not given the option to accept or decline repairs. With
fsck, if the damage is truly extensive it is likely that the
administrator would choose not to commit and restore
the entire file system from backup. Online repair does
not preclude this option, but all intervening client muta-
tions are lost when the entire file system is restored from
backup. There is one scenario in which offline repair is
preferable. A customer with poor practices might have
no (recent) backup of the file system, and might want
to conservatively use offline repair and carefully choose
which of the recommended fixes are committed.

[2] Speed of repair: An ONTAP system hosts multi-
ple file systems. An aggressive repair process can affect
the performance of the clients of all those file systems. A
customer might prioritize the completion of Iron because
the full repair of the dataset is more important to their
business than are the IOPS made available to the appli-
cations on that storage system—especially if the backup
copies of the corrupted dataset are not sufficiently recent.
The ability to control the speed of the repair process is
therefore important.

3 Metadata and Inconsistencies
This section presents a simplified version of the WAFL
file system (persistent) metadata, and the the inconsisten-
cies that can affect them.

3.1 Persistent Metadata

WAFL is a UNIX-style file system that uses inodes to
represent its files, which are the basic construct for stor-
ing both metadata and user data. An inode stores meta-
data (permissions, timestamps, block count) about the
file and its data in a symmetric tree of fixed-size blocks,
henceforth called the inode’s blocktree. Only leaf nodes
(L0s) of the blocktree hold the file’s data; interior nodes
are called indirect blocks. An inode that stores file
system metadata in its leaves is called a metafile. In-
odes themselves are stored in the leaves of the inodefile
metafile, and its blocktree is rooted in the superblock of

the file system. All together, they constitute the WAFL
file system tree [29].

Each directory is stored in a file that contains a list of en-
tries, where each entry is the name of a file or subdirec-
tory and its corresponding inode number; the root direc-
tory is stored in a well-known inode. The reference count
(refcnt) metafile stores a list of integers where the ith inte-
ger tracks the number of references to the ith block of the
file system1. Multiple references occur because of fea-
tures such as deduplication that result in block-sharing.
The file system stores several counters, some that reside
in structures such as inodes, and others that are global.

From the viewpoint of repair, we classify WAFL file sys-
tem metadata into two broad categories.

[1] Primary metadata constitute the blocks of the file
system required to read user data. In WAFL, this com-
prises the superblock, the inodefile blocktree, directo-
ries, inodes (for user files) and their blocktrees. WAFL
stores copies of some key data structures primarily to
protect against storage media failures; corruption due to
most software bugs will damage both copies. Impor-
tantly, corrupted primary metadata in WAFL cannot be
reconstructed by using other metadata. A damaged indi-
rect block in a blocktree cannot be repaired, and there-
fore, at best, its child sub-tree can be recovered in the
lost+found folder [40] on completion of the repair pro-
cess. Similarly, the corresponding inode of a damaged
directory entry can be recovered only in lost+found. It
should be noted that, to avoid single points of failure,
a file system could build redundancy into its primary
metadata—each block could encode its location in the
file system tree; however, that comes with additional
complexity and the run-time cost of maintaining it. To
protect against storage media failures, ONTAP uses ef-
ficient redundancy techniques: dual-parity RAID [15],
triple-parity RAID [2], and remote synchronous mirror-
ing [6].

[2] Derived metadata track the usage of resources, such
as blocks and inodes, by the file system and can be re-
computed by walking the primary metadata. They are
typically maintained by the file system software for its
efficient functioning, or for enabling specific features,
such as file system quotas. The block count of an in-
ode, the refcnt file, and various global counters are all
examples of such metadata in WAFL. Damage to derived
metadata can usually be repaired based on primary or
other derived metadata.

Note that although derived metadata can eventually be
reconstituted, they are needed for basic file system op-

1In reality, a bitmap tracks the first and the refcnt tracks additional
references to blocks [32, 33]. Without loss of generality, the bitmap is
subsumed into the refcnt metafile for the purposes of this paper.

USENIX Association 16th USENIX Conference on File and Storage Technologies 35

eration. For example, the file system must consult and
update the refcnt metadata to process new mutations, but
that metadata is not fully validated until repair completes.
Therefore, the primary complexity of online repair cen-
ters around the repair of derived metadata even while the
metadata are used by file system operations. The refcnt
metafile is the largest and most complex derived meta-
data in WAFL, and is therefore deliberately used as a
running example in this paper.

3.2 Inconsistencies

The enablement of Iron does not change how corruption
in WAFL is detected; only the action precipitated by such
detection. If Iron is not enabled and the software cannot
navigate past the inconsistency, the file system is marked
as inconsistent and is taken offline. Otherwise, it is re-
paired. Metadata can be corrupted in one of two ways.

[1] Manifest corruption: This form of corruption is
detected either when the block is read into memory—
checksum or context mismatch—or when some of its
contents are used for the first time—well-known signa-
tures appear wrong or some data structures are outside
acceptable bounds. Such a block needs repair only if it
cannot be recomputed by the underlying RAID, which
can happen either because multiple hardware elements
have failed or the block was corrupted before the associ-
ated parity was computed.

[2] Latent corruption: File system invariants typically
define relationships across different metadata. A latent
corruption violates a relationship even while each partici-
pant block is devoid of manifest corruption. The relation-
ship might involve primary metadata only. For example,
a directory L0 and an inodefile L0 might each be inde-
pendently reliable, but the former maps a dir entry to an
inode that is marked as free in the latter. Sec. 4.5 presents
examples of latent corruption across primary and/or de-
rived metadata. Latent corruption is detected only when
a metadata consistency invariant in the code trips up. Be-
fore its detection, it can create further inconsistencies if
used by the file system; Sec. 4.5 has more details.

Both forms of corruption can be caused by bugs in the
file system logic or memory scribbles. Device failures
and media errors typically result in manifest corruption
only; the block will appear to be unreliable.

4 Basics of WAFL Iron
Much as offline repair would, Iron walks all primary
metadata, checks consistency with other metadata, and
makes repairs where necessary. However, full client ac-
cess is enabled early on. After a file’s blocktree has

been completely checked, all derived metadata for the
file (such as its block count) is verified. As mentioned
earlier, WAFL stores all user data and metadata (both
primary and derived) in files. Therefore, after all files
in a file system have been checked, all derived metadata
is verified and the file system is marked as consistent.

The first version of Iron (circa 2003) focused on miti-
gating the main drawbacks of WAFLCheck: (1) scaling
of the metadata needed for checking the file system, and
(2) allowing early file system access while still providing
the same assurances as WAFLCheck, aside from the un-
conditional commit highlighted in Sec. 2.4. This paper
focuses primarily on proving parity in functionality with
offline repair, and therefore does not do justice to the de-
tails of implementation. This section presents the rules
for addressing the complications from allowing client ac-
cess, and presents the main design.

4.1 Rules for Iron

Rule #1, Interposition: Every block is processed by Iron
before the rest of the file system software can use it. This
rule lets Iron make repairs early, which prevents the rest
of the file system software from making decisions based
on inconsistencies. This rule necessitates a filter in the
read-from-storage code path so that all blocks are exam-
ined by Iron first.

Rule #2, Irreversibility: After Iron starts, any state that
is exposed to the client cannot be revoked by any future
repair done by Iron. Practicality requires that the data
served to a client, as well as the results of any client mu-
tation, not be revoked by subsequent repair2. To satisfy
this rule, a file system op (client or internal) waits when
loading a block until Iron validates any metadata re-
quired to ensure that block’s continued survival through
the completion of Iron. This approach has two obvious
implications: (1) The latency of an op can be signifi-
cantly affected; later sections explore this impact. (2)
Iron needs a definition of the metadata required to ensure
a block’s survival; we look at that implication next.

Let the relationship b→ bi define a WAFL consistency
invariant where metadata block bi must exist and contain
the “right” information to ensure that block b belongs to
the file system; b can be user data or metadata. In other
words, Iron must either move b to lost+found, or create
or modify bi to preserve the relationship. This relation-
ship is obviously transitive, i.e., if b→ bi and bi → b j,
then b→ b j. We define the essential set, Ψ(b), of all
metadata blocks, such that bi ∈Ψ(b) =⇒ b→ bi. When
an op loads b, Iron uses the filter described in Rule #1

2In fact, this invariant is extended to include state exposed to all
internal file system ops. It simplifies the interaction of Iron with several
file system modules.

36 16th USENIX Conference on File and Storage Technologies USENIX Association

to load, check, and potentially repair all metadata blocks
in Ψ(b) before allowing the op to proceed. Thereafter
(with help from Rule #3), Iron does not change anything
in Ψ(b) that revokes that state of b, thereby preserving
Rule #23. This is true even if b is modified by the op.

Let’s look a little closer at the essential set. All ancestor
blocks of b in the file system tree (Sec. 3.1) trivially be-
long to Ψ(b). This includes any ancestor indirect blocks
of b within its inode, the corresponding inodefile L0, the
ancestor indirect blocks of the inodefile, including the su-
perblock. Iron is invoked through the mount command,
and so no blocks of the file system are in memory at the
start of Iron. Thus, Rule #2 is trivially satisfied for an an-
cestor block because it is always loaded before its child.
In fact, all primary metadata in Ψ(b) can be exhaustively
shown to satisfy this rule; for brevity, we do not list them
here. However, as an example, if b belongs to a user file,
the directory block L0 with the corresponding directory
entry also belongs in Ψ(b), and it is loaded and accessed
before b. Derived metadata associated with b, such as
the refcnt L0 with its refcnt entry, also must be loaded
and checked for consistency. Sec. 4.3 explores an impor-
tant complication with the essential set.

Rule #3, Convergence: As Iron incrementally checks
and repairs metadata, it monotonically expands the por-
tion of the file system metadata that is self-consistent.
Iron ensures that file system metadata is never checked
more than once, and therefore the extra cost of check-
ing the essential set when loading any block diminishes
with the progression of Iron. For example, when a sec-
ond child of block b is loaded, Iron does not repeat the
checking of all primary metadata performed on the first
load of a child of b. Rule #2 ensures that all metadata
associated with new mutations to the file system have
also been checked and are included in the portion of the
file system metadata that is considered self-consistent.
Thus, convergence is guaranteed. This rule implies that
Iron maintains data structures to track its progress, which
leads us to the next rule.

Rule #4, Scalability: Data structures that Iron needs to
track progress must scale with file system size without
requiring additional system memory. The previous two
rules make it clear that Iron makes a single pass over the
file system metadata. Iron scales its data structures with
file system size by storing them in files that are paged
in and out of the WAFL buffer cache [19] much like any
other metafile; they are called Iron status files. Much like
any other file in the file system, all previous rules apply
to the creation, consultation, and mutation of the status
files. In other words, the ever expanding portion of self-
consistent metadata (of Rule #3) includes all status files.

3A new corruption introduced to a block after it has been checked
may violate this statement; Sec. 5 discusses that topic in more detail.

4.2 Iron Status Files

Status files are created and used by Iron for each file
system that it repairs. All status files are deleted upon
completion of Iron. Status files can be broadly classi-
fied into progress indicator metafiles and derived shadow
metafiles.

Progress indicator metafiles: This class of status files
tracks the progress of Iron and avoids repeated work,
both of which are necessary for ensuring Rule #3. One
example is the checked bitmap status file, which is a vec-
tor of bits where the ith bit indicates that the ith block of
the file system has been checked, and repaired if neces-
sary. Because a metadata block can be scavenged from
the buffer cache and subsequently re-read from storage,
this bitmap ensures a given block is processed exactly
once.

Derived shadow metafiles: Iron computes shadow ver-
sions of some derived metadata as it walks the file sys-
tem. On completion, Iron compares the shadow version
with the original version, repairs both manifest and la-
tent corruption in that derived metadata, and discovers
any orphaned resources that are tracked by that meta-
data. One example is the claimed refcnt status file, a list
of shadow integers where the ith integer tracks the refer-
ences to block bi that Iron encounters. On completion,
Iron replaces each refcnt integer with its claimed refcnt
counterpart; a count that changes to zero represents an
orphaned block. Thus, Iron can ignore the correspond-
ing refcnt block when it processes the essential set for
a block; the refcnt L0 in Ψ(bi) is replaced by the cor-
responding claimed refcnt L0. Until Iron completes, the
WAFL write allocator [18] consults both refcnt integers
to decide if a block is free, and freeing a block requires
decrementing both refcnt integers. The claimed refcnt
integer can never underflow because Rule #2 guarantees
that Iron claims a block before freeing it. Sec. 4.4.2 and
Sec. 4.5 discuss the underflow and overflow of a dam-
aged refcnt integer. Iron uses other shadow derived meta-
data in a similar fashion, but all of them are smaller in
size and in complexity than the claimed refcnt file, and
are therefore not discussed here.

4.3 Recursivity Within the Essential Set

Let’s say that bi ∈Ψ(b). When Iron loads bi on behalf of
b, Rule #2 forces a recursive load of all metadata blocks
from Ψ(bi). Although this recursivity implies indefi-
nitely long response times for client ops, we will show
why that is not true in reality; let us look at each type of
metadata in Ψ(b).

[1] Primary metadata: For every primary metadata
block bi ∈ Ψ(b), all primary metadata blocks in Ψ(bi)

USENIX Association 16th USENIX Conference on File and Storage Technologies 37

also belong in Ψ(b) (and will therefore have already been
loaded and checked earlier). For example, if bi is an an-
cestor of b, then all ancestors of bi are also ancestors of
b. A similar argument can be made for directory blocks
of Ψ(b) when walking a pathname.

[2] Derived metadata: Depending on the specific de-
rived metadata, let’s say M, Iron breaks this recursion in
one of two ways: (1) It loads and checks all of M during
mount and before client access is allowed, and Rule #3
ensures M is not checked again. This approach is taken
for smaller metadata. (2) Iron does not load or consult M
when it processes the essential set. Instead, it maintains
and updates a derived shadow metafile that corresponds
to M; M is checked only when it is loaded for other file
system activity. We illustrate this approach by using the
refcnt file example.

Let b j be the refcnt L0 block that contains the ith refcnt
integer; clearly, b j ∈ Ψ(bi). Then, the L0 block of the
refcnt file with the jth integer, let’s say bk, belongs in
Ψ(b j). This means that Iron would need to check b j,
bk, and so on, possibly checking the entire refcnt file to
load bi, which would result in unpredictable operational
latencies. As described in Sec. 4.2, instead of loading
and checking b j, Iron increments the ith claimed refcnt
integer4. This breaks the recursion, and b j is checked
later.

Thus, the number of yet-to-be-checked blocks in Ψ(b)
is quite small in practice. The analysis in this section
can be used to prove freedom from deadlocks even when
essential sets of concurrent client ops happen to overlap;
we cannot present a formal proof due to lack of space.

4.4 Repairing Manifest Corruption

Depending on the type of metadata, Iron chooses from
two techniques—tombstoning and quarantining—to han-
dle manifest corruption.

4.4.1 Tombstoning Primary Metadata

Sec. 3.1 explains why damaged primary metadata in
WAFL cannot be repaired, which is true with offline re-
pair as well. Before making the file system available to
clients, Iron checks the higher part of the file system tree
hierarchy, such as the superblock, the inodefile blocktree,
and the root directory. Iron aborts if corruption is de-

4Because WAFL is a COW file system, a claimed refcnt increment
results in that claimed refcnt L0 getting written to a new location, let’s
say block bn, which in turn requires the nth claimed refcnt integer to
be incremented, and so on. This is a different type of recursion that
impacts most allocation bitmaps in WAFL. The WAFL block allocator
finds free blocks colocated in the block number space, and therefore
this recursion converges very quickly. Previous publications [32, 33]
detail how recursion during decrements (due to frees) converge.

tected there; the file system is not considered repairable.
The customer can then choose between restoration from
a recent snapshot (stored locally or remotely) or manual
stitch-up of the file system by skilled technicians with
direct access to the storage media.

Data structures in the lower part of the file system tree
hierarchy with manifest corruptions are tombstoned by
setting them to a corresponding zero value or to a spe-
cial value that WAFL code paths recognize. If the whole
block is unreliable, its entire content is tombstoned. A
client read op that encounters it—say, a tombstoned child
pointer in an indirect block of a user file—returns an ap-
propriate error. A subsequent mutation can change the
tombstone to a legal value. For example, a client op
that writes to an offset in that file corresponding to the
range covered by that child pointer replaces the tomb-
stone. Tombstoning a child pointer results in an orphaned
sub-tree, which is eventually recovered and placed into
lost+found by Iron. Much as in traditional repair, the ad-
ministrator can choose to stitch it back into the file sys-
tem, but in concert with the application accessing it. If
the administrator chooses otherwise, the data structures
remain tombstoned until they are overwritten or deleted
by new mutations. Given Rule #2, and that WAFL es-
chews redundancy within primary metadata (to avoid the
associated performance overhead), we conclude:

Conclusion 1. The repair of manifest corruption in pri-
mary metadata of WAFL by offline repair is no better
than repair by Iron.5

4.4.2 Quarantining Derived Metadata

If Iron encounters manifest corruption in a derived data
structure, it quarantines the data structure by setting it to
a corresponding well-known and conservative value that
protects the resource that it tracks. The well-known value
never overflows or underflows, which allows WAFL code
paths to navigate past invariants that use it. If an entire
block of derived metadata is deemed to be unreliable,
then every data structure in it is quarantined. On com-
pletion, all quarantined structures are set to their corre-
sponding values computed by Iron. Thus, given that all
damage to derived metadata is quarantined before con-
sulted by file system operations, and that the quarantined
value conservatively protects the resource that it tracks,
we conclude:

Conclusion 2. Iron guarantees that mutations to the file
system can never cause new or additional corruption due
to existing manifest corruption in derived metadata.

5Offline repair in a file system with redundancy in primary metadata
could stitch an orphaned subtree back into its correct location, repair
the damaged child pointer, and avoid data loss. Online repair for such
a file system would need to suspend client access to the tombstoned
structure until the orphaned subtree is found.

38 16th USENIX Conference on File and Storage Technologies USENIX Association

The following example helps illustrate this conclusion.
Let’s say that Iron determines a refcnt file L0 to be unre-
liable when it is first loaded, and let’s say that L0 stores
refcnt integers for blocks bi through b(i+n−1) of the file
system. Iron then sets each of those refcnt integers in the
L0 to the quarantined value, thereby ensuring all potential
references to blocks bi to bi+n−1 are conservatively pro-
tected. In other words, the WAFL write allocator consid-
ers them unavailable for new mutations; note that WAFL
uses COW, and no block is ever written in place. On
completion, Iron resets each quarantined integer to its
claimed refcnt counterpart and returns any unused blocks
back to the free space in the file system.

Given sufficient damage to a specific derived metadata,
Iron might decide that the file system has run out of the
resource tracked by that derived metadata. Sec. 4.6 de-
scribes how this case is handled.

4.5 Repairing Latent Corruption

As Sec. 3.2 explained, a latent corruption is a violation of
some specific file system invariant, and is detected when
a code-path trips on it. We reason about latent corruption
by discussing the different permutations of metadata that
are involved in the violated invariant.

Primary metadata only: Let’s say that all the blocks
involved in the violated invariant are of primary meta-
data. In WAFL, all relationships between primary meta-
data are captured in Ψ(b) for a given primary metadata
block b. In the example from Sec. 3.2, a client op can
access the damaged inode only after accessing that di-
rectory. Therefore, a violation of such an invariant is
conveniently detected as and when each primary meta-
data block is loaded, which leads to:

Conclusion 3. The offline repair of a latent corruption
that violates an invariant across primary metadata of
WAFL can be no better than repair by Iron.

Derived and derived/primary metadata: Derived
metadata typically track persistent resources consumed
by the file system, such as inodes and blocks. We ex-
plore this problem for blocks, and then extend the results
to other derived metadata. The refcnt integer ri tracks the
consumption of the ith block by the file system. Thus, ri
encodes a relationship with block bi; bi may be user data
or metadata (primary or derived).

Let’s say that a latent corruption had made ri incorrect.
As described next, several mutations might be persisted
to the file system before this corruption is eventually de-
tected. WAFL relies exclusively on the child pointer in
bi’s parent block when it frees bi (say due to a file trun-
cation) and decrements ri. On the other hand, the WAFL

write allocator relies exclusively on ri to check if block
bi is free. Thus, code paths that allocate and free blocks
depend exclusively on derived and primary metadata, re-
spectively, and expect them to be consistent. This split-
brain behaviour can result in the morphing of this latent
corruption even before it is detected. The corrupted ri
might be (A) higher or (B) lower than the true value.
If (A), WAFL might eventually leak bi when all refer-
ences to it have been dropped and ri remains non-zero.
The leaked block will be detected by a subsequent run
of Iron. Two possibilities exist with (B): In case (B1):
an eventual decrement causes ri to underflow, which is
detected as a violation. In case (B2), the WAFL write
allocator might incorrectly assign bi to a new write when
ri becomes zero, and the original contents of bi are lost
to the file system. If bi originally contained metadata,
any access through an older reference would detect man-
ifest corruption (signature and context mismatch)6. In
this case as well as case (B1), the file system is marked
as inconsistent, is taken offline, and repair is invoked.

Conclusions 1 and 2 show that Iron handles the manifest
corruption of case (B2) no worse than offline repair does.
In case (B1), if the decrement has been triggered by a
client op, Iron increments the ith claimed refcnt integer
almost immediately after mount because WAFL replays
all client ops after any disruption. Thus, the subsequent
decrement finds a zero value ri but a nonzero claimed re-
fcnt integer. Iron prevents any file system activity from
underflowing a refcnt integer as long as it can decrement
the corresponding claimed refcnt integer. If the decre-
ment has not been triggered by a client op, bi remains
unclaimed until Iron gets to the file that refers to it. Dur-
ing this window, both ri and its claimed refcnt counter-
part are zero, and the WAFL write allocator may use bi
for a new block; that scenario is subsumed by case (B2).

Although offline repair averts the previously mentioned
window because no new blocks are being written to the
file system, it should be noted that case (B2) may also
occur during runtime before the latent corruption is de-
tected and recovery is initiated. Thus, in practice, the
use of Iron does not introduce significant additional risk
beyond what existed earlier.

This entire argument can be replicated for any resource
that is similarly tracked by derived metadata and tracked
separately by Iron shadow metadata. Latent corruption
in derived metadata that is checked before client access
is allowed to the file system can be found and repaired
early on. This leads to:

Conclusion 4. The repair by Iron of latent corruption
6If bi contained user data, it is lost. Independent of whether bi con-

tained user data or metadata, its re-allocation does not create a security
risk because access via the original parent of bi will fail the context
check, and return an error instead of the new content stored in bi.

USENIX Association 16th USENIX Conference on File and Storage Technologies 39

that violates a relationship across derived and/or pri-
mary metadata is no worse than that by offline repair.

Miscellaneous metadata: WAFL maintains extensive
auxiliary metadata that are computed using information
from other derived metadata. Such auxiliary metadata
typically are used to enable specific features or better file
system performance. The WAFL file system can typi-
cally survive corruption to such metadata, but when Iron
is invoked, it can repair these structures while the file
system runs with decreased performance or with those
specific features disabled. We have found that customers
are willing to tolerate such temporal deficiencies for con-
tinued data availability.

4.6 Running Out of a Resource

The end of Sec. 4.4.2 discussed a problem scenario that
relates to the quarantining of a sufficiently large amount
of derived metadata. It might result in premature exhaus-
tion of the file system resource tracked by that metadata,
before Iron completes. For example, sufficient quaran-
tining of the refcnt metadata might cause the file system
to run out of space. The WAFL block allocator is de-
signed to offline the file system gracefully in this case.
Because the file system is still marked as corrupt (Iron
never completed), the file system is now repaired by us-
ing Iron in offline mode (more information in Sec. 6). It
is important to note that no mutations are lost in this sce-
nario. To the best of our knowledge, this problem has not
been encountered in the field thus far.

4.7 Three Phases of Iron

[1] Mount: ONTAP mounts the inconsistent WAFL file
system when it is brought online with the Iron option.
To allow faster access to clients, Iron limits the amount
of metadata that is checked at mount. As described in
Sec. 4.4.1, key metadata in the upper part of the file sys-
tem tree hierarchy are checked. Based on the physical
storage devices, various limits on file system resources
are computed (such as number of blocks) and are used as
ceilings for various global counters. Auxiliary metadata,
such as hints for speeding up the search for free space,
are checked. Based on those hints, the block allocator
is primed by prefetching refcnt file blocks. Detection of
manifest corruption results in the quarantining of refcnt
integers and further loading of refcnt blocks until suffi-
cient free space has been confirmed. The Iron status files
are created and updated to reflect the checking performed
thus far. As described in Sec. 4.4.1, Iron aborts if mount-
time checks do not complete. Otherwise, client access is
allowed.

[2] File system scan: Metadata are checked on-demand
(based on client access) and through background scans,
each of which selects an inode and walks its blocktree.
Leaf nodes of metafiles are also checked. Progress indi-
cator status files ensure that each block is checked once.

As client mutations are processed, the WAFL write al-
locator prefetches more blocks of the refcnt file to find
more free space. The background walk of crucial de-
rived metadata, such as the refcnt file, typically com-
pletes early, and all quarantining that affects free space
accounting is in place. Recall that Iron status files track
both validated and new data written by clients, so the
validated portion of the file system continually increases.
Due to space constraints, we do not describe our imple-
mentation in more detail.

[3] Completion: After the entire file system has
been walked, the derived shadow metadata—which,
now accurately represent all resource consumption—are
swapped with their counterparts; quarantined structures
are removed. Status files are deleted subsequently and
the file system is marked as consistent.

5 Analysis and Some History
This section describes some deficiencies in the initial
version of Iron and some improvements that were made
over the years.

[1] New corruption: Regular file system access is al-
lowed during online repair, which means that if the file
system was originally corrupted by a software bug, it
could reoccur during the repair process. Therefore, it is
difficult for any efficient online repair tool to guarantee
file system consistency on completion. Earlier versions
of Iron also have this “flaw”. Although it has never been
observed, it is possible for the Iron status metadata to
be corrupted by such a bug, which might have a bigger
impact on the guarantees that Iron provides. Sec. 5.1 ad-
dresses this issue.

[2] Mount-time performance: The first version of Iron
(circa 2003) checked the indirect blocks of the blocktrees
of all derived metadata during mount. However, this
meant longer mount times, and therefore a longer wait
for restoration of client access to the file system. The
mount phase was subsequently thinned, and larger de-
rived metadata (that scale linearly with file system size)
are now checked asynchronously post mount. Quaran-
tining occurs at any level of the indirect blocktree of a
derived metafile. Latent corruption in derived metadata
is addressed by the hardening techniques of Sec. 5.1.

[3] Performance of client ops: In its original version,
Iron checked the entire indirect blocktree of a given in-

40 16th USENIX Conference on File and Storage Technologies USENIX Association

ode before a client (or internal) op could access any block
of that file. Thus, the original definition of Ψ(b) in-
cluded all indirect blocks in the blocktree of any inode
in the ancestory hierarchy of b, thereby ensuring Rule
#2 when exposing file attribute state to clients, such as
size or block count. In its early days, WAFL was primar-
ily optimized for homedir-style engineering workloads
with many small to medium-sized files, and so the time
to first-access of a file was not too significant. With the
deployment of critical database and virtualization work-
loads on WAFL, GiB- and TiB-sized files became in-
creasingly common. Irreversibility of attributes such as
block count for files that host databases or VM disks
is not a strict requirement. Thereafter, the definition of
Ψ(b) was refined (to that in Sec. 4.1) to exclude non-
ancestor blocks of b in the file system tree, but without
any risk to the repair process. Sec. 5.2 describes addi-
tional performance improvement.

5.1 WAFL Metadata Integrity Protection

Two techniques, incremental checksums and digest-
based auditing [34], were introduced circa 2012 to pro-
tect much of the WAFL file system metadata from mem-
ory scribbles and logic bugs [23]. Sec. 7.5 of [34]
shows the resultant drop in corruption incidents in cus-
tomer systems, thereby dramatically reducing the need
for Iron. In addition, there are two crucial implications
for Iron: (1) Iron status files are now protected by these
techniques, which squarely addresses the first deficiency
described in Sec. 5; (2) it removes one key reason for
the on-demand update of shadow derived metadata while
processing client ops; more in the next section.

5.2 Lazy Block Claiming (LBC)

After mount-time outages were reduced, the one im-
portant remaining problem with Iron was the impact to
client ops. As explained earlier, Iron must process the
corresponding essential set before a file system op can
be given access to a block. Because recursivity in de-
rived metadata has been solved, the cost of processing
any block in Ψ is dominated by: (1) loading and con-
sulting/updating checked bitmap blocks, and (2) loading
and updating claimed refcnt blocks. These steps require
additional CPU cycles and random I/Os to storage; the
randomness is also a function of client access patterns.
Lazy Block Claiming (LBC) was introduced to address
this overhead.

The on-demand update of claimed refcnt metadata (or
any derived metadata) guarantees that resources accessed
by a client op are henceforth protected, thereby preserv-
ing Rule #2. Thus, when a client op accesses block bi,

the on-demand increment of the ith claimed refcnt inte-
ger protects bi from being re-allocated due to a corrupted
refcnt integer. Latent corruption in the refcnt metadata is
eliminated by the integrity techniques of Sec. 5.1. And,
given that manifest corruption results in quarantining,
Rule #2 is now preserved even without on-demand up-
dates of derived metadata, such as claimed refcnts. Thus,
LBC avoids the afore-mentioned costs and enables im-
proved client performance, independent of file size.

This means, after the file system is mounted, the claiming
of the references to each block in the file system occurs
only through the background scans. More importantly,
knobs are provided that control the speed of those back-
ground scans. Thus, the customer can choose between
reducing the impact of Iron scans to client workloads
and how quickly Iron completes processing the entire file
system.

5.3 Additional Enhancements to Iron

This section outlines in-progress and productized im-
provements; a future paper will cover them. First, con-
current access of Iron status files within the WAFL par-
allelism model [17] is required to truly minimize the im-
pact of Iron on client performance. Second, the customer
still experiences outage from the time the WAFL aggre-
gate is offlined until Iron is started. Incremental Autoheal
Iron [11] builds on the principles described in Sec. 4.1 to
provide true zero disruption. When Autoheal detects a
corruption at runtime, it tombstones or quarantines, sim-
ulates a minimal emptying of the buffer cache, and op-
tionally kicks off a background scan to check and repair
a defined set of metadata based on the corruption. De-
pending on the results of the scan, a larger subset of the
metadata might be scanned next. Such incremental gran-
ular repair is ideal because, as mentioned earlier, only
a few metadata blocks are typically damaged in WAFL.
ONTAP 9.1 introduced FlexGroup technology [7, 42]—
it allows a file system to span multiple physical nodes in
a cluster. Offlining an entire FlexGroup on the detection
of a corruption is obviously not an option; ONTAP 9.1
includes an early version of Autoheal.

6 Topics in Practice
This section presents some selected topics that relate to
the implementation of Iron.

Location of status files: The implementation allows for
Iron status files to be stored within the file system being
repaired or in a different WAFL file system; both choices
are equally safe. By storing it remotely, the customer can
isolate to a separate set of storage devices the extra I/Os

USENIX Association 16th USENIX Conference on File and Storage Technologies 41

required to read and update status files.

Offline mode for Iron: In this mode, Iron provides
WAFLCheck-like behaviour. Thus, client access is disal-
lowed and Iron cannot write to the physical storage of the
file system. Iron stores its status files remotely. Corrup-
tions that Iron fixes are appended as a sequence of tuples
to a log file stored in a different file system. Each tu-
ple includes the contents of the file system block and its
physical location that the WAFL write allocator chose.
Eventually, the administrator is given the choice to com-
mit all or none of the repair. If the former choice is made,
the log file is “replayed” and the content of the log is
written out at the appropriate locations in the file system.

Aggregates and FlexVols: ONTAP hosts and exports
hundreds of FlexVol® volumes on a shared pool of of
physical storage called an aggregate [20]. Each FlexVol
and aggregate is a WAFL file system. When corruption
is detected, the aggregate file system is tagged as corrupt,
is offlined, and is eventually remounted with Iron. Hun-
dreds of applications hosted on the FlexVols gain early
access to their data. Our field data show that typically a
handful of blocks from a few FlexVols are damaged. At
worst, a few of the applications might be halted if they
access tombstoned structures; they can be restarted after
that data is recovered from backup or from lost+found.
However, other applications see minimal disruption.

Field data: In an analysis of corruptions seen across
∼250,000 customer systems during a recent six-month
period, approximately a third were attributed to software
bugs, another third to media errors (while RAID was run-
ning in degraded mode), and the rest to a mix of manual
configuration error or unknown reasons. In each case, the
total number of corrupted metadata blocks was less than
10. In very rare cases when hundreds of blocks are dam-
aged (due to silent hardware failures), customers typi-
cally restore from backup/snapshots or use offline repair.

7 Evaluation

In this section, we present the performance characteris-
tics of Iron. As explained earlier, a WAFL file system
being repaired has at worst tens of damaged metadata
blocks. The extra cost of repairing those blocks is un-
detectable compared with the cost of checking the entire
file system.. Therefore, no actual corruption is required
in the datasets of the following experiments. We discuss
client outage times, the overhead of running Iron, and
how it interferes with a real-world workload. Unless oth-
erwise mentioned, all experiments were conducted on a
lower-end system with 16 Intel Sandy Bridge cores and
64 GiB DRAM to accentuate the impact of Iron.

Figure 1: Client outage time in seconds on a logarithmic scale
with increasing file system size.

7.1 Memory and Storage Overhead

Iron metafiles are paged in and out of the buffer cache
like any other file in the file system. The storage space
that the metafiles consume is approximately 32 MiB
(checked bitmap) and 0.5 GiB (claimed refcnt) per TiB
of file system size, and is 4 MiB (link count) per million
inodes in the file system. Together with other metafiles
(not presented in this paper), it adds up to around 0.05%
of the file system size. The in-memory data structures
that Iron uses add up to a few KiB of extra memory. This
extra requirement in memory and storage is negligible on
all configurations of ONTAP.

7.2 Outage Time with Iron

Fig. 1 plots on a logarithmic scale client outage time with
increasing file system size (used space) on the lower-end
system. Outage was measured from when the command
to online the WAFL file system (with the Iron option)
was issued to when the file system was first exposed to
clients. Thus, this experiment measured the time taken
to check metadata during mount. Numerous drives were
used to avoid I/O bottlenecks, and no other load was
applied on the system. The experiment was run thrice:
with Iron in offline mode, with classic Iron (mentioned in
Sec. 5) in which derived metadata were checked during
mount, and with the current version of Iron in which in-
direct blocks of all large derived metafiles were checked
post-mount. Iron employs the same level of parallelism
for checking metadata in each mode, thereby ensuring
fairness.

Iron in offline mode performs similarly to the now-
obsolete WAFLCheck tool, and outage time is obviously
the time to complete Iron. Offline repair is clearly im-
practical for enterprises—a 10 TiB file system takes 2+
hours to repair. Outage times with the current version
of Iron are an order of magnitude less than the times re-
ported by classic Iron; 6.9s and 100s, respectively, for 10

42 16th USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: CPU cost (µs/op) of random reads

TiB. Outage times with the current Iron tool are almost
independent of the file system size; mount without Iron
(not shown) takes around 1s for any file system size.

7.3 Performance Overhead of Iron

Next, we present the overhead associated with Iron in
terms of CPU cycles and storage I/Os—the two impor-
tant metrics that IT architects use for sizing storage sys-
tems and applications. LBC was instrumental in mak-
ing Iron’s overhead more predictable and therefore prac-
tical. The worst case overhead on low-end systems is
25%. Note that most of our systems do not experience
that level of overhead. We used a worst-case random read
workload—it reduced the overlap between the essential
set for a given client read with that of a previous one—
thereby maximizing the amount of on-demand work that
Iron performs. A read-only workload was used to keep
the analysis simple; there was no material change in the
results when client writes were added in.

7.3.1 Cost in CPU Cycles

Several NFS clients directed a random read workload of
25 MiB/s to a 18 TiB dataset that comprised 450 files,
each of size 40 GiB on the lower-end system. To avoid
perturbation from I/O bottlenecks, the storage was all-
SSD. The experiment was run without Iron, with Iron and
LBC disabled, and with current Iron (LBC enabled). To
make the comparison fair, the background Iron scan was
disabled for the first one hour of the run without LBC—
so all Iron work was triggered only on-demand by the
client reads.

CPU cost is computed by adding up all the cycles that
the file system code paths (including Iron) use and divid-
ing that value by the number of client operations serviced
for a given time interval. Fig. 2 compares that cost (mea-

Figure 3: Throughput in MiB/s when random reads are di-
rected to a repairing (without LBC) file system

sured as µs/op) on a logarithmic scale. The baseline read
op cost averages 160 µs’ worth of CPU cycles; it includes
the processing for misses in the buffer cache.

In the Iron run without LBC, about 4 to 8 primary meta-
data blocks are checked for each client read in the early
portion of the experiment. Each checked indirect block
may have up to 256 children that are unlikely to be colo-
cated, and requires random updates to the claimed re-
fcnt metafile. In the early portion of the experiment,
this costs an extra 7.8 ms’ worth of cycles. Over time,
a client read finds that more of its essential set is already
checked, and the Iron overhead drops. Almost all meta-
data has been checked by the 40-min mark, and the cost
flattens to about 190 µs; the extra 30 µs is the unavoid-
able cost of consulting the checked bitmap. The small
bump at the 60-min mark coincides with the start of the
background scan (which completes soon after because
on-demand checking has already done the job). With
LBC, the overhead of random I/Os to the claimed refcnt
metafile is moved from client ops to the slow-running
background scan. Thus, after the initial spike to check
important metadata, such as inodes and directory entries,
the cost flattens to 200 µs; the still-running background
scan costs the extra 10 µs.

7.3.2 Cost in I/O Bandwidth

The previous experiment was modified to use SATA hard
drives (so storage I/Os were no longer “cheap”), and the
client load was lowered to 11.5 MiB/s which is commen-
surate with the I/O capability of that storage media.

Fig. 3 shows the client throughput and the raw reads and
writes to the drives in MiB/s. To simplify the analy-
sis, Iron without LBC was started at the 10-min mark of
the experiment, and the background walk of the file sys-
tem was disabled (until the 110-min mark). The client

USENIX Association 16th USENIX Conference on File and Storage Technologies 43

Figure 4: Impact of Iron with and without LBC on latency
(right-side y-axis) and on throughput (left-side y-axis) at a
steady applied load of 40k SPC-1 IOPS.

throughput and raw reads are identical until the 10-min
mark. The remount (to start Iron) at the 10-min mark
empties the buffer cache. This is followed by a spike
in writes to storage as Iron status metafiles undergo fre-
quent updates. The remaining disk bandwidth is divided
between reading the user inode leaf nodes and Iron sta-
tus files. Thus, for the first 40 mins of Iron only about
10% to 18% of the disk bandwidth is used for read-
ing the leaf nodes of user files. By 90 mins the essen-
tial set for most client reads has already been checked,
but checked bitmap consultations require a continual and
fixed amount of read bandwidth. The impact due to back-
ground scans is seen after the 110-min mark. With LBC
enabled (not shown here), the drop in client throughput
is mostly a function of the rate at which Iron background
scans run, which is typically set to a low default.

7.4 Impact on Clients

Several clients were used to apply a steady load
of reads/writes to model the query/update ops of a
database/OLTP application; this was based on the Stor-
age Performance Council Benchmark-1 (SPC-1) [16].
Iron was started soon after. LBC was designed primarily
for helping database/OLTP applications, which are quite
latency-sensitive to any additional CPU or I/O overhead.
To accentuate the impact of Iron, the experiment was
configured on a low-end system with 8 AMD Opteron
cores, 32 GiB DRAM, and SATA HDDs. The back-
ground Iron scans were allowed to run in this experiment.

Fig. 4 shows that without Iron the clients achieve the en-
tire applied throughput of 40k IOPS with average laten-
cies under 30 ms. With Iron, both metrics improve as
a larger portion of the metadata is checked. With LBC,
these metrics are 2 to 5 times better early on, and they

soon converge to a steady 75% of the applied through-
put. In theory, WAFL parallelism should be unaffected
by Iron because checking (both on-demand and by way
of scan) can run concurrently with other client opera-
tions in the WAFL MP model [17]. However, one last
project to achieve full parallelism is still in progress, af-
ter which we expect the impact of Iron (with LBC) to
be much smaller. Because the background scans limit
some of the potential parallelism, client operations in the
run with LBC show poorer latencies past the half-way
point. In the run without LBC, the on-demand work has
finished much of the scan’s job by that point. The slow
increase in latency in the baseline run (until 20 min) is
due to the initial aging of the file system.

Many of our customer systems use SSDs and are not
low-end, and therefore see less impact with Iron. As
mentioned earlier, Iron is run under the supervision of
NetApp support, and customers are aware that an incon-
sistent file system is being recovered. We find that they
greatly appreciate the continued uptime for their applica-
tions, even with reduced performance. As improvements
to Iron have reduced the impact to clients over the years,
we also find that customers have become less concerned
with Iron completion times as long as progress indicators
provide a time estimate. But, as an example, Iron com-
pletion time with a default scan speed on the lower-end
system is 0.48 hour per TiB dataset resident on SSDs and
1 hour per TiB dataset resident on hard drives, even while
sustaining a random-read client workload of 470 MiB/s
and 255 MiB/s, respectively. Impact on home-directory
style workloads is not presented due to lack of space.
The impact is typically less than that on database/OLTP
workloads because the files themselves are small, and
each indirect block has few children. However, datasets
with very large directories (millions of entries) are af-
fected to a greater extent; future work is planned to make
the checking of directories truly asynchronous to client
operations.

8 Conclusion
This paper explains the importance of online repair to en-
terprises. It explains how Iron provides the same quality
of repair as offline repair does, even while allowing client
access to the file system. It presents some implemen-
tation detail, history, and performance evaluation. To
the best of our knowledge, this publication is the first to
present fully functional enterprise quality online repair.
A follow-up paper will present implementation details
and the enhancements mentioned in Sec. 5.3. We thank
the many WAFL engineers who contributed to Iron over
the years; they are too many to list. We also thank our
reviewers and shepherd for their invaluable feedback.

44 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Checking ZFS file system integrity.
https://docs.oracle.com/cd/E23823_01/html/

819-5461/gbbwa.html#scrolltoc.
[2] Disks and aggregates power guide. https:

//library.netapp.com/ecm/ecm_download_file/

ECMLP2496263.
[3] How you schedule automatic raid-

level scrubs. https://library.

netapp.com/ecmdocs/ECMP1196912/html/

GUID-A2F3A870-5C8D-4A68-AC8C-912946CECAC0.

html.
[4] Kernel Bug Tracker. http://bugzilla.kernel.org/.
[5] Linux btrfs blog posts. http://marc.merlins.

org/perso/btrfs/post_2014-03-19_Btrfs-Tips_

-Btrfs-Scrub-and-Btrfs-Filesystem-Repair.

html.
[6] Metrocluster for clustered data ontap 8.3.2.

https://storageconsortium.de/content/sites/

default/files/WP_NetApp%20Metrocluster%

20for%20Clustered%20Data%20ONTAP%208.3.2.

pdf.
[7] Scalability and performance using flex-

group volumes power guide. http:

//docs.netapp.com/ontap-9/index.jsp?

topic=%2Fcom.netapp.doc.pow-fg-mgmt%

2FGUID-A304BBC1-C00C-4E7A-989E-7C5A0E505146.

html.
[8] Wendy Bartlett and Lisa Spainhower. Commercial

Fault Tolerance: A Tale of Two Systems. IEEE
Transactions on Dependable and Secure Comput-
ing, 1(1):87–96, 2004.

[9] Robert Baumann. Soft errors in advanced com-
puter systems. IEEE Design & Test of Computers,
22(3):258–266, 2005.

[10] Steve Best. JFS Overview. http://www.ibm.com/

developerworks/library/l-jfs.html, 2000.
[11] Sushrut Bhowmik, Vinay Kumar, Sreenath Kor-

rakuti, Arun Pandey, and Sateesh Pola. Automatic
incremental repair of granular filesystem objects.
pending patent application.

[12] Eric J. Bina and Perry A. Emrath. A Faster fsck for
BSD Unix. In Proceedings of the USENIX Winter
Conference, January 1989.

[13] Jeff Bonwick and Bill Moore. ZFS: The Last Word
in File Systems. http://opensolaris.org/os/

community/zfs/docs/zfs_last.pdf, 2007.
[14] John Chapin, Mendel Rosenblum, Scott Devine,

Tirthankar Lahiri, Dan Teodosiu, and Anoop
Gupta. Hive: Fault Containment for Shared-
Memory Multiprocessors. In Proceedings of the

fifteenth ACM Symposium on Operating Systems
Principles (SOSP), pages 12–25, 1995.

[15] Peter Corbett, Bob English, Atul Goel, Tomis-
lav Grcanac Steven Kleiman, James Leong, and
Sunitha Sankar. Row-diagonal parity for double
disk failure correction. In Proceedings of Con-
ference on File and Storage Technologies (FAST),
2004.

[16] Storage Performance Council. Stor-
age performance council-1 benchmark.
www.storageperformance.org/results/#spc1_

overview.
[17] Matthew Curtis-Maury, Vinay Devadas, Vania

Fang, and Aditya Kulkarni. To waffinity and be-
yond: A scalable architecture for incremental par-
allelization of file system code. In Proceedings of
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 419–434, 2016.

[18] Matthew Curtis-Maury, Ram Kesavan, and Mri-
nal K. Bhattacharjee. Scalable write allocation
in the WAFL file system. In Proceedings of the
International Conference on Parallel Processing
(ICPP), August 2017.

[19] Peter Denz, Matthew Curtis-Maury, and Vinay De-
vadas. Think global, act local: A buffer cache
design for global ordering and parallel process-
ing in the WAFL file system. In Proceedings of
the International Conference on Parallel Process-
ing (ICPP), August 2016.

[20] John K. Edwards, Daniel Ellard, Craig Everhart,
Robert Fair, Eric Hamilton, Andy Kahn, Arkady
Kanevsky, James Lentini, Ashish Prakash, Keith A.
Smith, and Edward Zayas. FlexVol: flexible, effi-
cient file volume virtualization in WAFL. In Pro-
ceedings of the 2008 USENIX Annual Technical
Conference, pages 129–142, Jun 2008.

[21] Daniel Fryer, Kuei Sun, Rahat Mahmood, Ting-
Hao Cheng, Shaun Benjamin, Ashvin Goel, and
Angela Demke Brown. Recon: Verifying file sys-
tem consistency at runtime. In Proceedings of 10th
USENIX Conference on File and Storage Technolo-
gies (FAST), February 2012.

[22] Gregory R. Ganger and Yale N. Patt. Metadata
Update Performance in File Systems. In Proceed-
ings of 1st USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI), Novem-
ber 1994.

[23] Jim Gray. Why do computers stop and what can be
done about it? Tandem Technical Report 85.7, June
1985.

[24] Haryadi S. Gunawi, Abhishek Rajimwale, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-

USENIX Association 16th USENIX Conference on File and Storage Technologies 45

Dusseau. SQCK: A Declarative File System
Checker. In Proceedings of 8th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), 2008.

[25] Robert Hagmann. Reimplementing the Cedar File
System Using Logging and Group Commit. In Pro-
ceedings of the 11th ACM Symposium on Operating
Systems Principles (SOSP), November 1987.

[26] Val Henson. The Many Faces of fsck.
http://lwn.net/Articles/248180/, 2007.

[27] Val Henson, Zach Brown, Theodore Ts’o, and Ar-
jan van de Ven. Reducing fsck time for ext2 file sys-
tems. In Linux Symposium, pages 395–407, 2006.

[28] Val Henson, Arjan van de Ven, Amit Gud, and Zach
Brown. Chunkfs: Using divide-and-conquer to im-
prove file system reliability and repair. In Proceed-
ings of the 2nd Conference on Hot Topics in System
Dependency (HotDep), 2006.

[29] Dave Hitz, James Lau, and Michael Malcolm. File
system design for an NFS file server appliance.
In Proceedings of USENIX Winter 1994 Technical
Conference, pages 235–246, Jan 1994.

[30] Microsoft Inc. Building the next gen-
eration file system for windows: Refs.
https://blogs.msdn.microsoft.com/b8/2012/01/16/
building-the-next-generation-file-system-for-
windows-refs/, 2012.

[31] NetApp Inc. Overview of wafliron.
https://kb.netapp.com/support/index?page=

content\&id=3011877, 2016.
[32] Ram Kesavan, Rohit Singh, Travis Grusecki, and

Yuvraj Patel. Algorithms and data structures for
efficient free space reclamation in wafl. In 15th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2017.

[33] Ram Kesavan, Rohit Singh, Travis Grusecki, and
Yuvraj Patel. Efficient free space reclamation in
WAFL. ACM Transactions on Storage (TOS), 13,
October 2017.

[34] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and
Sumith Makam. High performance metadata in-
tegrity protection in the WAFL copy-on-write file
system. In 15th Usenix Conference on File and
Storage Technologies (FAST), 2017.

[35] Xin Li, Kai Shen, Michael C. Huang, and Lingkun
Chu. A memory soft error measurement on produc-
tion systems. In USENIX Annual Technical Confer-
ence (ATC), June 2007.

[36] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Marshall Kirk
Mckusick. Ffsck: The fast file-system checker.
ACM Transactions on Storage (TOS), 10(1):2:1–

2:28, January 2014.
[37] Joshua MacDonald, Hans Reiser, and Alex

Zarochentcev. http://www.namesys.com/txn-
doc.html, 2002.

[38] T. C. May and M. H. Woods. Alpha-particle-
induced soft errors in dynamic memories. IEEE
Tranactions on Electron Devices, 26(1), 1979.

[39] Marshall Kirk McKusick. Running ’fsck’ in the
Background. In BSDCon ’02, 2002.

[40] Marshall Kirk McKusick, Willian N. Joy, Samuel J.
Leffler, and Robert S. Fabry. Fsck - The UNIX File
System Check Program. Unix System Manager’s
Manual - 4.3 BSD Virtual VAX-11 Version, 1986.

[41] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F.
Ziegler, H. P. Muhlfeld, C. J. Montrose, H. W. Cur-
tis, and J. L. Walsh. Field testing for cosmic ray soft
errors in semiconductor memories. IBM Journal of
Research and Development, 40(1):41–50, 1996.

[42] Justin Parisi. Netapp flexgroup volumes: An evo-
lution of nas. https://blog.netapp.com/blogs/

netapp-flexgroup-volumes-an-evolution-of-nas/.
[43] David Patterson, Garth Gibson, and Randy Katz.

A Case for Redundant Arrays of Inexpensive Disks
(RAID). In ACM SIGMOD International Confer-
ence on Management of Data, pages 109–116, June
1988.

[44] Mendel Rosenblum and John Ousterhout. The De-
sign and Implementation of a Log-Structured File
System. ACM Transactions on Computer Systems,
10(1), 1992.

[45] Bianca Schroeder, Eduardo Pinheiro, and Wolf-
Dietrich Weber. DRAM errors in the wild: A
Large-Scale Field Study. In Proceedings of the
2009 Joint International Conference on Measure-
ment and Modeling of Computer Systems (SIG-
METRICS/Performance ’09), Seattle, Washington,
June 2007.

[46] Thomas J.E. Schwarz, Qin Xin, Ethan L. Miller,
Darrell D.E. Long, Andy Hospodor, and Spencer
Ng. Disk Scrubbing in Large Archival Storage Sys-
tems. In IEEE 12th International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, 2004.

[47] Christopher A. Stein, John H. Howard, and
Margo I. Seltzer. Unifying File System Protection.
In Proceedings of USENIX Annual Technical Con-
ference, pages 79–90, June 2001.

[48] Rajesh Sundaram. The Pri-
vate Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206tot resiliency.html, 2006.

[49] Stephen C. Tweedie. Journaling the Linux ext2fs

46 16th USENIX Conference on File and Storage Technologies USENIX Association

File System. In The Fourth Annual Linux Expo,
Durham, North Carolina, 1998.

[50] Wikipedia. Btrfs. en.wikipedia.org/wiki/Btrfs,
2009.

[51] Yichen Xie, Andy Chou, and Dawson Engler.
ARCHER: using symbolic, path-sensitive analysis
to detect memory access errors. In Proceedings of
the 9th European software engineering conference
(FSE), pages 327–336, September 2003.

[52] Yupu Zhang, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
End-to-end data integrity for file systems: A ZFS
case study. In Proceedings of the 8th USENIX Con-
ference on File and Storage Technologies (FAST),
2010.

[53] J. F. Ziegler and W. A. Lanford. Effect of
cosmic rays on computer memories. Science,
206(4420):776–788, 1979.

USENIX Association 16th USENIX Conference on File and Storage Technologies 47

