
Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Fail-Slow at Scale: Evidence of Hardware
Performance Faults in Large Production Systems

Haryadi S. Gunawi and Riza O. Suminto, University of Chicago; Russell Sears and
Casey Golliher, Pure Storage; Swaminathan Sundararaman, Parallel Machines;

Xing Lin and Tim Emami, NetApp; Weiguang Sheng and Nematollah Bidokhti, Huawei;
Caitie McCaffrey, Twitter; Gary Grider and Parks M. Fields, Los Alamos National

Laboratory; Kevin Harms and Robert B. Ross, Argonne National Laboratory;
Andree Jacobson, New Mexico Consortium; Robert Ricci and Kirk Webb, University of Utah;

Peter Alvaro, University of California, Santa Cruz; H. Birali Runesha, Mingzhe Hao,
and Huaicheng Li, University of Chicago

https://www.usenix.org/conference/fast18/presentation/gunawi

https://www.usenix.org/conference/fast18/presentation/gunawi

Fail-Slow at Scale: Evidence of Hardware

Performance Faults in Large Production Systems

Haryadi S. Gunawi1, Riza O. Suminto1, Russell Sears2, Casey Golliher2,

Swaminathan Sundararaman3, Xing Lin4, Tim Emami4, Weiguang Sheng5,

Nematollah Bidokhti5, Caitie McCaffrey6, Gary Grider7, Parks M. Fields7,

Kevin Harms8, Robert B. Ross8, Andree Jacobson9, Robert Ricci10, Kirk Webb10,

Peter Alvaro11, H. Birali Runesha12, Mingzhe Hao1, and Huaicheng Li1

1University of Chicago, 2Pure Storage, 3Parallel Machines, 4NetApp, 5Huawei, 6Twitter,
7Los Alamos National Laboratory, 8Argonne National Laboratory, 9New Mexico Consortium,

10University of Utah, 11University of California, Santa Cruz, and 12UChicago Research Computing Center

Abstract

Fail-slow hardware is an under-studied failure mode. We

present a study of 101 reports of fail-slow hardware inci-

dents, collected from large-scale cluster deployments in

12 institutions. We show that all hardware types such as

disk, SSD, CPU, memory and network components can

exhibit performance faults. We made several important

observations such as faults convert from one form to an-

other, the cascading root causes and impacts can be long,

and fail-slow faults can have varying symptoms. From

this study, we make suggestions to vendors, operators,

and systems designers.

1 Introduction

Understanding fault models is an important criteria of

building robust systems. Decades of research has devel-

oped mature failure models such as fail-stop [3, 22, 30,

32, 35], fail-partial [6, 33, 34], fail-transient [26], faults

as well as corruption [7, 18, 20, 36] and byzantine fail-

ures [14].

This paper highlights an under-studied “new” failure

type: fail-slow hardware, hardware that is still running

and functional but in a degraded mode, slower than its

expected performance. We found that all major hardware

components can exhibit fail-slow faults. For example,

disk throughput can drop by three orders of magnitude

to 100 KB/s due to vibration, SSD operations can stall

for seconds due to firmware bugs, memory cards can de-

grade to 25% of normal speed due to loose NVDIMM

connection, CPUs can unexpectedly run in 50% speed

due to lack of power, and finally network card perfor-

mance can collapse to Kbps level due to buffer corrup-

tion and retransmission.

While fail-slow hardware arguably did not surface fre-

quently in the past, today, as systems are deployed at

scale, along with many intricacies of large-scale opera-

tional conditions, the probability that a fail-slow hard-

ware incident can occur increases. Furthermore, as hard-

ware technology continues to scale (smaller and more

complex), today’s hardware development and manufac-

turing will only exacerbate the problem.

Unfortunately, fail-slow hardware is under-studied. A

handful of prior papers already hinted the urgency of this

problem; many different terms have been used such as

“fail-stutter” [4], “gray failure” [25], and “limp mode”

[17, 21, 27]. However, the discussion was not solely fo-

cused on hardware but mixed with software performance

faults as well. We counted roughly only 8 stories per

paper of fail-slow hardware mentioned in these prior pa-

pers, which is probably not sufficient enough to convince

the systems community of this urgent problem.

To fill the void of strong evidence of hardware perfor-

mance faults in the field, we, a group of researchers, en-

gineers, and operators of large-scale datacenter systems

across 12 institutions decided to write this “community

paper.” More specifically, we have collected 101 de-

tailed reports of fail-slow hardware behaviors including

the hardware types, root causes, symptoms, and impacts

to high-level software. To the best of our knowledge,

this is the most complete account of fail-slow hardware

in production systems reported publicly.

Due to space constraints, we summarize our unique

and important findings in Table 1 and do not repeat them

here. The table also depicts the organization of the paper.

Specifically, we first provide our high-level observations

(§3), then detail the fail-slow incidents with internal root

causes (§4) as well as external factors (§5), and finally

provide suggestions to vendors, operators, and systems

designers (§6). We hope that our paper will spur more

studies and solutions to this problem.

2 Methodology

101 reports of fail-slow hardware were collected from

large-scale cluster deployments in 12 institutions (Table

USENIX Association 16th USENIX Conference on File and Storage Technologies 1

Important Findings and Observations

§3.1 Varying root causes: Fail-slow hardware can be induced by internal causes such as firmware bugs or device errors/wear-

outs as well as external factors such as configuration, environment, temperature, and power issues.

§3.2 Faults convert from one form to another: Fail-stop, -partial, and -transient faults can convert to fail-slow faults (e.g., the

overhead of frequent error masking of corrupt data can lead to performance degradation).

§3.3 Varying symptoms: Fail-slow behavior can exhibit a permanent slowdown, transient slowdown (up-and-down perfor-

mance), partial slowdown (degradation of sub-components), and transient stop (e.g., occasional reboots).

§3.4 A long chain of root causes: Fail-slow hardware can be induced by a long chain of causes (e.g., a fan stopped working,

making other fans run at maximal speeds, causing heavy vibration that degraded the disk performance).

§3.4 Cascading impacts: A fail-slow hardware can collapse the entire cluster performance; for example, a degraded NIC made

many jobs lock task slots/containers in healthy machines, hence new jobs cannot find enough free slots.

§3.5 Rare but deadly (long time to detect): It can take hours to months to pinpoint and isolate a fail-slow hardware due to

many reasons (e.g., no full-stack visibility, environment conditions, cascading root causes and impacts).

Suggestions

§6.1 To vendors: When error masking becomes more frequent (e.g., due to increasing internal faults), more explicit signals

should be thrown, rather than running with a high overhead. Device-level performance statistics should be collected and reported

(e.g., via S.M.A.R.T) to facilitate further studies.

§6.2 To operators: 39% root causes are external factors, thus troubleshooting fail-slow hardware must be done online. Due

to the cascading root causes and impacts, full-stack monitoring is needed. Fail-slow root causes and impacts exhibit some

correlation, thus statistical correlation techniques may be useful (with full-stack monitoring).

§6.3 To systems designers: While software systems are effective in handling fail-stop (binary) model, more research is needed

to tolerate fail-slow (non-binary) behavior. System architects, designers and developers can fault-inject their systems with all

the root causes reported in this paper to evaluate the robustness of their systems.

Table 1: Summary of our findings and suggestions.

Institution #Nodes

Company 1 >10,000

Company 2 150

Company 3 100

Company 4 >1,000

Company 5 >10,000

Institution #Nodes

Univ. A 300

Univ. B >100

Univ. C >1,000

Univ. D 500

Nat’l Labs X >1,000

Nat’l Labs Y >10,000

Nat’l Labs Z >10,000

Table 2: Operational scale.

2). At such scales, it is more likely to witness fail-slow

hardware occurrences. The reports were all unformat-

ted text, written by the engineers and operators who still

vividly remember the incidents due to the severity of the

impacts. The incidents were reported between 2000 and

2017, with only 30 reports predating 2010. Each insti-

tution reports a unique set of root causes. For example,

although an institution may have seen a corrupt buffer be-

ing the root cause that slows down networking hardware

(packet loss and retransmission) many times, it is only

collected as one report. Thus, a single report can repre-

sent multiple instances of the incident. If multiple differ-

ent institutions report the same root cause, it is counted

multiple times. However, the majority of root causes

(66%) are unique and only 22% are duplicates (12% re-

ports did not pinpoint a root causes). More specifically,

a duplicated incident is reported on average by 2.4 insti-

tutions; for example, firmware bugs are reported from

5 institutions, driver bugs from 3 institutions, and the

remaining issues from 2 institutions. The raw (partial)

dataset can be downloaded on our group website [2].

We note that there is no analyzable hardware-level per-

formance logs (more in §6.1), which prevents large-scale

log studies. We strongly believe that there were many

more cases that were slipped and unnoticed. Some sto-

ries are also not passed around as operators change jobs.

We do not include known slowdowns (e.g., random IOs

causing slow disks, or GC activities occasionally slow-

ing down SSDs). We only include reports of unexpected

degradation. For example, unexpected hardware faults

that make GC activities work harder is reported.

3 Observations (Take-Away Points)

From this study, we made five important high-level find-

ings as summarized in Table 1.

3.1 Varying Root Causes

Pinpointing the root cause of a fail-slow hardware is a

daunting task as it can be induced by a variety of root

causes, as shown in Table 3. Hardware performance fault

can be caused by internal root causes from within the de-

vice such as firmware issues (FW) or device errors/wear-

outs (ERR), which will be discussed in Section 4. How-

ever, a perfectly working device can also be degraded by

many external root causes such as configuration (CONF),

environment (ENV), temperature (TEMP), and power (PWR)

related issues, which will be presented in Section §5.

2 16th USENIX Conference on File and Storage Technologies USENIX Association

Hardware types

Root SSD Disk Mem Net CPU Total

ERR 10 8 9 10 3 40

FW 6 3 0 9 2 20

TEMP 1 3 0 2 5 11

PWR 1 0 1 0 6 8

ENV 3 5 2 4 4 18

CONF 1 1 0 2 3 7

UNK 0 3 1 2 2 8

Total 22 23 13 29 25 112

Table 3: Root causes across hardware types. The ta-

ble shows the occurrences of the root causes across hardware

types. The table is referenced in Section 3.1. The hardware

types are SSD, disk, memory (“Mem”), network (“Net”), and

processors (“CPU”). The internal root causes are device errors

(ERR) and firmware issues (FW) and the external root causes

are temperature (TEMP), power (PWR), environment (ENV), and

configuration (CONF). Issues that are marked unknown (UNK)

implies that the operators cannot pinpoint the root cause, but

simply replaced the hardware. Note that a report can have mul-

tiple root causes (environment and power/temperature issues),

thus the total (112) is larger than the 101 reports.

Note that a report can have multiple root causes (envi-

ronment and power/temperature issues), thus the total in

Table 3 (112) is larger than the 101 reports.

3.2 Fault Conversions to Fail-Slow

Different types of faults such as fail-stop, -partial, and

-transient can convert to fail-slow faults.

• Fail-stop to fail-slow: As many hardware pieces

are connected together, a fail-stop component can make

other components exhibit a fail-slow behavior. For ex-

ample, a dead power supply throttled the CPUs by 50%

as the backup supply did not deliver enough power; a

single bad disk exhausted the entire RAID card’s perfor-

mance; and a vendor’s buggy firmware made a batch of

SSDs stop for seconds, disabling the flash cache layer

and making the entire storage stack slow. These exam-

ples suggest that fail-slow occurrences can be correlated

to other fail-stop faults in the system. Furthermore, a ro-

bust fail-stop tolerant system should ensure that fail-stop

fault does not convert to fail-slow.

• Fail-transient to fail-slow: Besides fail-stop, many

kinds of hardware can exhibit fail-transient errors, for

example, disks occasionally return IO errors, processors

sometimes produce a wrong result, and from time to time

memory bits get corrupted. Due to their transient and

“rare” nature, firmware/software typically masks these

errors from users. A simple mechanism is to retry the

operation or repair the error (e.g., with ECC or parity).

However, when the transient failures are recurring much

more frequently, error masking can be a “double-edged

sword.” That is, because error masking is not a free op-

eration (e.g., retry delays, repair costs), when the errors

are not rare, the masking overhead becomes the common

case performance.

We observed many cases of fail-transient to fail-slow

conversion. For example, a disk firmware triggered fre-

quent “read-after-write” checks in a degraded disk; a ma-

chine was deemed nonfunctional due to heavy ECC cor-

rection of many DRAM bit-flips; a loose PCIe connec-

tion made the driver retry IOs multiple times; and many

cases of loss/corrupt network packets (between 1-50%

rate in our reports) triggered heavy retries that collapsed

the network throughput by orders of magnitude.

From the stories above, it is clear that there must

be a distinction between rare and frequent fail-transient

faults. While it is acceptable to mask the former, the lat-

ter should be exposed to and not hidden from high-level

software stack and monitoring tools.

• Fail-partial to fail-slow: Some hardware can also ex-

hibit fail-partial fault where only some part of the device

is unusable (i.e., a partial fail-stop). This kind of failure

is typically masked by the firmware/software layer (e.g.,

with remapping). However, when the scale of partial fail-

ure grows, the fault masking brings a negative impact

to performance. For example, in one deployment, the

available memory size decreased over time increasing the

cache miss rate, but did not cause the system to crash;

bad chips in SSDs reduce the size of over-provisioned

space, triggering more frequent garbage collection; and

a more known problem, remapping of a large number of

bad sectors can induce more disk seeks. Similar to the

fail-transient case above, there must be a distinction of

small- vs. large-scale partial faults.

3.3 Varying Fail-Slow Symptoms

We observed the “many faces” of fail-slow symptoms:

permanent, transient, and partial fail-slow and transient

fail-stop, as illustrated in Figure 1. Table 4 shows the

breakdown of these failure modes across different hard-

ware types. Table 5 shows the breakdown of these failure

modes across different root causes.

• Permanent slowdown: The first symptom (Figure 1a)

is a permanent slowdown, wherein the device initially

worked normally but then its performance drops and

does not return to the normal condition (until the problem

is manually fixed). This mode is the simplest among the

four models because operators can consistently see the

issue. As shown in Table 4, this symptom (fortunately)

is the most common one.

• Transient slowdown: The second one (Figure 1b)

is a transient slowdown, wherein the device perfor-

mance fluctuates between normal condition and signifi-

USENIX Association 16th USENIX Conference on File and Storage Technologies 3

P
e
rf
o
rm
a
n
c
e

Time

(a) Permanent Slowdown (b) Transient Slowdown

(d) Transient Stop

P
e
rf
.

Time

(c) Partial Slowdown

P
e
rf
. Healthy sub-component

Degraded
sub-component

Figure 1: Fail-slow symptoms. The figure shows four

types of fail-slow symptom, as discussed in Section 3.3.

cant degradation, which is more difficult to troubleshoot.

For example, disk and network performance can degrade

when the environment is too cold/hot, but will recover

when the temperature is back to normal; occasional vi-

bration when many disks were busy at the same time can

reduce disk speed by orders of magnitude; and applica-

tions that create a massive load can cause the rack power

control to deliver insufficient power to other machines

(degrading their performance), but only until the power-

hungry applications finish.

• Partial slowdown: The third model (Figure 1c) is par-

tial slowdown, where only some parts of the device will

exhibit slowdown. In other words, this is the case of par-

tial fail-stop converting to partial slowdown (§3.2). For

example, some parts of memory that are faulty require

more ECC checks to be performed; some parts of net-

work router’s buffer that are corrupted will only cause the

affected packets to be resent; and in one incident, 40% of

big packets were lost, while none of small packets were

lost. Partial fail-slow model also complicates debugging

as some operations experience the slowdown but others

(on the same device) are not affected.

• Transient stop: The last one (Figure 1d) is the case of

transient stop, where the device occasionally reboots it-

self, thus there are times where the performance degrades

to zero. For example, a buggy firmware made the SSDs

sometimes “disappears” from RAID controller and later

reappears; occasional bit flips in SAS/SCSI commands

caused an host bus adapter to reboot repeatedly; and

nodes automatically rebooted on thermal throttle (e.g.,

when the fan firmware did not react quickly).

In one (hilarious) story, in the datacenter, there is a

convenient table for staging, and one operator put an of-

Symptoms

HW Type Perm. Trans. Partial Tr. Stop

SSD 6 7 3 3

Disk 9 4 3 5

Mem 7 1 0 4

Net 21 0 5 2

CPU 10 6 1 3

Table 4: Fail-slow symptoms across hardware types.

The table depicts the occurrences of fail-slow symptoms across

hardware types. The table is referenced in Section 3.3. The

four symptoms “Perm.”, “Trans.”, “Partial”, and “Tr. Stop”

represent the four symptoms in Figure 1.

Symptoms

Root Perm. Trans. Partial Tr. Stop

ERR 19 8 7 6

FW 11 3 1 4

TEMP 6 2 1 2

PWR 3 2 1 2

ENV 11 3 3 1

CONF 6 1 0 0

UNK 5 1 0 2

Table 5: Fail-slow symptoms across root causes. The

table is referenced in Section 3.3. The root-cause abbreviations

can be found in the caption of Table 3. The four symptoms

“Perm.”, “Trans.”, “Partial”, and “Tr. Stop” represent the four

symptoms in Figure 1.

fice chair adjacent to a storage cluster. The operator liked

to rock in the chair, repeatedly popping hotplug drives

out of the chassis (a hard correlation to diagnose).

3.4 Cascading Causes and Impacts

Another intricacy of fail-slow hardware is the chain of

cascading events: First, between the actual root cause

and the hardware’s fail-slow symptom, there is a chain

of cascading root causes. Second, the fail-slow symptom

then creates cascading impacts to the high-level software

stack, and potentially to the entire cluster.

Below are some of the examples of long cascading

root causes that lead to fail-slow hardware. A fan in a

compute node stopped working, making other fans com-

pensate the dead fan by operating at maximal speeds,

which then caused a lot of noise and vibration that subse-

quently degraded the disk performance. A faulty sensor

in a motherboard reported a false value to the OS mak-

ing the CPUs run slower in energy saving mode. A lack

of power from a broken power supply can cause many

types of hardware, disks, processors, and network com-

ponents to run sub-optimally. Power failure itself can

also be caused by a long cascading causes, for example,

the vendor omitted a 120V fuse that shipped with faulty

4 16th USENIX Conference on File and Storage Technologies USENIX Association

capacitors that have a high probability of shorting when

power is cycled, which then caused minor electrical fires

that cascade into rack-level power failures.

Next, when a hardware becomes fail-slow, not only it

affects the host machine, but it can cause cascading im-

pacts across the cluster. For example, a degraded NIC,

from 1 Gbps to 1 Kbps, in one machine caused a chained

reaction that slowed down the entire cluster of 100 ma-

chines (as the affected connecting tasks held up contain-

ers/slots for a long time, and new jobs cannot run due

to slot shortage). In an HDFS HA (High Availability)

deployment, a quorum of namenodes hang when one of

the disks was extremely slow. In an HBase deployment,

a memory card at 25% of normal speed caused back-

logs, out-of-memory errors, and crashes. Similarly, a de-

graded disk created a backlog all the way to the client

VMs, popping up the “blue screen of death” to users;

3.5 Rare but Deadly: Long TTD

The fail-slow hardware incidents in our report took hours

or even months to detect (pinpoint). More specifically,

1% of the cases are detected in minutes, 13% in hours,

13% in days, 11% in weeks, and 17% in months (and

unknown time in 45%). Some engineers called this a

“costly debugging tail.” In one story, an entire team of

engineers were pulled to debug the problem, costing the

institution tens of thousands of dollar. There are several

reasons why the time-to-detect (TTD) is long.

First, the fact that the incidence of fail-slow hardware

is not as frequent as fail-stop cases implies that today’s

software systems do not completely anticipate (i.e., un-

dermine) such scenarios. Thus, while more-frequent fail-

ures can be solved quickly, less-frequent but more com-

plex failures (that cannot be mitigated by the system) can

significantly cost the engineers time.

Second, as explained before, the root cause might

not originate from the fail-slow hardware (e.g., the case

of transient slowdown caused by power-hungry applica-

tions in §3.3 took months to figure out as the problem was

not rooted in the slow machines nor the power supply).

Third, external environment conditions beyond the

control of the operators can prolong diagnosis (e.g., for

months, a vendor failed to reproduce the fail-slow symp-

toms in its sea-level testing facility as the hardware only

slows down at a high mountain altitude).

Finally, operators do not always have full visibility

of the entire hardware stack (e.g., an incident took days

to solve because the operators had no visibility into the

power supply health).

4 Internal Root Causes

We now discuss internal root causes, primarily firmware

bugs and device errors/wear-outs. We organize the dis-

cussion based on the hardware types (SSD, disk, mem-

ory, network, and processor).

4.1 SSD

Fail-slow SSDs can be triggered by firmware bugs and

NAND flash management complexities.

Firmware bugs: We received three reports of SSD

firmware bugs, admitted by the vendors. First, many

individual IOs that should only take tens of µs were

throttled by exactly multiples of 250µs, as high as 2-

3ms. Even worse, in another report, a bad batch of SSDs

stopped responding for seconds and then recovered. As

mentioned before, an operator found some SSDs “dis-

appeared” from the system and later reappeared. Upon

vendor’s inspection, the SSDs were performing some in-

ternal metadata writes that triggered hardware assertion

failure and rebooted the device. In all these cases, the

reasons why the firmware behaves as such were not ex-

plained (proprietary reasons). However, other incidents

below might shed more light on the underlying problems.

Read retries with different voltages: In order to read

a flash page, SSD controller must set a certain voltage

threshold. As flash chips wear out, the charge in the ox-

ide gates weakens, making the read operation with the

default voltage threshold fail, forcing the controller to

keep retrying the read with different voltage thresholds

[10, 11]. We observed as high as 4 retries in the field.

RAIN/parity-based read reconstruction: Further-

more, if the data cannot be read (i.e., is completely cor-

rupted and fails the ECC checks), the SSD must recon-

struct the page with RAIN (NAND-level RAID) [1, 41].

Three factors can make this situation worse. First, if

the RAIN stripe width is N , N−1 additional reads must

be generated to reconstruct the corrupt page. Second,

the N−1 reads might also experience read retries as de-

scribed above. Third, newer TLC-based SSDs use LDPC

codes [40], which takes longer time to reconstruct the

faulty pages. We observed that this reconstruction prob-

lem occurs frequently in devices nearing end of life.

Moreover, SSD engineers found that the number of bit

flips is a complex function of the time since the last write,

the number of reads since the last write, the temperature

of the flash, and the amount of wear on the flash.

Heavy GC in partially-failing SSD: Garbage collec-

tion (GC) of NAND flash pages is known to be a main

culprit of user SLA violations [23, 28, 41]. However, in

modern datacenter SSDs, the more advanced firmware

successfully reduces GC impacts to users. In reality,

there are SSDs shipped with “bad” chips. We witnessed

that as more chips die, the size of the over-provisioned

area gets reduced, which then triggers GC more fre-

quently with impacts that cannot be hidden.

Broken parallelism by suboptimal wear-leveling:

Ideally, large IOs are mapped to parallel channels/chips,

USENIX Association 16th USENIX Conference on File and Storage Technologies 5

increasing IO parallelism. However, wear-leveling (the

migration of hot/cold pages to hot/cold blocks) causes

the mapping of LPN to PPN changes all the time. It has

been observed that some rare workload behaviors can

make wear-leveling algorithms suboptimal, making se-

quential LPNs mapped behind the same channels/chips

(less parallelism). Furthermore, the problem of bad

page/chip above also forces wear-leveling algorithms to

make sub-optimal, less-parallel page/block mapping.

Hot temperature to wear-outs, repeated erases, and

reduced space: Hot temperature can be attributed to ex-

ternal causes (§5.1), but can cause a chain reaction to

SSD internals [31]. We also observed that SSD pages

wear out faster with increasing temperature and there

were instances of voltage threshold modeling that are

not effective when SSDs operate at a higher temperature

regime. As a result, after a block erase, the bits were

not getting reset properly (not all bits become “1”). Con-

sequently, some blocks had to be erased multiple times.

Note that erase time is already long (e.g., up to 6 ms),

thus repeated erases resulted in observable fail-slow be-

havior. Worse, as some blocks cannot be reset properly

after several tries, the firmware marked those blocks un-

usable, leading to reduced over-provisioned space, and

subsequently more frequent GCs as discussed above.

Write amplification: Faster wear-outs and more fre-

quent GCs can induce higher write amplification. It is

worthy to report that we observed wildly different levels

of amplification (e.g., 5× for model “A”, 600× for model

“B”, and “infinite” for certain workloads due to prema-

ture wear-outs).

Not all chips are created equal: In summary, most of

the issues above originated with the fact that not all chips

are created equal. Bad chips still pass vendor’s testing,

wherein each chip is given a quality value and high qual-

ity chips are mixed with lesser quality chips as long as

the aggregate quality passes the quality-control standard.

Thus, given an SSD, there are unequal qualities [10, 36].

Some workloads may cause more apparent wear-outs on

the low quality chips, causing all the issues above.

4.2 Disk

Similar to SSDs, fail-slow disks can also be caused by

firmware bugs and device errors/wear-outs.

Firmware bugs: We collected three reports related

to disk firmware bugs causing slowdowns. There was a

case where a disk controller delayed I/O requests for tens

of seconds. In another problem, the disk “jitters” every

few seconds, creating a problem that is hard to debug.

In a large testbed, a RAID controller on the master node

stalled, but then after restarted, the controller worked but

with occasional timeouts and retries. Finally, there was

an incident where a single bad disk exhausted the RAID

card resources causing many IO timeouts (a failed case

of bad-disk masking).

Device errors: Triggered by extensive disk rots, a

RAID controller initiated frequent RAID rebuilding dur-

ing run time; the fix reformatted the file systems so that

bad sectors are collected and not used within the stor-

age stack. Disk errors can be recurrent; in one case,

disks with “bad” status were removed automatically from

the storage pool but then added back when their status

changed to “good,” but the good-bad continuous transi-

tions caused issues that affected user VMs. Some oper-

ators also observed media failures that forced the disks

to retry every read operation multiple times before re-

turning to the OS. A recent proposal advocates disks to

automatically disable bad platters and continue working

partially (with reduced bandwidth) [9].

Weak heads: This issue of disk “weak” heads is com-

mon in troubleshooting forums [17, 38], but the root

cause is unclear. A report in our study stated that gunk

that spills from actuator assembly and accumulates be-

tween the disk head and the platter can cause slow move-

ment of the disk head. As disks are becoming “slimmer,”

the probability of trapped gunk increases. This problem

can be fixed by performing random IOs to make the disk

head “sweep the floor.”

Other causes: Fail-slow disks can also be caused by

environment conditions (e.g., noises and vibrations from

fans operating at the maximum speed) or temperature

(e.g., disks entering read-after-write mode in a colder en-

vironment [19]), which will be discussed later (§5).

4.3 Memory

Memory systems are considered quite robust, but we

managed to collect a few evidence showing that mem-

ory hardware can also exhibit fail-slow faults.

Device errors: In cases of partial memory errors,

there were reports of custom chips masking the errors

and not exposing bad addresses. Here, as more errors in-

crease over time, the available memory size decreases,

causing higher cache misses. Unlike disk/SSD usage

where out-of-space error is thrown when space runs out,

memory usage is different; as long as the minimum

memory space requirement is met, applications can still

run albeit with slower performance due to more frequent

page swapping from the reduced cache size.

External causes: There were two cases of memory

cards slowing down due to the environment condition

(specifically a high altitude deployment that introduces

more cosmic events that cause frequent multi-bit up-

sets) and human mistakes (an operator plugged in a new

NVDIMM card in a rush and the loose connection made

the card still functional, but with slower performance).

Unknown causes: There were other fail-slow mem-

ory incidents with unknown causes. In an HBase deploy-

6 16th USENIX Conference on File and Storage Technologies USENIX Association

ment, a memory card ran only 25% of normal speed. In

another non-deterministic case, low memory bandwidth

was observed under a certain benchmark, but not under

different benchmarks.

SRAM errors: Much attention is paid to DRAM er-

rors [37] and arguably DRAM reliability is largely a

solved problem – most errors can be masked by ECC (by

sacrificing predictable latency) or lead to fail-stop behav-

ior of the impacted program. Besides DRAM, SRAM

usage is pervasive in device controllers (e.g., FPGAs,

network cards, and storage adapters). Unlike DRAM,

SRAM works by constantly holding the voltage of each

memory cell at the desired level; it does not incorporate

refresh cycles that can cause read/write to stall. It is most

commonly used by circuits that cannot afford to incur

stalls or buffer data between RAM and the combinatorial

logic that consumes the data.

SRAM errors on data paths are typically transparently

masked; they ultimately lead to a CRC validation error,

and the network packet or disk I/O is simply retried.

However, SRAM is also incorporated in control paths.

We observed SRAM errors that caused occasional re-

boots of the device from broken control path (among

many other problems), inducing a transient-stop symp-

tom (as discussed in §3.3). SRAM per-bit error rates un-

fortunately have not improved [8]. Therefore in practice,

SRAM errors are a regular occurrence in large-scale in-

frastructure, a major culprit of service disruptions.

4.4 Network

Network performance variability is a well-known prob-

lem, typically caused by load fluctuations. This paper

highlights that fail-slow networking hardware can be a

major cause of network performance degradation.

Firmware bugs: We collected three reports of “bad”

routing algorithms in switch firmware. In one case, the

network performance decreased to half of the maximum

performance due to a dynamic routing algorithm on stock

driver/firmware that did not work “as promised [by the

vendor].” Due to lack of visibility to what is happening

in the firmware, the operators must hack the kernel to

perform ping between the switches, which consumed a

long time. In another story, MAC learning was not being

responsive and special types of traffic such as multicast

were not working well, creating traffic floods. The third

story is similar to the first one.

NIC driver bugs: Four instances of NIC driver bugs

were reported, dropping many packets and collapsing

TCP performance. In one story, 5% package loss caused

many VMs to go into “blue screen of death.” Another

NIC driver bug caused a “very poor” throughput and the

operators had to disable TCP offload to work around the

problem. In another case, the developers found a non-

deterministic network driver bug in Linux that only sur-

faced on one machine, making the 1 Gbps NIC card

transmit only at 1 Kbps. Finally, a bug caused an un-

expected auto-negotiation between a NIC and a TOR

switch that capped the bandwidth between them, under-

utilizing the available bandwidth.

Device errors: In one interesting story, the physical

implementation of the network cards did not match the

design specification – there is a distant corner of the

chip that is starving from electrons and not performing

at full speed; the vendor re-manufactured all the network

cards, a very costly ramification. Similarly, a bad VS-

CEL laser degraded switch to switch performance; this

bad design affected hundreds of cables. In one deploy-

ment, a router’s internal buffer memory was introducing

occasional bit errors into packets, causing failed end-to-

end checksums and subsequently TCP retries.

External causes: Some fail-slow networking compo-

nents were also caused by environment conditions (e.g.,

loose network cables, pinched fiber optics), configura-

tion issues (e.g., a switch environment not supporting

jumbo frames such that MTU size must be configured

to 1500 bytes), and temperature (e.g., clogged air filter,

bad motherboard design that puts NIC behind CPU).

Unknown causes: There are other reports of through-

put degradation at the hardware level or severe loss rates

without known root causes. For example, a 7 Gbps fibre

channel collapsed to 2 Kbps, a 1 Gbps throughput de-

graded to 150 Mbps with just 1% loss rate, 40% of big

packets were lost (but no small-package loss), and some

observed error/loss rates as high as 50%. TCP perfor-

mance is highly sensitive to loss rate.

4.5 Processor

We find processors are quite reliable and do not self-

inflict fail-slow mode. Most of the fail-slow CPUs are

caused by external factors, which we briefly discuss be-

low, but will be detailed in the next section (§5).

External causes: We observed fail-slow processors

caused by configuration mistakes (e.g., a buggy BIOS

firmware incorrectly down-clocked the CPUs), environ-

ment conditions (e.g., a high-altitude deployment made

the CPUs enter thermal throttle), temperature issues

(e.g., CPU heat-sinks were not in physical contact with

the CPUs, a fan firmware did not react quickly to cool

down the CPUs), and power shortage (e.g., insufficient

capacitors in the motherboard’s power control logic did

not deliver enough power when the load is high).

5 External Root Causes

We now describe external root causes of fail-slow hard-

ware such as temperature variance, power shortage, en-

vironment condition, and configuration mistakes. These

external causes complicate troubleshooting because the

USENIX Association 16th USENIX Conference on File and Storage Technologies 7

symptoms can be non-deterministic and only repro-

ducible in the same online scenario, but not observable

in offline (in-office) testing.

5.1 Temperature

To keep temperature in normal operating condition, fans

or heat-sinks must work correctly. Below are root causes

of temperature variance that went undetected by the

monitoring tools.

Clogged air filter: In one report, a clogged air filter

caused optics in the switch to start failing due to a high

temperature, generating a high 10% packet loss rate. Af-

ter the air filter was cleaned, the switch returned to nor-

mal speed but only temporarily. It is likely that the high

temperature had broken the switch’s internal parts.

Cold environment: Cold temperature can induce fail-

slow faults as well [19]. In one deployment, some of the

disks went into read-after-write mode. Upon inspection,

the machine room had a “cold-air-under-the-floor” sys-

tem, which was more common in the past. The disks at

the bottom of the racks had a higher incidence of slow

performance. This suggests that temperature variance

can originate from deployment environment as well.

Broken fans: Cooling systems such as fans some-

times work as a cluster, rather than individually. There

was a case where a fan in a compute node stopped work-

ing, and to compensate this failing fan, fans in other

compute nodes started to operate at their maximal speed,

which then generated heavy noise and vibration that de-

graded the disk performance. Again, this is an example

of cascading root causes (§3.4).

Buggy fan firmware: Fans can be fully functional,

but their speeds are controlled by the fan firmware. In

one condition, a fan firmware would not react quickly

enough when CPU-intensive jobs were running, and as a

result the CPUs entered thermal throttle (reduced speed)

before the fans had the chance to cool down the CPUs.

Improper design/assembly/operation: A custom

motherboard was “badly” designed in such a way that

the NIC was soldered on the motherboard behind the

CPU and memory. The heat from the CPU affected the

NIC causing many packet errors and retries. In a related

story, due to bad assembly, CPU heat-sinks were not in

physical contact with the CPUs, causing many nodes to

overheat. In another case, new disks were plugged into

machines with “very old” fans. The fans did not give

enough cooling for the newer disks, causing the disks to

run slowly.

5.2 Power

Reduced power can easily trigger fail-slow hardware.

Below are some of the root causes of power shortage.

Insufficient capacitors: In one custom motherboard

design, the capacitor on the motherboard’s power con-

trol logic did not provide adequate voltage to the CPUs

under certain load. This put the processors out of spec-

ification, causing corruptions and recomputations. The

diagnosis time was months due to the fact that the prob-

lem could not be reliably reproduced. To fix the prob-

lem, a small capacitor was added to each motherboard

on site for thousands of nodes. In a similar story, an in-

adequate capacitor caused voltage drop, but only when

multiple cores transition from parked to turbo-boost si-

multaneously (a corner-case situation). Thus, indepen-

dent testing of the updated BIOS and software did not

reproduce the issue.

PCU firmware bugs: In one scenario, the firmware of

the power control units (PCUs) entered a “weird” state

and did not deliver enough power, and the whole rack

failed off the power control. This was a transient fault

that sometimes can be fixed by resetting the controller,

sometimes by re-flashing the firmware, and in rare in-

stances, by replacing the PCUs.

Fail-partial power supply: In one deployment, every

four machines share two power supplies. However, when

one power supply failed, there was not enough power to

run all the four machines at normal capacity, thus throt-

tling the CPUs on each machine by 50%. The problem

cascaded as the machines were used for indexing service

and could not keep up with the number of requests. The

problem took days to solve because the operators had no

visibility into the power supply health. This problem is

also interesting as two power supplies do not imply that

one of them is a full-working backup, but rather a re-

duced power, enough to keep the machines alive.

Power-hungry neighbors: Some nodes were running

slow because other nodes in the same rack were drawing

more power, causing the rack power supply to go unsta-

ble, and dropping power to various parts of the rack. It

took months to diagnose the problem as it was not rooted

in the slow machines and only happened when power-

hungry applications were running in neighboring nodes.

Faulty motherboard sensors: After a long period of

debugging a slow machine, the operator discovered that

the motherboard had a faulty sensor that reported faulty

value to the OS, making the OS configure the CPUs to

run in slower speed in energy saving mode.

5.3 Environment

Fail-slow hardware can be induced by a variety of envi-

ronment conditions, as listed below.

Altitude and cosmic events: One of the most inter-

esting reports we collected is from a deployment at al-

titude of 7500 feet. At this height, some CPUs would

become hot and enter thermal throttle (reduced perfor-

mance). Apparently, the fault was not in the CPUs, but

8 16th USENIX Conference on File and Storage Technologies USENIX Association

rather in the vendor’s cooling design that was not pro-

viding enough cooling at such a high altitude. In another

report, still at the same altitude, some memory systems

experienced more frequent multi-bit upsets than usual

(increased ECC checks and repairs), which then were

shipped back to the vendor and re-assembled with more

memory protection.

Loose interconnects: Loose network cables and

pinched fiber optics caused network delays up to hun-

dreds of milliseconds, making the storage cluster behave

abnormally. It took several days to diagnose the problem,

as the symptom was not deterministic. The reason behind

loose/pinched cables can be vibration or human factor.

In some other cases, loose PCIe connections between the

SSDs and the PCIe slots made the device driver layer

retry the operations multiple times. In another story, an

NVDIMM was not plugged in properly when the opera-

tor was rushed in fixing the machine. The machine was

still functional albeit with a much lower speed.

Vibrations: The performance of some disk drives col-

lapsed to 100 KB/s when deployed in the racks, but

performed maximally 100 MB/s when tested in office.

Apparently, faulty chassis fans surrounding the nodes

caused such a strong vibration, making the drives go

into recovery mode. The solution was to add vibration

dampers to each of the eight hard drive screws and re-

place roughly 10% system fans in all nodes.

Environment and operating condition mismatch:

In one institution, a system was configured correctly at

the advertised clock rate, temperature range, and voltage

range. However, due to an unknown environment condi-

tion, it was not working optimally, and the solution was

turning down the clock slightly, putting a software mon-

itor on processor temperature and voltage, and killing

the node if voltage/temperature got close to the edge of

the binned values (i.e., a dead node is better than a slow

node). Time to diagnose was months due to not reliably

able to reproduce. In another case, a switch environment

did not support “jumbo frames” and caused the 10 Gbps

throughput network to have a poor throughput. The fix

was to reconfigure the MTU size to be 1500 bytes.

Unknown causes: In one interesting report, billions

of SAS errors simultaneously reported by all the inde-

pendent drives in the cluster, lasting for five minutes.

The report stated that this happened when a technician

was performing maintenance on another machine.

5.4 Configuration

While hardware typically runs in default configuration,

today’s hardware has “knobs” that allow configurable pa-

rameters. Such configurations can be modified by hu-

man operators or software/firmware layers (e.g., BIOS).

In our findings, fail-slow hardware can be induced by the

following misconfiguration mistakes.

Buggy BIOS firmware: In one institution, one of

the systems typically ingested 2.8 billion metrics per

minute, however at one time the metric write time in-

creased, taking more than a minute to process all the

metrics from previous minutes. The operators added

more nodes (thinking that it will load balance the request

spikes). Counter-intuitively, adding more nodes resulted

in increased write time. The diagnosis spanned a month.

The root cause was the BIOS was incorrectly down-

clocking the CPUs of the new machines being added

to the database cluster. These machines were “limping”

along but were assigned the same number of load (as if a

correctly clocked machine). Similarly, as reported else-

where [16, §3.6], a buggy initialization configuration can

also disable the processor caches.

Human mistakes: Regarding SSD connections, not

all PCIe slots have the same number of lanes. Mistakes

in mapping PCIe cards to PCIe slots with different num-

ber of lanes had occasionally been made by human op-

erators, which results in under-utilization of full connec-

tion bandwidth. In a different case, an incorrect parame-

ter set in xtnird.ini, a network configuration that man-

ages High Speed Networking (HSN) over InfiniBand,

was not set up properly and the network was throttling.

There is plethora of related work on configuration mis-

takes [5, 42]. We believe there are many more instances

of configuration mistakes that trigger fail-slow hardware,

not recorded in production logs.

6 Suggestions

In addition to cataloguing instances of fail-slow hard-

ware, a goal of this paper is to offer vendors, operators

and systems designers insights about how to address this

poorly-studied failure mode.

6.1 To Vendors

• Making implicit error masking explicit: Fail-slow

hardware can be categorized as an “implicit” fault, mean-

ing they do not always return any explicit hard errors, for

example due to error masking (§3.2). However, there

were many cases of slowly increasing error rates that

would eventually cause cascading performance failures.

Although statistics of error rates are obtainable from the

device (e.g., number of ECC repairs, corrupt packets),

they are rarely monitored by the overall system. Vendors

might consider throwing explicit error signals when the

error rates far exceed the expected rate.

We understand that this could be a far-from-reach re-

ality because vendors often hide internal statistics (e.g.,

most recent SSDs no longer expose the number of in-

ternal writes, as some users were upset to learn about

the write amplification). In fact, the trend of moving to

USENIX Association 16th USENIX Conference on File and Storage Technologies 9

white-box storage makes the situation worse. That is,

black-box storage such as commodity disks and SSDs

conform to some standards (e.g., S.M.A.R.T data), how-

ever as more institutions now compose the entire hard-

ware/software storage stack (e.g., fully host-managed

flash), the hardware designers might not conform to ex-

isting standards, making software-level error manage-

ment more difficult.

• Exposing device-level performance statistics: Two

decades ago, statistical data of hard errors was hard to

obtain, but due to user demands, modern hardware now

exposes such information (e.g., via S.M.A.R.T), which

then spurred many statistical studies of hardware fail-

ures [6, 7, 30, 34, 35, 36] However, the situation for

hardware-level performance studies is bleak. Our con-

versations with operators suggest that the information

from S.M.A.R.T is “insufficient to act on.” In some

institutions, hardware-level performance logs are only

collected hourly, and we could not pinpoint whether a

slow performance was due to the workload or the de-

vice degradation. With these limitations, many impor-

tant statistical questions are left unanswered (e.g., how

often fail-slow hardware occurs, how much performance

was degraded, what correlations fail-slow faults exhibit

with other metrics such as device age, model, size, and

vendor). We hope vendors will expose device-level per-

formance data to support future statistical studies.

6.2 To Operators

• Online diagnosis: In our study, 39% of the cases

were caused by external root causes, which suggests that

blames cannot be directed towards the main hardware

components. Some reports suggest that operators took

days or even months to diagnose, as the problems cannot

be reproduced in offline (“in-office”) testing. Thus, on-

line diagnosis is important, but also not straightforward

because not all hardware components are typically mon-

itored, which we discuss next.

• Monitoring of all hardware components: Today,

in addition to main hardware components (e.g., disks,

NICs, switches, CPUs), other hardware components and

environment conditions such as fan speeds and tempera-

ture are also monitored. Unfortunately, not all hardware

is monitored in practice. For example, multiple organiza-

tions failed to monitor network cables, and instead used

the flow of traffic as a proxy for cable health. The diagno-

sis took much longer time because performance blames

are usually directed towards the main hardware compo-

nents such as NICs or switches. The challenge is then to

prevent too much data being logged.

Another operational challenge is that different teams

are responsible for different parts of the data center

(e.g., software behavior, machine performance, cooling,

power). Thus, with limited views, operators cannot fully

diagnose the problem. In one incident, the operators,

who did not have access to power supply health, took

days to diagnose the reason behind the CPUs running

only at 50% speed. In another example, power supply

health information was available, but basic precautions,

such as adding fuses to the input line, were overlooked.

Another challenge to come is related to proprietary

full-packaged solution like hyper-converged or rack-

scale design. Such design usually comes with the ven-

dor’s monitoring tools, which might not monitor and ex-

pose all information to the operators. Instead, vendors

of such systems often monitor hardware health remotely,

which can lead to fragmentation of monitoring infras-

tructure as the number of vendors increases.

• Correlating full-stack information: With full-stack

performance data, operators can use statistical ap-

proaches to pinpoint and isolate the root cause [15].

Although most of the cases in our study were hard-to-

diagnose problems, fortunately, the revealed root causes

were relatively “simple.” For example, when a power-

hungry application was running, it drained the rack

power and degraded other nodes. Such a correlation can

be easily made, but requires process- to power-level in-

formation. As another example, when a fan stopped, and

to compensate, the other fans ran in maximum speed to

compensate, the resulting vibration degraded disk per-

formance. This 3-level correlation between fan sta-

tus, vibration level, and disk performance can also be

correlated. Future research can be done to evaluate

whether existing statistical monitoring approaches can

detect such correlations.

While the metrics above are easy to monitor, there

are other fine-grained metrics that are hard to correlate.

For example, in one configuration issue, only multicast

network traffic was affected, and in another similar one,

only big packets (>1500 bytes) experienced long laten-

cies. In these examples, the contrast between multicast

and unicast traffics and small and big packets is clear.

However, to make the correlation, detailed packet char-

acteristics must be logged as well.

Finally, monitoring algorithms should also detect

“counter-intuitive” correlations. For example, when

users performance degrades, operators tend to react by

adding more nodes. However, there were cases where

adding more nodes did not translate to better perfor-

mance, as the underlying root cause was not isolated.

6.3 To Systems Designers

While the previous section focuses on post-mortem

remedies, this section provides some suggestions on how

to anticipate fail-slow hardware better in future systems.

10 16th USENIX Conference on File and Storage Technologies USENIX Association

• Making implicit error-masking explicit: Similar to

the error masking problem at the hardware level, error

masking (as well as “tail” masking) in higher software

stack can make the problem worse. We have observed

fail-slow hardware that caused many jobs to timeout and

be retried again repeatedly, consuming many other re-

sources and converting the single hardware problem into

larger cluster-wide failures. Software systems should not

just silently work around fail-slow hardware, but need to

expose enough information to help troubleshooting.

• Fail-slow to fail-stop: Earlier, we discussed about

many fault conversions to fail-slow faults (§3.2). The

reverse can be asked: can fail-slow faults be converted

into fail-stop mode? Such a concept is appealing be-

cause modern systems are well equipped to handle fail-

stop failures [12]. Below we discuss opportunities and

challenges of this concept.

Skip non-primary fail-slow components: Some re-

sources such as (e.g., caching layers) can be considered

non-primary components. For example, in many deploy-

ments, SSDs are treated as a caching layer for the back-

end disks. The assumption that SSD is always fast and

never stalls does not always hold (§4.1). Thus, when fail-

slow SSDs (acting as a caching layer) introduce more

latencies than the back-end disks, they can be skipped

temporarily until the problem subsides. However, con-

sistency issues must be taken into account. In one story,

the operators had to disable the flash cache layer for one

month until the firmware was fixed. Another sugges-

tion is to run in “partial” mode rather than in full mode

but with slow performance. For example, if many disks

cause heavy vibration that degrades the disk throughput

significantly, it is better to run fewer disks to eliminate

the throughput-degrading vibration [13].

Detect fail-slow recurrences: Another method to

make slow-to-stop conversion is to monitor the recur-

rence of fail-slow faults. For example, disks/SSDs that

continue to “flip-flop” in online/offline mode (§4.1), trig-

gering RAID rebalancing all the time, is better to be put

offline. As another example, if I/O communication to a

hardware requires many retries, the device perhaps can

be removed. We observed several cases of transient fail-

slow hardware that was taken offline but after passing the

in-office diagnosis, the device was put online again, only

to cause the same problem.

Challenges: While the concept of slow-to-stop con-

version looks simple, there are many challenges that im-

pedes its practicality in the field, which we hope can

trigger more research in the community. First, an au-

tomated shutdown algorithm should be robust (no bugs

or false positives) such that healthy devices are not in-

correctly shut down. Second, some storage devices can-

not be abruptly taken offline as it can cause excessive re-

replication load. Third, similarly, removing slow nodes

can risk availability; in one deployment, some machines

exhibited 10-20% performance degradation but if they

were taken out, availability would be reduced, and data

loss could ensue. Fourth, a node is an expensive resource

(e.g., with multiple NICs, CPUs, memory cards, SSDs,

disks), thus there is a need for capability to shut off de-

vices at fine-grained level. Fifth, and more importantly,

due to the cascading nature (§3.4), fail-slow hardware

can be induced by external factors; here, the solution is

to isolate the external factors, not to shutdown the slow

device.

• Fail-Slow fault injections: System architects can in-

ject fail-slow root causes reported in this paper to their

systems and analyze the impacts.

For example, one can argue that asynchronous dis-

tributed systems (e.g., eventual consistency) should nat-

urally tolerate fail-slow behaviors. While this is true,

there are many stateful systems that cannot work in

fully asynchronous mode; for example, in widely-used

open-sourced distributed systems, fail-slow hardware

can cause cascading failures such as thread pool exhaus-

tion, message backlogs, and out-of-memory errors [17].

Another type of systems is tail-tolerant distributed sys-

tems [16]. However, another recent work shows that

the “tail” concept only targets performance degradation

from resource contention, which is different than fail-

slow hardware model such as slow NICs, and as a result

not all tail-tolerant systems (e.g., Hadoop, Spark) can cut

tail latencies induced by degraded NICs [39].

Beyond networking components, the assumption that

storage latency is stable is also fatal. It has been reported

that disk delays causes race condition or deadlock in dis-

tributed consistency protocols [29]. The problem is that

some consistency protocols, while tolerating network de-

lays, do not incorporate the possibility of disk delays, for

the sake of simplicity.

With fail-slow injections, operators can also evaluate

whether their systems or monitoring tools signal the right

warnings or errors. There were a few cases in our reports,

where wrong signals were sent, causing the operators to

debug only the healthy part of the system.

Overall, we strongly believe that injecting root causes

reported in this paper will reveal many flaws in existing

systems. Furthermore, all forms of fail-slow hardware

such as slow NICs, switches, disks, SSD, NVDIMM, and

CPUs need to be exercised as they lead to different symp-

toms. The challenge is then to build future systems that

enable various fail-slow behaviors to be injected easily.

7 Discussions

• Limitations (and Failed Attempts): We acknowledge

the major limitation of our methodology: the lack of

USENIX Association 16th USENIX Conference on File and Storage Technologies 11

quantitative analysis. Given the reports in the form of

anecdotes, we were not able to answer statistical ques-

tions such as how often fail-slow hardware occurs, how

much performance was degraded, what correlations fail-

slow faults exhibit with other metrics such as device age,

model, size, and vendor, etc.

We initially had attempted to perform a quantitative

study. However, many institutions do not maintain a

database of hardware-level performance data. Many in-

stitutions that we asked to join in this community paper

responded with either “we do not have clearance” or “we

do not collect such data (but have unformatted reports).”

In the former category (no clearance), it is inconclusive

whether they have such data available or the nature of

this public study was not allowed in the first place.

An institution told us that they collect large perfor-

mance data at the software level, but direct inference to

fail-slow hardware is challenging to perform. In our prior

work, we only collected hourly aggregate of disk/SSD-

level performance data [24], but the coarse hourly gran-

ularity has limitations and the findings cannot be directly

tied to “hard proof” of the existence of fail-slow hard-

ware.

We also managed to obtain ticket logs (in unformat-

ted text) from a large institution, but searching for fail-

slow hardware instances in tens of thousands of tickets

is extremely challenging as the operators did not log the

full information and there is no standard term for “fail-

slow/limping/jittery” hardware. For example, searching

for the word “slow” produces hundreds of results that do

not directly involve hardware issues.

Indeed, we believe that the lack of easily accessible

and analyzable data is a reason that the study in this pa-

per is valuable. Regardless of the limitation of our study,

we believe we have successfully presented the most com-

plete account of fail-slow hardware in production sys-

tems that can benefit the community.

• “Honorable Mentions”: While this paper focuses on

fail-slow faults, our operators shared to us many other in-

teresting anecdotes related to data loss, which we believe

are “honorable” to mention as the details were rarely

mentioned in literature.

Triple replication is (sometimes) not enough: In one

large Hadoop cluster, many machines were failing regu-

larly such that data loss was unavoidable even with triple

replication. Apparently, this was caused by a large batch

of malfunctioning SSDs. The controller on this brand

of SSDs was “bad” and would stop responding. About

3-5% of the drives would be failing each week. Worse,

the servers would not shut down properly because the

shutdown required a successful write to the SSD to do

so. Thus, there were lower success rates because broken

machines with failed SSDs would try to serve traffic and

could not shut themselves down.

Single point of failure (in unseen parts): While at

a high level, datacenter operators ensures that there is

no single hardware failure (redundant machines, power,

cooling, etc.), there was a case of redundant EEPROMS

that rely on single capacitor (a part that was unobservable

by the operators and only known by the vendor). Un-

fortunately, the capacitor failed and triggered correlated

failures on both SAS paths, causing a complete 24-hour

outage in production.

In a related story, a healthy-looking system was ac-

tually miscabled, without apparent performance issues,

but the miscabling led to multiple single points of fail-

ure. There was no cable topology monitoring, thus the

technicians had to devise recabling strategies that main-

tain the expected redundancy level.

Failed NVRAM dump under power fault: To handle

write idiosyncrasies of NAND flash, writes are “per-

sisted” to NVRAM (capacitor-backed RAM) with the

promise that under a power fault the content of the RAM

should be flushed (“dumped”) to the non-volatile NAND

flash. However, there was a non-deterministic case

where in 1 out of 10,000 power losses, the firmware did

not trigger the NVRAM dump. Apparently, the FPGA

design assumed a pin was grounded, but the pin was at-

tached to a test pad instead, and the RFI led to propaga-

tion of “nonsense” from the pin into the NVRAM dump

logic. More studies of SSD robustness under power fault

are needed.

8 Conclusion

Today’s software systems are arguably robust at logging

and recovering from fail-stop hardware – there is a clear,

binary signal that is fairly easy to recognize a and inter-

pret. We believe fail-slow hardware is a fundamentally

harder problem to solve. It is very hard to distinguish

such cases from ones that are caused by software per-

formance issues. It is also evident that many modern,

advanced deployed systems do not anticipate this failure

mode. We hope that our study can influence vendors, op-

erators, and systems designers to treat fail-slow hardware

as a separate class of failures and start addressing them

more robustly in future systems.

9 Acknowledgments

We thank Dean Hildebrand, our shepherd, and the anony-

mous reviewers for their tremendous feedback and com-

ments. We also would like to thank Tracy Carver for con-

tributing anecdotes and Jeffrey Heller for his support of

this work. This material was supported by funding from

NSF (grant Nos. CCF-1336580, CNS-1350499, CNS-

1526304, and CNS-1563956).

12 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] NAND Flash Media Management Through RAIN.

Micron, 2011.

[2] http://ucare.cs.uchicago.edu/projects/

failslow/, 2018.

[3] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj

Patel, Thanumalayan Sankaranarayana Pillai, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Correlated Crash Vulnerabilities. In Proceedings of the

12th Symposium on Operating Systems Design and

Implementation (OSDI), 2016.

[4] Remzi H. Arpaci-Dusseau and Andrea C.

Arpaci-Dusseau. Fail-Stutter Fault Tolerance. In The

Eighth Workshop on Hot Topics in Operating Systems

(HotOS VIII), 2001.

[5] Mona Attariyan and Jason Flinn. Automating

Configuration Troubleshooting with Dynamic

Information Flow Analysis. In Proceedings of the 9th

Symposium on Operating Systems Design and

Implementation (OSDI), 2010.

[6] Lakshmi N. Bairavasundaram, Garth R. Goodson,

Shankar Pasupathy, and Jiri Schindler. An Analysis of

Latent Sector Errors in Disk Drives. In Proceedings of

the 2007 ACM Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), 2007.

[7] Lakshmi N. Bairavasundaram, Garth R. Goodson,

Bianca Schroeder, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. An Analysis of Data

Corruption in the Storage Stack. In Proceedings of the

6th USENIX Symposium on File and Storage

Technologies (FAST), 2008.

[8] Robert C. Baumann. Radiation-Induced Soft Errors in

Advanced Semiconductor Technologies. IEEE

Transactions on Device and Materials Reliability

(TDMR), 5(3), September 2005.

[9] Eric Brewer. Spinning Disks and Their Cloudy Future

(Keynote). In Proceedings of the 14th USENIX

Symposium on File and Storage Technologies (FAST),

2016.

[10] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu.

Read Disturb Errors in MLC NAND Flash Memory:

Characterization and Mitigation. In Proceedings of the

International Conference on Dependable Systems and

Networks (DSN), 2015.

[11] Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and

Onur Mutlu. Data Retention in MLC NAND Flash

Memory: Characterization, Optimization, and Recovery.

In Proceedings of the 15th International Symposium on

High Performance Computer Architecture (HPCA-21),

2015.

[12] George Candea and Armando Fox. Crash-Only

Software. In The Ninth Workshop on Hot Topics in

Operating Systems (HotOS IX), 2003.

[13] Christine S. Chan, Boxiang Pan, Kenny Gross, Kenny

Gross, and Tajana Simunic Rosing. Correcting

vibration-induced performance degradation in enterprise

servers. In The Greenmetrics workshop (Greenmetrics),

2013.

[14] Allen Clement, Edmund L. Wong, Lorenzo Alvisi,

Michael Dahlin, and Mirco Marchetti. Making

Byzantine Fault Tolerant Systems Tolerate Byzantine

Faults. In Proceedings of the 6th Symposium on

Networked Systems Design and Implementation (NSDI),

2009.

[15] Daniel J. Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang,

Junghwan Rhee, Nipun Arora, and Geoff Jiang.

PerfScope: Practical Online Server Performance Bug

Inference in Production Cloud Computing

Infrastructures. In Proceedings of the 5th ACM

Symposium on Cloud Computing (SoCC), 2014.

[16] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters. In

Proceedings of the 6th Symposium on Operating Systems

Design and Implementation (OSDI), 2004.

[17] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:

Understanding the Impact of Limpware on Scale-Out

Cloud Systems. In Proceedings of the 4th ACM

Symposium on Cloud Computing (SoCC), 2013.

[18] Thanh Do, Tyler Harter, Yingchao Liu, Haryadi S.

Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. HARDFS: Hardening HDFS with

Selective and Lightweight Versioning. In Proceedings of

the 11th USENIX Symposium on File and Storage

Technologies (FAST), 2013.

[19] Nosayba El-Sayed, Ioan A. Stefanovici, George

Amvrosiadis, Andy A. Hwang, and Bianca Schroeder.

Temperature Management in Data Centers: Why Some

(Might) Like It Hot. In Proceedings of the 2012 ACM

International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS), 2012.

[20] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Redundancy Does Not Imply Fault Tolerance: Analysis

of Distributed Storage Reactions to Single Errors and

Corruptions. In Proceedings of the 15th USENIX

Symposium on File and Storage Technologies (FAST),

2017.

[21] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn

Leesatapornwongsa, Tiratat Patana-anake, Thanh Do,

Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono,

Jeffrey F. Lukman, Vincentius Martin, and Anang D.

Satria. What Bugs Live in the Cloud? A Study of 3000+

Issues in Cloud Systems. In Proceedings of the 5th ACM

Symposium on Cloud Computing (SoCC), 2014.

[22] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,

Agung Laksono, Anang D. Satria, Jeffry Adityatama,

and Kurnia J. Eliazar. Why Does the Cloud Stop

Computing? Lessons from Hundreds of Service Outages.

USENIX Association 16th USENIX Conference on File and Storage Technologies 13

http://ucare.cs.uchicago.edu/projects/failslow/
http://ucare.cs.uchicago.edu/projects/failslow/

In Proceedings of the 7th ACM Symposium on Cloud

Computing (SoCC), 2016.

[23] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,

Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,

Andrew A. Chien, and Haryadi S. Gunawi. MittOS:

Supporting Millisecond Tail Tolerance with Fast

Rejecting SLO-Aware OS Interface. In Proceedings of

the 26th ACM Symposium on Operating Systems

Principles (SOSP), 2017.

[24] Mingzhe Hao, Gokul Soundararajan, Deepak

Kenchammana-Hosekote, Andrew A. Chien, and

Haryadi S. Gunawi. The Tail at Store: A Revelation

from Millions of Hours of Disk and SSD Deployments.

In Proceedings of the 14th USENIX Symposium on File

and Storage Technologies (FAST), 2016.

[25] Peng Huang, Chuanxiong Guo, Lindong Znhou,

Jacob R. Lorch, Yingnong Dang, Murali Chintalapati,

and Randonph Yao. Gray Failure: The Achilles’ Heel of

Cloud Scale Systems. In The 16th Workshop on Hot

Topics in Operating Systems (HotOS XVII), 2017.

[26] Asim Kadav, Matthew J. Renzelmann, and Michael M.

Swift. Tolerating Hardware Device Failures in Software.

In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles (SOSP), 2009.

[27] Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya

Narasimhan. Black-Box Problem Diagnosis in Parallel

File Systems. In Proceedings of the 8th USENIX

Symposium on File and Storage Technologies (FAST),

2010.

[28] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards

SLO Complying SSDs Through OPS Isolation. In

Proceedings of the 13th USENIX Symposium on File and

Storage Technologies (FAST), 2015.

[29] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan

Lu, and Haryadi S. Gunawi. TaxDC: A Taxonomy of

Non-Deterministic Concurrency Bugs in Datacenter

Distributed Systems. In Proceedings of the 21st

International Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), 2016.

[30] Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer,

Surendar Chandra, and Windsor Hsu. RAIDShield:

Characterizing, Monitoring, and Proactively Protecting

Against Disk Failures. In Proceedings of the 13th

USENIX Symposium on File and Storage Technologies

(FAST), 2015.

[31] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur

Mutlu. A Large-Scale Study of Flash Memory Failures

in the Field. In Proceedings of the 2015 ACM

International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS), 2015.

[32] Thanumalayan Sankaranarayana Pillai, Ramnatthan

Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Application Crash Consistency and Performance with

CCFS. In Proceedings of the 15th USENIX Symposium

on File and Storage Technologies (FAST), 2017.

[33] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,

Nitin Agrawal, Haryadi S. Gunawi, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON

file system. In Proceedings of the 20th ACM Symposium

on Operating Systems Principles (SOSP), 2005.

[34] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.

Understanding Latent Sector Errors and How to Protect

Against Them. In Proceedings of the 8th USENIX

Symposium on File and Storage Technologies (FAST),

2010.

[35] Bianca Schroeder and Garth A. Gibson. Disk Failures in

the Real World: What Does an MTTF of 1,000,000

Hours Mean to You? In Proceedings of the 5th USENIX

Symposium on File and Storage Technologies (FAST),

2007.

[36] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.

Flash Reliability in Production: The Expected and the

Unexpected. In Proceedings of the 14th USENIX

Symposium on File and Storage Technologies (FAST),

2016.

[37] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich

Weber. DRAM Errors in the Wild: A Large-Scale Field

Study. In Proceedings of the 2009 ACM International

Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS), 2009.

[38] Brian D. Strom, SungChang Lee, George W. Tyndall,

and Andrei Khurshudov. Hard Disk Drive Reliability

Modeling and Failure Prediction. IEEE Transactions on

Magnetics (TMAG), 43(9), September 2007.

[39] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark,

Huan Ke, Tanakorn Leesatapornwongsa, Bo Fu,

Daniar H. Kurniawan, Vincentius Martin, Uma

Maheswara Rao G., and Haryadi S. Gunawi. PBSE: A

Robust Path-Based Speculative Execution for

Degraded-Network Tail Tolerance in Data-Parallel

Frameworks. In Proceedings of the 8th ACM Symposium

on Cloud Computing (SoCC), 2017.

[40] Eitan Yaakobi, Laura Grupp, Paul H. Siegel, Steven

Swanson, and Jack K. Wolf. Characterization and

Error-Correcting Codes for TLC Flash Memories. In

International Conference on Computing, Networking

and Communications (ICNC), 2012.

[41] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao

Tong, Swaminathan Sundararaman, Andrew A. Chien,

and Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect

Elimination of Garbage Collection Tail Latencies in

NAND SSDs. In Proceedings of the 15th USENIX

Symposium on File and Storage Technologies (FAST),

2017.

[42] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,

Lakshmi N. Bairavasundaram, and Shankar Pasupathy.

An Empirical Study on Configuration Errors in

Commercial and Open Source Systems. In Proceedings

of the 23rd ACM Symposium on Operating Systems

Principles (SOSP), 2011.

14 16th USENIX Conference on File and Storage Technologies USENIX Association

