usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Logical Synchronous Replication in the
Tintri VMstore File System
Gideon Glass, Arjun Gopalan, Dattatraya Koujalagi, Abhinand Palicherla,
and Sumedh Sakdeo, Tintri, Inc

https://www.usenix.org/conference/fast18/presentation/glass

This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.
February 12-15, 2018 » Oakland, CA, USA

ISBN 978-1-931971-42-3

Open access to the Proceedings of

the 16th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

https://www.usenix.org/conference/fast18/presentation/glass

Logical Synchronous Replication in the Tintri VMstore File System

Gideon Glass ¥ Arjun Gopalan, Dattatraya Koujalagi, Abhinand Palicherla, and Sumedh Sakdeo

Tintri, Inc.

{gxglass, arjun91, dattatraya, abhinandh, sumedhsakdeo} @gmail.com

Abstract

A standard feature of enterprise data storage systems
is synchronous replication: updates received from clients
by one storage system are replicated to a remote stor-
age system and are only acknowledged to clients after
having been stored persistently on both storage systems.
Traditionally these replication schemes require configu-
ration on a coarse granularity, e.g. on a LUN, filesys-
tem volume, or whole-system basis. In contrast to this,
we present a new architecture which operates on a fine
granularity—individual files and directories. To imple-
ment this, we use a combination of novel per-file ca-
pabilities and existing techniques to solve the following
problems: tracking parallel writes in flight on indepen-
dent storage systems; replicating arbitrary filesystem op-
erations; efficiently resynchronizing after a disconnect;
and verifying the integrity of replicated data between two
storage systems.

1 Introduction

Synchronous replication in enterprise data storage sys-
tems allows customers to situate redundant storage sys-
tems at campus or metropolitan distances. This provides
continuous availability in the event of hardware failures,
power or cooling failures, or other disasters. One of the
storage systems acts as primary, responsible for accept-
ing 10 from clients. The peer storage system acts as
secondary and is responsible for accepting replicated 10
from the primary system. In the common case when both
storage systems are in a synced state, a cluster failover
involving a role reversal between the primary and sec-
ondary can occur without loss of data.

To handle temporary outages (e.g. minor network
glitches, non-disruptive software upgrades of either stor-
age system), the primary and secondary coordinate to
bring both the storage systems into a consistent state,

*Currently at Google.
Currently at Lyft.

without timing out client operations. To handle outages
of arbitrary duration (e.g. power failure, lengthy network
disruptions, or maintenance related activities) where the
secondary is offline or unreachable by the primary, some
mechanism for efficient resynchronization is required—
once the secondary comes back on line, the primary sys-
tem should be able to generate and replicate the delta
changes that occurred while the secondary was offline.

A related feature that is often supported is transparent
failover. In the event of a failure of the primary storage
system, it enables the secondary system to take over in
a way that does not disrupt client applications—with no
loss of data and no loss of availability. This failover can
be manually driven or automated. Figure 1 illustrates a
typical deployment.

We have addressed the problems of synchronous repli-
cation and transparent failover by designing, implement-
ing, and deploying a system that is flexible, efficient,
and intuitive to use. Our system supports logical syn-
chronous replication—the ability to only replicate a por-
tion of the file system namespace, specified as a top-level
directory. Designing this system involved solving several
sub-problems:

* maximizing the overlap of write execution on the
Primary and Secondary storage systems to mini-
mize latency overhead of mirroring; a novel filesys-
tem metadata mechanism is used for this purpose
(Section 4).

* replicating complex, arbitrary filesystem opera-
tions; a two-phase commit protocol is used for this
(Section 5).

« efficiently resynchronizing the two storage systems
after extended disconnects (Section 6).

Finally, we have implemented a novel distributed in-
tegrity check that allows us to verify periodically or on
demand that Primary and Secondary contain identical
data (Section 7).

USENIX Association

16th USENIX Conference on File and Storage Technologies 295

Site A Site B

host 1| |host 2 host 3 |host 4| |host 5| |host 6|

Asite 10 Gbps+, <=10ms RTT

network

I l

B site
network

I l

low bandwidth
<= 500ms RTT

quorum
service

Figure 1: Generic synchronous replication deployment topol-
ogy with multiple client hosts, a primary storage system, a sec-
ondary storage system, and a quorum service to facilitate auto-
matic failover.

2 VMstore Background

In this section we discuss specific characteristics of our
workloads and why they motivate logical replication, and
our technology base.

2.1 Workload

As its name suggests, VMstore is a specialized storage
system designed for virtualization workloads. By default
the system exposes a single NFS (or SMB) mount point.
On NAS storage, virtual machines (VMs) are typically
stored in self-contained directories named after the VM.
VM directories typically contain on the order of ten to
twenty files, which are either small (e.g. text configu-
ration files) or very large—virtual disk image files cor-
responding to the virtual disks associated with the VM.
VMstore does not support general purpose NFS work-
loads. As a result, the system can be substantially sim-
plified in one dimension: the number of files it is required
to support. VMstore models vary, but support on the or-
der of 100,000 files per system. The median usage is
far below these limits, with most systems having under
10,000 files. This simplification affects our replication-
related design choices and will be discussed in further
sections. A final important aspect of our workload is
that file writes comprise in excess of 99.9% of muta-
tion events; file and directory creation, deletion, renames,
etc are not uncommon but are generally associated with
VM provisioning activities, not with ongoing application
workloads running within VM’s themselves.

Another aspect of the system is the desire to maxi-
mize simplicity for the user. A high priority is placed
on making the system usable by IT generalists and vir-
tualization administrators. As a result, the system does
not expose traditional storage abstractions such as RAID
groups, filesystem volumes, or LUNs to users. Con-
sequently, apart from conceivably replicating the entire

storage array, there is no obvious storage abstraction on
which to expose synchronous replication for configura-
tion purposes. !

From our prior experience with asynchronous replica-
tion, we know that many customers choose not to repli-
cate significant portions of their workloads. As an exam-
ple, a development/test customer may choose to repli-
cate virtual machines housing important data (source
code control system, bug database, etc) but not virtual
machines running automated continuous integration test
workloads. Customers generally are very aware of the
relative differences in value of the data inside the dif-
ferent types of virtual machines in their environments.
Commonly, a minority of VM’s are actually configured
for replication. This varies on a continuum, of course,
but in rough numbers, it is common for, say, 25% of vir-
tual machines to be configured for replication.

Based on these requirements—that enterprise cus-
tomers be able to simply express replication policy on a
subset of the files and their systems and efficiently repli-
cate that data across geographically disparate locations,
we introduce logical synchronous replication as a mech-
anism to continuously replicate fine-grained subsets of
file system state.

2.2 Filesystem Architecture

The VMstore file system is a purpose-built storage sys-
tem implementing all layers of the storage stack from
RAID to file access protocols (NFS and SMB) in a user
level filesystem process. Features expected of an enter-
prise storage system, such as durable writes, automatic
crash recovery (from NVRAM), compression, dedupli-
cation, snapshots, writable clones, and asynchronous
replication are present.

The VMstore file system is a log-structured file sys-
tem [9]. As such, data is never overwritten in place.
Additionally, it implements a transaction system allow-
ing arbitrarily complex metadata updates with ACID se-
mantics. (This system is based on Stasis [10] but with
significant local enhancements to integrate with the VM-
store log-structured storage system.) We use this facil-
ity to construct novel mechanisms to track file writes in
progress and to implement per-file content checksums;
these are discussed in further sections.

For high availability (HA) within a given system, a
VMstore system contains two controllers (x86 servers),
each with its own NVRAM and set of network inter-
faces. The controllers access shared storage devices
(SSD and/or HDD, depending on model). High availabil-
ity is implemented in an active/passive model. For pur-

'Per-VM synchronous replication was an option we considered.
However, this does not work well with transparent failover, discussed in
the next section, because it would require a customer-assigned Cluster
IP address on a per-VM basis.

296 16th USENIX Conference on File and Storage Technologies

USENIX Association

poses of synchronous replication, we do not assume local
high availability; replication simply runs on whichever
local controller is Active.

3 Replication System Overview

This section introduces our synchronous replication sys-
tem, describes its configuration model for users, dis-
cusses error situations and how we handle them, and out-
lines how we support transparent failover.

3.1 Introduction

A requirement from our customer base is to support not
just synchronous replication but also client-transparent
failover across storage systems; customers do not want to
perform any reconfiguration in the event of a total failure
of one storage system, or a data center outage. To dis-
tinguish between local-system HA-related failover and
failover across VMstores in a synchronous replication re-
lationship, we refer to the former as local failover or HA
failover and to the latter as cluster failover. By trans-
parent we mean specifically that clients are not aware
of failovers occurring, except for brief periods of dis-
connection. In particular, no reconfiguration of client
hosts is needed—failover, either local failover or cluster
failover—requires no manual intervention.

In our environment, virtualized guest operating sys-
tems (Linux and Windows) use internal I/O timeouts of
60 seconds or higher. Within VMstore, we require inter-
nal failovers to complete within 30 seconds. This gives
the hypervisor clients enough time to reconnect and reis-
sue I/Os so that guest operating systems do not time out.

We introduce the notion of a mirrored datastore—
essentially an IP address and a mount point—as the basis
for configuring synchronous replication. We require each
mirrored datastore to have a dedicated Cluster IP address
associated with it. This IP address is mounted by clients
for IO operations and fails over between the two storage
systems, similar to how local system Data IP addresses
are failed over during local HA failover. To make this
concrete, Table 1 provides an example showing a mix of
synchronously replicated and unreplicated datastores.

Cluster IP Mount Point Replicated?
10.200.200.5 /tintri No
10.300.100.60 /tintri/alpha Yes
10.300.100.61 /tintri/beta Yes

Table 1: Example client view of datastores on a VMstore.

The network requirements for Cluster IP addresses are
simple: client hosts must be able to reach this address
regardless of which VMstore happens to be the Primary

at any point in time.”

In our system, synchronous replication is applied re-
cursively to all content under the mirrored datastore. In
practice this means that a virtual machine which the cus-
tomer desires to replicate should simply be placed within
a mirrored datastore top-level directory (e.g. /tintri/al-
pha/ImportantMachine), and one which is not desired to
be synchronously replicated should be placed in the top-
level directory (e.g. /tintri/LessImportantMachine). Note
that the contents of alpha and beta from Table 1 may
be replicated to different peer VMstores, or to the same
peer VMstore; they are configured independently and are
managed independently within VMstore. The cluster IP
addresses associated with these datastores are also inde-
pendently managed and are exported by whichever VM-
store system is the replication primary. To simplify error
checking and to avoid problems with conflicting policies,
we allow only top-level subdirectories to be replicated.
The root directory (exported as /tintri) cannot be config-
ured for replication. Customers wanting to replicate their
entire workload can simply place all VM’s within one or
more mirrored datastore subdirectories.

3.2 Failure Model and Operational Re-
quirements

The failure model we assume is as follows. Machines
may fail at any time, e.g. because of software crashes or
power failures. Datacenters or the network may fail any
time and for extended durations. The network may cor-
rupt packets (and go undetected by the TCP checksum);
we detect this via strong checksums in our messaging
protocol and handle it as we would handle a transient
TCP connection loss (i.e. by simply reconnecting). We
assume peers are not malicious/Byzantine and VMstores
always authenticate each other as the first step in each
connection. Finally, individual devices (SSDs or HDDs)
may fail, but lower levels of the filesystem insulate repli-
cation from having to handle device errors.

We now discuss the operational requirements of our
system. Availability is important but consistency (data
integrity) takes precedence over availability when there
is a tradeoff. Availability, in turn, takes precedence over
absolute redundancy. As discussed in detail in Sec-
tion 3.3, this is done by taking the Secondary out of
sync when necessary, and then resychronizing it when
it comes back on line. An optional mode, which we have
not implemented, would be for the Primary to fail 1/0s
which it could not replicate due to the Secondary (or net-
work) being down. This might conceivably be useful for
customers who prioritize absolute redundancy over avail-
ability.

2For cross-site replication, this requires the use of a stretched layer 2
or layer 3 network. Customers who deploy synchronous replication
typically already have this in place.

USENIX Association

16th USENIX Conference on File and Storage Technologies 297

3.3 Replication States

Figure 2 depicts a slightly simplified view of the state of
a given mirrored datastore within a given VMstore sys-
tem. Each VMstore maintains its state for a given data-
store separately, so for a given mirrored datastore there
are really two instances of this state machine operating
in a loosely coupled manner.

The following invariants relate to the state machine

and affect allowable state changes.

1. Only one VMstore may be Primary at any given
time. Whichever system is Primary owns the Clus-
ter IP address and advertises it on the network.

2. Upon initial configuration of synchronous replica-
tion, the Primary system may have a significant
amount of data in the configured subdirectory. An
initialization process is required to bring the Sec-
ondary into sync. The initialization process is es-
sentially a special case of resynchronization (dis-
cussed in Section 6) in which the Secondary hap-
pens to be empty at the start of the process. This
process may take a significant amount of time. The
top row of the state machine contains states related
to initialization/resync. The datastore is not in sync
in these states.

3. During initialization and resync, the Secondary
does not have a complete copy of data. Cluster
failover is not possible until initialization/resync
completes.

4. The normal state of operation is that both systems
are connected and in sync (the Primary is in state
3; the Secondary is in state 7). In this state, client
operations are fully replicated and are persisted to
NVRAM on both systems prior to being acknowl-
edged to clients (i.e., normal synchronous replica-
tion semantics are in effect).

5. Automatic cluster failover (of Secondary to Pri-
mary) requires a quorum—two of three systems. An
external quorum service having storage independent
of the two VMstores is provided for this purpose.
Automatic cluster failover is initiated by an in-sync
Secondary after a period of time (30 seconds) for
which it has not heard from the nominal Primary,
provided the Secondary can communicate with the
quorum service.

6. Conversely, to handle a Secondary which is inacces-
sible, a Primary must undergo a transition to mark
the datastore as being “out of sync” (not shown in
Figure 2). There is a subtlety here: the Secondary,
meanwhile, may have initiated a cluster failover in
conjunction with the quorum service. As a result,
a Primary must coordinate with the quorum service
in order to mark a Secondary as being out of sync,
and must be prepared for this to fail (i.e. if the Sec-
ondary already took over). If that fails, the former

Primary must relinquish ownership of the datastore
and must drop in-flight I/O requests and not return
errors to clients.’

A design choice we enforce is that operations which
can succeed on the Primary but which fail on the Sec-
ondary result in the Primary taking the Secondary out of
sync immediately (a transition from state 3 — state 4
— state 2). The most likely example of this type would
be the Secondary being out of space; less commonly,
the Secondary might encounter some other limit (e.g.,
number of files, number of snapshots) that might prevent
an operation that otherwise can succeed on the Primary.
Again this policy reflects the choice to prioritize avail-
ability over absolute redundancy in some conditions. (To
recover from this condition, the Primary will periodically
reconnect to the Secondary and attempt to resync it; this
will succeed if the user has freed up capacity or otherwise
addressed the constraint that earlier had caused failure.)

The state machine also reflects a practical engineer-
ing consideration: taking the Secondary out of sync then
later resyncing it has a non-trivial minimum cost, and we
seek to avoid taking a Secondary out of sync if possi-
ble. This corresponds to two practical scenarios: brief
network outages, and local HA failovers due to software
crashes and restarts.

In practice this means that we attempt to recover from
brief disconnects (up to approximately 30 seconds) by
pausing client acknowledgments at the Primary, and at-
tempting to reconnect to the Secondary in the back-
ground. If the reconnect attempt succeeds within the
timeout, the Primary will resend buffered, unacknowl-
edged updates (and only then ack the client), and the
system will stay in Sync. The states in the second
row of Figure 2 reflect these activities. “Catching Up”
in the state descriptions refers to replicating (possibly
re-replicating) buffered updates from the Primary; Sec-
tions 4 and 5 discuss this in detail.

The protocol between the VMstores and the quorum
service solves a standard distributed consensus problem
and will not be discussed in detail. The quorum service is
provided by a standalone software application which can
be installed by the customer in a virtual machine either
on premises or in the public cloud; the main operational
requirements are that the storage for the quorum service
must be independent from the VMstores for which it is
arbitrating, and network connectivity to the quorum ser-
vice should be good.

3In practice, a soon-to-be-former Primary that becomes isolated on
the network must relinquish ownership of the mirrored datastore, and
must give up the Cluster IP, before the Secondary takes over, to prevent
both systems from attempting to advertise the Cluster IP on the net-
work. The Primary transitions out of the Primary/Synced/Connected
state using a smaller timeout (e.g. 25 seconds) than the timeout driving
the Secondary’s attempt to initiate cluster failover. These transitions
are not shown on the diagram for brevity.

298 16th USENIX Conference on File and Storage Technologies

USENIX Association

Primary state machine

Filesystem startup --
datastore in any Primary state

New configuration
created by user

1
Primary/
Resyncing/
Connected

2
Primary/
Resyncing/
Disconnected

3.5
3 . 4
Primary/ Primary/ Primary/
Synced/

Synced/ Synced/

Connected/ .
Connected ; Disconnected

Catching Up,

Primary to
Secondary
Manual Failover,

Secondary state machine

New configuration received

by repl destination FS recov-
ery -
Secondary

5
Secondary/
Resyncing/
Connected

6
Secondary/
Resyncing/
Disconnected

7
Secondary/
Synced/
Connected

7.5
Secondary/
Synced/
Connected/
Catching Up

8
Secondary/
Synced/
Disconnected

Secondary to

Primary Manual
Failover

Figure 2: Replication System State Machine. This is shown from the point of view of a mirrored datastore in a single VMstore.
The other VMstore will be in one of the other states. For brevity, states relating to automatic cluster failover are not shown.

3.4 Client Transparency

Implementing transparent cluster failover requires that
clients of a failed storage system be able to reconnect to
the Cluster IP address and see a view of the world exactly
consistent with what they previously saw. This includes
file content, user-visible metadata (path names, file at-
tributes, etc) and client system-visible metadata (e.g.,
NFS file handles). To implement this, we assign internal
file identifiers and NFS file handles as follows. The Pri-
mary makes all such assignments without having to co-
ordinate with the Secondary—the fact that it is Primary
gives it the right to assign these values.*

« File Global Identification. We identify each file
in every mirrored datastore with a globally unique
Fileld. This consists of a 128-bit datastore-specific
UUID and a datastore-relative 64-bit monotonically
increasing counter. The global FileID value is used
extensively within the replication system, as the val-
ues are the same on both systems.

* NFS File Handles must be stable across cluster
failovers. File handles are based on the global

4A side effect of this scheme is that at initialization, if the source
datastore directory contains existing content, that content must be re-
assigned new file identifiers—and consequently, file handles—to avoid
possible conflicts with unrelated existing content on the Secondary. We
require that this content be off-line while this occurs, as clients will en-
counter stale file handles if accessing content during this process. In
practice, customers almost always configure synchronous replication
on empty source directories and migrate data into the mirrored datas-
tore by using live storage migration features (e.g., Storage vMotion) in
the virtualization system.

Fileld. Because only the Primary system assigns
Fileld’s, and because Fileld’s are unique within a
datastore (due to containing the datastore UUID as
a prefix), we avoid any need for granular synchro-
nization to negotiate assignment of these values.

¢ Operation sequencing: Operation Sequence Num-

bers (OSN’s) are used to globally order all opera-
tions within a mirrored datastore. An OSN consists
of a 64-bit cluster generation number, incremented
whenever a cluster failover occurs, and a 64-bit lo-
cal sequence number, assigned and incremented on
the cluster Primary for every new incoming opera-
tion. Replicated operations are tagged with OSN’s
for bookkeeping purposes.

During a cluster failover in which a Primary loses
ownership of a datastore, the system must be able to iden-
tify stale operations and drop them, rather than execute
them. A full description of the solution to this problem is
beyond the scope of this paper, but to summarize, we tag
all requests entering the system with tokens which con-
tain among other things the cluster generation number.
Requests tagged with generation numbers older than the
current generation number must be dropped.

4 Data Path: Writes

Minimizing write latency is an important consideration
in primary storage systems. Users expect write latencies
on unreplicated systems to be at most small numbers of
milliseconds. Replication distances are typically small.
Industry-wide guidance typically calls for not more than

USENIX Association

16th USENIX Conference on File and Storage Technologies 299

SMB/RPC Receive 10 from SMB/RPC Receive 10 from
Client Client

! !

OPERATION SPLITTER S OPERATION SPLITTER
Y
; c :
C
e R -
QoS Admission E QoS Admission
Control Control
P
!) !
P
FileOps FileOps R FileOps FileOps
OTHER WRITE/READ o OTHER WRITE/READ
T
7 0 7
C
HANDSHAKE o HANDSHAKE
L
SMB/RPC Send Response SMB/RPC Send Response
to Client to Client

PRIMARY
10 STACK

SECONDARY
10 STACK

Figure 3: 10 stack with operation splitting and handshake for
synchronous replication between a pair of storage systems.

10ms RTT between storage systems; customers com-
monly deploy with 1-2ms RTT. In order to maximize
overlap between write execution on the Primary, repli-
cation of writes to the Secondary, and write execution
on the Secondary, we perform replication processing as
early in the pipeline as possible.

Figure 3 depicts logical steps in write processing
inside the VMstore file system. The top box indi-
cates protocol processing for Microsoft SMB [1] or
RPC/XDR [11, 12] processing for NFS. The module la-
beled “operation splitter” refers to front-end synchronous
replication processing—it splits write operations for lo-
cal processing and enqueues them for transmission to
the Secondary. The operation can then traverse various
stages of the pipeline in parallel on both the storage sys-
tems. In case one storage system is under contention, the
operation would experience queueing delays only on that
individual storage system.

The modules labeled “FileOps Write/Read”, and
“FileOps Other” correspond to existing 1O stack process-
ing for reads, writes, and all other operations (file cre-
ations, deletions, truncations, directory operations, etc).
Once operations have executed locally within the Pri-
mary VMstore, flow returns to synchronous replication
in the box labeled “Handshake Module”. On the Primary,
the handshake module will hold onto the write operation
until the Secondary sends an acknowledgement for this
write or until such time as synchronous replication al-
lows the operation to be acknowledged to the protocol
client, whichever is sooner. The latter corresponds to
when the response from the Secondary takes longer than
the allowed time forcing the Primary to go out of sync (as
described in Section 3.3). On the Secondary, the hand-

shake module will hold onto the write operation until the
Primary has acknowledged completing the write to the
Secondary. This step is required because the Secondary
keeps track of writes that are still pending execution on
the Primary and the acknowledgement from the Primary
is used to free up metadata for the write on the Secondary
(discussed below).

4.1 File Locks

The desire to achieve maximum parallelism within the
system must be balanced against concerns for correct-
ness. Here are some cases that illustrate these considera-
tions:

1. Suppose a file is created and then is immediately
written. What happens on the Secondary if, because
of queueing at different points in processing within
the system, the write operation is able to be pro-
cessed on the Secondary before the file create oper-
ation completes its processing? The Secondary may
have allowed the Primary to acknowledge the file
creation to the client before the Secondary has ac-
tually finished processing the file creation—the op-
eration may have been intent-logged only (this is
discussed in Section 5).

2. What happens if a client issues a write to a given
file, at a given [Offset, Byte Count], and then issues
a separate, overlapping write before the first write
has acknowledged? How do we ensure that these
writes are processed in the same order on the two
systems?

In designing our replication system, an important con-
sideration was to avoid modifying a lot of the existing
file system logic as far as possible. In VMstore, meta-
data operations (e.g. file creates) are executed by threads
in a particular thread pool. Write operations are executed
separately by a software pipeline involving a different set
of threads.

To address these issues, the operation splitter module
(Figure 3) imposes two kinds of file locks: per-file oper-
ation locks and range locks. The per-file operation locks
are acquired by reads, writes, and metadata operations
prior to their execution. Reads and writes acquire oper-
ation locks in a shared mode, whereas metadata opera-
tions like truncate, file create, rename, etc acquire them
in an exclusive mode. This causes metadata operations
to be executed in isolation on both the storage systems
and solves case 1 above. To address case 2, we introduce
range locks maintained on a tuple consisting of < FileID,
StartOffset, RequestSize >. Write and read operations
acquire locks using the respective offset and byte count
values specified in the operation. This allows reads and
writes to non-overlapping byte ranges to execute in par-
allel. In practice lock contention is not a problem be-
cause clients do not issue update patterns that inherently

300 16th USENIX Conference on File and Storage Technologies

USENIX Association

race. This is because guest operating systems are gener-
ally careful to avoid issuing multiple outstanding writes
to overlapping ranges of disk blocks.

4.2 Metadata Support and Distributed Re-
covery of Writes

As noted earlier, one of the challenges of any syn-
chronous replication system is to keep track of all writes
in progress. We leverage a combination of NVRAM and
our flexible metadata transactional system for this pur-
pose. For each synchronous replication datastore, we
maintain a persistent hash table that contains one en-
try per in-flight write. Entry tuples are <Fileld, OSN,
byte offset, length> with OSN being the key. We re-
fer to these tuples as PAW Entries (“Primary Acknowl-
edgement Waiting”) on the Primary. On the Secondary,
the same set of tuples are maintained for writes which
have been received and executed and we refer to them as
SAW entries (“Secondary Acknowledgement Waiting”).
To summarize, the presence of a PAW entry means that
the Primary is waiting for an acknowledgement from the
Secondary and the presence of a SAW entry means that
the Secondary is waiting for an acknowledgement from
the Primary.

PAW/SAW metadata is associated with each write op-
eration as it proceeds through various write processing
stages within VMstore. As part of the metadata trans-
action which updates file metadata to point to a newly-
written block, the transaction also commits a PAW entry
identifying the block in question. This is done both on
the Primary and the Secondary. Identifying all blocks
which may be dirty on both sides requires iterating over
all PAW/SAW records in the mirrored datastore. The
cost of this is proportional to the number of in-flight IOs
in the system, which is bounded. If the system under-
goes a local HA failover before the transaction commits
and persists, the PAW/SAW information can be retrieved
from NVRAM along with the data and other information
about the write.

The PAW/SAW update sequence across the two sys-
tems is as follows:

1. When processing a write, the Primary will create a

local PAW entry;

2. After receiving the write, the Secondary will have
stabilized the write to NVRAM and will subse-
quently create a SAW entry for itself; the Secondary
then acks the write to the Primary;

3. At this point (and after its local NVRAM update
is finished), the Handshake Module on the Primary
acks the write to the client;

4. Simultaneously, the Primary acks the Secondary’s
ack and releases its PAW entry;

5. Upon receipt of the second ack, the Secondary can
free its SAW entry.

Note that the Secondary commits writes to NVRAM
and SSD storage independent of the Primary. As a result,
scenarios like the following are possible:

1. Primary receives writes W1 and W2 (could be to the

same or different files).

2. These writes are mirrored to Secondary and are en-
queued for local processing on Primary.

3. Primary writes W2 persistently. However, before
writing W1 to NVRAM, the Primary crashes and
performs a local HA failover.

4. Secondary writes W1 persistently. However, before
writing W2 to NVRAM, the Secondary crashes and
also performs a local HA failover.

5. The Primary and Secondary complete local HA
failovers independently.

6. After recovering, the Primary is able to connect to
the Secondary and must now reconcile W1 and W2.

To handle this situation and really any situation where
a Primary and Secondary have become disconnected
(and one or both may have restarted), after every recon-
nect we perform what we call distributed recovery. This
happens regardless of whether the systems are in-sync or
not. To handle in-progress unacknowledged writes, both
sides iterate over all the PAW/SAW entries in the datat-
store. The Secondary sends its set to the Primary which
merges it with its own. Then, the Primary simply reads
out its copy of data for all blocks involved and sends the
data to the Secondary to rewrite the relevant blocks. This
ensures that the datastore contents are identical upon the
completion of distributed recovery (for the in-sync case).
Once this completes, new writes are allowed into the sys-
tem on the Primary.

In the scenario described above, W2 is persisted on
Secondary for the first time as part of distributed recov-
ery. With respect to W1, the data on Secondary under-
goes a rollback to the contents as dictated by the Primary.
This is correct because neither W1 nor W2 was acknowl-
edged to the client prior to the sequence of crashes.’

At some point it is necessary to remove PAW/SAW en-
tries to bound the work involved in distributed recovery.
If the write has persisted on the Secondary, and the Pri-
mary has an acknowledgement of that, the correspond-
ing PAW entry is deleted on the Primary. Similarly, if the
write has persisted on the Primary, and the Secondary has
an acknowledgement for that, the corresponding SAW
entry is deleted on the Secondary. PAW and SAW entry
deletions correspond to Steps 4 and 5 respectively in the
PAW/SAW update sequence described above.

SPresumably the client will reconnect per its normal logic and reis-
sue both writes to the Primary. However, if the client also crashes—
which is fine—then both the Primary and Secondary end up with only
write W2 written persistently. This is also fine: there is no guarantee
about whether the storage systems stabilized an unacknowledged write,
and there is no ordering guarantee between simultaneously executing
unacknowledged writes.

USENIX Association

16th USENIX Conference on File and Storage Technologies 301

5 General Filesystem Operations

We use the term metadata operations (or just metadata
ops) to refer to all filesystem modifications other than file
writes. Many of these operations are familiar POSIX/N-
FSv3 operations: file creation and deletion, directory cre-
ation and deletion, rename, setattr, link creation, and so
on. Additionally, we implement several proprietary op-
erations. A full description of these operations is beyond
the scope of this paper, but to summarize, the operations
are space reservation (in which the system attempts to re-
serve physical capacity for the full logical size of a given
file); file-level snapshot creation and deletion; and file-
level clone creation.®

Metadata ops differ from writes in several important
ways. While they are not infrequent (they may occur tens
to hundreds of times per second, in active provisioning
workloads), they are much less frequent than writes, giv-
ing us more implementation flexibility. Second, whereas
writes can be undone simply by reading out data from
the Primary and overwriting whatever data may exist on
the Secondary (Section 4.2), there is no equivalent mech-
anism available to undo metadata operations. Thus, a
more general mechanism is required to track in-flight
metadata ops.

5.1 Operation Logging and States

We implement a scheme similar to two-phase commit to
ensure that both systems track metadata ops and agree
that they can be executed prior to executing them. Prior
to being executed, metadata operations along with their
respective OSN’s, operation-specific arguments, etc., are
intent logged on both sides. Physically, the log is simply
a space-reserved file in a hidden, unreplicated portion of
the file system. One intent log is maintained for each mir-
rored datastore. Log updates are efficient: we utilize the
existing file write path which provides low-latency stable
writes via NVRAM. The log size is not large because the
log can be logically truncated regularly with no impact
on performance. Note that the log is not used when the
datastore is out of sync, so there are no limitations arising
from log storage capacity.

Figure 4 depicts the general flow for metadata opera-
tions. To summarize, both sides log each operation along
with an operation state:

* PENDING

« COMMITTED

SVMstore implements VM level snapshots as point-in-time snap-
shots over the set of files comprising the physical embodiment of the
virtual machine: various metadata files and the virtual disk files, and
possibly files capturing dynamic state, e.g. memory and swap. Within
VMstore, a VM level snapshot consists of a set of file-level snapshots,
taken atomically, and a certain amount of snapshot-wide metadata. VM
level clones are implemented by instantiating a set of file-level clones,
writable files which reference an underlying base snapshot in a read-
only manner.

Primary Node Secondary Node

Receive the op

Receive the op,
validate the op and assign a OSN

Failed ¢
Reserve resources required for
guaranteed execution

[Write to intent log and mirror the op

‘alidate and reserve
resource for guaranteed
execution

Mirror Op

Success

Wait for secondary
response

. Write to intent log
i COMMITTED

COMMITTED

I

Execute op

Update intent log w/ : _
ROLLED_BACK state ! Commit to stable
storage/NVRAM

Commit to stable |
storage/NVRAM : Send COMMITTED
to Priman
————>| ACK client with success/error
End of Primary execution

End of Secondary
execution

Figure 4: Metadata operation execution scheme that imple-
ments a two-phase commit protocol.

* ROLLED_BACK

Either side may decide that an operation may not suc-
ceed, for a variety of operation-specific reasons. For ex-
ample, space reservation may fail on the Secondary but
not on the Primary. In general, the protocol gives the
Secondary the opportunity to determine if an operation
should fail.

The first step in processing is for the Primary to vali-
date the request (arguments are valid, resources are avail-
able, etc). If this fails, an immediate failure is returned
to the client. If this succeeds, the operation is logged in
the PENDING state and the operation is replicated to the
Secondary. This Secondary then decides whether the op-
eration can succeed. For operations which the Secondary
cannot execute, it simply sends a ROLLED_BACK reply
to the Primary. For successful operations, the Secondary
first logs them in the COMMITTED state, then executes
them, then sends a COMMIT reply back to the Primary.
At this point the Primary executes the operation.

As part of executing metadata operations, the exist-
ing code paths all utilize the VMstore transaction mech-
anism. We augment these code paths to tag each file with
the OSN of each completed operation for reasons dis-
cussed in the next section. Finally, when both sides fin-
ish executing the operation, file locks are released, and
the Primary is allowed to acknowledge the operation to
the client.

5.2 Distributed Recovery For Metadata
Operations

Crash recovery for metadata operations must handle the

same sort of considerations that were discussed above

for write operations: messages may be lost; local HA

302 16th USENIX Conference on File and Storage Technologies

USENIX Association

failovers may occur at any time; etc. To recover in-flight
metadata operations, we adopt an approach conceptually
similar to what we used for in-flight write operations. We
consolidate intent log entries on both sides by finding all
entries in the COMMITTED state in both systems’ intent
logs. Note that, as it is implemented currently, the Sec-
ondary always commits a given entry first: it does this
before sending a reply to the Primary that, upon receipt,
allows the Primary to commit the operation. Thus, dis-
tributed recovery for metadata ops involves scanning the
live portion of the intent log on the Primary for commit-
ted operations and simply sending them all to the Sec-
ondary. By definition, every log entry in the intent log
that is in the COMMITTED state needs to be reapplied
if it has not already been applied. Both the Primary and
Secondary also take care of this during system start up.

In general, metadata operations are not idempotent.
Some are, but we handle the general case and ensure that
all metadata operations are executed exactly once. Log
replay handles this simply and efficiently by comparing
each operation’s OSN with the last-executed OSN on
the respective files. Operations which have already been
done are simply ignored. The same OSN based compar-
ison is also used in the replay of write operations where
these writes are just discarded if the corresponding files
have subsequently been deleted.

Because of the need to correctly interleave meta-
data operations with file writes, the relationship between
metadata distributed recovery and file write distributed
recovery is simple: metadata distributed recovery is done
first, then file writes are recovered. This ensures that files
are created prior to writes being recovered.

6 Data Path: Resync

Efficient resynchronization is important in any syn-
chronous replication scheme, because the alternative is
basically untenable: rereplicate the entire copy of data
from the Primary, possibly tens to hundreds of terabytes.
This section describes how we perform resynchroniza-
tion using file-level snapshots.

As discussed in Section 3, our threshold for extended
disconnects is 30 seconds, after which one of two things
can happen—the Secondary takes over and becomes Pri-
mary (in conjunction with a Quorum Server), or the Pri-
mary marks the Secondary as being “out of sync”. In
the latter case, the Primary stops replicating operations
to the Secondary but continues to execute them locally.
This will be the state of the datastore on the Secondary
until the Secondary becomes reachable again, at which
point we begin the process of resync. To allow for effi-
cient resync some method is needed to track incremental
changes that occurred after the systems went out of sync.

In VMstore we leverage efficient per-file snapshots
that are implemented internally as a linked list of per-

sistent delta B-trees by the filesystem metadata layer. At
the time of going out of sync, the Primary will create a
special resync snapshot on all file(s) within the affected
mirrored datastore. (This is possible because our snap-
shots are relatively cheap, and the number of files, as
mentioned earlier, is bounded and small.) The state of
the Secondary can be determined by the Primary in the
future when it is time to perform resync, from the com-
bination of the data captured in the resync snapshots and
the metadata about writes in-flight tracked via the PAW/-
SAW entries. When resync begins, the Primary is able to
efficiently identify data written after going out of sync by
observing the delta between the time at which the resync
snapshots were created and the current filesystem state.
No work is required to materialize these deltas; they are
maintained directly by the underlying filesystem meta-
data layer and can simply be read out on a per-file basis.

When the systems are out of sync, arbitrary filesystem
manipulations may occur on the Primary—files and di-
rectories may be deleted, renamed, created from scratch,
etc. One of the goals for resync is to avoid replicating
updates to files which have subsequently been deleted
on the Primary. Of course, the basic requirement is that
resync must bring the Secondary into a state of being
identical with the Primary. With this in mind, we per-
form resync processing in three steps:

1. Bring the Secondary into a state of being identical
with the content in the resync snapshots. This ap-
plies to files which existed at the time the Secondary
went out of sync, and is skipped for files created af-
ter the systems went out of sync. Arbitrary meta-
data operations that were in-flight when going out
of sync are also reapplied on the Secondary.

2. Bring the Secondary directory namespace into sync
with the Primary. This handles all deletions, re-
names, and file creations that occurred while out of
sync. This also enables us to replicate new names-
pace manipulation operations while resyncing.

3. Resync file content on a file by file basis. Within
each file, resync on an offset range by offset range
basis.

Step (1) is similar to the distributed recovery proce-
dure discussed above that we run immediately after con-
necting in-sync systems that have been briefly discon-
nected; the difference is that with resync, the file content
must be read from the file-level resync snapshots on the
Primary, not from the current live version of the file. As
with the distributed recovery scheme, the PAW/SAW per-
sistent metadata identifies blocks which were subject to
in-flight writes at the time the systems went out of sync.
Note that after going out of sync, the PAW/SAW meta-
data is essentially frozen to preserve the knowledge of
which blocks had ongoing writes until the time we can
use this information in resync. For files which exist on

USENIX Association

16th USENIX Conference on File and Storage Technologies 303

both Secondary and Primary (this is the normal case for
long lived workloads), after this step, the Secondary is
now identical in content to the Primary at the time the
resync snapshot was taken on the Primary.

Step (2) allows us to optimize out writes that occurred
to files which were subsequently deleted on the Primary,
and to generally reclaim these files on the Secondary as
early as possible. This reduces pressure for filesystem
capacity on the Secondary and avoids scenarios where
the Secondary may run out of space simply because it
hasn’t yet deleted files that we know have been deleted
from the Primary.

Finally in Step (3) we iterate over all files on the Pri-
mary. The delta between the current file’s content and
the resync snapshot can be extracted efficiently on the
Primary and the data read out and sent. Internally in
VMstore, files are identified by a local Fileld value, a 64-
bit monotonically increasing sequence number. Files are
resynced in increasing order of local Fileld. This makes
it fairly simple to persistently track resync progress;
within a given mirrored datastore, we store a single lo-
cal Fileld value persistently during resync. Similarly, the
offset within the resync snapshot is checkpointed as well.
This allows resync to resume without performing a large
amount of re-replication of data in the event of a local
crash and restart on the Primary while it is performing
resync. Checkpointing resync progress at a granular level
is important because large virtual disk files (e.g., in ex-
cess of 10TiB) are not uncommon.

New writes to files which have been created after the
systems begin resync and writes to offset ranges in files
that have already been resynced are handled by mirroring
them synchronously. This ensures that resync converges
toward completion, i.e. it does not run the risk of falling
behind incoming live writes and never completing.

6.1 Handling user-created snapshots
VMstore implements VM-level snapshots (scheduled or
manual) using per-file snapshots. These per-file snap-
shots are atomically created across the set of files com-
prising a given VM. This complicates resync. At the start
of resync, there may exist file level snapshots on the Pri-
mary which were created while the systems were out of
sync. Conversely, there may exist file-level snapshots
on the Secondary which were deleted from the Primary
while the systems were out of sync. Similar to how file
deletions are replicated during resync prior to sending
incremental data, we replicate discrete snapshot deletion
operations first, prior to replicating snapshot contents.
With the exception of clone create, snapshot create,
and snapshot delete operations, most of the metadata op-
erations that the Primary receives while resyncing are
replicated to the Secondary immediately because the
namespaces are in-sync. New snapshot creates are only

replicated if the files involved are in-sync on the Sec-
ondary. Snapshot deletes are only replicated if the snap-
shot has been resynced to the Secondary. Clone creates
are only replicated if the required backing snapshot is
present on the Secondary. The resync process must even-
tually take care of replicating any of these operations if
they are delayed from being replicated at the time they
were issued to the Primary. Note that these operations
themselves are not logged; the resulting file system state
(the set of snapshots and clones) is discovered by the lo-
cal Fileld-based iteration described above.

7 Distributed Integrity Verification

The VMstore file system implements an incrementally-
updated per-file content checksum for purposes of data
integrity verification. The checksum is neither a cryp-
tographic checksum nor a guarantee that corruption has
not occurred; rather it is a probabilistic mechanism de-
signed as an extra check on top of many other mech-
anisms (transactions, crash recovery, NVRAM, careful
design, code review, thorough testing, etc) used collec-
tively to ensure data integrity.

The checksum physically comprises approximately
1KB of metadata; file writes update portions of this
checksum based on the file offset being written and the
block content itself. Each block write updates the check-
sum using 7 bits derived from data in the write. The
checksum metadata updates are performed efficiently us-
ing the transactional metadata mechanism noted in Sec-
tion 2 (essentially the related metadata updates—system-
wide statistics, file statistics, B-Tree updates to point to
new blocks, etc—are logged together). Additionally, at
the time of snapshot creation, a file’s current checksum
is stored with the associated file-level snapshot metadata.

The checksum values are used in several places. Dur-
ing file deletion, each block’s checksum contribution is
logically subtracted from the remaining file checksum
value, and at the end of deletion, the checksum must be
logically zero. Similar logic is used when truncating a
file to zero bytes in size.

In synchronous replication, the basic requirement to
maintain identical copies of files on both systems (as
long as the systems are in sync) enables us to leverage
the file content checksums for integrity verification. In-
tegrity verification involves the following steps. First,
writes and other operations are temporarily paused using
the exclusive file-level lock mechanism described in Sec-
tion 4.1. Next, in-flight operations are flushed through
the system. Following this, the Primary reads out its per-
file checksum values and sends them to the Secondary,
which reads out its values and compares them. These
checksums are expected to match across the two systems.

In order to avoid blocking file operations for an ex-
tended period of time, which could be the case if the data-

304 16th USENIX Conference on File and Storage Technologies

USENIX Association

store contains several thousands of files, distributed in-
tegrity checking is done in a batched manner. This allows
us to acquire file-level locks one batch at a time as op-
posed to for the entire datastore. The batch size is chosen
such that integrity checking is transparent to clients—it
lasts at most a few seconds for any given file—and such
that it minimizes network communication.

Content checksum mismatches are expected never to
occur in practice. However, if they are encountered, the
system takes the Secondary out of sync and lets the Pri-
mary continue servicing client IOs, to avoid interruption
of service. Additionally the system logs the affected files
and their checksum values on both sides. The differences
in the checksums allow us to identify a set of candidate
file blocks that may be different, and if the number of
blocks in this set is below a threshold, the systems ad-
ditionally read out and save off the affected blocks for
later inspection. This mechanism has been occasionally
useful in debugging the system during development.

In production we run the verification procedure such
that each file is checked once every 24 hours, provided
that the datastore is in-sync. Additionally, we also proac-
tively perform checksum verifications at certain points,
e.g. just prior to user-initiated cluster failover and at the
end of resync.

8 Evaluation

We have implemented a heavily multithreaded write
pipeline, each stage of which does asynchronous pro-
cessing. This improves performance and also isolates
processing of mirrored and non-mirrored datastore re-
quests. We evaluated our implementation to answer the
following questions:
* What is the overhead of synchronous replication on
read and write throughput?
e What is the impact of the VMstore network RTT on
client latency for various write workloads?

CPU Xeon E5-2630 v2 (2x6 cores, 2.60GHz)
RAM 64GB DDR3 at 1600 Mhz

Flash 11x480GB SATA SSDs

Disks 13x4TB SAS SED HDDs

NIC Intel X540-T2 at 10Gbps

Table 2: VMstore hardware configuration used in experiments.

Experiment setup: We used two VMstores running
Tintri OS 4.3 (see Table 2 for hardware conﬁguration7);
one as the Primary and the other as the Secondary con-
nected to each other through a 10Gbps ethernet link. We

TAs it happens, we used model T850, introduced in 2014, for these
experiments. Two generations of newer hardware families have suc-
ceeded this model, so performance on current systems will be higher.

1,233 1,233 1,233 1,233

1,200 |- writes baseline

Bwrites w/ sync repl
1.000 reads baseline

H reads w/ sync repl

800 - 718

o0
£
e

=
)

600

Throughput (MiB/sec)

400

200

R S S S S NS SSSSSSSNSSNSSNS SIS
N N Y

.Y
RN NANTNLNNNNNNNNNNNNNNNNNY

10 size (KiB)

Figure 5: Throughput comparison between baseline perfor-
mance and performance with synchronous replication for dif-
ferent 10 sizes. The RTT was 100 us; no additional delay was
induced in the network.

also had a Linux-based physical client machine which
was connected to the Primary through a 10Gbps ether-
net link. A tool that drives synthetic 10 traffic over NFS
was used to generate random read and write 10 traffic
with 8KiB, 64KiB and 256KiB block sizes. These 10
sizes were chosen because they represent the majority
of workload sizes observed in VM workloads. The net-
work RTT between both the VMstores and between the
client and the primary VMstore as measured by ping us-
ing a packet size of 64 bytes was observed to be 100s
on average. In some experiments, we used the fc (traffic
control) Linux utility to vary the RTT between the two
VMstores.

8.1 Throughput

Figure 5 graphs read and write throughput for various 10
sizes—8KiB, 64KiB and 256KiB under two scenarios:
i) baseline performance when synchronous replication
is not enabled, and ii) performance when synchronous
replication is enabled.

Synchronous replication imposes a 43% overhead in
throughput for 8KiB writes, 11% for 64KiB writes and
6-7% for 256KiB writes. The difference is significant for
8KiB writes because of the per-request processing over-
head of replication in our system. This is due to file range
locks, sending the request through various queues, mem-
ory allocation, and other assorted software overhead.

Synchronous replication imposes a very minor over-
head on read performance; about 8% for 8KiB reads.
This is because reads to files in synchronously replicated
datastores also have to acquire shared file locks. Larger
64KiB and 256KiB IO size reads end up saturating the
10 Gbps network link even when synchronous replica-

USENIX Association

16th USENIX Conference on File and Storage Technologies 305

14
12

£ 10|

P

2 st

o)

S 6|

2

2 4

Q
2, .
0 | | |

0.1 1 5 10
RTT (ms)

Figure 6: Impact of VMstore network RTT on client latency
for various write workloads. For each workload, the client-side
load was kept constant for all RTT values.

Throughput(MiB/sec)
Workload 0.lms | Ims | Sms | 10 ms
8KiB 205 167 80 50
64KiB 725 660 | 340 | 250
256KiB 754 671 380 | 240

Table 3: Write throughput for different RTT values. The client-
side load was fixed for each workload as the RTT was varied.

tion is enabled because bulk data movement dominates
the fixed processing costs in the file system.

Performance in our system is subject to continuous im-
provement; with techniques like batching of small writes
and write acknowledgements over the network, tuning of
TCP connection performance and optimizing read-only
workloads, we are confident that we can improve the
performance of small reads and writes in subsequent re-
leases of our software.

8.2 Latency

Figure 6 graphs the average client visible latency for var-
ious write workloads and for different values of RTT be-
tween the two VMstores. For all 10O sizes, the trend ob-
served is expected. The client visible latency increases
as the RTT increases because every write has to be syn-
chronously replicated to the Secondary. Additionally, as
discussed in Section 4, the execution of writes on the
Primary and Secondary is allowed to overlap. So, for
lower values of RTT, the individual VMstore IO process-
ing times will dominate the client latency and there is a
value of RTT beyond which the RTT will start to domi-
nate the client latency. This RTT crossover point depends
on the cost of 10 processing in the file system as well as
the cost of mirroring and is hence workload dependent.
We also observe that the client latencies for 8KiB
writes and 64KiB writes are close to each other at lower
RTT values even though the latter has a higher mirroring
cost. This is because various parts of the Tintri VMstore

file system are optimized for 64KiB IO requests.

The difference in the client latency and the RTT gives
the average overhead from synchronous replication and
10 processing. From Figure 6, we observe that this over-
head remains constant at around 3-4 ms for all work-
loads. This is expected because for a fixed client-side
queue depth, any increase in the RTT should only affect
the end-to-end client latency and not the latency over-
head from synchronous replication. Of course, another
consequence of this is reduced throughput. Table 3 cap-
tures the actual throughput observed at different RTT val-
ues.

9 Implementation Experience and Lessons
Learned

Currently the system is in production use at dozens of
sites globally. This section discusses our experiences in
designing, building, testing, and deploying the system.

Usability: Space limitations prevent us from present-
ing our user interfaces for configuring the system, oper-
ational monitoring, and latency visualization. However,
it is fair to say that the feedback from customers about
the usability of the system has been extremely positive.
The one area where there is a usability challenge relates
to functionality which we deferred implementing, dis-
cussed next.

Functionality: From the beginning we designed for
automated cluster failover. However, there was acute
pressure to deliver some functionality to customers as
quickly as possible. As a result, we elected to deliver
functionality in a phased manner, and did not make au-
tomatic cluster failover available initially. In retrospect,
demand for automatic cluster failover was higher than
anticipated, and lack of this support has delayed adop-
tion of the system to some extent.

Performance: Apart from the up-front design work
to integrate replication carefully with the existing write
pipeline (Section 4) to allow maximal parallelization, we
did a modest amount of performance tuning specifically
on the replication data paths. There is more that could
be done to reduce the throughput gap between unrepli-
cated writes and replicated writes, especially at 8KiB.
However, as anticipated, the ability to let customers eas-
ily not replicate large portions of their workloads, com-
bined with the performance-related work that we did do,
has had the net result that there have been minimal per-
formance problems in practice.

Complexity: Prior to undertaking synchronous repli-
cation, we had implemented asynchronous snapshot-
based replication in VMstore. Synchronous replica-
tion is significantly more complex for a number of rea-
sons. First, it necessarily involves fairly significant sur-
gical modifications to various write paths and high level

306 16th USENIX Conference on File and Storage Technologies

USENIX Association

filesystem operation implementations. By comparison,
asynchronous replication on the source system only has
to consume snapshots after their creation, and the snap-
shot abstraction generally insulates asynchronous repli-
cation from the dynamic churn of ongoing filesystem
operations. Second, synchronous replication must at-
tempt to ensure both low latency and high through-
put; asynchronous replication only needs to deliver suf-
ficient throughput. Third, asynchronous replication has
no equivalent of client transparent failover or automated
cluster failover; failovers involve external reconfigura-
tion of the customer’s virtualization environment, imple-
mented by higher level disaster recovery orchestration
software, not by the filesystem replication system.

As a result, the synchronous replication implemen-
tation required roughly three times as many lines of
code compared to asynchronous replication (approxi-
mately 100,000 and 35,000, respectively). Additionally,
the asynchronous replication code is more self-contained
and hence simpler to reason about. To a first approxima-
tion synchronous replication took perhaps five times the
number of person-months of engineering effort, spread
over roughly twice as much calendar time.

Correctness: The distributed data integrity verifica-
tion mechanism (Section 7) proved invaluable during de-
velopment and testing. The per-file content checksums
on which this mechanism depends had previously been
implemented a number of years before we began the syn-
chronous replication project, and had been used exten-
sively in internal testing. We had not enabled file content
checksums in production due to lingering performance
issues in certain scenarios. As part of the synchronous
replication project, we decided early on to do the work
necessary to allow us to enable the file content check-
sums in production. This allowed us to build the dis-
tributed integrity checking mechanism on top of the file
content checksum mechanism. This took several months
of effort on the part of several engineers, but was surely
worth it. This mechanism caught a handful of subtle bugs
during development and internal testing. However, in a
year of shipping the system to dozens of customers, we
have not experienced a single data path related customer
found defect; the distributed data integrity check has not
failed in production.

10 Related Work

In general, synchronous replication schemes in commer-
cial enterprise storage systems are not well described in
the literature. Seneca [7] describes a detailed taxonomy
of design choices for remote mirroring, and a design for a
remote mirroring protocol with correctness validation us-
ing I/0 automata-based simulation. It also presents some
details of existing systems as of 2003, many of which are
still in use. Snapmirror [8] discusses an asynchronous

replication scheme of using self-consistent snapshots of
the data mirrored from a source to a destination volume.
The focus is on system performance at the cost of data
loss. The tolerance to data loss is proportional to the fre-
quency of taking and mirroring snapshots.

For resynchronization, some enterprise data storage
systems (e.g., Symmetrix [4] and Linbit [2]) use bitmaps
to keep track of writes that have been processed on the
primary but not yet replicated to the secondary. Other
systems (e.g., MetroCluster [6]) use filesystem volume
level snapshots or system-wide snapshots to achieve this.
In contrast, our system uses granular per-file metadata
and file-level snapshots.

Some enterprise storage systems also implement syn-
chronous replication to guarantee zero divergence in
data between a pair of storage systems. EMC Recov-
erPoint [4] supports synchronous replication over IP or
over FibreChannel network. Their host-based I/O split-
ting technology is used to mirror application writes with
minimal perceivable impact on host performance. HP
3PAR Peer Persistence [5] maintains a synchronized
copy of data between a pair of storage nodes, with
the host maintaining an active path to one array and a
standby path to the other array. A transparent failover
and failback between this pair of storage nodes is made
possible using a Quorum Witness. These systems oper-
ate on the basis of LUNs and thus require significantly
more operational expertise compared to our system.

Veritas Volume Replicator [3] is a host-based soft-
ware system. It makes use of Storage Replicator Log
which is essentially a circular buffer to persistently re-
member writes to be queued for replication to the sec-
ondary. Writes have to be first written to this storage
replicator log, then replicated to the secondary for persis-
tence. This serialization of 1Os is suboptimal compared
to our scheme where writes occur in parallel on the pri-
mary and secondary.

11 Conclusion

We have implemented logical synchronous replication, a
new approach to solving an old problem. We have intro-
duced novel mechanisms to track writes in-flight and rec-
oncile them across systems after reconnects. Addition-
ally, we leverage two-phase commit to replicate complex
filesystem operations, and granular per-file snapshots to
implement efficient resynchronization. A datastore-wide
distributed data integrity verification procedure built on a
novel per-file checksum scheme ensures that the system
is operating correctly. The flexibility of replicating only
a selected portion of a filesystem has proven intuitive and
easy to use by users.

USENIX Association

16th USENIX Conference on File and Storage Technologies 307

12 Acknowledgments

We would like to thank Fred Douglis, Mark Grit-
ter, Tyler Harter, Ed Lee, and Ashok Sudarsanam for
their helpful comments on early drafts of this pa-
per. The anonymous reviewers and our shepherd,
Andy Warfield, provided insightful feedback that greatly
enhanced the presentation of our material. We would like
to thank our management at Tintri (Ashok Sudarsanam,
Tom Theaker, Tony Chang, and Kieran Harty) for their
support in publishing this paper. Finally, we would like
to thank the many engineers at Tintri, past and present,
who contributed to building this system.

References

[1] [MS-SMB2]: Server Message Block (SMB)
Protocol Versions 2 and 3. https:
//msdn.microsoft.com/en-us/library/
cc246482. aspx.

[2] The quick-sync bitmap. https://docs.
linbit.com/doc/users-guide-83/
s-quick-sync-bitmap/.

[3] Veritas volume replicator option by symantec.
http://eval.symantec.com/mktginfo/
products/White_Papers/Storage_Server_
Management/sf_vvr_wp.pdf, 2006. White
paper guide to understanding volume replicator.

[4] EMC VNX Replication Technolo-
gies an overview. https://wuw.
emc.com/collateral/white-papers/

[9]

[10]

(11]

[12]

Owara. Snapmirror®: File system based asyn-
chronous mirroring for disaster recovery. In Pro-
ceedings of the 1st USENIX Conference on File and
Storage Technologies, FAST 02, pages 9-9, Berke-
ley, CA, USA, 2002. USENIX Association.

Mendel Rosenblum and John K Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
(TOCS), 10(1):26-52, 1992.

Russell Sears and Eric Brewer. Stasis: Flexible
transactional storage. In Proceedings of the 7th
Symposium on Operating Systems Design and Im-
plementation, OSDI °06, pages 29-44, Berkeley,
CA, USA, 2006. USENIX Association.

Raj Srinivasan. RPC: Remote Procedure Call Pro-
tocol Specification Version 2. RFC 1831, August
1995.

Raj Srinivasan. XDR: External Data Representa-
tion Standard. RFC 1832, August 1995.

h12079-vnx-replication-technologies-overview-wp.

pdf, 2015. White paper highlighting EMC VNX
replication technology.

[5] Implementing vsphere metro storage clus-
ter using hpe 3par peer persistence.
https://www.hpe.com/h20195/V2/GetPDF.
aspx/4AA4-TT734ENW.pdf, 2016. White paper
highlighting HPE 3PAR Peer Persistence.

[6] MetroCluster management and disaster recovery
guide. https://library.netapp.com/ecm/
ecm_download_file/ECMLP2495113, 2017.
White paper highlighting MetroCluster.

[7] Minwen Ji, Alistair C. Veitch, and John Wilkes.
Seneca: remote mirroring done write. In Proceed-
ings of the General Track: 2003 USENIX Annual
Technical Conference, June 9-14, 2003, San Anto-
nio, Texas, USA, pages 253-268. USENIX, 2003.

[8] Hugo Patterson, Stephen Manley, Mike Feder-
wisch, Dave Hitz, Steve Kleiman, and Shane

308

16th USENIX Conference on File and Storage Technologies

USENIX Association

https://msdn.microsoft.com/en-us/library/cc246482.aspx
https://msdn.microsoft.com/en-us/library/cc246482.aspx
https://msdn.microsoft.com/en-us/library/cc246482.aspx
https://docs.linbit.com/doc/users-guide-83/s-quick-sync-bitmap/
https://docs.linbit.com/doc/users-guide-83/s-quick-sync-bitmap/
https://docs.linbit.com/doc/users-guide-83/s-quick-sync-bitmap/
http://eval.symantec.com/mktginfo/products/White_Papers/Storage_Server_Management/sf_vvr_wp.pdf
http://eval.symantec.com/mktginfo/products/White_Papers/Storage_Server_Management/sf_vvr_wp.pdf
http://eval.symantec.com/mktginfo/products/White_Papers/Storage_Server_Management/sf_vvr_wp.pdf
https://www.emc.com/collateral/white-papers/h12079-vnx-replication-technologies-overview-wp.pdf
https://www.emc.com/collateral/white-papers/h12079-vnx-replication-technologies-overview-wp.pdf
https://www.emc.com/collateral/white-papers/h12079-vnx-replication-technologies-overview-wp.pdf
https://www.emc.com/collateral/white-papers/h12079-vnx-replication-technologies-overview-wp.pdf
https://www.hpe.com/h20195/V2/GetPDF.aspx/4AA4-7734ENW.pdf
https://www.hpe.com/h20195/V2/GetPDF.aspx/4AA4-7734ENW.pdf
https://library.netapp.com/ecm/ecm_download_file/ECMLP2495113
https://library.netapp.com/ecm/ecm_download_file/ECMLP2495113

