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Abstract
Recent improvements in both the performance and
scalability of shared-nothing, transactional, in-memory
NewSQL databases have reopened the research question
of whether distributed metadata for hierarchical file sys-
tems can be managed using commodity databases. In this
paper, we introduce HopsFS, a next generation distribu-
tion of the Hadoop Distributed File System (HDFS) that
replaces HDFS’ single node in-memory metadata service,
with a distributed metadata service built on a NewSQL
database. By removing the metadata bottleneck, HopsFS
enables an order of magnitude larger and higher through-
put clusters compared to HDFS. Metadata capacity has
been increased to at least 37 times HDFS’ capacity, and
in experiments based on a workload trace from Spotify,
we show that HopsFS supports 16 to 37 times the through-
put of Apache HDFS. HopsFS also has lower latency for
many concurrent clients, and no downtime during failover.
Finally, as metadata is now stored in a commodity data-
base, it can be safely extended and easily exported to
external systems for online analysis and free-text search.

1 Introduction
Distributed file systems are an important infrastructure
component of many large scale data-parallel processing
systems, such as MapReduce [13], Dryad [27], Flink [5]
and Spark [77]. By the end of this decade, data cen-
ters storing multiple exabytes of data will not be uncom-
mon [12, 47]. For large distributed hierarchical file sys-
tems, the metadata management service is the scalability
bottleneck [62]. Many existing distributed file systems
store their metadata on either a single node or a shared-
disk file systems, such as storage-area network (SAN),
both of which have limited scalability. Well known ex-
amples include GFS [17], HDFS [61], QFS [41], Far-
site [3], Ursa Minor [2], GPFS [58], Frangipani [67],
GlobalFS [50], and Panasas [73]. Other systems scale out
their metadata by statically sharding the namespace and
storing the shards on different hosts, such as NFS [44],
AFS [36], MapR [64], Locus [49], Coda [57], Sprite [40]
and XtreemFS [26]. However, statically sharding the
namespace negatively affects file system operations that
cross different shards, in particular move operation. Also,
it complicates the management of the file system, as ad-
ministrators have to map metadata servers to namespace

shards that change in size over time.
Recent improvements in both the performance and

scalability of shared-nothing, transactional, in-memory
NewSQL [42] databases have reopened the possibility of
storing distributed file system metadata in a commodity
database. To date, the conventional wisdom has been that
it is too expensive (in terms of throughput and latency) to
store hierarchical file system metadata fully normalized
in a distributed database [59, 33].

In this paper we show how to build a high throughput
and low operational latency distributed file system using
a NewSQL database. We present HopsFS, a new distribu-
tion of the Hadoop Distributed File System (HDFS) [61],
which decouples file system metadata storage and man-
agement services. HopsFS stores all metadata normalized
in a highly available, in-memory, distributed, relational
database called Network Database (NDB), a NewSQL
storage engine for MySQL Cluster [38, 54]. HopsFS
provides redundant stateless servers (namenodes) that in
parallel, read and update metadata stored in the database.

HopsFS encapsulates file system operations in dis-
tributed transactions. To improve the performance of file
system operations, we leverage both classical database
techniques such as batching (bulk operations) and write-
ahead caches within transactions, as well as distribution
aware techniques commonly found in NewSQL databases.
These distribution aware NewSQL techniques include ap-
plication defined partitioning (we partition the namespace
such that the metadata for all immediate descendants of a
directory (child files/directories) reside on the same data-
base shard for efficient directory listing), and distribution
aware transactions (we start a transaction on the data-
base shard that stores all/most of the metadata required
for the file system operation), and partition pruned index
scans (scan operations are localized to a single database
shard [78]). We also introduce an inode hints cache for
faster resolution of file paths. Cache hits when resolving a
path of depth N can reduce the number of database round
trips from N to 1.

However, some file system operations on large direc-
tory subtrees (such as move, and delete) may be too large
to fit in a single database transaction. For example, delet-
ing a folder containing millions of files cannot be per-
formed using a single database transaction due to the
limitations imposed by the database management system
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on the number of operations that can be included in a
single transaction. For these subtree operations, we in-
troduce a novel protocol that uses an application level
distributed locking mechanism to isolate large subtrees
to perform file system operations. After isolating the
subtrees large file system operations are broken down
into smaller transactions that execute in parallel for per-
formance. The subtree operations protocol ensures that
the consistency of the namespace is not violated if the
namenode executing the operation fails.

HopsFS is a drop-in replacement for HDFS. HopsFS
has been running in production since April 2016, provid-
ing Hadoop-as-a-Service for researchers at a data center
in Luleå, Sweden [63]. In experiments, using a real-world
workload generated by Hadoop/Spark applications from
Spotify, we show that HopsFS delivers 16 times higher
throughput than HDFS, and HopsFS has no downtime
during failover. For a more write-intensive workload,
HopsFS delivers 37 times the throughput of HDFS. To the
best of our knowledge HopsFS is the first open-source dis-
tributed file system that stores fully normalized metadata
in a distributed relational database.

2 Background
This section describes Hadoop Distributed File System
(HDFS) and MySQL Cluster Network Database (NDB)
storage engine.

2.1 Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) [61] is
an open source implementation of the Google File Sys-
tem [17]. HDFS’ metadata is stored on the heap of single
Java process called the Active NameNode (ANN), see
Figure 1. The files are split into small (typically 128 MB)
blocks that are by default triple replicated across the data-
nodes. For high availability of the metadata management
service, the Active namenode logs changes to the meta-
data to journal servers using quorum based replication.
The metadata change log is replicated asynchronously
to a Standby NameNode (SbNN), which also performs
checkpointing functionality. In HDFS, the ZooKeeper co-
ordination service [25] enables both agreement on which
machine is running the active namenode (preventing a
split-brain scenario) as well as coordinating failover from
the active to the standby namenode.

The namenode serves requests from potentially thou-
sands of datanodes and clients, and keeps the metadata
strongly consistent by executing the file system opera-
tions atomically. The namenode implements atomic oper-
ations using a single global lock on the entire file system
metadata, providing single-writer, multiple-readers con-
currency semantics. Some large file system operations
are not atomic, as they would hold the global lock for
too long, starving clients. For example, deleting large
directories is performed in batches, with inodes first be-
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Figure 1: System architecture for HDFS and HopsFS. For high availabil-
ity, HDFS requires an Active NameNode (ANN), at least one Standby
NameNode (SbNN), at least three Journal Nodes for quorum-based
replication of the write ahead log of metadata changes, and at least
three ZooKeeper instances for quorum based coordination. HopsFS
supports multiple stateless namenodes that access the metadata stored
in NDB database nodes.

ing deleted, then the blocks are deleted in later phases.
Moreover, as writing namespace changes to the quorum
of journal nodes can take long time, the global file system
lock is released before the operation is logged to prevent
other clients from starving. Concurrent clients can ac-
quire the file system lock before the previous operations
are logged, preventing starvation, at the cost of inconsis-
tent file system operations during namenode failover. For
example, when the active namenode fails all the changes
that are not logged to the journal nodes will be lost.

The datanodes are connected to both active and standby
namenodes. All the datanodes periodically generate a
block report containing information about its own stored
blocks. The namenode processes the block report to vali-
date the consistency of the namenode’s blocks map with
the blocks actually stored at the datanode.

In HDFS the amount of metadata is quite low relative
to file data. There is approximately 1 gigabyte of meta-
data for every petabyte of file system data [62]. Spotify’s
HDFS cluster has 1600+ nodes, storing 60 petabytes of
data, but its metadata fits in 140 gigabytes Java Virtual
Machine (JVM) heap. The extra heap space is taken by
temporary objects, RPC request queues and secondary
metadata required for the maintenance of the file system.
However, current trends are towards even larger HDFS
clusters (Facebook has HDFS clusters with more than 100
petabytes of data [48]), but current JVM garbage collec-
tion technology does not permit very large heap sizes, as
the application pauses caused by the JVM garbage collec-
tor affects the operations of HDFS [22]. As such, JVM
garbage collection technology and the monolithic archi-
tecture of the HDFS namenode are now the scalability
bottlenecks for Hadoop [62]. Another limitation with this
architecture is that data structures are optimized to reduce
their memory footprint with the result that metadata is
difficult to modify or export to external systems.

2.2 Network Database (NDB)
MySQL Cluster is a shared-nothing, replicated, in-
memory, auto-sharding, consistent, NewSQL relational
database [38]. Network DataBase (NDB) is the storage
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engine for MySQL Cluster. NDB supports both datanode-
level and cluster-level failure recovery. The datanode-
level failure recovery is performed using transaction redo
and undo logs. NDB datanodes also asynchronously snap-
shot their state to disk to bound the size of logs and to
improve datanode recovery time. Cluster-level recovery
is supported using a global checkpointing protocol that
increments a global epoch-ID, by default every 2 sec-
onds. On cluster-level recovery, datanodes recover all
transactions to the latest epoch-ID.

NDB horizontally partitions the tables among storage
nodes called NDB datanodes. NDB also supports applica-
tion defined partitioning (ADP) for the tables. Transaction
coordinators are located at all NDB datanodes, enabling
high performance transactions between data shards, that
is, multi-partition transactions. Distribution aware trans-
actions (DAT) are possible by providing a hint, based
on the application defined partitioning scheme, to start
a transaction on the NDB datanode containing the data
read/updated by the transaction. In particular, single row
read operations and partition pruned index scans (scan
operations in which a single data shard participates) bene-
fit from distribution aware transactions as they can read
all their data locally [78]. Incorrect hints result in addi-
tional network traffic being incurred but otherwise correct
system operation.

2.2.1 NDB Data Replication and Failure Handling
NDB datanodes are organized into node groups, where
the data replication factor, R, determines the number of
datanodes in a node group. Given a cluster size N, there
are N/R node groups. NDB partitions tables (hash parti-
tioning by default) into a fixed set of partitions distributed
across the node groups. New node groups can be added
online, and existing data is automatically rebalanced to
the new node group. A partition is a fragment of data
stored and replicated by a node group. Each datanode
stores a copy (replica) of the partition assigned to its node
group. In NDB, the default replication degree is two,
which means that each node group can tolerate one NDB
datanode failure as the other NDB datanode in the node
group contains a full copy of the data. So, a twelve node
NDB cluster has six node groups can tolerate six NDB
datanode failures as long as there is one surviving NDB
datanode in each of the node groups. To tolerate multiple
failures within a node group, the replication degree can
be increased at the cost of lower throughput.

2.2.2 Transaction Isolation
NDB only supports read-committed transaction isolation,
which guarantees that any data read is committed at the
moment it is read. The read-committed isolation level
does not allow dirty reads but phantom and fuzzy (non-
repeatable) reads can happen in a transaction [7]. How-
ever, NDB supports row level locks, such as, exclusive

(write) locks, shared (read) locks, and read-committed
locks that can be used to isolate conflicting transactions.

3 HopsFS Overview
HopsFS is a fork of HDFS v2.0.4. Unlike HDFS, HopsFS
provides a scale-out metadata layer by decoupling the
metadata storage and manipulation services. HopsFS sup-
ports multiple stateless namenodes, written in Java, to
handle clients’ requests and process the metadata stored
in an external distributed database, see Figure 1. Each
namenode has a Data Access Layer (DAL) driver that,
similar to JDBC, encapsulates all database operations
allowing HopsFS to store the metadata in a variety of
NewSQL databases. The internal management (house-
keeping) operations, such as datanode failure handling,
must be coordinated amongst the namenodes. HopsFS
solves this problem by electing a leader namenode that is
responsible for the housekeeping. HopsFS uses the data-
base as shared memory to implement a leader election
and membership management service. The leader election
protocol assigns a unique ID to each namenode, and the
ID of the namenode changes when the namenode restarts.
The leader election protocol defines an alive namenode as
one that can write to the database in bounded time, details
for which can be found in [56].

Clients can choose between random, round-robin, and
sticky policies for selecting a namenode on which to exe-
cute file system operations. HopsFS clients periodically
refresh the namenode list, enabling new namenodes to
join an operational cluster. HDFS v2.x clients are fully
compatible with HopsFS, although they do not distribute
operations over namenodes, as they assume there is a
single active namenode. Like HDFS, the datanodes are
connected to all the namenodes, however, the datanodes
send the block reports to only one namenode. The leader
namenode load balances block reports over all alive name-
nodes.

In section 4, we discuss how HopsFS’ auto sharding
scheme enables common file system operations to read
metadata using low cost database access queries. Sec-
tion 5 discusses how the consistency of the file system
metadata is maintained by converting file system op-
erations into distributed transactions, and how the la-
tency of the distributed transactions is reduced using
per-transaction and namenode level caches. Then, in
section 6, a protocol is introduced to handle file system
operations that are too large to fit in a single database
transaction.

4 HopsFS Distributed Metadata
Metadata for hierarchical distributed file systems typically
contains information on inodes, blocks, replicas, quotas,
leases and mappings (directories to files, files to blocks,
and blocks to replicas). When metadata is distributed,
an application defined partitioning scheme is needed to
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Op Name Percentage Op Name Percentage
append file 0.0% content summary 0.01%
mkdirs 0.02% set permissions 0.03% [26.3%∗]
set replication 0.14% set owner 0.32 % [100%∗]
delete 0.75% [3.5%∗] create file 1.2%
move 1.3% [0.03%∗] add blocks 1.5%
list (listStatus) 9% [94.5%∗] stat (fileInfo) 17% [23.3%∗]
read (getBlkLoc) 68.73% Total Read Ops 94.74%

Table 1: Relative frequency of file system operations for Spotify’s HDFS
cluster. List, read, and stat operations account for ≈ 95% of the meta-
data operations in the cluster.
∗Of which, the relative percentage is on directories

shard the metadata and a consensus protocol is required to
ensure metadata integrity for operations that cross shards.
Quorum-based consensus protocols, such as Paxos, pro-
vide high performance within a single shard, but are typ-
ically combined with transactions, implemented using
the two-phase commit protocol, for operations that cross
shards, as in Megastore [6] and Spanner [10]. File sys-
tem operations in HopsFS are implemented primarily
using multi-partition transactions and row-level locks in
MySQL Cluster to provide serializability [23] for meta-
data operations.

The choice of partitioning scheme for the hierarchical
namespace is a key design decision for distributed meta-
data architectures. We base our partitioning scheme on
the expected relative frequency of HDFS operations in
production deployments and the cost of different data-
base operations that can be used to implement the file
system operations. Table 1 shows the relative frequency
of selected HDFS operations in a workload generated by
Hadoop applications, such as, Pig, Hive, HBase, MapRe-
duce, Tez, Spark, and Giraph at Spotify. List, stat and file
read operations alone account for ≈ 95% of the opera-
tions in the HDFS cluster. These statistics are similar to
the published workloads for Hadoop clusters at Yahoo [1],
LinkedIn [52], and Facebook [65]. Figure 2a shows the
relative cost of different database operations. We can see
that the cost of a full table scan or an index scan, in which
all database shards participate, is much higher than a par-
tition pruned index scan in which only a single database
shard participates. HopsFS metadata design and meta-
data partitioning enables implementations of common file
system operations using only the low cost database opera-
tions, that is, primary key operations, batched primary key
operations and partition pruned index scans. For example,
the read and directory listing operations, are implemented
using only (batched) primary key lookups and partition
pruned index scans. Index scans and full table scans were
avoided, where possible, as they touch all database shards
and scale poorly.

4.1 Entity Relation Model
In HopsFS, the file system metadata is stored in tables
where a directory inode is represented by a single row in
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Figure 2: (a) Shows the relative cost of different operations in NewSQL
database. (b) HopsFS avoids FTS and IS operations as the cost these
operation is relatively higher than PPIS, B, and PK operations.
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Figure 3: All the inodes in a directory are partitioned using a parent
inode ID, therefore, all the immediate children of /user directory are
stored on NDB-DN-3 for efficient directory listing, for example, ls /user.
The file inode related metadata for /user/foo.txt is stored on NDB-DN-4
for efficient file reading operations, for example, cat /user/foo.txt.

the Inode table. File inodes, however, have more associ-
ated metadata, such as a set of blocks, block locations,
and checksums that are stored in separate tables.

Figure 3 shows the Entity Relational model depicting
key entities in the HopsFS metadata model. Files and di-
rectories are represented by the Inode entity that contains
a reference to its parent inode (parent inode ID) in the file
system hierarchy. We store path individual components,
not full paths, in inode entries. Each file contains multiple
blocks stored in the Block entity. The location of each
block replica is stored in the Replica entity. During its life-
cycle a block goes through various phases. Blocks may
be under-replicated if a datanode fails and such blocks
are stored in the under-replicated blocks table (URB).
The replication manager, located on the leader namenode,
sends commands to datanodes to create more replicas of
under-replicated blocks. Blocks undergoing replication
are stored in the pending replication blocks table (PRB).
Similarly, a replica of a block has various states during
its life-cycle. When a replica gets corrupted, it is moved
to the corrupted replicas (CR) table. Whenever a client
writes to a new block’s replica, this replica is moved to
the replica under construction (RUC) table. If too many
replicas of a block exist (for example, due to recovery of a
datanode that contains blocks that were re-replicated), the
extra copies are stored in the excess replicas (ER) table
and replicas that are scheduled for deletion are stored in
the invalidation (Inv) table. Note that the file inode related
entities also contain the inode’s foreign key (not shown in
Figure 3) that is also the partition key, enabling HopsFS to
read the file inode related metadata using partition pruned
index scans.
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4.2 Metadata Partitioning
With the exception of hotspots (see the following subsec-
tion), HopsFS partitions inodes by their parents’ inode
IDs, resulting in inodes with the same parent inode being
stored on the same database shard. This has the effect of
uniformly partitioning the metadata among all database
shards and it enables the efficient implementation of the
directory listing operation. When listing files in a direc-
tory, we use a hinting mechanism to start the transaction
on a transaction coordinator located on the database shard
that holds the child inodes for that directory. We can
then use a pruned index scan to retrieve the contents of
the directory locally. File inode related metadata, that is,
blocks, replica mappings and checksums, is partitioned
using the file’s inode ID. This results in metadata for a
given file all being stored in a single database shard, again
enabling efficient file operations, see Figure 3.

4.2.1 Hotspots
A hotspot is an inode that receives a high proportion of
file system operations. The maximum number of file
system operations that can be performed on a ’hot’ inode
is limited by the throughput of the database shard that
stores the inode. Currently, HopsFS does not have any
built in mechanisms for identifying hotspots at run time.

All file system operations involve resolving the path
components to check for user permissions and validity of
the path. The root inode is shared among all file system
valid paths. Naturally the root inode is read by all file
system path resolution operations. The database shard
that stores the root inode becomes a bottleneck as all file
system operations will retrieve the root inode from the
same database shard. HopsFS caches the root inode at all
the namenodes. In HopsFS, the root inode is immutable,
that is, we do not allow operations, such as, renaming,
deleting or changing the permissions of the root inode.
Making the root inode immutable prevents any inconsis-
tencies that could result from its caching.

In HopsFS, all path resolution operations start from the
second path component (that is, the top level directories).
For the top-level directories, our partitioning scheme in-
advertently introduced a hotspot – all top-level directories
and files are children of the root directory, and, therefore,
resided on the same database shard. Operations on those
inodes were handled by a single shard in the database. To
overcome this bottleneck, HopsFS uses a configurable di-
rectory partitioning scheme where the immediate children
of the top level directories are pseudo-randomly parti-
tioned by hashing the names of the children. By default,
HopsFS pseudo-randomly partitions only the first two lev-
els of the file system hierarchy, that is, the root directory
and its immediate descendants. However, depending on
the file system workloads it can be configured to pseudo-
randomly partition additional levels at the cost of slowing

down move and ls operations at the top levels of the file
system hierarchy.

5 HopsFS Transactional Operations
Transactional metadata operations in HopsFS belong to
one of the two categories: Inode operations that oper-
ate on single file, directory or block (for example, cre-
ate/read file, mkdir, and block state change operations),
and subtree operations that operate on an unknown num-
ber of inodes, potentially millions, (for example, recursive
delete, move, chmod, and chown on non-empty directo-
ries).

This section describes how HopsFS efficiently encap-
sulates inode operations in transactions in NDB. The
strongest transaction isolation level provided by NDB
is read-committed, which is not strong enough to provide
at least as strong consistency semantics as HDFS which
uses single global lock to serialize all HDFS operations.
To this end, we use row-level locking to serialize con-
flicting inode operations. That is, the operations execute
in parallel as long as they do not take conflicting locks
on the same inodes. However, taking multiple locks in a
transaction could lead to extensive deadlocking and trans-
action timeouts. The reasons are:
Cyclic Deadlocks: In HDFS, not all inode operations fol-
low the same order in locking the metadata which would
lead to cyclic deadlocks in our case. To solve this prob-
lem, we have reimplemented all inode operations so that
they acquire locks on the metadata in the same total order,
traversing the file system tree from the root down to leave
nodes using left-ordered depth-first search.
Lock Upgrades: In HDFS, many inode operations con-
tain read operations followed by write operations on the
same metadata. When translated into database operations
within the same transaction, this results in deadlocking
due to lock upgrades from read to exclusive locks. We
have examined all locks acquired by the inode operations,
and re-implemented them so that all data needed in a trans-
action is read only once at the start of the transaction (see
Lock Phase, section 5.2.1) at the strongest lock level that
could be needed during the transaction, thus preventing
lock upgrades.

5.1 Inode Hint Cache
Resolving paths and checking permissions is by far the
most common operation in most HDFS workloads, see
Table 1. In HDFS, the full path is recursively resolved into
individual components. In HopsFS for a path of depth N,
it would require N roundtrips to the database to retrieve
file path components, resulting in high latency for file
system operations.

Similar to AFS [36] and Sprite [40], we use hints [30]
to speed up the path lookups. Hints are mechanisms to
quickly retrieve file path components in parallel (batched
operations). In our partitioning scheme, inodes have a
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composite primary key consisting of the parent inode’s
ID and the name of the inode (that is, file or directory
name), with the parent inode’s ID acting as the partition
key. Each namenode caches only the primary keys of the
inodes. Given a pathname and a hit for all path compo-
nents directories, we can discover the primary keys for all
the path components which are used to read the path com-
ponents in parallel using a single database batch query
containing only primary key lookups.

5.1.1 Cache Consistency
We use the inode hint cache entries to read the whole
inodes in a single batch query at the start of a transaction
for a file system operation. If a hint entry is invalid, a
primary key read operation fails and path resolution falls
back to recursive method for resolving file path compo-
nents, followed by repairing the cache. Cache entries
infrequently become stale as move operations, that update
the primary key for an inode, are less than 2% of oper-
ations in typical Hadoop workloads, see Table 1. More-
over, typical file access patterns follow a heavy-tailed
distribution (in Yahoo 3% of files account for 80% of ac-
cesses [1]), and using a sticky policy for HopsFS clients
improves temporal locality and cache hit rates.

5.2 Inode Operations
HopsFS implements a pessimistic concurrency model that
supports parallel read and write operations on the names-
pace, serializing conflicting inode and subtree operations.
We chose a pessimistic scheme as, in contrast to opti-
mistic concurrency control, it delivers good performance
for medium to high levels of resource utilization [4], and
many HDFS clusters, such as Spotify’s, run at high load.
Inode operations are encapsulated in a single transaction
that consists of three distinct phases, which are, lock,
execute, and update phases.

5.2.1 Lock Phase
In the lock phase, metadata is locked and read from the
database with the strongest lock that will be required for
the duration of the transaction. Locks are taken in the
total order, defined earlier. Inode operations are path-
based and if they are not read-only operations, they only
modify the last component(s) of the path, for example, rm
/etc/conf and chmod +x /bin/script. Thus, only the last
component(s) of the file paths are locked for file system
operations.

Figure 4 shows a transaction template for HopsFS inode
operations. Using the inode hint cache the primary keys
for the file path components are discovered, line 1. The
transaction is started on the database shard that holds all
or most of the desired data, line 2. A batched operation
reads all the file path components up to the penultimate
path component without locking (read-committed) the
metadata, line 3. For a path of depth N, this removes N-1
round trips to the database. If the inode hints are invalid

1. Get hints from the inodes hint cache
2. Set partition key hint for the transaction
BEGIN TRANSACTION
LOCK PHASE:
3. Using the inode hints, batch read all inodes

up to the penultimate inode in the path
4. If (cache miss || invalid path component) then

recursively resolve the path & update the cache
5. Lock and read the last inode
6. Read Lease, Quota, Blocks, Replica, URB, PRB, RUC,

CR, ER, Inv using partition pruned index scans
EXECUTE PHASE:
7. Process the data stored in the transaction cache
UPDATE PHASE:
8. Transfer the changes to database in batches
COMMIT/ABORT TRANSACTION

Figure 4: Transaction template showing different optimization tech-
niques, for example, setting a partition key hint to start a distribution
aware transaction, inode hints to validate the file path components using
a batch operation, and partition pruned index scans to read all file inode
related metadata.

then the file path is recursively resolved and the inode
hint cache is updated, line 4.

After the path is resolved, either a shared or an exclu-
sive lock is taken on the last inode component in the path,
line 5. Shared locks are taken for read-only inode opera-
tions, while exclusive locks are taken for inode operations
that modify the namespace. Additionally, depending on
the operation type and supplied operation parameters,
inode related data, such as block, replica, and PRB, are
read from the database in a predefined total order using
partition pruned scans operations, line 6.

HopsFS uses hierarchical locking [19] for inode opera-
tions, that is, if data is arranged in tree like hierarchy and
all data manipulation operations traverse the hierarchy
from top to bottom, then taking a lock on the root of the
tree/subtree implicitly locks the children of the tree/sub-
tree. The entity relation diagram for file inode related
data, see Figure 3, shows that the entities are arranged
in a tree with an inode entity at the root. That is, taking
a lock on an inode implicitly locks the tree of file inode
related data. As in all operations, inodes are read first,
followed by its related metadata. For some operations,
such as creating files/directories and listing operations,
the parent directory is also locked to prevent phantom and
fuzzy reads for file system operations.

5.2.2 Per-Transaction Cache
All data that is read from the database is stored in a per-
transaction cache (a snapshot) that withholds the propaga-
tion of the updated cache records to the database until the
end of the transaction. The cache saves many round trips
to the database as the metadata is often read and updated
multiple times within the same transaction. Row-level
locking of the metadata ensures the consistency of the
cache, that is, no other transaction can update the meta-
data. Moreover, when the locks are released upon the
completion of the transaction the cache is cleared.
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5.2.3 Execute and Update Phases
The inode operation is performed by processing the meta-
data in the per-transaction cache. Updated and new meta-
data generated during the second phase is stored in the
cache which is sent to the database in batches in the fi-
nal update phase, after which the transaction is either
committed or rolled back.

6 Handling Large Operations
Recursive operations on large directories, containing mil-
lions of inodes, are too large to fit in a single transaction,
that is, locking millions of rows in a transaction is not sup-
ported in existing online transaction processing systems.
These operations include move, delete, change owner,
change permissions, and set quota operations. Move op-
eration changes the absolute paths of all the descendant
inodes, while delete removes all the descendant inodes,
and the set quota operation affects how all the descendant
inodes consume disk space or how many files/directories
they can create. Similarly changing the permissions or
owner of a directory may invalidate operations executing
at the lower subtrees.

6.1 Subtree Operations Protocol
Our solution is a protocol that implements subtree opera-
tions incrementally in batches of transactions. Instead of
row level database locks, our subtree operations protocol
uses an application-level distributed locking mechanism
to mark and isolate the subtrees. We serialize subtree
operations by ensuring that all ongoing inode and subtree
operations in a subtree complete before a newly requested
subtree operation is executed. We implement this serial-
ization property by enforcing the following invariants: (1)
no new operations access the subtree until the operation
completes, (2) the subtree is quiesced before the subtree
operation starts, (3) no orphaned inodes or inconsistencies
arise if failures occur.

Our subtree operations protocol provides the same con-
sistency semantics as subtree operations in HDFS. For
delete subtree operation HopsFS provides even stronger
consistency semantics. Failed delete operations in HDFS
can result in orphaned blocks that are eventually re-
claimed by the block reporting subsystem (hours later).
HopsFS improves the semantics of delete operation as
failed operations does not cause any metadata inconsis-
tencies, see section 6.2. Subtree operations have the fol-
lowing phases.

Phase 1: In the first phase, an exclusive lock is ac-
quired on the root of the subtree and a subtree lock flag
(which also contains the ID of the namenode that owns
the lock) is set and persisted in the database. The flag is
an indication that all the descendants of the subtree are
locked with exclusive (write) lock.

Before setting the lock it is essential that there are no
other active subtree operations at any lower level of the

/

/tmp

SubTree
locking

progresses
downwards

delete 
progresses 

upwards/tmp

/

... ... ... ...

Figure 5: Execution of a delete subtree operation. Parallel transactions
progress down (shown left) the subtree waiting for active operations to
finish by taking and releasing write locks on all the descendant inodes.
In the next phase (shown right), the delete operation is executed in
batches using parallel transactions upwards from the leaf nodes.

subtree. Setting the subtree lock could fail active subtree
operations executing on a subset of the subtree. We store
all active subtree operations in a table and query it to
ensure that no subtree operations are executing at lower
levels of the subtree. In a typical workload, this table
does not grow too large as subtree operations are usually
only a tiny fraction of all file system operations. It is
important to note that during path resolution, inode and
subtree operations that encounter an inode with a subtree
lock turned on voluntarily abort the transaction and wait
until the subtree lock is removed.

Phase 2: To quiesce the subtree we wait for all ongo-
ing inode operations to complete by taking and releasing
database write locks on all inodes in the subtree in the
same total order used to lock inodes. To do this efficiently,
a pool of threads in parallel execute partition pruned in-
dex scans that write-lock child inodes. This is repeated
down the subtree to the leaves, and, a tree data structure
containing the inodes in the subtree is built in memory
at the namenode, see Figure 5. The tree is later used by
some subtree operations, such as, move and delete opera-
tions, to process the inodes. We reduce the overhead of
reading all inodes in the subtree by using projections to
only read the inode IDs. If the subtree operations protocol
fails to quiesce the subtree due to concurrent file system
operations on the subtree, it is retried with exponential
backoff.

Phase 3: In the last phase the file system operation
is broken down into smaller operations that execute in
parallel. For improved performance, large batches of
inodes are manipulated in each transaction.

6.2 Handling Failed Subtree Operations
HopsFS takes lazy approach to cleanup subtree locks left
by the failed namenodes [45]. Each namenode maintains
a list of the active namenodes provided by the leader
election service. If an operation encounters an inode with
a subtree lock set and the namenode ID of the subtree
lock belongs to a dead namenode then the subtree lock is
cleared. However, it is important that when a namenode
that is executing a subtree operation fails then it should not
leave the subtree in an inconsistent state. The in-memory
tree built during the second phase plays an important role
in keeping the namespace consistent if the namenode fails.
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For example, in case of delete operations the subtree is
deleted incrementally in post-order tree traversal manner
using transactions. If half way through the operation
the namenode fails then the inodes that were not deleted
remain connected to the namespace tree. HopsFS clients
will transparently resubmit the file system operation to
another namenode to delete the remainder of the subtree.

Other subtree operations (move, set quota, chmod and
chown) do not cause any inconsistencies as the actual
operation where the metadata is modified is done in the
third phase using a single transaction that only updates
the root inodes of the subtrees and the inner inodes are left
intact. In the case of a failure, the namenode might fail
to unset the subtree lock, however, this is not a problem
as other namenodes can easily remove the subtree lock
when they find out that the subtree lock belongs to a dead
namenode.

6.3 Inode and Subtree Lock Compatibility
Similar to the inode operation’s locking mechanism
(see section 5.2.1), subtree operations also implement
hierarchical locking, that is, setting a subtree flag on a di-
rectory implicitly locks the contents of the directory. Both
inode and subtree locking mechanisms are compatible
with each other, respecting both of their corresponding
locks. That is, a subtree flag cannot be set on a direc-
tory locked by an inode operation and an inode operation
voluntarily aborts the transaction when it encounters a
directory with a subtree lock set.

7 HopsFS Evaluation
As HopsFS addresses how to scale out the metadata layer
of HDFS, all our experiments are designed to compara-
tively test the performance and scalability of the name-
node(s) in HDFS and HopsFS in controlled conditions
that approximate real-life file system load in big produc-
tion clusters.

7.1 Experimental Setup
Benchmark: We have extended the benchmarking setup
used to test the performance of Quantcast File System
(QFS) [41], which is an open source C++ implementation
of Google File System. The benchmarking utility is a dis-
tributed application that spawns tens of thousands of HDF-
S/HopsFS file system clients, distributed across many ma-
chines, which concurrently execute file system (metadata)
operations on the namenode(s). The benchmark utility
can test the performance of both individual file system
operations and file system workloads based on industrial
workload traces. HopsFS and the benchmark utility are
open source and the readers are encouraged to perform
their own experiments to verify our findings [21, 24].

HopsFS Setup: All the experiments were run on
premise using Dell PowerEdge R730xd servers(Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz, 256 GB RAM, 4

TB 7200 RPM HDDs) connected using a single 10 GbE
network adapter. Unless stated otherwise, NDB, version
7.5.3, was deployed on 12 nodes configured to run using
22 threads each and the data replication degree was 2.

HDFS Setup: In medium to large Hadoop clusters,
5 to 8 servers are required to provide high availabil-
ity for HDFS metadata service, see Figure 1 and sec-
tion section 2. The 5-server setup includes one active
namenode, one standby namenode, at least three journal
nodes collocated with at least three ZooKeeper nodes. In
the 8-server setup, the ZooKeeper nodes are installed
on separate servers to prevent multiple services from
failing when a server fails. In our experiments Apache
HDFS, version 2.7.2 was deployed on 5 servers. Based
on Spotify’s experience of running HDFS, we configured
the HDFS namenodes with 240 client handler threads
(dfs.namenode.handler.count).

None of the file system clients were co-located with
the namenodes or the database nodes. As we are only
evaluating metadata performance, all the tests created
files of zero length (similar to the NNThroughputBench-
mark [62]). Testing with non-empty files requires an
order of magnitude more HDFS/HopsFS datanodes, and
provides no further insight.

7.2 Industrial Workload Experiments
We benchmarked HopsFS using workloads based on oper-
ational traces from Spotify that operates a Hadoop cluster
consisting of 1600+ nodes containing 60 petabytes of
data. The namespace contains 13 million directories and
218 million files where each file on average contains 1.3
blocks. The Hadoop cluster at Spotify runs on average
forty thousand jobs from different applications, such as,
Pig, Hive, HBase, MapReduce, Tez, Spark, and Giraph
every day. The file system workload generated by these
application is summarized in Table 1, which shows the
relative frequency of HDFS operations. At Spotify the
average file path depth is 7 and average inode name length
is 34 characters. On average each directory contains 16
files and 2 sub-directories. There are 289 million blocks
stored on the datanodes. We use these statistics to gener-
ate file system workloads that approximate HDFS usage
in production at Spotify.

Figure 6 shows that, for our industrial workload, using
60 namenodes and 12 NDB nodes, HopsFS can perform
1.25 million operations per second delivering 16 times
the throughput of HDFS. As discussed before in medium
to large Hadoop clusters 5 to 8 servers are required to
provide high availability for HDFS. With equivalent hard-
ware (2 NDB nodes and 3 namenodes), HopsFS delivers
≈10% higher throughput than HDFS. HopsFS perfor-
mance increases linearly as more namenodes nodes are
added to the system.

Table 2 shows the performance of HopsFS and HDFS
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Figure 6: HopsFS and HDFS throughput for Spotify workload.

for write intensive synthetic workloads. These synthetic
workloads are derived from the previously described
workload, but here we increase the relative percentage
of file create operations and reduce the percentage of file
read operations. In this experiment, HopsFS is using 60
namenodes. As HopsFS only takes locks on inodes and
subtrees, compared to HDFS’ global lock, HopsFS out-
performs HDFS by 37 times for workloads where 20%
of the file system operations are file create operations.

Workloads HopsFS
ops/sec

HDFS
ops/sec

Scaling
Factor

Spotify Workload (2.7% File Writes) 1.25 M 78.9 K 16
Synthetic Workload (5.0% File Writes) 1.19 M 53.6 K 22
Synthetic Workload (10% File Writes) 1.04 M 35.2 K 30
Synthetic Workload (20% File Writes) 0.748 M 19.9 K 37

Table 2: HDFS and HopsFS Scalability for Different Workloads.

7.2.1 Hotspots
It is not uncommon for big data applications to create mil-
lions of files in a single directory [51, 43]. As discussed
in section 4.2.1 the performance of HopsFS is affected if
the file system operations are not uniformly distributed
among all the database shards. In this experiment, all the
file system operation paths share a common ancestor, that
is, /shared-dir/.... All the file system operations manipu-
late files and directories with common ancestor and the
file system operations are generated using the workload
described in the previous section 7.2. The scalability of
this workload is limited by the performance of the data-
base shard that holds the /shared-dir. Despite the fact that
the current version of HopsFS does not yet provide a so-
lution for scaling the performance of hotspots, the current
solution outperforms HDFS by 3 times, see Figure 6. We
did not see any effect on the performance of HDFS in the
presence of hotspots.

7.3 Metadata (Namespace) Scalability
In HDFS, as the entire namespace metadata must fit on
the heap of single JVM, the data structures are highly
optimized to reduce the memory footprint [60]. In HDFS,

a file with two blocks that are replicated three ways re-
quires 448 + L bytes of metadata1 where L represents
the filename length. If the file names are 10 characters
long, then a 1 GB JVM heap can store 2.3 million files.
In reality the JVM heap size has to be significantly larger
to accommodate secondary metadata, thousands of con-
current RPC requests, block reports that can each be tens
of megabytes in size, as well as other temporary objects.

Number of Files
Memory HDFS HopsFS
1 GB 2.3 million 0.69 million
50 GB 115 million 34.5 million
100 GB 230 million 69 million
200 GB 460 million 138 million
500 GB Does Not Scale 346 million
1 TB Does Not Scale 708 million
24 TB Does Not Scale 17 billion

Table 3: HDFS and HopsFS Metadata Scalability.

Migrating the metadata to a database causes an expan-
sion in the amount of memory required to accommodate
indexes, primary/foreign keys and padding. In HopsFS
the same file described above takes 1552 bytes if the meta-
data is replicated twice. For a highly available deployment
with an active and standby namenodes for HDFS, you will
need twice the amount of memory, thus, HopsFS requires
≈ 1.5 times more memory than HDFS to store metadata
that is highly available. Table 3 shows the metadata scala-
bility of HDFS and HopsFS.

NDB supports up to 48 datanodes, which allows it
to scale up to 24 TB of data in a cluster with 512 GB
RAM on each NDB datanode. HopsFS can store up to
17 billion files using 24 TB of metadata, which is (≈37
times) higher than HDFS.

7.4 FS Operations’ Raw Throughput
In this experiment, for each file system operation, the
benchmark utility inundates the namenode(s) with the
same file system operation. This test is particularly help-
ful in determining the maximum throughput and scalabil-
ity of a particular file system operation. In real deploy-
ments, the namenode often receives a deluge of the same
file system operation type, for example, a big job that
reads large amounts of data will generate a huge number
of requests to read files and list directories.

Figure 7 shows our results comparing the throughput
for different file system operations. For each operation,
HopsFS’ results are displayed as a bar chart of stacked
rectangles. Each rectangle represents an increase in the
throughput when five new namenode are added. HopsFS
outperforms HDFS for all file system operations and has
significantly better performance than HDFS for the most
common file system operations.

1These size estimates are for HDFS version 2.0.4 from which
HopsFS was forked. Newer version of HDFS require additional memory
for new features such as snapshots and extended attributes.
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Figure 7: HopsFS and HDFS throughput for different operations. For
HopsFS each shaded box represents an increase in the throughput of
the file system operation when five namenodes are added. For HDFS,
the shaded box represents the maximum throughput achieved using the
5-server HDFS namenode setup.

7.4.1 Subtree Operations
In Table 4, we show the latency for move and delete sub-
tree operations on a directory containing a varying number
of files, ranging from one quarter to one million files. In
this experiment, the tests were performed on HopsFS and
HDFS clusters under 50% load for the Spotify workload
(50 % of the maximum throughput observed in figure 6).

In HopsFS, large amounts of data is read over the net-
work and the operations are executed in many small trans-
action batches. The execution time of the move operation
does not increase as rapidly because it does not update
all the inner nodes or leaves of the subtree. HDFS out-
performs HopsFS as all the data is readily available in
the memory. However, due to the low frequency of such
operations in typical industrial workloads (see Table 1),
we think it is an acceptable trade-off for the higher perfor-
mance of common file system operations in HopsFS.

7.5 Operational Latency
The latency for a single file system operation on an un-
loaded HDFS namenode will always be lower than in
HopsFS, as all the metadata is readily available in main
memory for the HDFS namenode, while it is remote for
the namenodes in HopsFS. Figure 8 shows average file
system operation latency observed by concurrent clients

mv rm -rf
Dir Size HDFS HopsFS HDFS HopsFS
0.25 M 197 ms 1820 ms 256 ms 5027 ms
0.50 M 242 ms 3151 ms 314 ms 8589 ms
1.00 M 357 ms 5870 ms 606 ms 15941 ms

Table 4: Performance of move and delete operations on large directories.

while running the Spotify workload. For such a workload,
HopsFS has lower operation latency than HDFS because
in HDFS file system operations that update the namespace
block all other file system operations. Large HDFS de-
ployments, may have tens of thousands of clients [61] and
the end-to-end latency observed by the clients increases
as the file system operations wait in RPC call queues at
the namenode [55]. In contrast, HopsFS can handle more
concurrent clients while keeping operation latencies low.
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Figure 8: Average operation latency observed by HopsFS and HDFS
for an increasing number of concurrent clients.

Figure 9 shows 99th percentile latencies for different
file system operations in a non-overloaded cluster. In this
experiment, we ran HopsFS and HDFS under 50% load
for the Spotify workload (50 % of the maximum through-
put observed in Figure 6). In HopsFS, 99th-percentiles
for common file system operations such as touch file, read
file, ls dir and stat dir are 100.8 ms, 8.6 ms, 11.4 ms and
8.5 ms, respectively. In a similar experiment for HDFS,
running at 50% load, the 99th-percentile latency for touch
file, read file, ls dir and stat dir are 101.8, 1.5, 0.9, and 1.5
ms respectively.

7.6 Failure Handling
Now we discuss how the performance of the HDFS and
HopsFS is affected when the namenodes, NDB datanodes,
and journal nodes fail.

7.6.1 Namenodes failure
Figure 10 shows how the performance of the file system
metadata service is affected when a namenode fails at
50% of the load of the Spotify workload. The namenodes
failures were simulated by killing and restarting all the
file system processes on a namenode. For HDFS, the ac-
tive namenode was periodically killed while for HopsFS,
the namenodes were periodically killed in a round-robin
manner. In the Figure 10, vertical lines indicate namenode
failures. In HDFS, the standby namenode takes over when
it detects that the active namenode has failed. In our ex-
periments we have observed 8 to 10 seconds of downtime
during failover in HDFS. During this time no file system
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metadata operation can be performed. Our failover tests
were favorable to HDFS, as the amount of metadata stored
by NNs in the experiment is minimal. At Spotify, with
140 gigabytes of metadata and 40 thousand jobs every
day, failover takes at least 5 minutes, and often up to 15
minutes. Although we are unsure of the reason why, it
may be due to the additional checkpointing role played by
the Standby namenode. Moreover, starting a namenode
takes tens of minutes to build the in-memory represen-
tation of the name space from the on disk name space
image and applying outstanding redo logs. In contrast,
in HopsFS when a namenode fails clients transparently
re-execute failed file system operations on one of the re-
maining namenodes in the system. In these experiments
the number of file system clients were fixed and no new
clients were added during the experiment. For HopsFS the
throughput gradually drops as more and more namenodes
are restarted. This is due to the fact that after a namenode
fails the clients switch to remaining namenodes. In the
experiments, HopsFS uses sticky namenode selection pol-
icy and due to the fact that no new clients were started
during the experiments the restarted namenodes do not
receive as many file system operations requests as other
namenodes.
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Figure 10: HopsFS and HDFS namenode failover. Vertical lines repre-
sent namenodes failures.

7.6.2 Failure of NDB Datanodes or Journal Nodes
For a HDFS cluster with N journal nodes, HDFS can
tolerate failure of up to dN/2e − 1 journal nodes. In
our tests with a quorum of three journal nodes, HDFS
can tolerate only one journal node failure. Increasing
the size of the quorum to five enables HDFS to tolerate
two journal nodes failure. We have tested HDFS with
3, 5, and 7 journal nodes, and the performance of the
HDFS namenodes is not affected when the journal nodes
fail provided that the quorum is not lost. When more

journal nodes fail and the quorum is lost then the HDFS
namenodes shutdown.

The number of NDB node failures that HopsFS can
tolerate depends on the number of NDB datanodes and the
replication degree. NDB is designed to provide 99.999%
availability [37]. With a default NDB replication degree
of 2, a 4 node NDB cluster can tolerate up to 2 NDB
datanodes failures and a 12 node NDB cluster can tolerate
up to 6 NDB datanodes failure in disjoint replica groups.
We have tested HopsFS on 2, 4, 8 and 12 node NDB
clusters and the performance of HopsFS is not affected
when a NDB datanode fails as long as there is at least one
remaining NDB datanode alive in each node group. If all
the NDB datanodes in a node group fail, then the HopsFS
namenodes shutdown.

A common complaint against the two-phase commit
protocol is that it is blocking and failure of a transac-
tion coordinator or participant will cause the system to
block. NDB internally implements a transaction coordi-
nator failover protocol that hands over transactions on a
failed coordinator to a different coordinator, (the default
1500 ms heartbeat timeout gives an upper bound of 6
seconds for 3 missed heartbeats). Transaction participant
failures are identified by very low transaction inactive
timeouts, (the default is 1200 ms also used in our exper-
iments and in production). In the event of a transaction
participant failure, failed transactions are automatically
retried by the namenode and will be handled by the sur-
viving datanodes in that replication group.

7.7 Block Report Performance
In HDFS, each datanode periodically sends a block report
to a namenode, containing IDs of all the blocks stored
on the datanode. Block reports serve two purposes: (1)
they help to rebuild the block location map when the
namenode restarts since HDFS does not persist this infor-
mation, (2) they serve as ground truth for available blocks
in the system. We reimplemented the HDFS block re-
porting solution in HopsFS. Although the solution is fully
functional it does not deliver as high throughput because
a large amount of metadata is read over the network from
the database by the namenodes to process a block report.

In an experiment with the same setup, 150 datanodes si-
multaneously submitted block report containing 100,000
blocks. With 30 namenodes, HopsFS manages to pro-
cess 30 block reports per second while HDFS managed
to process 60 block reports per second. However, full
block-reports aren’t needed as frequently in HopsFS as
in HDFS, as we persist the block location mappings in
the database. Even without further optimizations, with a
512 megabyte block size, and datanodes sending block
reports every six hours, HopsFS can scale to handle block
reporting in an exabyte cluster.

USENIX Association 15th USENIX Conference on File and Storage Technologies    99



8 Related Work
The InversionFS [39] and Windows Future Storage
(WinFS) [74] were some of the first monolithic file sys-
tems that stored the metadata in a relational database.
Gunawi [20] showed that some file system operations,
such as f sck, can be more efficient when implemented
using a relational database.

Recently, high performance distributed databases such
as HBase [16, 9], Cassandra [29], CalvinDB [69] have
enabled the development of new distributed metadata
management architectures in file systems such as Calv-
inFS [68], CassandraFS [8] and GiraffaFS [18]. All of
these file systems store denormalized metadata, that is,
they store the full file path with each inode which af-
fects the subtree operations. GiraffaFS only supports file
move operation in the same directory. CalvinFS relies on
CalvinDB to perform large transactions. CalvinDB runs
large transactions in two phases. In the first phase the
lock set is identified, and in the second phase all the locks
are acquired and the operation is performed, provided that
the lock set has not changed. However, CalvinFS did not
experimentally show that this is a viable technique for
performing operations on a directory with millions of files.
Production-grade online transaction processing systems
have an upper bound on the number of operations that
can be included in a transaction, where the upper bound
is much lower than tens of millions.

IndexFS [52] and ShardFS [75] are file systems opti-
mized for metadata workloads with a large number of
small files. IndexFS and ShardFS are middleware file
systems, that is, they are built on existing distributed
file systems such as HDFS [61], Lustre [66], PanFS [73]
and PVFS [31]. In IndexFS and ShardFS, the metadata
servers handle metadata as well as user data for small
files stored in local LevelDB [32] instances, and delegate
the management of large files to an underlying distributed
file system. For durability the LevelDB’s SSTables are
stored in the underlying distributed file system. IndexFS
caches inode information at clients, while ShardFS caches
it at metadata servers. Atomic file system operations that
involves both the underlying distributed file system and
IndexFS/ShardFS metadata servers are not supported. For
example, atomically deleting large files whose metadata
is stored in the IndexFS/ShardFS metadata server and
the file data is stored by the underlying distributed file
system is not supported. IndexFS [52] uses a caching
mechanism to improve the performance of hot directo-
ries/files, while HopsFS’ currently only load balances a
user-configurable number of top-level directories. We are
investigating more dynamic approaches for HopsFS.

PVFS2 [31], OrangeFS [76], Farsite [14], Lustre [66],
Vesta [11], InterMezzo [46], zFS [53], and RAMA [35]
shard inodes among multiple metadata servers by either
(1) random partitioning or (2) partition based hashed file

identifiers or hashed full/partial file paths. This partition-
ing scheme is typically combined with the caching of
metadata at clients, which can cause cache invalidation
storms for large subtree operations. Ceph dynamically
partitions the file system tree, where hot-spot directories
are hashed on multiple metadata servers [71, 72].

Finally, our architecture supports a pluggable NewSQL
storage engine. MemSQL and SAP Hana are candidates,
as they support high throughput cross-partition trans-
actions, application defined partitioning, and partition
pruned queries [34]. VoltDB is currently not a candidate
as it serializes cross partition transactions [70].

9 External Metadata Implications
Administrators often resort to writing their own tools to
analyze the HDFS namespace. HopsFS enables online
ad hoc analytics on the metadata. With a NDB backend,
HopsFS metadata can be selectively and asynchronously
replicated to either a backup cluster or a MySQL slave
server, enabling complex analytics without affecting the
performance of the active cluster. HopsFS metadata is
also easy to export to external systems and it is easy to
safely extend the metadata. That is, additional tables can
be created that contain a foreign key to the associated
inode, thus ensuring the integrity of the extended meta-
data. Using this approach, we have already added new fea-
tures to HopsFS, including extended attributes for inodes
and erasure coding. Moreover, following similar ideas
to [28], we developed an eventually consistent replication
protocol that replicates (extended) HopsFS metadata to
Elasticsearch [15] for free-text search. This enables us
to search the entire namespace with sub-second latency.
We believe that distributed metadata in a commodity data-
base is a significant new enabling technology and it can
become a reliable source of ground truth for metadata
applications built on top of distributed file systems.

10 Summary
In this paper, we introduced HopsFS, that is, to the best
of our knowledge, the first production-grade distributed
hierarchical file system that stores its metadata in an exter-
nal NewSQL database. HopsFS is an open-source, highly
available file system that scales out in both capacity and
throughput by adding new namenodes and database nodes.
HopsFS can store 37 times more metadata than HDFS and
for a workload from Spotify, HopsFS scales to handle 16
times the throughput of HDFS. HopsFS also has lower av-
erage latency for large number of concurrent clients, and
no downtime during failover. Our architecture supports
a pluggable database storage engine, and other NewSQL
databases could be used. Finally, HopsFS makes metadata
tinker friendly, opening it up for users and applications to
extend and analyze in new and creative ways.
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