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Abstract

Anomalies in the runtime behavior of software systems,

especially in distributed systems, are inevitable, expen-

sive, and hard to locate. To detect and correct such

anomalies (like instability due to a growing memory

consumption, failure due to load spikes, etc.) one has

to automatically collect, store, and analyze the opera-

tional data of the runtime behavior, often represented as

time series. There are efficient means both to collect and

analyze the runtime behavior. But traditional time se-

ries databases do not yet focus on the specific needs of

anomaly detection (generic data model, specific built-in

functions, storage efficiency, and fast query execution).

The paper presents Chronix, a domain specific time se-

ries database targeted at anomaly detection in operational

data. Chronix uses an ideal compression and chunking of

the time series data, a methodology for commissioning

Chronix’ parameters to a sweet spot, a way of enhanc-

ing the data with attributes, an expandable set of analy-

sis functions, and other techniques to achieve both faster

query times and a significantly smaller memory foot-

print. On benchmarks Chronix saves 20%–68% of the

space that other time series databases need to store the

data and saves 80%–92% of the data retrieval time and

73%–97% of the runtime of analyzing functions.

1 Introduction

Runtime anomalies are hard to locate and their occur-

rence is inevitable, especially in distributed software sys-

tems due to their multiple components, different tech-

nologies, various transport protocols, etc. These anoma-

lies influence a system’s behavior in a bad way. Exam-

ples are an anomalous resource consumption (e.g., high

memory consumption, growing numbers of open files,

low CPU usage), sporadic failures due to synchroniza-

tion problems (e.g., deadlock), or security issues (e.g.,

port scanning activity). Whatever their root causes are,

the resulting behavior is critical and may in general lead

to economic or reputation loss (e.g., loss of sales, produc-

tivity, or data). Almost every software system has hidden

anomalies that occur sooner or later. Hence one needs

to detect them in an automated manner soon after their

occurrence in order to initiate measures.

There are efficient means both to collect and analyze

the runtime behavior. Tools [10, 18, 44] can collect all

kinds of operational data like metrics (e.g., CPU usage),

traces (e.g., method calls), and logs. They represent such

operational data as time series. Analysis tools and re-

search papers [27, 33, 43, 44, 47] focus on the detection

of anomalies in that data. But there is a gap between col-

lection and analysis of operational time series, because

typical time series databases are general-purpose and not

optimized for the domain of this paper. They typically

have a data model that focuses on series of primitive type

values, e.g., numbers, booleans, etc. Their built-in aggre-

gations only support the analysis of these types. Further-

more, they do not support an explorative and correlating

analysis of all the raw operational data in spontaneous

and unanticipated ways. With a domain specific data

model and with domain specific built-in analysis func-

tions we achieve better query analysis times. General-

purpose time series databases already have a good stor-

age efficiency. But we show that by exploiting domain

specific characteristics there is room for improvement.

Chronix, a novel domain specific time series database,

addresses the collection and analysis needs of anomaly

detection in operational data. Its contributions are a

multi-dimensional generic time series data model, built-

in domain specific high-level functions, and a reduced

storage demand with better query times. Section 2 covers

the requirements of such a time series database. Section 3

presents Chronix. Section 4 discusses the commission-

ing of Chronix and describes a methodology that finds

a sweet performance spot. The quantitative evaluation in

Section 5 demonstrates how much better Chronix works

than general-purpose time series databases.

USENIX Association 15th USENIX Conference on File and Storage Technologies    229



2 Requirements

Three main requirements span the design space of a time

series database that better suits the needs of an anomaly

detection in operational data: a generic data model for

an explorative analysis of all types of operational data,

analysis support for detecting runtime anomalies, and a

time- and space-efficient lossless storage.

As shown in Table 1, the established general-purpose

time series databases Graphite [12], InfluxDB [24],

KairosDB [25], OpenTSDB [32], and Prometheus [36]

do not or only partially fulfill these requirements.

Generic data model. Software systems are typically

distributed and a multi-dimensional data model allows

to link operational data to its origin (host, process,

or sensor). We argue that a generic multi-dimensional

data model is necessary for an explorative and correlat-

ing analysis to target non-trivial anomalies. Explorative

means that a user can query and analyze the data with-

out any restrictions (as by a set of pre-defined queries)

to verify hypotheses. Correlating means that the user can

combine queries on all different types of operational data

(e.g., traces, metrics, etc.) without any restrictions (as by

pre-defined joins and indexes). Imagine an unanticipated

need to correlate the CPU usage in a distributed system

with the executed methods. Such an analysis first queries

the CPU usage on the hosts (metrics) for a time range.

Second, it queries which methods were executed (traces).

Finally, it correlates the results in a histogram.

The traditional time series databases have a spe-

cific multi-dimensional data model for storing mainly

scalar/numeric values. But in the operational data of a

software system there are also traces, logs, etc. that of-

ten come in (structured) strings. As explicit string en-

codings require implementation work, often only such

raw data is encoded and collected that appears useful

at the time of collection. Other raw data is lost, even

though an explorative analyses may later need it. More-

over, any string encoding loses the semantics that come

with the data type. Therefore, while the traditional time

series databases support explorative and correlating anal-

Table 1: Design space requirements.

Time Series

Database

Generic

data model

Analysis

support

Lossless

long term

storage

Graphite # G# #

InfluxDB G# G#  

OpenTSDB # #  

KairosDB G# G#  

Prometheus # G# G#

Chronix    

# = No, G# = Partly,  = Yes

yses on scalar values, they often fail to do so efficiently

for generic time series data (e.g., logs, traces, etc.). In-

fluxDB also supports strings and booleans. KairosDB is

extensible with custom types. Both lack operators and

functions and hence only partly fulfill the requirements.

Analysis support. Table 2 is an incomplete list of ba-

sic and high-level analysis functions that a storage and

retrieval technology for anomaly detection in operational

data must support in its plain query language. Graphite,

InfluxDB, KairosDB and Prometheus only have a rich set

of basic functions for transforming and aggregating op-

erational data with scalar values. OpenTSDB even sup-

ports only a few of them. But domain specific high-level

functions that other authors [27, 33, 43, 44, 47] success-

fully use for anomaly detection in operational data (lower

part of Table 2) should be built in natively to execute

them as fast as possible, without network transfer costs,

etc. The evaluation in Section 5 shows the runtime bene-

fits of having them built-in instead of emulating them.

As such a set of functions can never be complete its

extensibility is also a requirement.

Efficient lossless long term storage. Complex analy-

Table 2: Common query functions.
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distinct × X × × × X

integral X × × × × X

min/max/sum X X X X X X

count × X X X X X

avg/median X X X X X X

bottom/top × X × × X X

first X X × X × X

last X X × X × X

percentile (p) X X X X X X

stddev X X X X X X

derivative X X × X X X

nnderivative X X × × × X

diff × X × X X X

movavg X X × × × X

divide/scale X X × X X X

High-level

sax [33] × × × × × X

fastdtw [38] × × × × × X

outlier × × × × × X

trend × × × × × X

frequency × × × × × X

grpsize × × × × × X

split × × × × × X
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ses to identify and understand runtime anomalies, trends,

and patterns use machine learning, data mining, etc.

They need quick access to the full set of all the raw op-

erational data, including its history. This allows interac-

tive response times that lead to qualitatively better ex-

plorative analysis results [30]. Thus a lossless long term

storage is required that achieves both a small storage de-

mand and good access times. A domain specific storage

should also allow to store additional pre-aggregated or

in other ways pre-processed versions of the data that en-

hance domain specific queries.

The operational characteristics of anomaly detection

tasks are also specific as there are comparatively few

batch writes and frequent reads/analyses, hence the stor-

age should optimized for this.

As Table 1 shows, the traditional time series databases

(except for Graphite due to its round-robin storage, see

Section 6) can be used as long term storage for raw

data. Their efficiency in terms of domain specific stor-

age demands and query runtimes is insufficient as the

evaluation in Section 5 will point out. Prometheus is de-

signed as short-term storage with a default retention of

two weeks. Furthermore it does not scale, there is no API

for storing data, and it uses hashes for time series iden-

tification (the resulting collisions may lead to a seldom

loss of a time series value). It is therefore not included in

the quantitative evaluation.

3 Design and Implementation

Generic data model. Chronix uses a generic data model

that can store all kinds of operational data. The key el-

ement of the data model is called a record. It stores an

ordered chunk of time series data of an arbitrary type

(n pairs of timestamp and value) in a binary large ob-

ject. There is also type information (e.g., metric, trace,

or log) that defines the available type-specific functions

and the ways to store or access the data (e.g., serializa-

tion, compression, etc.). A record stores technical fields

(version and id of the record, as needed by the underly-

ing Apache Solr [5]), two timestamps for start and end

of the time range in the chunk, and a set of user-defined

attributes, for example to describe the origin of the oper-

ational data, e.g., host and process. Thus the data model

is multi-dimensional. It is explorative and correlating as

queries can use any combination of the attributes stored

in a chunk as well as the available fields.

Listing 1 shows a record for a metric (type) time series,

with dimensions for host name, process, group (a logical

group of metrics), and metric. Description and version

are optional attributes.

The syntax of Chronix queries is:

q=<solr-query> [ & cf=<chronix-functions> ]

1 record{
2 //payload

3 data:compressed{<chunk of time series data>}
4

5 //technical fields (storage dependent)

6 id: 3dce1de0−...−93fb2e806d19 //16 bytes

7 version : 1501692859622883300 //8 bytes

8

9 //logical fields

10 start: 1427457011238 //27.3.2015 11:51:00 8 bytes

11 end: 1427471159292 //27.3.2015 15:45:59 8 bytes

12 type: metric //Data types: metric, log, trace etc.

13

14 //optional dimensions

15 host: prodI5

16 process: scheduler

17 group: jmx

18 metric: heapMemory.Usage.Used

19

20 //optional attributes

21 description: Benchmark

22 version: v1.0−RC

23 }

Listing 1: Record with fields, attributes, and dimensions.
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The underlying Solr finds the data according to q. Then

we apply the optional Chronix functions cf before we

ship the result back to the client. Cf is a ;-separated list

of filters, each of the form

<type>’{’<functions>’}’

The ;-separated list of <type>-specific <functions> is

processed as a pipeline. A <function> has the form

<analysis-name>[:<params>]

for analysis names from Table 2. Here is an example

from the evaluation project 4 in Section 5:

q=host:prod* AND type:[lsof OR strace]

& cf=lsof{grpsize:name,pipe};strace{split:2030}

First, q takes all time series from all hosts whose name

starts with prod and that also hold data of the UNIX

commands lsof or strace. Then cf applies two func-

tions. To the lsof data cf applies grpsize to select the

group named name and counts the occurrences of the val-

ue/word pipe in that group. On the strace data cf per-

forms a split-operation on the command-column. For

each of the arguments (here just for the file handle ID

2030) it produces a split of the data that contains "2030".

Analysis support. Chronix offers all the basic and

high-level functions listed in Table 2, e.g., there are de-

tectors for outliers and functions that check for trends,

similarities (fastdtw), and patterns (sax). The plug-in

mechanism of Chronix allows to add functions that run

server-side. They are fast as they operate close to the data
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1 class GroupSize implements ChronixAnalysis<LsofTS>{
2 public GroupSize(String[] args) {
3 field = args[0];filters = args[1];

4 }
5 public void execute(LsofTS ts, Result result) {
6 result.put(this,new Map())

7 for (Group group : ts.groupBy(field)) {
8 if (filters.contains(group.key()))

9 result.get(this).put(group.key(), group.value().size());

10 }
11 }
12 public String getQueryName() {return ”grpsize”;}
13 public String getTimeSeriesType() {return ”lsof”;}
14 }

Listing 2: Plug-in for a function GroupSize.

without shipping (e.g., through HTTP). For security rea-

sons only an administrator is capable (and thus respon-

sible) for installing plug-ins while regular users can only

use them afterwards. The plug-in developer has to imple-

ment an interface called ChronixAnalysis. It defines

three methods: execute holds the code that analyzes

a time series, getQueryName is the function’s name in

Chronix’ Query Language, and getTimeSeriesType

binds the function to a time series type. An additional

Google Guice [19] module is needed before (after a re-

boot of Chronix with the operator code in the classpath)

the newly added function is available. Chronix parses a

given query and delegates the execution to the plugged-

in function. Listing 2 illustrates how to add the grpsize

analysis for the time series type lsof. The function runs

on the server, groups the time series data with respect to

a field (given as its first argument), and returns the sizes

of the groups. The raw time series data is never shipped

to the client. With this function added, regular users just

need to call one function instead of several queries to

emulate the semantics themselves.

Functionally-lossless long term storage. Chronix

optimizes storage demands and query times and is de-

signed for few batch writes and frequent reads. The stor-

age is functionally-lossless and preserves all the data that

can potentially be useful for anomaly detection. We clar-

ify the two situations below when functionally-lossless is

different from lossless.

Chronix’ pipeline architecture has four building

blocks that run multi-threaded: Optional Transforma-

tion, Attributes and Chunks, Compression, and Multi-

Dimensional Storage, see Fig. 1. Not shown is the in-

put buffering (called Chronix Ingester in the distribution)

that batches incoming raw data points.

The Optional Transformation can enhance or extend

what is actually stored in addition to the raw data, or in-

stead of it. The goal of this optional phase is an opti-

Figure 1: Building blocks of Chronix: (1) optional trans-

formation, (2) grouping of time series data into chunks

plus attributes, (3) compression of chunks, (4) storage of

chunks with their attributes. The data flows from left to

right for imports. For queries it is the other way round.

mized format that better supports use-case specific anal-

yses. For example, it is often easier to identify patterns

in time series when a symbolic representation is used to

store the numerical values of a time series [33]. Other

examples are averaging, a Fourier transformation [9],

Wavelets [35], or a Piecewise Aggregate Approxima-

tion [26]. The more is known about future queries and

about the shape or structure of a time series or its pat-

tern of redundancy, the more can a transformation speed

up analyses. In general, this phase can add an additional

representation of the raw data to the record. Storing the

raw data can even be omitted if it can be reconstructed. In

rare situations, an expert user knows for sure that certain

data will never be of interest for any of her/his anomaly

detection tasks. Think of a regular log file that in addi-

tion to the application’s log messages also has entries

that come from the framework hosting the application.

The latter often do not hold anomaly-related informa-

tion. It is such data that the expert user can decide to

drop, keeping everything else and leaving the Chronix

store functionally-lossless. The decision is irreversible –

but this is the same with the other time series databases.

Attributes and Chunks breaks the raw time series (or

the result of the optional transformation) into chunks of n

data points that are serialized into c bytes. Instead of stor-

ing single points, chunking speeds up the access times. It

is known to be faster to read one record that contains

n points instead of reading n single points. A small c

leads to many small records with potentially redundant

user-defined attributes between records. The value of c is

therefore a configuration parameter of the architecture.

This stage of the pipeline also calculates both the

required fields and the user-defined attributes of the

records. The required fields (of the data model) are the

binary data field that holds a chunk of the time series,

and the fields start and end with timestamps of the first

and the last point of the chunk. In addition, a record can

have user-defined attributes to store domain specific in-

formation more efficiently. For instance, information that
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1 public interface RecordConverter<T> {
2 //Convert a record to a specific type.

3 //Use queryStart and queryEnd to filter the record.

4 T from (Record r, long queryStart, long queryEnd);

5 //Convert a specific type to a record.

6 Record to (T tsChunk);

7 }

Listing 3: The time series converter interface.

is known to be repetitive for each point, e.g., the host

name, can be stored in an attribute of the record instead

of encoding it into the chunk of data multiple times.

As it is specific for a time series type which fields are

repetitive Chronix leaves it to an expert user to design

the records and the fields. Redundancy-free data chunks

are a domain specific optimization that general-purpose

time series databases do not offer. To design the records

and fields the expert has two tasks: (1) define the con-

version of a time series chunk to a record (see the ex-

ample RecordConverter interface in Listing 3) and (2)

define the static schema in Apache Solr that lists the field

names, the types of the values, which fields are indexed,

etc. Chronix stores every record that matches the schema.

Compression processes the chunked data. Chronix ex-

ploits domain specific characteristics in three ways.

First, Chronix compresses the operational data signif-

icantly as there are only small changes between subse-

quent data points. The cost of compression is acceptable

as there are only few batch writes. When querying the

data, compression even improves query times as com-

pressed data is transferred to the analysis client faster due

to the reduced amount.

Second, time series for operational data often have pe-

riodic time intervals, as measurements are taken on a reg-

ular basis. The problem in practice is that there is often a

jitter in the timestamps, i.e., the time series only have al-

most-periodic time intervals because of network latency,

I/O latency, etc. Traditional time series databases use op-

timized ways to store periodic time series (run-length en-

coding, delta-encoding, etc.). But in case of jitter they

fall back to storing the full timestamps/deltas. In con-

trast, Chronix’ Date-Delta-Compaction (DDC) exploits

the fact that in its domain the exact timestamps do not

matter that much, at least if the difference between the

expected timestamp and the actual timestamp is not too

large. Here Chronix’ storage is functionally-lossless be-

cause by default it drops timestamps if it can almost ex-

actly reproduce them. If in certain situations an expert

user knows that the exact timestamps do matter, they can

be kept. In contrast to timestamp jitter, Chronix never

drops the exact values of the data points. They always

matter in the domain of anomaly detection. Nevertheless,

10000 _ 10006

_ 10000 _ 10006

_ d2-d1 = 10000

r1: 

1473060010326

r2: 

1473060020326

r3: 

1473060030326

r4: 

1473060040332

_ 10000 _ _

_

d1: 

start-t1 = 0

d2: 

t2-t1 = 10000

d3: 

t3-t2 = 10002

d4: 

t4-t3 = 10004
Calculate Deltas

Compare Deltas d3-d2 = 2 d4-d3 = 4

Check Drift

Reconstructed

Start:1473060010326, DDC Threshold: 4

Remove Deltas

t1: 

1473060010326

t2: 

1473060020326

t3: 

1473060030328

t4: 

1473060040332
Raw Time Series

Stored

Figure 2: DDC calculates timestamp deltas (0, 10000,

10002, 10004) and compares them (0, 10000, 2, 4). It

removes deltas below a threshold of 4 ( , 10000, , ).

Without additional deltas, the reconstruction would yield

timestamps with increments of 10000. Since the fourth

of them would be too far off from t4 (drift of 6) DDC

stores the correcting delta 10006. With the resulting two

stored deltas ( , 10000, , 10006) the reconstructed time-

stamps are error-free, even for r4.

some parts of the related work are lossy, see Table 1.

The central idea of the DDC is: When storing an

almost-periodic time series, the DDC keeps track of the

expected next timestamp and the actual timestamp. If

the difference is below a threshold, the actual timestamp

is dropped as its reconstructed value is close enough.

The DDC also keeps track of the accumulated drift as

the difference between the expected timestamps and ac-

tual timestamps adds up with the number of data points

stored. As soon as the drift is above the threshold, DDC

stores a correcting delta that brings the reconstruction

back to the actual timestamp. DDC is an important do-

main specific optimization. See Section 4 for the quan-

titative effects. The DDC threshold is another commis-

sioning parameter. Fig. 2 holds an example.

There are related approaches [34] that apply a simi-

lar idea to both the numeric values and the timestamps.

Chronix’ DDC avoids the lossy compression of values

as the details matter for anomaly detection. Chronix also

exploits the fact that deltas are much smaller than full

timestamps and that they can be stored in fewer bits.

Chronix’ serialization uses Protocol Buffers [20].

Third, to further lower the storage demand, Chronix

compresses the records’ binary data fields. The attributes

remain uncompressed for faster access. Chronix uses

one of the established lossless compression techniques

t = bzip2 [39], gzip [14], LZ4 [11], Snappy [21], and

XZ [42] (others can be plugged in). Since they have a

varying effectiveness depending on the size of the data

blocks that are to be compressed, the best choice t is an-

other commissioning parameter.

The Multi-Dimensional Storage handles large records
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of pure data in a compressed binary format. Only the log-

ical fields, attributes, and dimensions that are necessary

to locate the records are explicitly visible to the data stor-

age which uses a configurable set of them for construct-

ing indexes. (Dimensions can later be changed to match

future analysis needs.) Queries can use any combination

of the dimensions to efficiently locate records, i.e., to find

a matching (compressed) chunk of time series data. In-

formation about the data itself is not visible to the storage

and hence it is open to future changes as needed for ex-

plorative and correlating analyses. Chronix is based on

Apache Solr as both the document-oriented storage for-

mat of the underlying reverse-index Apache Lucene [4]

and the query opportunities match Chronix’ require-

ments. Furthermore Lucene applies a lossless compres-

sion (LZ4) to all stored fields in order to reduce the index

size and Chronix inherits the scalability of Solr as it runs

in a distributed mode called SolrCloud that implements

load balancing, data distribution, fault tolerance, etc.

4 Commissioning

Many of the available general-purpose time series data-

bases come with a set of parameters and default values.

It is often unclear how to adjust these values to tune the

database so that it performs well on the use-case at hand.

We now discuss the commissioning that selects val-

ues for Chronix’ three adjustable parameters: d (DDC

threshold), c (chunk size), and t (compression tech-

nique). Commissioning has two purposes: (1) to find de-

fault parameters for the given domain (and to show the

effects of an unfortunate choice) and (2) to describe a

tailoring of Chronix for use-case specific characteristics.

Let us start with a typical domain specific dataset and

query mix (composed from real-world projects). We then

sketch the measurement infrastructure that the evaluation

in Section 5 also uses and discuss the commissioning.

Commissioning Data = Dataset plus Query Mix. To

determine its default parameter configuration, Chronix

relies on three real-world projects that we consider typ-

ical for the domain of anomaly detection in operational

data. From these projects, Chronix uses the time series

data and the queries that analyze the data.

Project 1 is a web application for searching car main-

tenance and repair instructions. In production, 8 servers

run the web application to visualize the results and 20

servers perform the users’ searches. The operational time

series data is analyzed to understand the resource con-

sumption for growing numbers of users and new func-

tions, i.e., to answer questions like: ’How do multi-

ple users and new functions affect the CPU load, mem-

ory consumption, or method runtimes?’, or ’Is the time

needed for a user search still within predefined limits?’

Table 3: Project Statistics.

Project 1 2 3 total

pairs (mio) 2.4 331.4 162.6 496.4

time series 1,080 8,567 4,538 14,185

(a) Pairs and time series per project.

Project 1 2 3 average

Attributes (bytes) 43 47 48 46

(b) Average size of attributes per record.

r 0.5 1 7 14 21 28 56 91

q 15 30 30 10 5 3 1 2

(c) Time ranges (in days) and their occurrence.

Project 2 is a retail application for orders, billing, and

customer relations. The production system has a central

database, plus two servers. From their local machines,

users run the application on the servers via a remote

desktop service. The analysis goals are to investigate the

impact of a new JavaFX-based UI Framework that re-

places a former Swing-based version, and to locate the

causes of various reported problems, e.g., memory leaks,

high CPU load, and long runtimes of use-cases.

Project 3 is a sales application of a car manufacturer.

There are two application servers and a central database

server in the production environment. The analysis goals

are to understand and optimize the batch-import, to iden-

tify the causes of long-running use-cases reported by

users, to improve the database layer, and understand the

impact that several code changes have.

In total, the projects’ operational data have about 500

million pairs of timestamp and (scalar) value in 14,185

time series of diverse time ranges and metrics, see Ta-

ble 3(a). Two projects have an almost-periodic time in-

terval of 30 or 60 seconds. All projects also have event-

driven data, e.g., the duration of method calls. There are

recurring patterns (e.g., heap usage), sequences of con-

stant values (e.g., size of a connection pool), or even er-

ratic values (e.g., CPU load).

All time series of the three projects have the same user-

defined attributes (host, process, group, and metric) that

takes 46 bytes on average, see Table 3(b). The required

fields of the records take 40 bytes, leading to a total of

m = 40 + 46 = 86 uncompressed bytes per record.

The three projects have 96 queries in total. Table 3(c)

shows what time ranges (r) they are asking for and how

often such a time range is needed (q). For example, there

are two queries that request the log data that was accu-

mulated over 3 months (91 days).

Measurement Infrastructure. Measurements were

conducted on a 12-core Intel Xeon CPU E5-2650L

v3@1.80GHz, equipped with 32 GB of RAM and a 380

GB SSD and operating under Ubuntu 16.04.1 x64.

234    15th USENIX Conference on File and Storage Technologies USENIX Association



0

10

20

30

40

50

60

70

80

90

0 5 10 50 100 200 1000
DDC threshold in ms

R
a

te
s
 i
n

 %
 −

 A
ve

ra
g

e
 i
n

 m
s

Inaccuracy Rate

Average Deviation

Space Reduction

Figure 3: Impact of different DDC thresholds.

Commissioning of the DDC threshold. The higher

the DDC threshold is, the higher is the deviation between

the actual and the reconstructed timestamp. On the other

hand, higher DDC thresholds result in fewer deltas that

hence need less storage. Since for anomaly detection, ac-

curacy is more important than storage consumption, and

since the acceptable degree of inaccuracy is use-case spe-

cific, the commissioning of the DDC threshold focuses

on accuracy and only takes the threshold’s impact on the

storage efficiency into account if there is a choice.

The commissioning works as follows: For a broad

range of potential thresholds, apply the DDC to the time

series in the dataset. For each timestamp, record whether

the reconstructed value is different from the actual time-

stamp, and if so, how far the reconstructed value is off.

The fraction of the number of inaccurately reconstructed

timestamps to error-free ones is the inaccuracy rate. For

all inaccurately reconstructed timestamps compute their

average deviation. With those two values plotted, the

commissioner selects a threshold that yields the desired

level of accuracy.

Default Values. The commissioning of the DDC

threshold can be done for individual time series or for

all time series in the dataset. For the default value we use

all time series that are not event-driven. For thresholds

from 0 milliseconds up 1 second. Fig. 3. shows that the

inaccuracy rate grows up to 67%; the average deviation

of the reconstructed timestamps grows up to 90 ms.

From the experience gained from anomaly detection

projects (the three above projects are among them) an

average deviation of 30 ms seems to be reasonably small

– recall that the almost-periodic time series in the dataset

have intervals of 30 or 60 seconds. The acceptable jitter

is thus below 0.1% or 0.05%, resp. Therefore we choose

a default DDC threshold of d = 200 ms which implies an

inaccuracy rate of about 50% that we deem acceptable

because of the absolute size of the deviation.

Note that the DDC is effective as the resulting data

only take 27% to 19% of the original space. But for the

dataset the curve of the space reduction is too flat to af-

fect the selection of the DDC threshold.
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Figure 4: Materialized compression rate in the data store.

Commissioning of the compression parameters.

Many of the standard compression techniques achieve

better compression rates on larger buffers of bytes [7].

On the other hand, it takes longer to decompress larger

buffers to get to the individual data point. Because of

the conflicting goals of storage efficiency and query run-

times, Chronix uses a domain specific way to find a sweet

spot. There are three steps.

1. Minimal Chunk Size. First, Chronix finds a minimal

chunk size for its records. Chronix is not interested in the

compression rate in a memory buffer. For anomaly detec-

tion, what matters instead is the total storage demand, in-

cluding the size of the index files (smaller for larger and

fewer records). On the other hand, smaller chunks have

more redundancy in the records’ (potentially) repetitive

uncompressed attributes which makes the compression

techniques work better. We call the quotient of this total

storage demand and the size of the raw time series data

the materialized compression rate.

Finding a minimal chunks size works as follows:

For a range of potential chunk sizes, construct the

records (with their chunks and attributes) from the DDC-

transformed time series data and compress them with

the standard compression techniques. With the materi-

alized compression rate plotted, the commissioner finds

the minimal chunk size where saturation sets in.

Default Values. Fig. 4 shows the materialized com-

pression rates that t= bzip2, gzip, LZ4, Snappy, and

XZ achieve on records with various chunk sizes that are

constructed from the (DDC-transformed) dataset. Satu-

ration sets in around a minimal chunk size of cmin=32

KB. Larger chunks do not improve the compression rate

significantly, regardless of the compression technique.

2. Candidate Compression Techniques. Then Chronix

drops some of the standard compression techniques from

the set of candidates. Papers on compression techniques

usually include benchmarks on decompression times.

But for the domain of anomaly detection, the decompres-

sion of a whole time series that is in a memory buffer is

irrelevant. What matters instead is the total time needed

to find and access an individual record, to then ship the
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Figure 5: Access time for a single chunk (in ms).

compressed record to the client, and to decompress it

there. Note that the per-byte cost of shipping goes down

with growing chunks due to latency effects.

Finding the set of candidate compression techniques

works as follows: For potential chunk sizes above cmin,

find a record, ship it, and reconstruct the raw data. For

meaningful results, process all records, and compute the

average runtime. The commissioner drops those com-

pression techniques that have a slow average access to

single records. The reason is that in anomaly detection

data is read much more often than written.

Default Values. On the compressed dataset, all of the

standard compression techniques take longer to find, ac-

cess, and decompress larger chunks, see Fig. 5. It is ob-

vious that bzip2 and XZ can be dropped from the set

of compression techniques because the remaining ones

clearly outperform them.

3. Best Combination. Now that the range of potential

values for c is reduced and the set of candidates for the

compression technique t is limited, the commissioning

considers all combinations. Since query performance is

more important than storage efficiency for the domain of

anomaly detection, commissioning works with a typical

(or a use-case specific) query mix. The access time to a

single record as considered above can only be an indi-

cator, because real queries request time ranges that are

either part of a single record (a waste of time in shipping

and decompression if the record is large) or that span

multiple records (a waste of time if records are small).

This commissioning step works as follows: Randomly

retrieve q time ranges of size r from the data. The values

of r and q reflect the characteristics of the query mix,

see Table 3(c). Repeat this 20 times to stabilize the re-

sults. For a query of size r the commissioning does not

pick a time series that is shorter than r. From the result-

ing plot, the commissioner then picks the combination of

chunk size c and compression technique t that achieves

the shortest total runtime for the query mix.

Default Values. For chunk sizes c from 32 to 1024

KB and for the remaining three compression techniques

t, Fig. 6 shows the total access time of all the 20 · 96
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Figure 6: Total access times for 20 · 96 queries (in sec.).

= 1920 randomly selected data retrievals that represent

the query mix. There is a bath tub curve for each of the

three compression techniques t, i.e., there is a chunk

size c that results in a minimal total access time. As

t=gzip achieves the absolute minimum with a chunk size

of c=128 KB, Chronix selects this sweet spot, especially

as the other options do not show better materialized com-

pression rates for that chunk size (see Fig. 4). The default

parameters are good-natured, i.e., small variations do not

affect the results much. Fig. 6 also shows the effect of

suboptimal choices for c and t.

Commissioning and re-commissioning for a use-case

specific set of parameters are possible but costly as the

latter affects the whole data. At the end of the next sec-

tion, we discuss the effect of a use-case specific commis-

sioning compared to the default parameter set.

5 Evaluation

We quantitatively compare the memory footprint, the

storage efficiency, and the query performance of Chronix

(without any optional transformation and without any

pre-computed analysis results) to InfluxDB, OpenTSDB,

and KairosDB. After a sketch of the setup, we describe

two case-studies whose operational data serve as bench-

mark. Then we discuss the results and demonstrate that

Chronix’ default parameters are sound.

Setup. For the minimal realistic installation all

databases run on one computer and the Java process

issuing the queries via HTTP runs on a second com-

puter (for hardware details see Section 4). InfluxDB,

OpenTSDB, and KairosDB store time series with differ-

ent underlying storage technologies: InfluxDB (v.1.0.0)

uses a custom storage called time structured merge

tree, OpenTSDB (v.2.2.0) uses the wide-column store

HBase [23] that stores data in the Hadoop Distributed

File System (HDFS) [41], and KairosDB (v.1.1.2) stores

the data in the wide-column store Cassandra [3]. They

also have different strategies for storing the attributes:

InfluxDB stores them once with references to the data

points they belong to. OpenTSDB and KairosDB store
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Table 4: Project Statistics.

Project 4 5 total

time series 500 24,055 24,555

p
ai

rs

(m
io

) metric 3.9 3,762.3 3,766.2

lsof 0.4 0.0 0.4

strace 12.1 0.0 12.1

(a) Pairs and time series per project.

r 0.5 1 7 14 21 28 56 91 180

q 2 11 15 8 12 5 1 2 2 58

b 1 6 5 7 2 4 4 1 2 32

h 2 6 10 8 6 6 3 2 0 43

(b) Time ranges r (days); # of raw data queries (q), of

queries with basic (b) and high-level (h) functions.

them in key-value pairs that are part of the row-key. We

use default configurations for each database. To mea-

sure the query runtimes and the resource consumptions

each database is called separately and runs it in its own

Docker container [16] to ensure non-interference. We

batch-import the data once and run the queries after-

wards. We do not discuss the import times as they are

less important for the analysis.

Case-studies/benchmark. We collected 108 GByte

of operational data from two real-world applications. In

contrast to the dataset used in the commissioning there

are also data of lsof and strace, see Table 4(a).

Project 4 detects anomalies in a service application for

modern cars (such as music streaming). The goal is to

locate the root cause of a file handle leak that forces the

application to nightly rebootings of its two application

servers. The collected operational data covers 3 hours

with an almost-periodic interval of 1 second.

Since we have mentioned an example query of this

project in Section 3 and since we have shown how the

grpsize function (Listing 2) can be plugged-in, let us

give some more details on this project.

The initial situation was that the application kept open-

ing new file handles without closing old ones. After re-

producing the anomaly in a test environment, for the ex-

plorative analysis we employed lsof to show the open

files, and stored this operational data in Chronix. The re-

sults of queries like

q=type:lsof & cf=lsof{grpsize:name,*}

were the key to explain the rise in the number of open

file handles as about 2,000 new file handles were pipes

or anon inodes that are part of the java.nio package.

Hence it was necessary to dig deeper and to link file han-

dles to system calls. To do so, we used strace and also

stored the data in Chronix. By narrowing down the time

series data to individual file handle IDs, with correlat-

ing queries like the one shown in Section 3 we found

1 //End of strace for file handle ID = 2030

2 epoll ctl(2129, EPOLL CTL ADD, 2030,

3 {EPOLLIN, {u32=2030, u64=2030}}) = 0

4 //End of strace for file handle ID = 2032

5 epoll ctl(2032, EPOLL CTL ADD, 1889,

6 {EPOLLIN, {u32=1889, u64=1889}}) = 0

Listing 4: Last strace calls for two file handle IDs.

Table 5: Memory footprint in MBytes.

In
fluxDB

Open
TSDB

Kair
osD

B

Chro
nix

Initially 33 2,726 8,763 446

Import (max) 10,336 10,111 18,905 7,002

Query (max) 8,269 9,712 11,230 4,792

that epoll ctl was often the last function call before

the anomaly (see Listing 4). By then analyzing which

third party libraries the application uses and by gathering

information on epoll ctl we deduced that the applica-

tion used an old version of Grizzly that leaks selectors [1]

when it tries to write to an already closed channel. The

solution was to upgrade the affected library.

Project 5 detects anomalies in an application that man-

ages the compatibility of software components in a vehi-

cle. The production system has a central database and six

application servers. The operational data is analyzed to

find and understand production anomalies, such as long

running method calls, positive trends of resource con-

sumption, etc. The dataset has an almost-periodic inter-

val of 1 min. and holds seven months of operational data.

Table 4(b) shows the mix of the 133 queries that the

projects needed to achieve their analysis goals. There

are different ranges (r) for the 58 raw data retrievals (q)

that do not have a cf-part and also for the 32 queries

that use basic analysis functions (b-queries) and for the

43 h-queries that use high-level analyses. Table 8 lists

which of the built-in analysis functions from Table 2 the

projects actually use (and how often).

Memory Footprint. Table 5 shows the memory foot-

print of all database processes at different times. This

is relevant as analyses on large amounts of time series

data are often memory intensive. The first line shows the

memory consumption just after a container’s start, when

all components of the time series database are up and

running. The next two lines show the maximal memory

footprints that we encountered while the data of the two

benchmark projects was imported and while the query

mix was executed. All databases stay below the maximal

available memory of 31.42 GB. The import (buffering,

index construction, etc.) needs more memory than the

query mix (reading, decompression, serialization, ship-
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Table 6: Storage demands of the data in GBytes.

Project Raw
data

In
fluxDB

Open
TSDB

Kair
osD

B

Chro
nix

4 1.2 0.2 0.2 0.3 0.1

5 107.0 10.7 16.9 26.5 8.6

total 108.2 10.9 17.1 26.8 8.7

ping, etc.). OpenTSDB and KairosDB clearly take the

most memory due to their various underlying compo-

nents. InfluxDB is better but still takes 1.5 times more

memory than Chronix. The reasons for Chronix’ lower

memory usage are: (a) it does not hold large amounts

of data in memory at once, (b) it runs as a single pro-

cess with lightweight thread parallelism, and (c) its im-

plementation avoids expensive object allocations.

Storage Efficiency. Table 6 shows the storage de-

mands of the data, including the index files, commit

logs, etc. There are three aspects to note. First, out-of-

the-box none of the general-purpose databases can han-

dle the lsof and strace data. Extra programming was

needed to make these databases utilizable for the case-

studies. (For both OpenTSDB and InfluxDB we had to

encode the non-numeric data in tags or in timestamps

plus strings, including some escape mechanisms for spe-

cial characters. For KairosDB we had to explicitly imple-

ment and add custom types.) Second, both OpenTSDB

and KairosDB cannot handle the nanosecond precision

of the strace data. We chose to let them store imprecise

data instead, because (explicitly) converted timestamps

would have taken even more space. Third, all measure-

ments are done after the optimizations and compactions.

During the import the databases temporarily take more

disk space (e.g., for commit logs etc.).

Chronix only needs 8.7 GBytes to store the 108.2

GBytes of raw time series data. Compared to the general-

purpose time series databases Chronix saves 20%–68%

of the storage demand. This is caused by Chronix’ do-

main specific optimizations and by differences in the un-

derlying storage technologies. By default, OpenTSDB

does not compress data, but for a fair comparison we

used it with gzip. InfluxDB stores rows of single data

points using various serialization techniques, such as

Pelkonen et al. [34] for numeric data. KairosDB uses

LZ4 that has a lower compression rate.

Data Retrieval Performance. The case-studies have

58 raw data queries (q) in their mix, with various time

ranges (r). Table 7 gives the retrieval times. They include

the time to find, load, and ship the data and the time to

deserialize it on the side of client. For the measurements,

the data retrieval mix is again repeated 20 times to stabi-

lize the results, with q randomly picked time ranges r.

Table 7: Data retrieval times for 20 · 58 queries (in s).

r q In
fluxDB

Open
TSDB

Kair
osD

B

Chro
nix

0.5 2 4.3 2.8 4.4 0.9

1 11 5.2 5.6 6.6 5.3

7 15 34.1 17.4 26.8 7.0

14 8 36.2 14.2 25.5 4.0

21 12 76.5 29.8 55.0 6.0

28 5 7.9 3.9 5.6 0.5

56 1 35.4 12.4 24.1 1.2

91 2 47.5 15.5 33.8 1.1

180 2 96.7 36.7 66.6 1.1

total 343.8 138.3 248.4 27.1

Table 8: Times for 20 · 75 b- and h-queries (in s).

Basic (b) In
fluxDB

Open
TSDB

Kair
osD

B

Chro
nix

4 avg 0.9 6.1 9.8 4.4

5 max 1.3 8.4 9.1 6.0

3 min 0.7 2.7 5.3 2.8

3 stddev. 6.7 16.7 21.1 2.3

5 sum 0.7 6.0 12.0 2.0

4 count 0.8 5.5 10.5 1.0

8 perc. 10.2 25.8 34.5 8.6

High-level (h)

12 outlier 30.7 29,1 117.6 18.9

14 trend 162.7 50.4 100.6 30.2

11 frequency 47.3 23.9 45.7 16.3

3 grpsize 218.9 2927.8 206.3 29.6

3 split 123.1 2893.9 47.9 37.2

75 total 604.0 5996.3 620.4 159.3

InfluxDB is the slowest, followed by KairosDB and

OpenTSDB. Chronix is the fastest and saves 80%–92%

of the time needed for the raw data retrieval. For all

databases the retrieval times grow with larger ranges. But

for Chronix, they grow more slowly. There are several

reasons for this: (a) Chronix uses an index to access the

chunks and hence avoids full scans, (b) its pipeline ar-

chitecture ships the raw chunks to the client that can pro-

cess (decompress, deserialize) them in parallel, and (c)

Chronix selects its chunk size and compression to suit

these queries.

Built-in Function Advantages. In addition to raw

data retrieval, anomaly detection in operational data also

needs analyzing functions, several of which the general-

purpose time series databases do not natively support

(see Table 2) and whose functionality has to be imple-

mented by hand and typically with more than one query.
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Table 8 shows the runtimes (20 repetitions for stabi-

lization) that use basic (b) and high-level (h) functions

and how often the projects use them (first column). In to-

tal, Chronix saves 73%–97% of the time needed by the

general-purpose time series databases. We discuss the

results for queries with basic functions (b-queries) and

with high-level functions (h-queries) in turn.

In total, the 32 b-queries that other time series

databases also natively support account for not more than

about 17% of the total runtime. Thus, speed variations

for b-queries do not matter that much for anomaly de-

tection tasks. Nevertheless, let us delve into the upper

part of Table 8. OpenTSDB and KairosDB are often

slower than InfluxDB or Chronix. Whenever InfluxDB

can use its pre-computed values (for instance for average,

maximum, etc.) it outperforms Chronix. When on-the-

fly computations are needed (deviation and percentile),

Chronix is faster.

The lower part of Table 8 illustrates the runtimes of

the 43 h-queries. They are important for the anomaly de-

tection projects as they are used much more often than

the other functions. Here Chronix has a much more pro-

nounced lead over the general-purpose databases. The

reason is that Chronix offers built-in means to evaluate

these functions server-side, whereas they have to be man-

ually implemented on the side of the client in the other

systems, with additional raw data retrievals.

Let us look closer at the penalties for the lack of such

built-in functions. To implement an outlier detector in the

other systems, one has to calculate the threshold value as

(Q3 - Q1) · 1.5 + Q3 where Q1 is the first and Q3 is the

third quartile of the time series values. With InfluxDB

this needs one extra query. KairosDB needs two extra

queries, one for getting Q1 and one for Q3, plus a client-

side filter. OpenTSDB does neither provide a function for

getting Q1 nor for filtering values. In the other systems

a trend detector (that checks if the slope of a linear re-

gression through the data is above or below a threshold)

has to be built completely on the side of the client. A fre-

quency detector (that splits a time series into windows,

counts the data points, and checks if the delta between

two windows is above a predefined threshold) is more

costly to express and to run in the other systems as well.

InfluxDB needs one extra query and a client-side valida-

tion. OpenTSDB and KairosDB need a query plus code

for an extra function on the side of the client. The grp-

size and the split functions that run through this paper are

crucial for project 4 both have to be implemented on the

side of the client with an extra query for raw values.

Although it was possible to emulate the high-level

functions, we ran into problems that are either caused

by the missing support of nanosecond timestamps

(KairosDB and OpenTSDB) or the string encoding

(lsof/strace) in tags (OpenTSDB). Missing precision

causes the split function to construct wrong results – we

ignored this and measured the times nevertheless. String

decoding and serialization simply took too long, so we

measured the time of the raw data retrieval only.

The online distribution of Chronix holds the code and

also the re-implementation of the queries with other time

series databases.

Extra queries and client-side evaluations cause a sig-

nificant slowdown. This can be seen in the lower part of

Table 8 where Chronix is faster. But this effect is also

visible in the b-queries. For instance, InfluxDB needs

343.8 s / (58 · 20) = 0.3 s on average for a raw data q-

query without evaluating any function at all. Its average

for the 43 · 20 b-queries instead is only 0.03 s because

the function is evaluated server-side and only the result

is shipped. This is similar for the other databases. Built-

in functions are therefore a clear advantage.

Default values of Chronix. All the results show that

even with its default parameters Chronix outperforms the

general-purpose time series databases on anomaly detec-

tion projects. A use-case specific commissioning with

both projects’ datasets as input did not change the values

for c and t and did not buy any extra performance.

For the default DDC threshold of d=200 ms we see

an inaccuracy rate of 20% for both projects. The average

deviations are around 42 ms and 80 ms, resp. From our

experience, this is acceptable. With the DDC threshold

set to the period of the almost-periodic time series, inac-

curacy reaches the worst case as only the first timestamp

is stored. But even then the resulting materialized com-

pression rate would only be 1.1% lower but for the costs

of a high inaccuracy rate.

6 Related Work

We discuss related work along the main requirements of

Sec. 2 and the domain specific design decisions of Sec. 3.

Generic data model. We are not aware of any time

series database that has such a generic data model as

Chronix. Often only scalar values are supported [2, 12,

13, 28, 31, 32, 34, 36]. InfluxDB [24] has also strings

and boolean types. KairosDB [25] is extensible but the

types lack support for custom operators and functions.

As discussed in Section 2, this is too restrictive for the

operational data of software systems.

Analysis support. There are indexing approaches for

an efficient analysis and retrieval of time series data,

e.g., approximation techniques and tree-structured in-

dexes [6, 8, 15, 26]. They optimize an approximate repre-

sentation of the time series with pointers to the files that

contain the raw data for example for a similarity search.

In contrast, Chronix is not tailored to a specific analysis

but it is optimized for explorative and correlating analy-

ses of operational time series data. Note that the Optional
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Transformation stage can add indexing values.

Several researchers presented methods that detect

anomalies in time series [43, 45, 46]. Chronix imple-

ments in its API most of them and also offers plug-ins.

Efficient long term storage. While many time series

databases focus on cloud computing and PBytes of gen-

eral time series data, Chronix is domain specific for the

anomaly detection in operational data. Chronix builds

upon and extends the architectural principles proposed

by Shafer et al. [40] and Dunning et al. [17]. Its strengths

and the reasons for the better performance are its pipeline

architecture with domain specific optimizations and the

commissioning methodology.

Many time series databases are distributed systems

that run in separate processes [24, 25, 28, 32] on multiple

nodes. Some are affected by synchronization costs and

inter-process communication even when configured to

run on a single node [25, 28, 32]. In contrast, on a single

node Chronix uses lightweight thread parallelism within

a process. Moreover, since OpenTSDB and KairosDB

use an external storage technology (HBase [23] and Cas-

sandra [3]) with a built-in compression, they cannot save

time by shipping compressed data to/from the analysis

client [22], whereas Chronix uses the chunk size and the

compression technique that not only achieve the best re-

sults on the data but also cut down on query latency.

OpenTSDB and KairosDB have a large memory foot-

print due to their building blocks.

In-memory databases or databases that keep large

parts of the data in memory, like Gorilla [34] or

BTrDB [2], can quickly answer queries on recent data,

but they need a long term storage like Chronix for the

older data that some anomaly detectors need.

Lossless storage. A few of the related time series

databases are not lossless. RRDtool [31], Ganglia [29]

(that uses RRDtool), and Graphite [12] store data points

in a fixed-size cyclic buffer, called Round Robin Archive

(RRA). If there is more data than fits into the buffer, they

purge old data. This may cause wrong analysis results.

For identification purposes Prometheus [36] uses a 64-bit

fingerprint of the attribute values to find data. Potential

hash collisions of fingerprints may cause missed data.

Focus on Queries. While most of the databases are

optimized for write throughput [2, 12, 13, 25, 31, 32, 34]

and suffer from scan and filter operations when data

is requested, Chronix optimizes the query performance

(mainly by means of a reverse index). This is an advan-

tage for the needs of anomaly detection. Chronix de-

lays costly index reconstructions when a batch import of

many small chunks of data is needed.

Chronix processes raw data for aggregations. To op-

timize such aggregates Chronix can be enriched with

techniques of related time series databases to store pre-

aggregated values [2, 24].

Domain specific compression. Most time series

databases use some form of compression. There are lossy

approaches that do not fit the requirements of anomaly

detection in operational data. (For instance, one idea is

to down-sample and override old data [12, 31].) Many

time series databases [2, 25, 28, 32, 34, 36] use a loss-

less compression. (Tsdb [13] applies QuickLZ [37] and

only achieves a mediocre rate of about 20% [13].) Most

of them also use a value encoding that is similar in spirit

to the DDC. The difference is that Chronix only removes

jitter from the timestamps in almost-periodic intervals as

exact values matter for anomaly detection.

Commissioning. For none of the other time series

databases there is a commissioning methodology to tune

it to the domain specific or even use-case specific needs

of anomaly detection in operational data.

7 Conclusion

The paper illustrates that general-purpose time series

databases impede anomaly detection projects that ana-

lyze operational data. Chronix is a domain specific al-

ternative that exploits the specific characteristics of the

domain in many ways, e.g., with a generic data model,

extensible data types and operators, built-in high-level

functions, a novel encoding of almost-periodic time se-

ries, records with attributes and binary-encoded chunks

of data, domain specific chunk sizes, etc. Since the con-

figuration parameters need to be chosen carefully to

achieve an ideal performance, there is also a commis-

sioning methodology to find values for them.

On real-world operational data from industry and on

queries that analyze these data, Chronix outperforms

general-purpose time series databases by far. With a

smaller memory footprint, it saves 20%–68% of the stor-

age space, and it saves 80%–92% on data retrieval time

and 73%–97% of the runtime of analyzing functions.

Chronix is open source, see www.chronix.io.
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