
This paper is included in the Proceedings of
the 15th USENIX Conference on

File and Storage Technologies (FAST ’17).
February 27–March 2, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-36-2

Open access to the Proceedings of
the 15th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

vNFS: Maximizing NFS Performance with
Compounds and Vectorized I/O

Ming Chen, Stony Brook University; Dean Hildebrand, IBM Research-Almaden;
Henry Nelson, Ward Melville High School; Jasmit Saluja,

Ashok Sankar Harihara Subramony, and Erez Zadok, Stony Brook University

https://www.usenix.org/conference/fast17/technical-sessions/presentation/chen

vNFS: Maximizing NFS Performance with Compounds and Vectorized I/O
Ming Chen, Dean Hildebrand∗, Henry Nelson+, Jasmit Saluja,

Ashok Sankar Harihara Subramony, and Erez Zadok
Stony Brook University, ∗IBM Research - Almaden, +Ward Melville High School

Abstract
Modern systems use networks extensively, accessing

both services and storage across local and remote net-
works. Latency is a key performance challenge, and
packing multiple small operations into fewer large ones
is an effective way to amortize that cost, especially af-
ter years of significant improvement in bandwidth but
not latency. To this end, the NFSv4 protocol supports
a compounding feature to combine multiple operations.
Yet compounding has been underused since its concep-
tion because the synchronous POSIX file-system API is-
sues only one (small) request at a time.

We propose vNFS, an NFSv4.1-compliant client that
exposes a vectorized high-level API and leverages NFS
compound procedures to maximize performance. We
designed and implemented vNFS as a user-space RPC
library that supports an assortment of bulk operations on
multiple files and directories. We found it easy to modify
several UNIX utilities, an HTTP/2 server, and Filebench
to use vNFS. We evaluated vNFS under a wide range of
workloads and network latency conditions, showing that
vNFS improves performance even for low-latency net-
works. On high-latency networks, vNFS can improve
performance by as much as two orders of magnitude.

1 Introduction and Background
Modern computer hardware supports high parallelism:
a smartphone can have eight cores and a NIC can have
256 queues. Although parallelism can improve through-
put, many standard software protocols and interfaces are
unable to leverage it and are becoming bottlenecks due
to serialization of calls [8, 16]. Two notable examples
are HTTP/1.x and the POSIX file-system API, both of
which support only one synchronous request at a time
(per TCP connection or per call). As Moore’s Law
fades [44], it is increasingly important to make these pro-
tocols and interfaces parallelism-friendly. For example,
HTTP/2 [5] added support for sending multiple requests
per connection. However, to the best of our knowledge
little progress has been made on the file-system API.

In this paper we similarly propose to batch multi-
ple file-system operations. We focus particularly on the
Network File System (NFS), and study how much per-
formance can be improved by using a file-system API
friendly to NFSv4 [34, 35]; this latest version of NFS
supports compound procedures that pack multiple oper-
ations into a single RPC so that only one round trip is
needed to process them. Unfortunately, although NFS

PUTROOTFH; LOOKUP "home"; GETFH; GETATTR.

NFS Client NFS Server

1

FH (fh1) and attributes of "/home"

PUTFH fh1; LOOKUP "Bob"; GETFH; GETATTR.2

FH (fh2) and attributes of "/home/Bob"

PUTFH fh2; OPEN ".bashrc"; GETFH; GETATTR.3

FH (fh3) and attributes of "~/.bashrc"

PUTFH fh3; READ 0 4096.4

Data of "~/.bashrc"

PUTFH fh3; CLOSE; GETATTR.5

Attributes of "~/.bashrc"

Figure 1: NFS compounds used by the in-kernel NFS client to
read a small file. Each numbered request is one compound,
with its operations separated by semicolons. The operations
use an NFSv4 server-side state, the current filehandle (CFH).
PUTROOTFH sets the CFH to the FH of the root directory;
PUTFH and GETFH set or retrieve the CFH; LOOKUP and
OPEN assume that the CFH is a directory, find or open the
specified name inside, and set it as the CFH; GETATTR, READ,
and CLOSE all operate on the file indicated by the CFH.

compounds have been designed, standardized, and im-
plemented in most NFS clients and servers, they are
underused—mainly because of the limitations of the
low-level POSIX file-system interface [8].

To explain the operations and premise of NFS4’s com-
pound procedures, we discuss them using several in-
structive figures. We start with Figure 1, which shows
how reading a small file is limited by the POSIX API.
This simple task involves four syscalls (stat, open,
read, and close) that generate five compounds, each
incurring a round trip to the server. Because compounds
are initiated by low-level POSIX calls, each compound
contains only one significant operation (in bold blue),
with the rest being trivial operations such as PUTFH and
GETFH. Compounds reduced the number of round trips
slightly by combining the syscall operations (LOOKUP,
OPEN, READ) with NFSv4 state-management operations
(PUTFH, GETFH) and attribute retrieval (GETATTR), but
the syscall operations themselves could not be combined
due to the serialized nature of the POSIX API.

Ideally, a small file should be read using only one
NFS compound (and one round trip), as shown in Fig-
ure 2. This would reduce the read latency by 80% (by
removing four of the five round trips). We can even read
multiple files using a single compound, as shown in Fig-
ure 3. All these examples use the standard (unmodified)
NFSv4 protocol. SAVEFH and RESTOREFH operate on

USENIX Association 15th USENIX Conference on File and Storage Technologies 301

PUTROOTFH; LOOKUP "home"; GETFH; GETATTR;

LOOKUP "Bob"; GETFH; GETATTR;

OPEN ".bashrc"; READ 0 4096; CLOSE;

GETFH; GETATTR.

NFS Client NFS Server

1

FH and attributes of "/home", "/home/Bob",

and "/home/Bob/.bashrc", as well as data

of "/home/Bob/.bashrc".

Figure 2: Reading /home/Bob/.bashrc using only one
compound. This single compound is functionally the same as
the five in Figure 1, but uses only one network round trip.

PUTROOTFH; LOOKUP "home"; GETFH; GETATTR;

LOOKUP "Bob"; GETFH; GETATTR; SAVEFH;

OPEN ".bashrc"; READ 0 4096; CLOSE;

GETFH; GETATTR; RESTOREFH;

OPEN ".bash_profile"; READ 0 4096; CLOSE;

GETFH; GETATTR; RESTOREFH;

OPEN ".bash_login"; READ 0 4096; CLOSE;

GETFH; GETATTR.

NFS Client NFS Server

1

a

b

c

d

Figure 3: One NFS compound that reads three files. The op-
erations can be divided into four groups: (a) sets the current
and saved filehandle to /home/Bob; (b), (c), and (d) read
the files .bashrc, .bash profile, and .bash login,
respectively. SAVEFH and RESTOREFH (in red) ensure that the
CFH is /home/Bob when opening files. The reply is omitted.

the saved filehandle (SFH), an NFSv4 state similar to the
current filehandle (CFH). SAVEFH copies the CFH to the
SFH; RESTOREFH restores the CFH from the SFH.

For compounds to reach their full potential, we need
a file-system API that can convey high-level semantics
and batch multiple operations. We designed and devel-
oped vNFS, an NFSv4 client that exposes a high-level
vectorized API. vNFS complies with the NFSv4.1 stan-
dard, requiring no changes to NFS servers. Its API is
easy to use and flexible enough to serve as a building
block for new higher-level functions. vNFS is imple-
mented entirely in user space, and thus easy to extend.

vNFS is especially efficient and convenient for ap-
plications that manipulate large amounts of metadata or
do small I/Os. For example, vNFS lets tar read many
small files using a single RPC instead of using multiple
RPCs for each; it also lets untar set the attributes of
many extracted files at once instead of making separate
system calls for each attribute type (owner, time, etc.).

We implemented vNFS using the standard NFSv4.1
protocol, and added two small protocol extensions
to support file appending and copying. We ported
GNU’s Coreutils package (ls, cp, and rm), bsdtar,
nghttp2 (an HTTP/2 server), and Filebench [15, 40]
to vNFS. In general, we found it easy to modify ap-
plications to use vNFS. We ran a range of micro- and
macro-benchmarks on networks with varying latencies,
showing that vNFS can speed such applications by 3–
133× with small network latencies (≤5.2ms), and by up
to 263× with a 30.2ms latency.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes vNFS’s design. Section 3 details the
vectorized high-level API. Section 4 describes the im-
plementation of our prototype. Section 5 evaluates the
performance and usability of vNFS by benchmarking
applications we ported. Section 6 discusses related work
and Section 7 concludes.

2 Design Overview
In this section we summarize vNFS’s design, including
our goals, choices we made, and the architecture.

2.1 Design Goals
Our design has four goals, in order of importance:

• High performance: vNFS should considerably
outperform existing NFS clients and improve both
latency and throughput, especially for workloads
that emphasize metadata and small I/Os. Perfor-
mance for other workloads should be comparable.
• Standards compliance: vNFS should be fully

compliant with the NFSv4.1 protocol so that it can
be used with any compliant NFS server.
• Easy adoption: vNFS should provide a general

API that is easy for programmers to use. It should
be familiar to developers of POSIX-compliant code
to enable smooth and incremental adoption.
• Extensibility: vNFS should make it easy to add

functions to support new features and performance
improvements. For example, it should be simple
to add support for Server Side Copy (a feature
in the current NFSv4.2 draft [17]) or create new
application-specific high-level APIs.

2.2 Design Choices
The core idea of vNFS is to improve performance by us-
ing the compounding feature of standard NFS. We dis-
cuss the choices we faced and justify those we selected
to meet the goals listed in Section 2.1.
Overt vs. covert coalescing. To leverage NFS com-
pounds, vNFS uses a high-level API to overtly express
the intention of compound operations. An alternative
would be to covertly coalesce operations under the hood
while still using the POSIX API. Covert coalescing is a
common technique in storage and networking; for exam-
ple, disk I/O schedulers combine many small requests
into a few larger ones to minimize seeks [3]; and Na-
gle’s TCP algorithm coalesces small outbound packets
to amortize overhead for better network utilization [21].

Although overt compounding changes the API, we
feel it is superior to covert coalescing in four important
respects: (1) By using a high-level API, overt com-
pounding can batch dependent operations, which are im-
possible to coalesce covertly. For example, using the

302 15th USENIX Conference on File and Storage Technologies USENIX Association

POSIX API, we cannot issue a read until we receive the
reply from the preceding open. (2) Overt compounding
can use a new API to express high-level semantics that
cannot be efficiently conveyed in low-level primitives.
NFSv4.2’s Server Side Copy is one such example [17].
(3) Overt compounding improves both throughput and
latency, whereas covert coalescing improves throughput
at the cost of latency, since accumulating calls to batch
together inherently requires waiting. Covert coalescing
is thus detrimental to metadata operations and small I/Os
that are limited by latency. This is important in modern
systems with faster SSDs and 40GbE NICs, where la-
tency has been improving much slower than raw network
and storage bandwidth [33]. (4) Overt compounding al-
lows implementations to use all possible information to
maximize performance; covert coalescing depends on
heuristics, such as timing and I/O sizes, that can be sub-
optimal or wrong. For example, Nagle’s algorithm can
interact badly with Delayed ACK [10].
Vectorized vs. start/end-based API. Two types of
APIs can express overt compounding: a vectorized one
that compounds many desired low-level NFS operations
into a single high-level call, or an API that uses calls
like start compound and end compound to com-
bine all low-level calls in between [32]. We chose the
vectorized API for two reasons: (1) A vectorized API
is easier to implement than a start/end-based one. Users
of a start/end-based API might mix I/Os with other code
(such as looping and testing of file-system states), which
NFS compounds cannot support. (2) A vectorized API
logically resides at a high level and is more convenient
to use, whereas using a low-level start/end-based API is
more tedious for high-level tasks (similar to C++ pro-
gramming vs. assembly).
User-space vs. in-kernel implementation. A kernel-
space implementation of vNFS would allow it to take
advantage of the kernel’s page and metadata caches and
use the existing NFS code base. However, we chose to
design and implement vNFS in user space for two rea-
sons: (1) Adding a user-space API is much easier than
adding system calls to the kernel and simplifies future
extensions; and (2) User-space development and debug-
ging is faster and easier. Although an in-kernel imple-
mentation might be faster, prior work indicates that the
performance impact can be minimal [39], and the results
in this paper demonstrate substantial performance im-
provements even with our user-space approach.

2.3 Architecture
Figure 4 shows the architecture of vNFS, which consists
of a library and a client. Instead of using the POSIX API,
applications call the high-level vectorized API provided
by the vNFS library, which talks directly to the vNFS
client. The vNFS library facilitates application adoption,

NFS Server

SUNRPC

User

Kernel

NFS Client

EXT4 NFS Client

Networking

(TCP/IP)
Network

Applications

VFS
Page
Cache

vNFS Client

TI−RPC

vNFS Lib

vNFS

POSIX

API

API

socket

Figure 4: vNFS Architecture. The blue arrows show vNFS’s
data path, and the dashed red arrows show the in-kernel NFS
client’s data path. The vNFS library and client (blue shaded
boxes) are new components we added; the rest already existed.

since most modern applications are developed using li-
braries and frameworks instead of OS system calls [2].
To provide generic support and encourage incremental
adoption, the library detects when compound operations
are unsupported, and in that case converts vNFS oper-
ations into standard POSIX primitives. Thus, the vNFS
library can also be used with file systems that do not sup-
port compounding, e.g., as a utility library for batching
file-system operations.

The vNFS client accepts vectorized operations from
the library, puts as many of them into each compound as
possible, sends them to the NFS server using Transport-
Independent RPC (TI-RPC), and finally processes the
reply. Note that existing NFSv4 servers already support
compounds and can be used with vNFS without change.
TI-RPC is a generic RPC library without the limitations
of Linux’s in-kernel SUNRPC (e.g., supporting only a
single data buffer per call); TI-RPC can also run on top
of TCP, UDP, and RDMA. Like the in-kernel NFS client,
the vNFS client also manages NFSv4’s client-side states
such as sessions, etc.

3 vNFS API
This section details vNFS’s vectorized API (listed in Ta-
ble 1). Each API function expands its POSIX counter-
parts to operate on a vector of file-system objects (e.g.,
files, directories, symbolic links). vNFS functions han-
dle errors in a standard manner: return results for suc-
cessful operations, report the index of the first failed op-
eration in a compound (if any), and ignore any remaining
operations that were not executed by the server. Figure 5
demonstrates the use of vNFS API to read three small
files in one NFS compound. To simplify programming,
vNFS also provides utility functions for common tasks
such as recursively removing a whole directory, etc.
vread/vwrite. These functions can read or write
multiple files using a single compound, with automatic
on-demand file opening and closing. These calls boost
throughput, reduce latency, and simplify programming.
Both accept a vector of I/O structures, each containing

USENIX Association 15th USENIX Conference on File and Storage Technologies 303

Function Description
vopen Open/close many files.
vclose
vread Read/write/create/append files with
vwrite automatic file opening and closing.
vgetattrs Get/set multiple attributes of

file-system objects.vsetattrs
vsscopy Copy files in whole or in part
vcopy with/out Server Side Copy.
vmkdir Create directories.
vlistdir List (recursively) objects and their

attributes in directories.
vsymlink Create many symbolic links.
vreadlink Read many symbolic links.
vhardlink Create many hard links.
vremove Remove many objects.
vrename Rename many objects.

Table 1: vNFS vectorized API functions. Each function has two
return values: an error code and a count of successful oper-
ations. NFS servers stop processing the remaining operations
in a compound once any operation inside failed. To facilitate
gradual adoption, vNFS also provides POSIX-like scalar API
functions, omitted here for brevity. Each vNFS function has a
version that does not follow symbolic links, also omitted.

a vfile structure (Figure 5), offset, length, buffer, and
flags. Our vectorized operations are more flexible than
the readv and writev system calls, and can operate
at many (discontinuous) offsets of multiple files in one
call. When generating compound requests, vNFS adds
OPENs and CLOSEs for files represented by paths; files
represented by descriptors do not need that since they are
already open. OPENs and CLOSEs are coalesced when
possible, e.g. when reading twice from one file.

The length field in the I/O structure also serves as
an output, returning the number of bytes read or writ-
ten. The structure has several flags that map to NFS’s
internal Boolean arguments and replies. For exam-
ple, the flag is creation corresponds to the NFS
OPEN4 CREATE flag, telling vwrite to create the tar-
get file if necessary. is write stable corresponds
to NFS’s WRITE DATA SYNC4 flag, causing the server
to save the data to stable storage, avoiding a separate
NFS COMMIT. Thus, a single vwrite can achieve the
effect of multiple writes and a following fsync, which
is a common I/O pattern (e.g., in logging or journaling).

� State management NFSv4 is stateful, and OPEN
is a state-mutating operation. The NFSv4 protocol re-
quires a client to open a file before reading or writing it.
Moreover, READ and WRITE must provide the stateid
(an ID uniquely identifying a server’s state [34]) re-
turned by the preceding OPEN. Thus, state management
is a key challenge when vread or vwrite adds OPEN
and READ/WRITE calls into a single compound. vNFS
solves this by using the NFS current stateid, which is

struct vfile {
enum VFILETYPE type; // PATH or DESCRIPTOR
union {
const char *path; // When "type" is PATH,
int fd; // or (vNFS file) DESCRIPTOR.

};
};
// The "vio" I/O structure contains a vfile.
struct vio ios[3] = {
{ .vfile = { .type = PATH,

.path = "/home/Bob/.bashrc" },
.offset = 0,
.length = 64 * 1024,
.data = buf1, // pre-allocated 64KB buffer
.flags = 0, // contains an output EOF bit

}, ... // two other I/O structures omitted
};
struct vres r = vread(ios, 3); // read 3 files

Figure 5: A simplified C code sample of reading three files at
once using the vectorized API.

a server-side state similar to the current filehandle. To
ensure that the NFS server always uses the correct state,
vread and vwrite take advantage of NFSv4’s special
support for using the current stateid [34, Section 8.2.3].

� Appending vwrite also adds an optional small
extension to the NFSv4.1 protocol to better support
appends. As noted in the Linux manual page for
open(2) [28], “O APPEND may lead to corrupted
files on NFS filesystems if more than one process ap-
pends data to a file at once.” The base NFSv4 pro-
tocol does not support appending, so the kernel NFS
client appends by writing to an offset equal to the current
known file size. This behavior is inefficient as the file
size must first be read separately, and it is vulnerable to
TOCTTOU (time-of-check-to-time-of-use) attacks. Our
extension uses a special offset value (UINT64 MAX) in
the I/O structure to indicate appending, making append-
ing reliable with a tiny (5 LoC) change to the NFS server.

vopen/vclose. Using vread and vwrite, ap-
plications can access files without explicit opens and
closes. Our API still supports vopen and vclose op-
erations, which add efficiency for large files that are read
or written many times. vopen and vclose are also im-
portant for maintaining NFS’s close-to-open cache con-
sistency [25]. vopen opens multiple files (specified by
paths) in one RPC, including LOOKUPs needed to locate
their parent directories, as shown in Figure 3. Each file
has its own open flags (read, write, create, etc.), which is
useful when reading and writing are intermixed, such as
external merge sorting. We also offer vopen simple,
which uses a common set of flags and mode (in case of
creation) for all files. Once opened, a file is represented
by a file descriptor, which is an integer index into an in-
ternal table that keeps states (file cursor, NFSv4 stateid
and sequenceid [34], etc.) of open files. vclose closes
multiple opened files and releases their resources.

304 15th USENIX Conference on File and Storage Technologies USENIX Association

vgetattrs/vsetattrs. These two functions ma-
nipulate several attributes of many files at once, combin-
ing multiple system calls (chmod, chown, utimes,
and truncate, etc.) into a single compound, which
is especially useful for tools like tar and rsync.
The aging POSIX API is the only restriction on setting
many attributes at once: the Linux kernel VFS already
supports multi-attribute operations using the setattr
method of inode operations, and the NFSv4 pro-
tocol has similar SETATTRs support. vgetattrs and
vsetattrs use an array of attribute structures as both
inputs and outputs. Each structure contains a vfile
structure, all attributes (mode, size, etc.), and a bitmap
showing which attributes are in use.
vsscopy/vcopy. File copying is so common that
Linux has added the sendfile and splice system
calls to support it. Unfortunately, NFS does not yet sup-
port copying and clients must use READs and WRITEs
instead, wasting time and bandwidth because data has to
be read over the network and immediately written back.
It is more efficient to ask the NFS server to copy the files
directly on its side. This Server Side Copy (SSC) has
already been proposed for the upcoming NFSv4.2 [17].
Being forward-looking, we included vsscopy in vNFS
to copy many files (in whole or in part) using SSC; how-
ever, SSC requires server enhancements.
vsscopy accepts an array of copy structures, each

containing the source file and offset, the destination file
and offset, and the length. The destination files are
created by vsscopy if necessary. The length can be
UINT64 MAX, in which case the effective length is the
distance between the source offset and the end of the
source file. vsscopy can use a single RPC to copy
many files in their entirety. The copy structures return
the number of copied bytes in the length fields.
vcopy has the same effect but does not use SSC.

vcopy is useful when the NFS server does not support
SSC; vcopy can copy N small files using three RPCs
(a compound for each of vgetattrs, vread, and
vwrite) instead of 7×N RPCs (2 OPENs, 2 CLOSEs, 1
GETATTR, 1 READ, and 1 WRITE for each file). A future
API could provide only vcopy and silently switch to
vsscopywhen SSC is available; we include vsscopy
separately in this paper for comparison with vcopy.
vmkdir. vNFS provides vmkdir to create multiple
directories at once (such as directory trees), which is
common in tools such as untar, cmake, and recur-
sive cp. vNFS’s utility function ensure directory
uses vmkdir to ensure a deep directory and all its
ancestors exist. Consider "/a/b/c/d" for example:
the utility function first uses vgetattrs with argu-
ments ["/a"; "/a/b"; . . .] to find out which an-
cestors exist and then creates the missing directories us-
ing vmkdir. Note that simply calling vmkdir with

vector arguments ["/a"; "/a/b"; . . .] does not
work: the NFS server will fail (with EEXIST) when try-
ing to recreate the first existing ancestor and stop pro-
cessing all remaining operations.
vlistdir. This function speeds up directory listing
with four improvements to readdir: (1) vlistdir
lists multiple directories at once; (2) a prior opendir
is not necessary for listing; (3) vlistdir retrieves at-
tributes along with directory entries, saving subsequent
stats; (4) vlistdir can work recursively. It can be
viewed as a fast vectorized ftw(3) that reads NFS di-
rectory contents using as few RPCs as possible.
vlistdir takes five arguments: an array of directo-

ries to list, a bitmap indicating desired attributes, a flag
to select recursive listing, a user-defined callback func-
tion (similar to ftw’s second argument [27]), and a user-
provided opaque pointer that is passed to the callback.
vlistdir processes directories in the order given; re-
cursion is breadth-first. However, directories at the same
level in the tree are listed in an arbitrary order.
vsymlink/vreadlink/vhardlink. These three
vNFS operations allow many links to be created or read
at once. Together with vlistdir, vsymlink can op-
timize operations like "cp -sr" and "lndir". All
three functions accept a vector of paths and a vector of
buffers containing the target paths.
vremove. vremove removes multiple files and di-
rectories at once. Although vremove does not sup-
port recursive removal, a program can achieve this ef-
fect with a recursive vlistdir followed by properly
ordered vremoves; vNFS provides a utility function
rm recursive for this purpose.
vrename. Renaming many files and directories is
common, for example when organizing media collec-
tions. Many tools [1, 22, 24, 45] have been developed
just for this purpose. vNFS provides vrename to facil-
itate and speed up bulk renaming. vrename renames a
vector of source paths to a vector of destination paths.

4 Implementation
We have implemented a prototype of vNFS in C/C++ on
Linux. As shown in Figure 4, vNFS has a library and
a client, both running in user space. The vNFS library
implements the vNFS API. Applications use the library
by including the API header file and linking to it. For
NFS files, the library redirects API function calls to the
vNFS client, which builds large compound requests and
sends them to the server via the TI-RPC library. For
non-NFS files, the library translates the API functions
into POSIX calls, and therefore can also be used as a
utility library. (Our current prototype considers a file to
be on NFS if it is under any exported directory specified
in vNFS’s configuration file.) The vNFS client builds on
NFS-Ganesha [12, 30], an open-source user-space NFS

USENIX Association 15th USENIX Conference on File and Storage Technologies 305

server. NFS-Ganesha can export files stored in many
backends, such as XFS and GPFS. Our vNFS prototype
uses an NFS-Ganesha backend called PROXY, which
exports files from another NFS server and can be repur-
posed as a user-space NFS client. The original PROXY
backend used NFSv4.0; we added NFSv4.1 support in-
cluding session management [34]. Our prototype imple-
mentation added 10,632 lines of C/C++ code and deleted
1,407. vNFS is thread-safe; we have tested it thoroughly.
RPC size limit. The vNFS API functions (shown in
Table 1) do not impose a limit on the number of oper-
ations per call. However, each RPC has a configurable
memory size limit, defaulting to 1MB. We ensure that
vNFS does not generate RPC requests larger than that
limit no matter how many operations an API call con-
tains. Therefore, we split long arguments into chunks
and send one compound request for each chunk. We also
merge RPC replies upon return, to hide any splitting.

Our splitting avoids generating small compounds. For
data operations (vread and vwrite), we can easily es-
timate the sizes of requests and replies based on buffer
lengths, so we split a compound only when its size be-
comes close to 1MB. (The in-kernel NFS client simi-
larly splits large READs and WRITEs according to the
rsize and wsize mount options, which also default
to 1MB.) For metadata operations, it is more difficult
to estimate the reply sizes, especially for READDIR and
GETATTR. We chose to be conservative and simply split
a compound of metadata operations whenever it contains
more than k NFS operations. We chose a default of 256
for k, which enables efficient concurrent processing by
the NFS server, and yet is unlikely to exceed the size
limit. For example, when listing the Linux source tree,
the average reply size of READDIR—the largest meta-
data operation—is around 3,800 bytes. If k is still too
large (e.g., when listing large directories), the server will
return partial results and use cookies to indicate where to
resume the call for follow-up requests.
Protocol extensions. vNFS contains two extensions to
the NFSv4.1 protocol to support file appending (see Sec-
tion 3 [¶vread/vwrite]) and Server Side Copy (see
Section 3 [¶vsscopy/vcopy]). Both extensions re-
quire changes to the protocol and the NFS server. We
have implemented these changes in our server, which is
based on NFS-Ganesha [11, 12, 30]. The file-appending
extension was easy to implement, adding only an if
statement with 5 lines of C code. In the NFS server,
we only need to use the file size as the effective offset
whenever the write offset is UINT64 MAX.

Our implementation of Server Side Copy follows the
design proposed in the NFSv4.2 draft [17]. We added
the new COPY operation to our vNFS client and the NFS-
Ganesha server. On the server side, we copy data using
splice(2), which avoids unnecessarily moving data

across the kernel/user boundary. This extension added
944 lines of C code to the NFS-Ganesha server.
Path compression. We created an optimization that
reduces the number of LOOKUPs when a compound’s
file paths have locality. The idea is to shorten paths
that have redundancy by making them relative to pre-
ceding ones in the same compound. For example,
when listing the directories "/1/2/3/4/5/6/7/a"
and "/1/2/3/4/5/6/7/b", a naı̈ve implementation
would generate eight LOOKUPs per directory (one per
component). In such cases, we replace the path of
the second directory with "../b" and use only one
LOOKUPP and one LOOKUP; LOOKUPP sets the current
filehandle to its parent directory. This simple technique
saves as many as six NFS operations for this example.

Note that LOOKUPP produces an error if the current
filehandle is not a directory, because most file systems
have metadata recording parents of directories, but not
parents of files. In that case, we use SAVEFH to remem-
ber the deepest common ancestor in the file-system tree
(i.e., "/1/2/3/4/5/6/7" in the above example) of
two adjacent files, and then generate a RESTOREFH and
LOOKUPs. (However, this approach cannot be used for
LINK, RENAME, and COPY, which already use the saved
filehandle for other purposes.) We use this optimiza-
tion only when it saves NFS operations: for example,
using "../../c/d" does not save anything for paths
"/1/a/b" and "/1/c/d".
Client-side caching. Our vNFS prototype does not yet
have a client-side cache, which would be useful for re-
reading recent data and metadata, streaming reads, and
asynchronous writes. We plan to add it in the future.
Compared to traditional NFS clients, vNFS does not
complicate failure handling in the presence of a dirty
client-side cache: cached dirty pages (not backed by per-
sistent storage) are simply dropped upon a client crash;
dirty data in a persistent cache (e.g., FS-Cache [19]),
which may be used by a client holding write delega-
tions, can be written to the server even faster during
client crash recovery. Note that a client-side cache does
not hold dirty metadata because all metadata changes are
performed synchronously in NFS (except with directory
delegations, which Linux has not yet implemented).

5 Evaluation
To evaluate vNFS, we ran micro-benchmarks and also
ported applications to use it. We now discuss our porting
experience and evaluate the resulting performance.

5.1 Experimental Testbed Setup
Our testbed consists of two identical Dell PowerEdge
R710 machines running CentOS 7.0 with a 3.14 Linux
kernel. Each machine has a six-core Intel Xeon X5650
CPU, 64GB of RAM, and an Intel 10GbE NIC. One ma-

306 15th USENIX Conference on File and Storage Technologies USENIX Association

4K 16K 64K 256K 1M 4M 16M
0.2

1.2
2.2

3.2
4.2

5.2

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

S
p
ee

d
u
p
 R

at
io

 (
lo

g
2
)

1K

N
et

w
or

k
L
at

en
cy

 (
m

s)

File Sizes (log2)

S
p
ee

d
u
p
 R

at
io

 (
lo

g
2
)

20

40

60

80

100

S
p

e
e

d
u

p
 R

a
ti
o

(a) Reading whole files

4K 16K 64K 256K 1M 4M 16M
0.2

1.2
2.2

3.2
4.2

5.2

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

S
p
ee

d
u
p
 R

at
io

 (
lo

g
2
)

1K

N
et

w
or

k
L
at

en
cy

 (
m

s)

File Sizes (log2)

S
p
ee

d
u
p
 R

at
io

 (
lo

g
2
)

20

40

60

80

100

S
p

e
e

d
u

p
 R

a
ti
o

(b) Writing whole files

Figure 6: vNFS’s speedup ratio (the vertical Z-axis, in logarithmic scale) relative to the baseline when reading and writing 1,000
equally-sized files, whose sizes (the X-axis) varied from 1KB to 16MB. vNFS is faster than (blue), equal to (white), or slower than
(red) the baseline when the speedup ratio is larger than, equal to, or smaller than 1.0, respectively. The network latency (Y-axis)
starts from 0.2ms (instead of zero) because that is the measured base latency of our testbed (see Section 5.1).

chine acts as the NFS server and runs NFS-Ganesha with
our file-appending and Server Side Copy extensions; the
other machine acts as a client and runs vNFS. The NFS
server exports to the client an Ext4 file system, stored
on an Intel DC S3700 200GB SSD. The two machines
are directly connected to a Dell PowerConnect 8024F
10GbE switch, and we measured an average RTT of
0.2ms between them. To emulate different LAN and
WAN conditions, we injected delays of 1–30ms into the
outbound link of the server using netem.

To evaluate vNFS’s performance, we compared it with
the in-kernel NFSv4.1 client (called baseline), which
mounts the exported directory using the default options:
the attribute cache (ac option) is enabled and the max-
imum read/write size (rsize/wsize options) is 1MB.
Our vNFS prototype does not use mount, but instead
reads the exported directory from a configuration file.
We ran each experiment at least three times and plotted
the average value. We show the standard deviation as
error bars, which are invisible in most figures because of
their tiny values. Before each run, we flushed the page
and dentry caches of the in-kernel client by unmounting
and re-mounting the NFS directory. vNFS has no cache.
The NFS-Ganesha server uses an internal cache, plus the
OS’s page and dentry caches. To quantify the effort of
porting applications, we report the LoC change for each
application including the error-handling code.

5.2 Micro-workloads
Small vs. big files. vNFS’s goal is to improve perfor-
mance for workloads with many small NFS operations,
while staying competitive for data-intensive workloads.
To test this, we compared the time used by vNFS and
the baseline to read and write 1,000 equally-sized files
in their entirety while varying the file size from 1KB
to 16MB. We repeated the experiment in networks with
0.2ms to 5.2ms latencies, and packed as many operations
as possible into each vNFS compound. The results are
shown (in logarithmic scale) in Figure 6, where speedup
ratio is the ratio of the baseline’s completion time to

vNFS’s completion time. Speedup ratios greater than
one mean that vNFS performed better than the baseline;
ratios less than one mean vNFS performed worse.

Because vNFS combined many small read and write
operations into large compounds, it performed much
better than the baseline when the file size was small.
With a 1KB file size and 0.2ms network latency, vNFS is
19× faster than the baseline when reading (Figure 6(a)),
and 5× faster when writing (Figure 6(b)). As the net-
work latency increased to 5.2ms, vNFS’s speedup ratio
improved further to 103× for reading and 40× for writ-
ing. vNFS’s speedup ratio was higher for reading than
for writing because once vNFS was able to eliminate
most network round trips, the NFS server’s own storage
became the next dominant bottleneck.

As the file size (the X-axis in Figure 6) was increased
to 1MB and beyond, vNFS’s compounding effect faded,
and the performance of vNFS and the baseline became
closer. However, in networks with 1.2–5.2ms latency,
vNFS was still 1.1–1.7× faster than the baseline: al-
though data operations were too large to be combined to-
gether, vNFS could still combine them with small meta-
data operations such as OPEN, CLOSE, and GETATTR.
Combining metadata and data operations requires vNFS
to split I/Os below 1MB due to the 1MB RPC size limit
(see Section 4). When a large I/O is split into pieces,
the last one may be small; this phenomenon made vNFS
around 10% slower when reading 4MB and 8MB files in
the 0.2ms-latency network. However, this is not a prob-
lem in most cases because that last small piece is likely
to be combined into later compounds. This is why vNFS
performed the same as the baseline with even larger file
sizes (e.g., 16MB) in the 0.2ms-latency network. This
negative effect of vNFS’s splitting was unnoticeable for
writing because writing was bottlenecked by the NFS
server’s storage. Note that the baseline (the in-kernel
NFS client) splits I/Os strictly at the 1MB size, although
it also adds a few trivial NFS operations such as PUTFH
(see Figure 1) in its compounds, meaning that the base-
line’s RPC size is actually larger than 1MB.

USENIX Association 15th USENIX Conference on File and Storage Technologies 307

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16 32 64 128 256

S
p
ee

d
u
p
 R

at
io

of Operations per API Call (log2)

Mkdir

OpenClose

Write4KSync

Read4KDirect

Getattrs

Setattr1

Setattr2

Setattr3

Setattr4

Symlink

Readlink

Rename

Remove

Listdir

Figure 7: vNFS’s speedup ratio relative to the baseline under
different degrees of compounding. The X-axis is log2. The
network latency is 0.2ms. Write4KSync writes 4KB data to files
opened with O SYNC; Read4KDirect reads 4KB data from files
opened with O DIRECT; SetattrN sets N files’ attributes
(mixes of mode, owner, timestamp, and size). The vector size of
the baseline is actually the number of individual POSIX calls
issued iteratively. The speedup ratio of Read4KDirect goes up
to 46 at 256 operations per call; its curve is cut off here.

Compounding degree. The degree of compounding
(i.e., the number of non-trivial NFS operations per com-
pound) is a key factor determining how much vNFS can
boost performance. The ideal is to perform a large num-
ber of file system operations at once, which is not al-
ways possible because applications may have critical
paths that depend on only a single file. To study how
the degree of compounding affects vNFS’s performance,
we compared vNFS with the baseline when calling the
vNFS API functions with different numbers of opera-
tions in their vector arguments.

Figure 7 shows the speedup ratio of vNFS relative to
the baseline as the number of operations per API call was
increased from 1 to 256 in the 0.2ms-latency network.
Even with one operation per call, vNFS outperformed
the baseline for all API functions except two, because
vNFS could still save round trips for single-file calls. For
example, the baseline used three RPCs to rename a file:
one LOOKUP for the source directory, another LOOKUP
for the destination directory, and one RENAME; vNFS,
however, used only one compound RPC combining all
three operations. Getattrs and Setattr1 are the
two exceptions where vNFS performed slightly worse
(17% and 14% respectively) than the baseline. This is
because each of these two calls needs only a single NFS
operation; so vNFS could not combine anything yet in-
curred the overhead of performing RPCs in user space.

When there was more than one operation per API call,
compounding became effective and vNFS significantly
outperformed the baseline for all calls; note that the Y

1K 2K 4K 8K 16K 32K 64K 128K256K512K 1M 2M 4M 8M 16M
0.2

1.2
2.2

3.2
4.2

5.2

1/16

1/8

1/4

1/2

1

2

4

8

16

S
p
ee

d
u
p
 R

at
io

 (
lo

g
2
)

N
et

w
or

k
L

at
en

cy
 (
m

s)

File Sizes

S
p
ee

d
u
p
 R

at
io

 (
lo

g
2
)

1/16

1/4

1

4

16

S
p
e
e
d
u
p
 R

a
ti
o

Figure 8: The speedup ratio of vNFS over the baseline (in log-
arithmic scale) when repeatedly opening, reading, and clos-
ing a single file, whose size is shown on the X-axis. vNFS
is faster than (blue), equal to (white), and slower than (red)
the baseline when the speedup ratio is larger than, equal to,
and smaller than 1, respectively. Our vNFS prototype does not
have a cache yet, whereas the baseline does. The Z-axis is in
logarithmic scale; the higher the better.

axis of Figure 7 is in logarithmic scale. All calls ex-
cept Write4KSync (bottlenecked by the server’s stor-
age stack) were more than 4× faster than the base-
line when multiple operations were compounded. Note
that vsetattrs can set multiple attributes at once,
whereas the baseline sets one attribute at a time. We ob-
serve in Figure 7 that the speedup ratio of setting more
attributes (e.g., Setattr4) at once was always higher
than that of setting fewer (e.g., Setattr3).

In our experiments with slower networks (omitted for
brevity), vNFS’s speedups relative to the baseline were
even higher than in the 0.2ms-latency network: up to two
orders of magnitude faster.
Caching. Our vNFS prototype does not yet support
caching. In contrast, the baseline (in-kernel NFS client)
caches both metadata and data. To study the cache’s per-
formance impact, we compared vNFS and the baseline
when repeatedly opening, reading, and closing a sin-
gle file whose size varied from 1KB to 16MB. Figure 8
shows the results, where a speedup ratio larger than one
means vNFS outperformed the baseline; and a speedup
ratio less than one means vNFS performed worse.

The baseline served all reads except the first from
its cache, but it was slower than vNFS (which did not
cache) when the file size was 256KB or smaller. This is
because three RPCs per read are still required to main-
tain close-to-open semantics: an OPEN, a GETATTR (for
cache revalidation), and a CLOSE. In comparison, vNFS
used only one compound RPC, combining the OPEN,
READ (uncached), and CLOSE. The savings from com-
pounding more than compensated for vNFS’s lack of a
cache. For a 512KB file size, vNFS was still faster than
the baseline except in the 0.2ms-latency network. For
1MB and larger files, vNFS was worse than the baseline
because read operations dominated: the baseline served
all reads from its client-side cache whereas vNFS sent
all reads to the server without the benefit of caching.

308 15th USENIX Conference on File and Storage Technologies USENIX Association

 0

 800

 1600

 2400

 3200

0.2 1.2 2.2 3.2 4.2 5.2

R
u
n
n
in

g
 T

im
e

(s
)

Network Latency (ms)

baseline

263

842

1381

1908

2437

2969

vNFS-NOSSC

61 68 76 84 92 100

vNFS-SSC

32 36 39 42 46 48

Figure 9: Running time to copy (cp -r) the entire Linux
source tree. The lower the better. vNFS runs much faster than
the baseline both with and without Server Side Copy (SSC).

5.3 Macro-workloads
To evaluate vNFS using realistic applications, we modi-
fied cp, ls, and rm from GNU Coreutils, Filebench [15,
40], and nghttp2 [31] to use the vNFS API; we also im-
plemented an equivalent of GNU tar using vNFS.

GNU Coreutils. Porting cp and rm to vNFS was easy.
For cp, we added 170 lines of code and deleted 16; for
rm, we added 21 and deleted 1. Copying files can be
trivially achieved using vsscopy, vgetattrs, and
vsetattrs. Recursively copying directories requires
calling vlistdir on the directories and then invoking
vsscopy for plain files, vmkdir for directories, and
vsymlink for symbolic links—all of which is done in
vlistdir’s callback function. We tested our modified
cp with diff -qr to ensure that the copied files and
directories were exactly the same as the source. Remov-
ing files and directories recursively in rm was similar,
except that we used vremove instead of vsscopy.

Porting ls was more complex because batching is
difficult when listing directories recursively in a partic-
ular order (e.g., by file size). We could not use the re-
cursive mode of vlistdir because the NFS READDIR
operation does not follow any specific order when read-
ing directory entries, and the whole directory tree may
be too large to fit in memory. Instead, vNFS maintains a
list of all directories to read in the proper order as speci-
fied by the ls options, and repeatedly calls vlistdir
(not recursively) on directories at the head of the list un-
til it is empty. Note that (1) a directory is removed from
the list only after all its children have been read; and (2)
sub-directories should be sorted and then inserted imme-
diately after their parent to maintain the proper order in
the list. We added 392 lines of code and deleted 203 to
port ls to vNFS. We verified that our port is correct by
comparing the outputs of our lswith the vanilla version.

We used the ported Coreutils programs to copy, list,
and remove an entire Linux-4.6.3 source tree: it con-
tains 53,640 files with an average size of 11.6KB, 3,604
directories with average 17 children per directory, and
23 symbolic links. The large number of files and direc-
tories thoroughly exercises vNFS and demonstrates the
performance impact of compounding.

Figure 9 shows the results of copying the entire Linux
source tree; vNFS outperformed the baseline in all cases.
vNFS uses either vsscopy or vcopy depending on
whether Server Side Copy (SSC) is enabled. However,
the baseline cannot use SSC because it is not yet sup-
ported by the in-kernel NFS client. For the same work-
load of copying the Linux source tree, vNFS used merely
4,447 compounding RPCs whereas the baseline used as
many as 506,697: two OPENs, two CLOSEs, one READ,
one WRITE, and one SETATTR for each of the 53,640
files; 60,873 ACCESSes; 62,327 GETATTRs; and 8,017
other operations such as READDIR and CREATE. vNFS-
NOSSC saved more than 99% of RPCs compared to the
baseline, with each vNFS compounding RPC containing
an average of 250 operations. Therefore, even with only
a 0.2ms network latency, vNFS-NOSSC is still more
than 4× faster than the baseline. The speedup ratio in-
creases to 30× with a 5.2ms network latency.

When Server Side Copy (SSC) was enabled, vNFS
ran even faster, and vNFS-SSC reduced the running time
of vNFS-NOSSC by half. The further speedup of SSC
is only moderate because the files are small and our net-
work bandwidth (10GbE) is large. The speedup ratio of
vNFS-SSC to the baseline is 8–60× in networks with
0.2–5.2ms latency. Even when the baseline adds SSC
support in the future, vNFS would still outperform it be-
cause this workload’s bottleneck is the large number of
small metadata operations, not data-copying operations.

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

0.2 5.2 10.2 15.2 20.2 25.2 30.2

S
p
ee

d
u
p
 R

at
io

 (
lo

g
2
)

Network Latency (ms)

rm −Rf cp −Rs ls −Rl

Figure 10: vNFS’s speedup relative to the baseline when sym-
bolically copying (cp -Rs), listing (ls -Rl), and removing
(rm -Rf) the Linux source tree. The Y-axis is logarithmic.

With the -Rs options, cp copies an entire directory
tree by creating symbolic links to the source directory.
Figure 10 shows speedups for symlinking, recursively
listing (ls -Rl), and removing (rm -Rf) the Linux
source tree. When recursively listing the Linux tree, ls-
baseline used 10,849 RPCs including 3,678 READDIRs,
3,570 ACCESSes, and 3,570 GETATTRs. Note that the
in-kernel NFS client did not issue a separate GETATTR
for each directory entry although the vanilla ls pro-
gram called stat for each entry listed. This is because
the in-kernel NFS client pre-fetches the attributes using
readdirs and serves the stat calls from the local
client’s dentry metadata cache. This optimization en-
ables ls-baseline to finish the benchmark in just 5 sec-

USENIX Association 15th USENIX Conference on File and Storage Technologies 309

onds in the 0.2ms-latency network. However, with our
vectorized API, ls-vNFS did even better and finished
in 2 seconds, using only 856 RPCs. Moreover, vNFS
scales much better than the baseline. When the latency
increased from 0.2 to 30.2ms, vNFS’s running time rose
to only 28 seconds whereas the baseline increased to 336
seconds. ls-vNFS is 10× faster than ls-baseline in
high-latency (>5.2ms) networks.

For symbolic copying and removing (Figure 10),
vNFS was 7× and 18× faster than the baseline in the
0.2ms-latency network, respectively. This is because the
baseline always operated on one file at a time, whereas
vNFS could copy or remove more than 200 files at once.
Compared to the baseline, vNFS improved cp by 52×
and rm by 133× in the 5.2ms-latency network; with
30.2ms latency the speedup ratios became 106× for cp,
and 263× for rm. For both removing and symbolic
copying, vNFS ran faster in the 30.2ms-latency network
(25 and 15 seconds, respectively) than the baseline did
with 0.2ms latency (38s and 55s, respectively), showing
that compounds can indeed help NFSv4 realize its de-
sign goal of being WAN-friendly [29].

tar. Because the I/O code in GNU tar is closely
coupled to other code, we implemented a vNFS equiv-
alent using libarchive, in which the I/O code is
clearly separated. The libarchive library supports
many archiving and compression algorithms; it is also
used by FreeBSD bsdtar. Our implementation needed
only 248 lines of C++ code for tar and 210 for untar,
both including error-handling code.

When archiving a directory, we use the vlistdir
API to traverse the tree and add sub-directories into
the archive. We gather the listed files and symlinks
into arrays, then read their contents using vread and
vreadlink, and finally compress and write the con-
tents into the archive. During extraction, we read the
archive in 1MB (RPC size limit) chunks and then use
libarchive to extract and decompress objects and
their contents, which are then passed in batches to
vmkdir, vwrite, or vsymlink. We always create
parent directories before their children. We ensured that
our implementation is correct by feeding our tar’s out-
put into our untar and comparing the extracted files
with the original input files. We also tested for cross-
compatibility with other tar implementations including
bsdtar and GNU tar.

We used our tar to archive and untar to ex-
tract a Linux 4.6.3 source tree. Archiving read 53,640
small files and wrote a large archive: 636MB un-
compressed, and 86MB with the xz option (default
compression used by kernel.org). Extracting re-
versed the process. There were also metadata opera-
tions on 23 symbolic links and 3,604 directories. Fig-
ure 11 shows the tar/untar results, compared to

 0

 10

 20

 30

 40

0.2 1.2 2.2 3.2 4.2 5.2

S
p
ee

d
u
p
 R

at
io

Network Latency (ms)

tar−compress

tar−nocompress

untar−decompress

untar−nodecompress

Figure 11: Speedup ratios of vNFS relative to the base-
line (bsdtar) when archiving and extracting the Linux-4.6.3
source tree, with and without xz compression.

bsdtar (running on the in-kernel client) as the base-
line. For tar-nocompress in the 0.2ms-latency net-
work, vNFS was more than 5× faster than the baseline
because the baseline used 446,965 RPCs whereas vNFS
used only 2,144 due to compounding. This large reduc-
tion made vNFS 37× faster when the network latency
increased to 5.2ms. In terms of running time, vNFS used
69 seconds to archive the entire Linux source tree in the
5.2ms-latency network, whereas the baseline, even in the
faster 0.2ms-latency network, still used as much as 192
seconds. For untar-nodecompress, vNFS is also
5–36× faster, depending on the network latency.

Figure 11 also includes the results when xz compres-
sion was enabled. Although compression reduced the
size of the archive file by 86% (from 636MB to 86MB)
and thus saved 86% of the I/Os to the archive file, it
had a negligible performance impact (less than 0.5%)
because the most time-consuming operations were for
small I/Os, not large ones. This test shows that work-
loads with mixed I/O sizes are slow if there are many
small I/Os, each incurring a network round trip; vNFS
can significantly improve such workloads by compound-
ing those small I/Os.
Filebench. We have ported Filebench to vNFS and
added vectorized flowops to the Filebench workload
modeling language (WML) [46]. We added 759 lines
of C code to Filebench, and removed 37. We converted
Filebench’s File-Server, NFS-Server, and Varmail work-
loads to equivalent versions using the new flowops: for
example, we replaced N adjacent sets of openfile,
readwholefile, and closefile (i.e., 3 × N old
flowops) with a single vreadfile (one new flowop),
which internally uses our vread API that can open,
read, and close N files in one call.

The Filebench NFS-Server workload emulates the
SPEC SFS benchmark [36]. It contains one thread per-
forming four sets of operations: (1) open, entirely read,
and close three files; (2) read a file, create a file, and
delete a file; (3) append to an existing file; and (4) read
a file’s attributes. The File-Server workload emulates
50 users accessing their home directories and spawns
one thread per user to perform operations similar to the
NFS-Server workload. The Varmail workload mimics

310 15th USENIX Conference on File and Storage Technologies USENIX Association

 0

 3

 6

 9

 12

 15

0.2 1.2 2.2 3.2 4.2 5.2

S
p
ee

d
u
p
 R

at
io

Network Latency (ms)

NFS−Server

File−Server

Varmail

Figure 12: vNFS’s speedup ratios for Filebench workloads.

a UNIX-style email server operating on a /var/mail
directory, saving each message as a file; it has 16 threads,
each performing create-append-sync, read-append-sync,
read, and delete operations on 10,000 16KB files.

Figure 12 shows the results of the Filebench work-
loads, comparing vNFS to the baseline. For the NFS-
Server workload, vNFS was 5× faster than the base-
line in the 0.2ms-latency network because vNFS com-
bined multiple small reads and their enclosing opens and
closes into a single compound. vNFS was also more ef-
ficient (and more reliable) when appending files since
it does not need a separate GETATTR to read the file
size (see Section 3 [¶vread/vwrite]). This single-
threaded NFS-Server workload is light, and its only
bottleneck is the delay of network round trips. With
compounding, vNFS can save network round trips; the
amount of savings depends on the compounding de-
gree (the number of non-trivial NFS operations per com-
pound). This workload has a compounding degree of
around 5, and thus we observed a consistent 5× speedup
regardless of the network latency.

As shown in Figure 12, vNFS’s speedup ratio in the
File-Server workload is about the same as the NFS-
Server one, except in the 0.2ms-latency network. This
is because these two workloads have similar file-system
operations and thus similar compounding degrees. How-
ever, in the 0.2ms-latency network, vNFS was 13%
slower (i.e., a speedup ratio of 0.87) than the baseline.
This is caused by two factors: (1) the File-Server work-
load has as many as 50 threads and generates a heavy
I/O load to the NFS server’s storage stack, which be-
came the bottleneck; (2) without a cache, vNFS sent all
read requests to the overloaded server whereas the in-
kernel client’s cache absorbed more than 99% of reads.
As the network latency increased, the load on the NFS
server became lighter and vNFS became faster thanks to
saving round trips, which more than compensated for the
lack of caching in our current prototype.

Because the Varmail workload is also multi-threaded,
its speedup ratio curve in Figure 12 has a trend similar
to that of the File-Server workload. However, vNFS’s
speedup ratio in the Varmail workload plateaued at the
higher value of 14× because its compounding degree is
higher than the File-Server workload.

Network Latency (ms) 0.2 1.2 2.2 3.2 4.2 5.2
Speedup Ratio 3.5 6.5 7.1 8.7 9.8 9.9

Table 2: vNFS speedup ratio relative to the baseline when re-
questing a set of objects with PUSH enabled in nghttp2.

HTTP/2 server. Similar to the concept of NFSv4 com-
pounds, HTTP/2 improves on HTTP/1.x by transferring
multiple objects in one TCP connection. HTTP/2 also
added a PUSH feature that allows an HTTP/2 server to
proactively push related Web objects to clients [5, Sec-
tion 8.2]. For example, upon receiving an HTTP/2 re-
quest for index.html, the server can proactively send
the client other Web objects (such as Javascript, CSS,
and image files) embedded inside that index.html
file, instead of waiting for it to request them later. PUSH
can reduce a Web site’s loading time for end users. It
also allows Web servers to read many related files to-
gether, enabling efficient processing by vNFS.

We ported nghttp2 [31], an HTTP/2 library and tool-
set containing an HTTP/2 server and client, to vNFS.
Our port added 543 lines of C++ code and deleted 108.

The HTTP Archive [20] shows that, on average, an
HTTP URL is 2,480KB and contains ten 5.5KB HTML
files, 23 20KB Javascript files, seven 7.5KB CSS files,
and 56 28KB image files. We created a set of files
with those characteristics, hosted them with our mod-
ified nghttp2 server, and measured the time needed to
process a PUSH-enabled request to read the file set. Ta-
ble 2 shows the speedup ratio of vNFS relative to the
baseline, which runs vanilla nghttp2 and the in-kernel
NFS client. vNFS needed only four NFS compounds for
all 96 files: one vgetattrs call and three vreads.
In contrast, the baseline used 309 RPCs including one
OPEN, READ, and CLOSE for each file. The reduced net-
work round trips made vNFS 3.5× faster in the 0.2ms-
latency network and 9.9× faster with the 5.2ms latency.

6 Related Work
Improving NFS performance. NFS is more than 30
years old, and has continuously evolved to improve per-
formance. Following the initial NFSv2 [38], NFSv3
added asynchronous COMMITs to improve write perfor-
mance, and READDIRPLUS to speed up directory list-
ing [7]. NFSv4.0 [35] added more performance fea-
tures including compounding procedures that batch mul-
tiple operations in one RPC, and delegations that en-
able the client cache to be used without lengthy reval-
idation. To improve performance further with more par-
allelism, NFSv4.1 [34] added pNFS [18] to separate data
and meta-data servers so that the different request types
can be served in parallel. The upcoming NFSv4.2 has
yet more performance improvements such as I/O hints,
Application Data Blocks, and Server Side Copy [17].

In addition to improvements in the protocols, other re-
searchers also improved NFS’s performance: Duchamp

USENIX Association 15th USENIX Conference on File and Storage Technologies 311

found it inefficient to look up NFSv2 paths one com-
ponent at a time, and reduced client latency and server
load by optimistically looking up whole paths in a sin-
gle RPC [13]. Juszczak improved the write performance
of an NFS server by gathering many small writes into
fewer larger ones [23]. Ellard and Seltzer improved
read performance with read-ahead and stride-read al-
gorithms [14]. Batsakis et al. [4] developed a holistic
framework that adaptively schedules asynchronous op-
erations to improve NFS’s performance as perceived by
applications. Our vNFS uses a different approach, im-
proving performance by making NFSv4’s compounding
procedures easily accessible to programmers.
I/O compounding. Compounding, also called batch-
ing and coalescing, is a popular technique to improve
throughput and amortize cost by combining many small
I/Os into fewer larger ones. Disk I/O schedulers coalesce
adjacent I/Os to reduce disk seeks [3] and boost through-
put. Purohit et al. [32] proposed Compound System
Calls (Cosy) to amortize the cost of context switches and
to reduce data movement across the user-kernel bound-
ary. These compounding techniques are all hidden be-
hind the POSIX file-system API, which cannot convey
the required high-level semantics [8]. The Batch-Aware
Distributed File System (BAD-FS) [6] demonstrated the
benefits of using high-level semantics to explicitly con-
trol the batching of I/O-intensive scientific workloads.
Dynamic sets [37] took advantage of the fact that files
can be processed in any order in many bulk file-system
operations (e.g., grep foo *.c). Using a set-based
API, distributed file system clients can pre-fetch a set of
files in the optimal order and pace so that computation
and I/O are overlapped and the overall latency is mini-
mized. However, dynamic sets did not reduce the num-
ber of network round trips. SeMiNAS [9] uses NFSv4
compounds (only) in its security middleware to reduce
the security overhead. To the best of our knowledge,
vNFS is the first attempt to use an overt-compounding
API to leverage NFSv4’s compounding procedures.
Vectorized APIs. To achieve high throughput, Vilaya-
nur et al. [43] proposed readx and writex to oper-
ate at a vector of offsets so that the I/Os could be pro-
cessed in parallel. However, these operations were lim-
ited to a single file, helping only large files, whereas our
vread/vwrite can access many files at once, helping
with both large and small files.

Vasudevan et al. [41] envisioned the Vector OS
(VOS), which offered several vectorized system calls,
such as vec open(), vec read(), etc. While VOS
is promising, it has not yet been fully implemented. In
their prototype, they succeeded in delivering millions of
IOPS in a distributed key-value (KV) store backed by
fast NVM [42]. However, they implemented a key-value
API, not a file-system API, and their vectorized KV store

focuses on serving parallel I/Os on NVM, whereas vNFS
focuses on saving network round trips by using NFSv4
compound procedures. The vectorized key-value store
and vNFS are different but complementary.

Our vNFS API is also different from other vectorized
APIs [41,43] in three aspects: (1) vread/vwrite sup-
ports automatic file opening and closing; (2) vsscopy
takes advantage of the NFS-specific Server Side Copy
feature; and (3) to remain NFSv4-compliant, vNFS’s
vectorized operations are executed in order, in contrast
to the out-of-order execution of lio listio(3) [26],
vec read() [41], and readx [43].

7 Conclusions
We designed and implemented vNFS, a file-system li-
brary that maximizes NFS performance. vNFS uses a
vectorized high-level API to leverage standard NFSv4
compounds, which have the potential to reduce network
round trips but were underused due to the low-level and
serialized nature of the POSIX API. vNFS makes maxi-
mal use of compounds by enabling applications to oper-
ate on many file-system objects in a single RPC. vNFS
complies with the NFSv4.1 protocol and has standard
failure semantics. To help port applications to the vec-
torized API, vNFS provides a superset of POSIX file-
system operations, and its library can be used for non-
NFS file systems as well. We found it generally easy to
port applications including cp, ls and rm from GNU
Coreutils; bsdtar; Filebench; and nghttp2.

Micro-benchmarks demonstrated that—compared to
the in-kernel NFS client—vNFS significantly helps
workloads with many small I/Os and metadata opera-
tions even in fast networks, and performs comparably
for large I/Os or with low compounding degrees. Macro-
benchmarks show that vNFS sped up the ported applica-
tions by up to two orders of magnitude. Our source code
is available at https://github.com/sbu-fsl/ txn-compound .

Limitations and future work. Currently vNFS does
not include a cache; an implementation is underway. To
simplify error handling, we plan to support optionally
executing a compound as an atomic transaction. Finally,
compounded operations are processed sequentially by
current NFS servers; we plan to execute them in parallel
with careful interoperation with transactional semantics.

Acknowledgments
We thank the anonymous FAST reviewers and our shep-
herd Keith Smith for their valuable comments. We also
thank Geoff Kuenning for his meticulous and insightful
review comments. This work was made possible in part
thanks to Dell-EMC, NetApp, and IBM support; NSF
awards CNS-1251137, CNS-1302246, CNS-1305360,
and CNS-1622832; and ONR award 12055763.

312 15th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Antoine Potten. Ant renamer, 2016. http://www.

antp.be/ software/ renamer.

[2] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geam-
basu, Dimitris Mitropoulos, and Jason Nieh.
POSIX abstractions in modern operating systems:
The old, the new, and the missing. In Proceedings
of the Eleventh European Conference on Computer
Systems, page 19. ACM, 2016.

[3] J. Axboe. CFQ IO scheduler, 2007.
http://mirror.linux.org.au/pub/ linux.conf.au/2007/
video/ talks/123.ogg.

[4] A. Batsakis, R. Burns, A. Kanevsky, J. Lentini, and
T. Talpey. CA-NFS: A congestion-aware network
file system. ACM Transaction on Storage, 5(4),
2009.

[5] M. Belshe, R. Peon, and M. Thomson. Hypertext
Transfer Protocol Version 2 (HTTP/2). RFC 7540,
Internet Engineering Task Force, May 2015.

[6] John Bent, Douglas Thain, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Miron
Livny. Explicit control in the batch-aware dis-
tributed file system. In NSDI, pages 365–378,
2004.

[7] B. Callaghan, B. Pawlowski, and P. Staubach. NFS
Version 3 Protocol Specification. RFC 1813, Net-
work Working Group, June 1995.

[8] M. Chen, D. Hildebrand, G. Kuenning,
S. Shankaranarayana, B. Singh, and E. Zadok.
Newer is sometimes better: An evaluation of
NFSv4.1. In Proceedings of the 2015 ACM
International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS
2015), Portland, OR, June 2015. ACM.

[9] M. Chen, A. Vasudevan, K. Wang, and E. Zadok.
SeMiNAS: A secure middleware for wide-area
network-attached storage. In Proceedings of the
9th ACM International Systems and Storage Con-
ference (ACM SYSTOR ’16), Haifa, Israel, June
2016. ACM.

[10] Stuart Cheshire. TCP performance problems
caused by interaction between Nagle’s algorithm
and delayed ACK, May 2005.

[11] Philippe Deniel. GANESHA, a multi-usage with
large cache NFSv4 server. www.usenix.org/events/
fast07/wips/deniel.pdf , 2007.

[12] Philippe Deniel, Thomas Leibovici, and Jacques-
Charles Lafoucrière. GANESHA, a multi-usage
with large cache NFSv4 server. In Linux Sympo-
sium, page 113, 2007.

[13] D. Duchamp. Optimistic lookup of whole NFS
paths in a single operation. In Proceedings of
the Summer 1994 USENIX Technical Conference,
pages 143–170, Boston, MA, June 1994.

[14] D. Ellard and M. Seltzer. NFS tricks and bench-
marking traps. In Proceedings of the Annual
USENIX Technical Conference, FREENIX Track,
pages 101–114, San Antonio, TX, June 2003.
USENIX Association.

[15] Filebench, 2016. https://github.com/filebench/
filebench/wiki .

[16] S. Han, S. Marshall, B. Chun, and S. Ratnasamy.
MegaPipe: A new programming interface for scal-
able network I/O. In The 10th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 12), 2012.

[17] T. Haynes. NFS version 4 minor version
2 protocol. RFC draft, Network Working
Group, September 2015. https:// tools.ietf.org/html/
draft-ietf-nfsv4-minorversion2-39 .

[18] D. Hildebrand and P. Honeyman. Exporting stor-
age systems in a scalable manner with pNFS. In
Proceedings of MSST, Monterey, CA, 2005. IEEE.

[19] D. Howells. FS-Cache: A Network Filesystem
Caching Facility. In Proceedings of the 2006 Linux
Symposium, volume 2, pages 427–440, Ottawa,
Canada, July 2006. Linux Symposium.

[20] HTTP Archive. URL statistics, September 2016.
http://httparchive.org/ trends.php.

[21] J. Nagle. Congestion control in IP/TCP internet-
works. RFC 896, Network Working Group, Jan-
uary 1984.

[22] Jason Fitzpatrick. Bulk rename utility, 2016. http:
//www.bulkrenameutility.co.uk/Main Intro.php.

[23] Chet Juszczak. Improving the write performance
of an NFS server. In Proceedings of the USENIX
Winter 1994 Technical Conference, WTEC’94, San
Francisco, California, 1994. USENIX Association.

[24] Kim Jensen. AdvancedRenamer, 2016. https:
//www.advancedrenamer.com/ .

[25] Chuck Lever. Close-to-open cache consistency in
the Linux NFS client. http://goo.gl/o9i0MM .

[26] Linux Programmer’s Manual. lio listio, Septem-
ber 2016. http://man7.org/ linux/man-pages/man3/
lio listio.3.html .

[27] Linux man pages. ftw(3) - file tree walk. http://
linux.die.net/man/3/ ftw.

[28] Linux man pages. open(2) - open and possibly cre-
ate a file or device. http:// linux.die.net/man/2/open.

USENIX Association 15th USENIX Conference on File and Storage Technologies 313

[29] Alex McDonald. The background to NFSv4.1. ;lo-
gin: The USENIX Magazine, 37(1):28–35, Febru-
ary 2012.

[30] NFS-Ganesha, 2016. http://nfs-ganesha.github.io/ .

[31] nghttp2. nghttp2: HTTP/2 C library, September
2016. http://nghttp2.org.

[32] A. Purohit, C. Wright, J. Spadavecchia, and
E. Zadok. Cosy: Develop in user-land, run in ker-
nel mode. In Proceedings of the 2003 ACM Work-
shop on Hot Topics in Operating Systems (HotOS
IX), pages 109–114, Lihue, Hawaii, May 2003.
USENIX Association.

[33] Stephen M. Rumble, Diego Ongaro, Ryan
Stutsman, Mendel Rosenblum, and John K.
Ousterhout. It’s time for low latency. In Proceed-
ings of the 13th USENIX Conference on Hot Topics
in Operating Systems, 2011.

[34] S. Shepler and M. Eisler and D. Noveck. NFS Ver-
sion 4 Minor Version 1 Protocol. RFC 5661, Net-
work Working Group, January 2010.

[35] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. NFS version
4 protocol. RFC 3530, Network Working Group,
April 2003.

[36] SPEC. SPEC SFS97 R1 V3.0. www.spec.org/
sfs97r1 , September 2001.

[37] David C. Steere. Exploiting the non-determinism
and asynchrony of set iterators to reduce aggre-
gate file I/O latency. In Proceedings of the Ninth
ACM Symposium on Operating Systems Principles,
SOSP ’97, 1997.

[38] Sun Microsystems. NFS: Network file system pro-
tocol specification. RFC 1094, Network Working
Group, March 1989.

[39] V. Tarasov, A. Gupta, K. Sourav, S. Trehan, and
E. Zadok. Terra incognita: On the practicality of
user-space file systems. In HotStorage ’15: Pro-
ceedings of the 7th USENIX Workshop on Hot Top-
ics in Storage, Santa Clara, CA, July 2015.

[40] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A
flexible framework for file system benchmarking.
;login: The USENIX Magazine, 41(1):6–12, March
2016.

[41] Vijay Vasudevan, David G. Andersen, and Michael
Kaminsky. The case for VOS: The vector operating
system. In Proceedings of the 13th USENIX Con-
ference on Hot Topics in Operating Systems, Ho-
tOS’13, pages 31–31, Berkeley, CA, USA, 2011.
USENIX Association.

[42] Vijay Vasudevan, Michael Kaminsky, and
David G. Andersen. Using vector interfaces
to deliver millions of IOPS from a networked
key-value storage server. In Proceedings of the 3rd
ACM Symposium on Cloud Computing, SoCC ’12,
2012.

[43] M. Vilayannur, S. Lang, R. Ross, R. Klundt, and
L. Ward. Extending the POSIX I/O interface: A
parallel file system perspective. Technical Re-
port ANL/MCS-TM-302, Argonne National Lab-
oratory, October 2008.

[44] M. Mitchell Waldrop. The chips are down for
Moore’s law. Nature, 530(7589):144–147, 2016.

[45] Werner Beroux. Rename-It!, 2016. https://github.
com/wernight/ renameit .

[46] Filebench Workload Model Language (WML),
2016. https://github.com/filebench/filebench/wiki/
Workload-Model-Language.

314 15th USENIX Conference on File and Storage Technologies USENIX Association

