
This paper is included in the Proceedings of the
14th USENIX Conference on

File and Storage Technologies (FAST ’16).
February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the
14th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

Isotope: Transactional Isolation
for Block Storage

Ji-Yong Shin, Cornell University; Mahesh Balakrishnan, Yale University;
Tudor Marian, Google; Hakim Weatherspoon, Cornell University

https://www.usenix.org/conference/fast16/technical-sessions/presentation/shin

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 23

Isotope: Transactional Isolation for Block Storage

Ji-Yong Shin
Cornell University

Mahesh Balakrishnan
Yale University

Tudor Marian
Google

Hakim Weatherspoon
Cornell University

Abstract
Existing storage stacks are top-heavy and expect little
from block storage. As a result, new high-level storage
abstractions – and new designs for existing abstractions
– are difficult to realize, requiring developers to imple-
ment from scratch complex functionality such as failure
atomicity and fine-grained concurrency control. In this
paper, we argue that pushing transactional isolation into
the block store (in addition to atomicity and durability) is
both viable and broadly useful, resulting in simpler high-
level storage systems that provide strong semantics with-
out sacrificing performance. We present Isotope, a new
block store that supports ACID transactions over block
reads and writes. Internally, Isotope uses a new multi-
version concurrency control protocol that exploits fine-
grained, sub-block parallelism in workloads and offers
both strict serializability and snapshot isolation guaran-
tees. We implemented several high-level storage systems
over Isotope, including two key-value stores that imple-
ment the LevelDB API over a hashtable and B-tree, re-
spectively, and a POSIX filesystem. We show that Iso-
tope’s block-level transactions enable systems that are
simple (100s of lines of code), robust (i.e., providing
ACID guarantees), and fast (e.g., 415 MB/s for random
file writes). We also show that these systems can be com-
posed using Isotope, providing applications with transac-
tions across different high-level constructs such as files,
directories and key-value pairs.

1 Introduction
With the advent of multi-core machines, storage systems
such as filesystems, key-value stores, graph stores and
databases are increasingly parallelized over dozens of
cores. Such systems run directly over raw block stor-
age but assume very little about its interface and seman-
tics; usually, the only expectations from the block store
are durability and single-operation, single-block lineariz-
ability. As a result, each system implements complex
code to layer high-level semantics such as atomicity and
isolation over the simple block address space. While
multiple systems have implemented transactional atom-
icity within the block store [18, 24, 46, 6, 19], concur-
rency control has traditionally been delegated to the stor-
age system above the block store.

In this paper, we propose the abstraction of a transac-
tional block store that provides isolation in addition to

atomicity and durability. A number of factors make iso-
lation a prime candidate for demotion down the stack.

1) Isolation is general; since practically every storage
system has to ensure safety in the face of concur-
rent accesses, an isolation mechanism implemented
within the block layer is broadly useful.

2) Isolation is hard, especially for storage systems that
need to integrate fine-grained concurrency control
with coarse-grained durability and atomicity mech-
anisms (e.g., see ARIES [40]); accordingly, it is bet-
ter provided via a single, high-quality implementa-
tion within the block layer.

3) Block-level transactions allow storage systems
to effortlessly provide end-user applications with
transactions over high-level constructs such as files
or key-value pairs.

4) Block-level transactions are oblivious to software
boundaries at higher levels of the stack, and can
seamlessly span multiple layers, libraries, threads,
processes, and interfaces. For example, a single
transaction can encapsulate an end application’s ac-
cesses to an in-process key-value store, an in-kernel
filesystem, and an out-of-process graph store.

5) Finally, multiversion concurrency control
(MVCC) [17] provides superior performance
and liveness in many cases but is particularly hard
to implement for storage systems since it requires
them to maintain multiversioned state; in contrast,
many block stores (e.g., log-structured designs) are
already internally multiversioned.

Block-level isolation is enabled and necessitated by re-
cent trends in storage. Block stores have evolved over
time. They are increasingly implemented via a combi-
nation of host-side software and device firmware [9, 3];
they incorporate multiple, heterogeneous physical de-
vices under a single address space [59, 56]; they lever-
age new NVRAM technologies to store indirection meta-
data; and they provide sophisticated functionality such
as virtualization [9, 61], tiering [9], deduplication and
wear-leveling. Unfortunately, storage systems such as
filesystems continue to assume minimum functionality
from the block store, resulting in redundant, complex,
and inefficient stacks where layers constantly tussle with
each other [61]. A second trend that argues for push-
ing functionality from the filesystem to a lower layer
is the increasing importance of alternative abstractions

1

24 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

that can be implemented directly over block storage,
such as graphs, key-value pairs [8], tables, caches [53],
tracts [42], byte-addressable [14] and write-once [15] ad-
dress spaces, etc.

To illustrate the viability and benefits of block-level
isolation, we built Isotope, a transactional block store
that provides isolation (with a choice of strict serializ-
ability or snapshot isolation) in addition to atomicity and
durability. Isotope is implemented as an in-kernel soft-
ware module running over commodity hardware, expos-
ing a conventional block read/write interface augmented
with beginTX/endTX IOCTLs to demarcate transactions.
Transactions execute speculatively and are validated by
Isotope on endTX by checking for conflicts. To minimize
the possibility of conflict-related aborts, applications can
provide information to Isotope about which sub-parts of
each 4KB block are read or written, allowing Isotope to
perform conflict detection at sub-block granularity.

Internally, Isotope uses an in-memory multiversion in-
dex over a persistent log to provide each transaction with
a consistent, point-in-time snapshot of a block address
space. Reads within a transaction execute against this
snapshot, while writes are buffered in RAM by Isotope.
When endTX is called, Isotope uses a new MVCC com-
mit protocol to determine if the transaction commits or
aborts. The commit/abort decision is a function of the
timestamp-ordered stream of recently proposed transac-
tions, as opposed to the multiversion index; as a re-
sult, the protocol supports arbitrarily fine-grained con-
flict detection without requiring a corresponding increase
in the size of the index. When transactions commit, their
buffered writes are flushed to the log, which is imple-
mented on an array of physical drives [56], and reflected
in the multiversion index. Importantly, aborted transac-
tions do not result in any write I/O to persistent storage.

Storage systems built over Isotope are simple, state-
less, shim layers that focus on mapping some variable-
sized abstraction – such as files, tables, graphs, and key-
value pairs – to a fixed-size block API. We describe sev-
eral such systems in this paper, including a key-value
store based on a hashtable index, one based on a B-tree,
and a POSIX user-space filesystem. These systems do
not have to implement their own fine-grained locking for
concurrency control and logging for failure atomicity.
They can expose transactions to end applications with-
out requiring any extra code. Storage systems that reside
on different partitions of an Isotope volume can be com-
posed with transactions into larger end applications.

Block-level isolation does have its limitations. Stor-
age systems built over Isotope cannot share arbitrary, in-
memory soft state such as read caches across transaction
boundaries, since it is difficult to update such state atom-
ically based on the outcome of a transaction. Instead,
they rely on block-level caching in Isotope by provid-

ing hints about which blocks to cache. We found this
approach well-suited for both the filesystem application
(which cached inode blocks, indirection blocks and al-
location maps) and the key-value stores (which cached
their index data structures). In addition, information is
invariably lost when functionality is implemented at a
lower level of the stack: Isotope cannot leverage prop-
erties such as commutativity and idempotence while de-
tecting conflicts.

This paper makes the following contributions:

• We revisit the end-to-end argument for storage
stacks with respect to transactional isolation, in the
context of modern hardware and applications.

• We propose the abstraction of a fully transactional
block store that provides isolation, atomicity and
durability. While others have explored block-level
transactional atomicity [18, 24, 46, 19], this is the
first proposal for block-level transactional isolation.

• We realize this abstraction in a system called Iso-
tope via a new MVCC protocol. We show that Iso-
tope exploits sub-block concurrency in workloads
to provide a high commit rate for transactions and
high I/O throughput.

• We describe storage systems built using Isotope
transactions – two key-value stores and a filesystem
– and show that they are simple, fast, and robust,
as well as composable via Isotope transactions into
larger end applications.

2 Motivation
Block-level isolation is an idea whose time has come.
In the 90s, the authors of Rio Vista (a system that pro-
vided atomic transactions over a persistent memory ab-
straction) wrote in [36]: “We believe features such as se-
rializability are better handled by higher levels of soft-
ware... adopting any concurrency control scheme would
penalize the majority of applications, which are single-
threaded and do not need locking.” Today, applications
run on dozens of cores and are multi-threaded by default;
isolation is a universal need, not a niche feature.

Isolation is simply the latest addition to a long list of
features provided by modern block stores: caching, tier-
ing, mapping, virtualization, deduplication, and atomic-
ity. This explosion of features has been triggered partly
by the emergence of software-based block layers, rang-
ing from flash FTLs [3] to virtualized volume man-
agers [9]. In addition, the block-level indirection nec-
essary for many of these features has been made prac-
tical and inexpensive by hardware advances in the last
decade. In the past, smart block devices such as HP Au-
toRAID [65] were restricted to enterprise settings due
to their reliance on battery-backed RAM; today, SSDs

2

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 25

routinely implement indirection in FTLs, using super-
capacitors to flush metadata and data on a power fail-
ure. Software block stores in turn can store metadata on
these SSDs, on raw flash, or on derivatives such as flash-
backed RAM [34] and Auto-Commit Memory [7].

What about the end-to-end argument? We argue
that block-level isolation passes the litmus test imposed
by the end-to-end principle [49] for pushing functional-
ity down the stack: it is broadly useful, efficiently im-
plementable at a lower layer of the stack with negligible
performance overhead, and leverages machinery that al-
ready exists at that lower layer. The argument regarding
utility is obvious: pushing functionality down the stack
is particularly useful when it is general enough to be used
by the majority of applications, which is undeniably the
case for isolation or concurrency control. However, the
other motivations for a transactional block store require
some justification:

Isolation is hard. Storage systems typically imple-
ment pessimistic concurrency control via locks, open-
ing the door to a wide range of aberrant behavior such
as deadlocks and livelocks. This problem is exacerbated
when developers attempt to extract more parallelism via
fine-grained locks, and when these locks interact with
coarse-grained failure atomicity and durability mecha-
nisms [40]. Transactions can provide a simpler pro-
gramming model that supplies isolation, atomicity and
durability via a single abstraction. Additionally, trans-
actions decouple the policy of isolation – as expressed
through beginTX/endTX calls – from the concurrency
control mechanism used to implement it under the hood.

Isolation is harder when exposed to end applications.
Storage systems often provide concurrency control APIs
over their high-level storage abstractions; for example,
NTFS offers transactions over files, while Linux provides
file-level locking. Unfortunately, these high-level con-
currency control primitives often have complex, weak-
ened, and idiosyncratic semantics [44]; for instance,
NTFS provides transactional isolation for accesses to the
same file, but not for directory modifications, while a
Linux fcntl lock on a file is released when any file de-
scriptor for that file is closed by a process [1]. The com-
plex semantics are typically a reflection of a complex im-
plementation, which has to operate over high-level con-
structs such as files and directories. In addition, compos-
ability is challenging if each storage system implements
isolation independently: for example, it is impossible to
do a transaction over an NTFS file and a Berkeley DB
key-value pair.

Isolation is even harder when multiversion concur-
rency control is required. In many cases, pessimistic
concurrency control is slow and prone to liveness bugs;
for example, when locks are exposed to end applications
directly or via a transactional interface, the application

/*** Transaction API ***/
int beginTX();
int endTX();
int abortTX();
//POSIX read/write commands
/*** Optional API ***/
//release ongoing transaction and return handle
int releaseTX();
//take over a released transaction
int takeoverTX(int tx_handle);
//mark byte range accessed by last read/write
int mark_accessed(off_t blknum, int start, int size);
//request caching for blocks
int please_cache(off_t blknum);

Figure 1: The Isotope API.

could hang while holding a lock. Optimistic concur-
rency control [35] works well in this case, ensuring that
other transactions can proceed without waiting for the
hung process. Multiversion concurrency control works
even better, providing transactions with stable, consis-
tent snapshots (a key property for arbitrary applications
that can crash if exposed to inconsistent snapshots [31]);
allowing read-only transactions to always commit [17];
and enabling weaker but more performant isolation lev-
els such as snapshot isolation [16].

However, switching to multiversion concurrency con-
trol can be difficult for storage systems due to its inherent
need for multiversion state. High-level storage systems
are not always intrinsically multiversioned (with notable
exceptions such as WAFL [33] and other copy-on-write
filesystems), making it difficult for developers to switch
from pessimistic locking to a multiversion concurrency
control scheme. Multiversioning can be particularly dif-
ficult to implement for complex data structures used by
storage systems such as B-trees, requiring mechanisms
such as tombstones [26, 48].

In contrast, multiversioning is relatively easy to imple-
ment over the static address space provided by a block
store (for example, no tombstones are required since
addresses can never be ‘deleted’). Additionally, many
block stores are already multiversioned in order to ob-
tain write sequentiality: examples include log-structured
disk stores, shingled drives [11] and SSDs.

3 The Isotope API
The basic Isotope API is shown in Figure 1: applications
can use standard POSIX calls to issue reads and writes
to 4KB blocks, bookended by beginTX/endTX calls. The
beginTX call establishes a snapshot; all reads within the
transaction are served from that snapshot. Writes within
the transaction are speculative. Each transaction can
view its own writes, but the writes are not made visi-
ble to other concurrent transactions until the transaction
commits. The endTX call returns true if the transaction
commits, and false otherwise. The abortTX allows the
application to explicitly abort the transaction. The appli-
cation can choose one of two isolation levels on startup:
strict serializability or snapshot isolation.

3

26 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

The Isotope API implicitly associates transaction IDs
with user-space threads, instead of augmenting each call
signature in the API with an explicit transaction ID that
the application supplies. We took this route to allow ap-
plications to use the existing, highly optimized POSIX
calls to read and write data to the block store. The con-
trol API for starting, committing and aborting transac-
tions is implemented via IOCTLs. To allow transactions
to execute across different threads or processes, Isotope
provides additional APIs via IOCTLs: releaseTX discon-
nects the association between the current thread and the
transaction, and returns a temporary transaction handle.
A different thread can call takeoverTX with this handle
to associate itself with the transaction.

Isotope exposes two other optional calls via IOCTLs.
After reading or writing a 4KB block within a transac-
tion, applications can call mark accessed to explicitly
specify the accessed byte range within the block. This
information is key for fine-grained conflict detection; for
example, a filesystem might mark a single inode within
an inode block, or a single byte within a data allocation
bitmap. Note that this information cannot be inferred im-
plicitly by comparing the old and new values of the 4KB
block; the application might have overwritten parts of the
block without changing any bits. The second optional
call is please cache, which lets the application request
Isotope to cache specific blocks in RAM; we discuss this
call in detail later in the paper. Figure 2 shows a snippet
of application code that uses the Isotope API (the setattr
function from a filesystem).

If a read or write is issued outside a transaction, it is
treated as a singleton transaction. In effect, Isotope be-
haves like a conventional block device if the reads and
writes issued to it are all non-transactional. In addi-
tion, Isotope can preemptively abort transactions to avoid
buggy or malicious applications from hoarding resources
within the storage subsystem. When a transaction is pre-
emptively aborted, any reads, writes, or control calls is-
sued within it will return error codes, except for endTX,
which will return false, and abortTX.

Transactions can be nested – i.e., a beginTX/endTX
pair can have other pairs nested within it – with the sim-
ple semantics that the internal transactions are ignored.
A nested beginTX does not establish a new snapshot,
and a nested endTX always succeeds without changing
the persistent state of the system. A nested abortTX
causes any further activity in the transaction to return
error codes until all the enclosing abortTX/endTX have
been called. This behavior is important for allowing stor-
age systems to expose transactions to end-user applica-
tions. In the example of the filesystem, if an end-user
application invokes beginTX (either directly on Isotope
or through a filesystem-provided API) before calling the
setattr function in Figure 2 multiple times, the internal

isofs_inode_num ino;
unsigned char *buf;
//allocate buf, set ino to parameter
...
int blknum = inode_to_block(ino);
txbegin:
beginTX();
if(!read(blknum, buf)){

abortTX();
return EIO;

}
mark_accessed(blknum, off, sizeof(inode));
//update attributes
...
if(!write(blknum, buf)){

abortTX();
return EIO;

}
mark_accessed(blknum, off, sizeof(inode));
if(!endTX()) goto txbegin;

Figure 2: Example application: setattr code for a filesys-
tem built over Isotope.

transactions within each setattr call are ignored and the
entire ensemble of operations will commit or abort.

3.1 Composability
As stated earlier, a primary benefit of a transactional
block store is its obliviousness to the structure of the
software stack running above it, which can range from
a single-threaded application to a composition of multi-
threaded application code, library storage systems, out-
of-process daemons and kernel modules. The Isotope
API is designed to allow block-level transactions to span
arbitrary compositions of different types of software
modules. We describe some of these composition pat-
terns in the context of a simple photo storage application
called ImgStore, which stores photos and their associated
metadata in a key-value store.

In the simplest case, ImgStore can store images and
various kinds of metadata as key-value pairs in IsoHT,
which in turn is built over a Isotope volume using trans-
actions. Here, a single transaction-oblivious application
(ImgStore) runs over a single transaction-aware library-
based storage system (IsoHT).
Cross-Layer: ImgStore may want to atomically update
multiple key-value pairs in IsoHT; for example, when a
user is tagged in a photo, ImgStore may want to update
a photo-to-user mapping as well as a user-to-photo map-
ping, stored under two different keys. To do so, Img-
Store can encapsulate calls to IsoHT within Isotope be-
ginTX/endTX calls, leveraging nested transactions.
Cross-Thread: In the simplest case, ImgStore executes
each transaction within a single thread. However, if Img-
Store is built using an event-driven library that requires
transactions to execute across different threads, it can use
the releaseTX/takeoverTX calls.
Cross-Library: ImgStore may find that IsoHT works
well for certain kinds of accesses (e.g., retrieving a spe-
cific image), but not for others such as range queries
(e.g., finding photos taken between March 4 and May

4

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 27

0 1 2 3 4 5 …

0 1 2 3 …

• V55: L5
• V43: L40

• V55: L31

...

beginTX();
Read(1);
Write(0);
endTX();

55

Commit?

a
p
p
e
n
dYes.

A

D B

E

C

Logical Address Space

Figure 3: Isotope consists of (A) a timestamp counter,
(B) a multiversion index, (C) a write buffer, (D) a deci-
sion algorithm, and (E) a persistent log.

10, 2015). Accordingly, it may want to spread its state
across two different library key-value stores, one based
on a hashtable (IsoHT) and another on a B-tree (IsoBT)
for efficient range queries. When a photo is added to the
system, ImgStore can transactionally call put operations
on both stores. This requires the key-value stores to run
over different partitions on the same Isotope volume.
Cross-Process: For various reasons, ImgStore may want
to run IsoHT in a separate process and access it via an
IPC mechanism; for example, to share it with other ap-
plications on the same machine, or to isolate failures in
different codebases. To do so, ImgStore has to call re-
leaseTX and pass the returned transaction handle via IPC
to IsoHT, which then calls takeoverTX. This requires
IsoHT to expose a transaction-aware IPC interface for
calls that occur within a transactional context.

4 Design and Implementation
Figure 3 shows the major components of the Isotope de-
sign. Isotope internally implements an in-memory mul-
tiversion index (B in the figure) over a persistent log (E).
Versioning is provided by a timestamp counter (A) which
determines the snapshot seen by a transaction as well as
its commit timestamp. This commit timestamp is used
by a decision algorithm (D) to determine if the transac-
tion commits or not. Writes issued within a transaction
are buffered (C) during its execution, and flushed to the
log if the transaction commits. We now describe the in-
teraction of these components.

When the application calls beginTX, Isotope creates
an in-memory intention record for the speculative trans-
action: a simple data structure with a start timestamp and
a read/write-set. Each entry in the read/write-set consists
of a block address, a bitmap that tracks the accessed sta-
tus of smaller fixed-size chunks or fragments within the
block (by default, the fragment size is 16 bytes, resulting
in a 256-bit bitmap for each 4KB block), and an addi-
tional 4KB payload only in the write-set. These bitmaps
are never written persistently and are only maintained in-

memory for currently executing transactions. After cre-
ating the intention record, the beginTX call sets its start
timestamp to the current value of the timestamp counter
(A in Figure 3) without incrementing it.

Until endTX is called, the transaction executes specu-
latively against the (potentially stale) snapshot, without
any effect on the shared or persistent state of the sys-
tem. Writes update the write-set and are buffered in-
memory (C in Figure 3) without issuing any I/O. A trans-
action can read its own buffered writes, but all other reads
within the transaction are served from the snapshot cor-
responding to the start timestamp using the multiversion
index (B in Figure 3). The mark accessed call mod-
ifies the bitmap for a previously read or written block
to indicate which bits the application actually touched.
Multiple mark accessed calls have a cumulative effect
on the bitmap. At any point, the transaction can be pre-
emptively aborted by Isotope simply by discarding its
intention record and buffered writes. Subsequent reads,
writes, and endTX calls will be unable to find the record
and return an error code to the application.

All the action happens on the endTX call, which con-
sists of two distinct phases: deciding the commit/abort
status of the transaction, and applying the transaction (if
it commits) to the state of the logical address space. Re-
gardless of how it performs these two phases, the first
action taken by endTX is to assign the transaction a com-
mit timestamp by reading and incrementing the global
counter. The commit timestamp of the transaction is used
to make the commit decision, and is also used as the ver-
sion number for all the writes within the transaction if it
commits. We use the terms timestamp and version num-
ber interchangeably in the following text.

4.1 Deciding Transactions
To determine whether the transaction commits or aborts,
endTX must detect the existence of conflicting transac-
tions. The isolation guarantee provided – strict serializ-
ability or snapshot isolation – depends on what consti-
tutes a conflicting transaction. We first consider a simple
strawman scheme that provides strict serializability and
implements conflict detection as a function of the multi-
version index. Here, transactions are processed in com-
mit timestamp order, and for each transaction the multi-
version index is consulted to check if any of the logical
blocks in its read-set has a version number greater than
the current transaction’s start timestamp. In other words,
we check whether any of the blocks read by the transac-
tion has been updated since it was read.

This scheme is simple, but suffers from a major draw-
back: the granularity of the multiversion index has to
match the granularity of conflict detection. For exam-
ple, if we want to check for conflicts at 16-byte grain, the
index has to track version numbers at 16-byte grain as
well; this blows up the size of the in-memory index by

5

28 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

…
W(17)
W(88)

W(88)
W(25)

W(33) W(77)
W(25)
W(33)

Start
Timestamp

Commit
Timestamp

Conflict Window

beginTX();
Read(25);
Write(25);
Write(33);
endTX();

 Commit
Abort

T1 T2 T3 T4 T5

Conflict with T3!

Figure 4: Conflict detection under snapshot isolation: a
transaction commits if no other committed transaction in
its conflict window has an overlapping write-set.

256X compared to a conventional block-granular index.
As a result, this scheme is not well-suited for fine-grained
conflict detection.

To perform fine-grained conflict detection while
avoiding this blow-up in the size of the index, Isotope
instead implements conflict detection as a function over
the temporal stream of prior transactions (see Figure 4).
Concretely, each transaction has a conflict window of
prior transactions between its start timestamp and its
commit timestamp.
• For strict serializability, the transaction T aborts if

any committed transaction in its conflict window
modified an address that T read; else, T commits.

• For snapshot isolation, the transaction T aborts if
any committed transaction in its conflict window
modified an address that T wrote; else, T commits.

In either case, the commit/abort status of a transaction
is a function of a window of transactions immediately
preceding it in commit timestamp order.

When endTX is called on T , a pointer to its intention
record is inserted into the slot corresponding to its com-
mit timestamp in an in-memory array. Since the counter
assigns contiguous timestamps, this array has no holes;
each slot is eventually occupied by a transaction. At this
point, we do not yet know the commit/abort status of T
and have not issued any write I/O, but we have a start
timestamp and a commit timestamp for it. Each slot is
guarded by its own lock.

To decide if T commits or aborts, we simply look at
its conflict window of transactions in the in-memory ar-
ray (i.e., the transactions between its start and commit
timestamps). We can decide T ’s status once all these
transactions have decided. T commits if each transaction
in the window either aborts or has no overlap between
its read/write-set and T ’s read/write-set (depending on
the transactional semantics). Since each read/write-set
stores fine-grained information about which fragments of
the block are accessed, this scheme provides fine-grained

conflict detection without increasing the size of the mul-
tiversion index.

Defining the commit/abort decision for a transaction
as a function of other transactions is a strategy as old
as optimistic concurrency control itself [35], but choos-
ing an appropriate implementation is non-trivial. Like
us, Bernstein et al. [48] formulate the commit/abort de-
cision for distributed transactions in the Hyder system
as a function of a conflict window over a totally ordered
stream of transaction intentions. Unlike us, they explic-
itly make a choice to use the spatial state of the system
(i.e., the index) to decide transactions. A number of fac-
tors drive our choice in the opposite direction: we need
to support writes at arbitrary granularity (e.g., an inode)
without increasing index size; our intention log is a lo-
cal in-memory array and not distributed or shared across
the network, drastically reducing the size of the conflict
window; and checking for conflicts using read/write-sets
is easy since our index is a simple address space.

4.2 Applying Transactions
If the outcome of the decision phase is commit, endTX
proceeds to apply the transaction to the logical address
space. The first step in this process is to append the
writes within the transaction to the persistent log. This
step can be executed in parallel for multiple transactions,
as soon as each one’s decision is known, since the ex-
istence and order of writes on the log signifies nothing:
the multiversion index still points to older entries in the
log. The second step involves changing the multiversion
index to point to the new entries. Once the index has
been changed, the transaction can be acknowledged and
its effects are visible.

One complication is that this protocol introduces a
lost update anomaly. Consider a transaction that reads
a block (say an allocation bitmap in a filesystem), exam-
ines and changes the first bit, and writes it back. A sec-
ond transaction reads the same block concurrently, ex-
amines and changes the last bit, and writes it back. Our
conflict detection scheme will correctly allow both trans-
actions to commit. However, each transaction will write
its own version of the 4KB bitmap, omitting the other’s
modification; as a result, the transaction with the higher
timestamp will destroy the earlier transaction’s modifica-
tion. To avoid such lost updates, the endTX call performs
an additional step for each transaction before appending
its buffered writes to the log. Once it knows that the cur-
rent transaction can commit, it scans the conflict window
and merges updates made by prior committed transac-
tions to the blocks in its write-set.

4.3 Implementation Details
Isotope is implemented as an in-kernel software module
in Linux 2.6.38; specifically, as a device mapper that ex-
poses multiple physical block devices as a single virtual

6

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 29

disk, at the same level of the stack as software RAID.
Below, we discuss the details of this implementation.
Log implementation: Isotope implements the log (i.e.,
E in Figure 3) over a conventional address space with
a counter marking the tail (and additional bookkeeping
information for garbage collection, which we discuss
shortly). From a correctness and functionality stand-
point, Isotope is agnostic to how this address space is re-
alized. For good performance, it requires an implementa-
tion that works well for a logging workload where writes
are concentrated at the tail, while reads and garbage col-
lection can occur at random locations in the body. A
naive solution is to use a single physical disk (or a RAID-
0 or RAID-10 array of disks), but garbage collection ac-
tivity can hurt performance significantly by randomizing
the disk arm. Replacing the disks with SSDs increases
the cost-to-capacity ratio of the array without entirely
eliminating the performance problem [58].

As a result, we use a design where a log is chained
across multiple disks or SSDs (similar to Gecko [56]).
Chaining the log across drives ensures that garbage col-
lection – which occurs in the body of the log/chain – is
separated from the first-class writes arriving at the tail
drive of the log/chain. In addition, a commodity SSD
is used as a read cache with an affinity for the tail drive
of the chain, preventing application reads from disrupt-
ing write sequentiality at the tail drive. In essence, this
design ‘collars’ the throughput of the log, pegging write
throughput to the speed of a single drive, but simultane-
ously eliminating the throughput troughs caused by con-
current garbage collection and read activity.
Garbage collection (GC): Compared to conventional
log-structured stores, GC is slightly complicated in Iso-
tope by the need to maintain older versions of blocks.
Isotope tracks the oldest start timestamp across all on-
going transactions and makes a best-effort attempt to
not garbage collect versions newer than this timestamp.
In the worst case, any non-current versions can be dis-
carded without compromising safety, by first preemp-
tively aborting any transactions reading from them. The
application can simply retry its transactions, obtaining a
new, current snapshot. This behavior is particularly use-
ful for dealing with the effects of rogue transactions that
are never terminated by the application. The alternative,
which we did not implement, is to set a flag that pre-
serves a running transaction’s snapshot by blocking new
writes if the log runs out of space; this may be required
if it’s more important for a long-running transaction to
finish (e.g., if it’s a critical backup) than for the system
to be online for writes.
Caching: The please cache call in Isotope allows the ap-
plication to mark the blocks it wants cached in RAM. To
implement caching, Isotope annotates the multiversion
index with pointers to cached copies of block versions.

This call is merely a hint and provides no guarantees to
the application. In practice, our implementation uses a
simple LRU scheme to cache a subset of the blocks if the
application requests caching indiscriminately.
Index persistence: Thus far, we have described the mul-
tiversion index as an in-memory data structure pointing
to entries on the log. Changes to the index have to be
made persistent so that the state of the system can be re-
constructed on failures. To obtain persistence and failure
atomicity for these changes, we use a metadata log. The
size of this log can be limited via periodic checkpoints.

A simple option is to store the metadata log on battery-
backed RAM, or on newer technologies such as PCM or
flash-backed RAM (e.g., Fusion-io’s AutoCommit Mem-
ory [7]). In the absence of special hardware on our ex-
perimental testbed, we instead used a commodity SSD.
Each transaction’s description in the metadata log is quite
compact (i.e., the logical block address and the physical
log position of each write in it, and its commit times-
tamp). To avoid the slowdown and flash wear-out in-
duced by logging each transaction separately as a syn-
chronous page write, we batch multiple committed trans-
actions together [25], delaying the final step of modify-
ing the multiversion index and acknowledging the trans-
action to the application. We do not turn off the write
cache on the SSD, relying on its ability to flush data on
power failures using supercapacitors.
Memory overhead: A primary source of memory over-
head in Isotope is the multiversion index. A single-
version index that maps a 2TB logical address space to
an 4TB physical address space can be implemented as a
simple array that requires 2GB of RAM (i.e., half a bil-
lion 4-byte entries), which can be easily maintained in
RAM on modern machines. Associating each address
with a version (without supporting access to prior ver-
sions) doubles the space requirement to 4GB (assum-
ing 4-byte timestamps), which is still feasible. However,
multiversioned indices that allow access to past versions
are more expensive, due to the fact that multiple ver-
sions need to be stored, and because a more complex
data structure is required instead of an array with fixed-
size values. These concerns are mitigated by the fact that
Isotope is not designed to be a fully-fledged multiversion
store; it only stores versions from the recent past, corre-
sponding to the snapshots seen by executing transactions.

Accordingly, Isotope maintains a pair of indices: a
single-version index in the form of a simple array and
a multiversion index implemented as a hashtable. Each
entry in the single-version index either contains a valid
physical address if the block has only one valid, non-
GC’ed version, a null value if the block has never been
written, or a constant indicating the existence of multiple
versions. If a transaction issues a read and encounters
this constant, the multiversion index is consulted. An ad-

7

30 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

dress is moved from the single-version index to the mul-
tiversion index when it goes from having one version to
two; it is moved back to the single-version index when
its older version(s) are garbage collected (as described
earlier in this section).

The multiversion index consists of a hashtable that
maps each logical address to a linked list of its exist-
ing versions, in timestamp order. Each entry contains
forward and backward pointers, the logical address, the
physical address, and the timestamp. A transaction walks
this linked list to find the entry with the highest times-
tamp less than its snapshot timestamp. In addition, the
entry also has a pointer to the in-memory cached copy,
as described earlier. If an address is cached, the first
single-version index is marked as having multiple ver-
sions even if it does not, forcing the transaction to look
at the hashtable index and encounter the cached copy. In
the future, we plan on applying recent work on compact,
concurrent maps [28] to further reduce overhead.
Rogue Transactions: Another source of memory over-
head in Isotope is the buffering of writes issued by in-
progress transactions. Each write adds an entry to the
write-set of the transaction containing the 4KB payload
and a 4K

C bit bitmap, where C is the granularity of con-
flict detection (e.g., with 16-byte detection, the bitmap is
256 bits). Rogue transactions that issue a large number
of writes are a concern, especially since transactions can
be exposed to end-user applications. To handle this, Iso-
tope provides a configuration parameter to set the maxi-
mum number of writes that can be issued by a transaction
(set to 256 by default); beyond this, writes return an er-
ror code. Another parameter sets the maximum number
of outstanding transactions a single process can have in-
flight (also set to 256). Accordingly, the maximum mem-
ory a rogue process can use within Isotope for buffered
writes is roughly 256MB. When a process is killed, its
outstanding transactions are preemptively aborted.

Despite these safeguards, it is still possible for Isotope
to run out of memory if many processes are launched
concurrently and each spams the system with rogue,
never-ending transactions. In the worst case, Isotope can
always relieve memory pressure by preemptively abort-
ing transactions. Another option which we considered is
to flush writes to disk before they are committed; since
the metadata index does not point to them, they won’t
be visible to other transactions. Given that the system is
only expected to run out of memory in pathological cases
where issuing I/O might worsen the situation, we didn’t
implement this scheme.

Note that the in-memory array that Isotope uses for
conflict detection is not a major source of memory over-
head; pointers to transaction intention records are in-
serted into this array in timestamp order only after the ap-
plication calls endTX, at which point it has relinquished

Application Original Basic APIs Optional APIs
with locks (lines modified) (lines added)

IsoHT 591 591 (15) 617 (26)
IsoBT 1,229 1,229 (12) 1,246 (17)
IsoFS 997 997 (19) 1,022 (25)

Table 1: Lines of code for Isotope storage systems.

control to Isotope and cannot prolong the transaction. As
a result, the lifetime of an entry in this array is short and
limited to the duration of the endTX call.

5 Isotope Applications
To illustrate the usability and performance of Isotope, we
built four applications using Isotope transactions: IsoHT,
a key-value store built over a persistent hashtable; IsoBT,
a key-value store built over a persistent B-tree; IsoFS,
a user-space POSIX filesystem; and ImgStore, an im-
age storage service that stores images in IsoHT, and a
secondary index in IsoBT. These applications implement
each call in their respective public APIs by following a
simple template that wraps the entire function in a sin-
gle transaction, with a retry loop in case the transaction
aborts due to a conflict (see Figure 2).

5.1 Transactional Key-Value Stores
Library-based or ‘embedded’ key-value stores (such as
LevelDB or Berkeley DB) are typically built over per-
sistent, on-disk data structures. We built two key-value
stores called IsoHT and IsoBT, implemented over an
on-disk hashtable and B-tree data structure, respectively.
Both key-value stores support basic put/get operations on
key-value pairs, while IsoBT additionally supports range
queries. Each API call is implemented via a single trans-
action of block reads and writes to an Isotope volume.

We implemented IsoHT and IsoBT in three stages.
First, we wrote code without Isotope transactions, us-
ing a global lock to guard the entire hashtable or B-tree.
The resulting key-value stores are functional but slow,
since all accesses are serialized by the single lock. Fur-
ther, they do not provide failure atomicity: a crash in the
middle of an operation can catastrophically violate data
structure integrity.

In the second stage, we simply replaced the ac-
quisitions/releases on the global lock with Isotope be-
ginTX/endTX/ abortTX calls, without changing the over-
all number of lines of code. With this change, the
key-value stores provide both fine-grained concurrency
control (at block granularity) and failure atomicity. Fi-
nally, we added optional mark accessed calls to obtain
sub-block concurrency control, and please cache calls to
cache the data structures (e.g., the nodes of the B-tree,
but not the values pointed to by them). Table 1 reports
on the lines of code (LOC) counts at each stage for the
two key-value stores.

8

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 31

5.2 Transactional Filesystem
IsoFS is a simple user-level filesystem built over Iso-
tope accessible via FUSE [2], comprising 1K lines of C
code. Its on-disk layout consists of distinct regions for
storing inodes, data, and an allocation bitmap for each.
Each inode has an indirect pointer and a double indirect
pointer, both of which point to pages allocated from the
data region. Each filesystem call (e.g., setattr, lookup,
or unlink) uses a single transaction to access and modify
multiple blocks. The only functionality implemented by
IsoFS is the mapping and allocation of files and direc-
tories to blocks; atomicity, isolation, and durability are
handled by Isotope.

IsoFS is stateless, caching neither data nor metadata
across filesystem calls (i.e., across different transac-
tions). Instead, IsoFS tells Isotope which blocks to cache
in RAM. This idiom turned out to be surprisingly easy to
use in the context of a filesystem; we ask Isotope to cache
all bitmap blocks on startup, each inode block when an
inode within it is allocated, and each data block that’s al-
located as an indirect or double indirect block. Like the
key-value stores, IsoFS was implemented in three stages
and required few extra lines of code to go from a global
lock to using the Isotope API (see Table 1).

IsoFS trivially exposes transactions to end applica-
tions over files and directories. For example, a user might
create a directory, move a file into it, edit the file, and
rename the directory, only to abort the entire transac-
tions and revert the filesystem to its earlier state. One
implementation-related caveat is that we were unable
to expose transactions to end applications of IsoFS via
the FUSE interface, since FUSE decouples application
threading from filesystem threading and does not provide
any facility for explicitly transferring a transaction han-
dle on each call. Accordingly, we can only expose trans-
actions to the end application if IsoFS is used directly as
a library within the application’s process.

5.3 Experience
Composability: As we stated earlier, Isotope-based stor-
age systems are trivially composable: a single transac-
tion can encapsulate calls to IsoFS, IsoHT and IsoBT.
To demonstrate the power of such composability, we
built ImgStore, the image storage application described
in Section 3. ImgStore stores images in IsoHT, using 64-
bit IDs as keys. It then stores a secondary index in IsoBT,
mapping dates to IDs. The implementation of ImgStore
is trivially simple: to add an image, it creates a trans-
action to put the image in IsoHT, and then updates the
secondary index in IsoBT. The result is a storage system
that – in just 148 LOC – provides hashtable-like perfor-
mance for gets while supporting range queries.
Isolation Levels: Isotope provides both strict serializ-
ability and snapshot isolation; our expectation was that
developers would find it difficult to deal with the seman-

tics of the latter. However, our experience with IsoFS,
IsoHT and IsoBT showed otherwise. Snapshot isolation
provides better performance than strict serializability, but
introduces the write skew anomaly [16]: if two concur-
rent transactions read two blocks and each updates one
of the blocks (but not the same one), they will both com-
mit despite not being serializable in any order. The write
skew anomaly is problematic for applications if a trans-
action is expected to maintain an integrity constraint that
includes some block it does not write to (e.g., if the two
blocks in the example have to sum to less than some con-
stant). In the case of the storage systems we built, we did
not encounter these kinds of constraints; for instance, no
particular constraint holds between different bits on an
allocation map. As a result, we found it relatively easy
to reason about and rule out the write skew anomaly.
Randomization: Our initial implementations exhibited
a high abort rate due to deterministic behavior across dif-
ferent transactions. For example, a simple algorithm for
allocating a free page involved getting the first free bit
from the allocation bitmap; as a result, multiple concur-
rent transactions interfered with each other by trying to
allocate the same page. To reduce the abort rate, it was
sufficient to remove the determinism in simple ways; for
example, we assigned each thread a random start offset
into the allocation bitmap.

6 Performance Evaluation
We evaluate Isotope on a machine with an Intel Xeon
CPU with 24 hyper-threaded cores, 24GB RAM, three
10K RPM disks of 600GB each, an 128GB SSD for the
OS and two other 240GB SSDs with SATA interfaces. In
the following experiments, we used two primary config-
urations for Isotope’s persistent log: a three-disk chained
logging instance with a 32GB SSD read cache in front,
and a 2-SSD chained logging instance. In some of the
experiments, we compare against conventional systems
running over RAID-0 configurations of 3 disks and 2
SSDs, respectively. In the chained logging configura-
tions, all writes are logged to the single tail drive, while
reads are mostly served by the other drives (and the SSD
read cache for the disk-based configuration). The perfor-
mance of this logging design under various workloads
and during GC activity has been documented in [56].
In all our experiments, GC is running in the background
and issuing I/Os to the drives in the body of the chain to
compact segments, without disrupting the tail drive.

Our evaluation consists of two parts. First, we fo-
cus on the performance and overhead of Isotope, show-
ing that it exploits fine-grained concurrency in work-
loads and provides high, stable throughput. Second, we
show that Isotope applications – in addition to being sim-
ple and robust – are fast, efficient, and composable into
larger applications.

9

32 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

0
100
200
300
400
500
600

16KB
256KB

4MB
64MB

1GB
16GB

256GB

Disk
M

B/
se

c

Accessed address space

Throughput
Goodput

16KB
256KB

4MB
64MB

1GB
16GB

256GB

0
5
10
15
20
25SSD

Ks
 o

f T
Xe

s/
se

c

Accessed address space

Figure 5: Without fine-grained conflict detection, Isotope
performs well under low contention workloads.

6.1 Isotope Performance
To understand how Isotope performs depending on the
concurrency present in the workload, we implemented a
synthetic benchmark. The benchmark executes a sim-
ple type of transaction that reads three randomly chosen
blocks, modifies a random 16-byte segment within each
block (aligned on a 16-byte boundary), and writes them
back. This benchmark performs identically with strict
serializability and snapshot isolation, since the read-set
exactly matches the write-set.

In the following experiments, we executed 64 in-
stances of the micro benchmark concurrently, varying
the size of the address space accessed by the instances to
vary contention. The blocks are chosen from a specific
prefix of the address space, which is a parameter to the
benchmark; the longer this prefix, the bigger the fraction
of the address space accessed by the benchmark, and the
less skewed the workload. The two key metrics of inter-
est are transaction goodput (measured as the number of
successfully committed transactions per second, as well
as the total number of bytes read or written per second
by these transactions) and overall transaction throughput;
their ratio is the commit rate of the system. Each data
point in the following graphs is averaged across three
runs; in all cases, the minimum and the maximum run
were within 10% of the average.

Figure 5 shows the performance of this benchmark
against Isotope without fine-grained conflict detection;
i.e., the benchmark does not issue mark accessed calls
for the 16-byte segments it modifies. On the x-axis,
we increase the fraction of the address space accessed
by the benchmark. On the left y axis, we plot the rate
at which data is read and written by transactions; on
the right y-axis, we plot the number of transactions/sec.
On both disk and SSD, transactional contention cripples
performance on the left part of the graph: even though
the benchmark attempts to commit thousands of transac-
tions/sec, all of them access a small number of blocks,
leading to low goodput. Note that overall transaction
throughput is very high when the commit rate is low:
aborts are cheap and do not result in storage I/O.

Conversely, disk contention hurts performance on the
right side of Figure 5-Left: since the blocks read by
each transaction are distributed widely across the address
space, the 32GB SSD read cache is ineffective in serving

0
100
200
300
400
500
600

16KB
256KB

4MB
64MB

1GB
16GB

256GB

Disk

M
B/

se
c

Accessed address space

Throughput
Goodput

16KB
256KB

4MB
64MB

1GB
16GB

256GB

0
5
10
15
20
25SSD

Ks
 o

f T
Xe

s/
se

c

Accessed address space

Figure 6: With fine-grained conflict detection, Isotope
performs well even under high block-level contention.

reads and the disk arm is randomized and seeking con-
stantly. As a result, the system provides very few trans-
actions per second (though with a high commit rate). In
the middle of the graph is a sweet spot where Isotope sat-
urates the disk at roughly 120 MB/s of writes, where the
blocks accessed are concentrated enough for reads to be
cacheable in the SSD (which supplies 120 MB/s of reads,
or 30K 4KB IOPS), while distributed enough for writes
to not trigger frequent conflicts.

We can improve performance on the left side of the
graphs in Figure 5 via fine-grained conflict detection. In
Figure 6, the benchmark issues mark accessed calls to
tell Isotope which 16-byte fragment it is modifying. The
result is high, stable goodput even when all transactions
are accessing a small number of blocks, since there is
enough fragment-level concurrency in the system to en-
sure a high commit rate. Using the same experiment but
with smaller and larger data access and conflict detec-
tion granularities than 16 bytes showed similar trends.
Isotope’s conflict detection was not CPU-intensive: we
observed an average CPU utilization of 5.96% without
fine-grained conflict detection, and 6.17% with it.

6.2 Isotope Application Performance
As described earlier, we implemented two key-value
stores over Isotope: IsoHT using a hashtable index and
IsoBT using a B-tree index, respectively. IsoBT ex-
poses a fully functional LevelDB API to end applica-
tions; IsoHT does the same minus range queries. To eval-
uate these systems, we used the LevelDB benchmark [5]
as well as the YCSB [21] benchmark. We ran the fill-
random, read-random, and delete-random workloads of
the LevelDB benchmark and YCSB workload-A traces
(50% reads and 50% updates following a zipf distribution
on keys). All these experiments are on the 2-SSD config-
uration of Isotope. For comparison, we ran LevelDB on
a RAID-0 array of the two SSDs, in both synchronous
mode (‘LvlDB-s’) and asynchronous mode (‘LvlDB’).
LevelDB was set to use no compression and the default
write cache size of 8MB. For all the workloads, we used
a value size of 8KB and varied the number of threads is-
suing requests from 4 to 128. Results with different value
sizes (from 4KB to 32KB) showed similar trends.

For operations involving writes (Figure 7-(a), (c), and
(d)), IsoHT and IsoBT goodput increases with the num-

10

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 33

 0
 5

 10
 15
 20
 25
 30
 35

4 8 16 32 64 128G
oo

dp
ut

 (K
 O

ps
/s

ec
)

of Threads

(a) Random fill

 0
 5

 10
 15
 20
 25
 30
 35

4 8 16 32 64 128
of Threads

LvlDB-s
LvlDB
IsoHT
IsoBT

(b) Random read

 0
 10
 20
 30
 40
 50
 60
 70
 80

4 8 16 32 64 128G
oo

dp
ut

 (K
 O

ps
/s

ec
)

of Threads

(c) Random delete

 0
 5

 10
 15
 20
 25
 30
 35

4 8 16 32 64 128
of Threads

(d) YCSB workload-A
Figure 7: IsoHT and IsoBT outperform LevelDB for data
operations while providing stronger consistency.

ber of threads, but dips slightly beyond 64 threads due to
an increased transaction conflict rate. For the read work-
load (Figure 7-(b)), throughput increases until the un-
derlying SSDs are saturated. Overall, IsoHT has higher
goodput than IsoBT, since it touches fewer metadata
blocks per operation. We ran these experiments with Iso-
tope providing snapshot isolation, since it performed bet-
ter for certain workloads and gave sufficiently strong se-
mantics for building the key-value stores. With strict se-
rializability, for instance, the fill workload showed nearly
identical performance, whereas the delete workload ran
up to 25% slower.

LevelDB’s performance is low for fill operations due
to sorting and multi-level merging (Figure 7-(a)), and its
read performance degrades as the number of concurrent
threads increases because of the CPU contention in the
skip list, cache thrashing, and internal merging opera-
tions (Figure 7-(b)). Still, LevelDB’s delete is very effi-
cient because it only involves appending a small delete
intention record to a log, whereas IsoBT/IsoHT has to
update a full 4KB block per delete (Figure 7-(c)).

The point of this experiment is not to show Iso-
HT/IsoBT is better than LevelDB, which has a different
internal design and is optimized for specific workloads
such as sequential reads and bulk writes. Rather, it shows
that systems built over Isotope with little effort can pro-
vide equivalent or better performance than an existing
system that implements its own concurrency control and
failure atomicity logic.

6.2.1 Composability

To evaluate the composability of Isotope-based storage
systems, we ran the YCSB workload on ImgStore, our
image storage application built over IsoHT and IsoBT.
In our experiments, ImgStore transactionally stored a
16KB payload (corresponding to an image) in IsoHT and
a small date-to-ID mapping in IsoBT. To capture the var-

 0
 2
 4
 6
 8

 10
 12
 14
 16

4 8 16 32 64 128

G
oo

dp
ut

 (K
 O

ps
/s

ec
)

of Threads

Cross-library
Cross-thread
Cross-process

Figure 8: YCSB over different compositions of IsoBT
and IsoHT.
ious ways in which Isotope storage systems can be com-
posed (see Section 3), we implemented several versions
of ImgStore: cross-library, where ImgStore accesses the
two key-value stores as in-process libraries, with each
transaction executing within a single user-space thread;
cross-thread, where ImgStore accesses each key-value
store using a separate thread, and requires transactions
to execute across them; and cross-process, where each
key-value store executes within its own process and is
accessed by ImgStore via socket-based IPC. Figure 8
shows the resulting performance for all three versions.
It shows that the cost of the extra takeoverTX/releaseTX
calls required for cross-thread transactions is negligi-
ble. As one might expect, cross-process transactions
are slower due to the extra IPC overhead. Additionally,
ImgStore exhibits less concurrency than IsoHT or IsoBT
(peaking at 32 threads), since each composite transaction
conflicts if either of its constituent transactions conflict.

6.2.2 Filesystem Performance

Next, we compare the end-to-end performance of IsoFS
running over Isotope using the IOZone [4] write/rewrite
benchmark with 8 threads. Each thread writes to its
own file using a 16KB record size until the file size
reaches 256MB; it then rewrites the entire file sequen-
tially; and then rewrites it randomly. We ran this work-
load against IsoFS running over Isotope, which con-
verted each 16KB write into a transaction involving four
4KB Isotope writes, along with metadata writes. We also
ran ext2 and ext3 over Isotope; these issued solitary, non-
transactional reads and writes, which were interpreted by
Isotope as singleton transactions (in effect, Isotope oper-
ated as a conventional log-structured block store, so that
ext2 and ext3 are not penalized for random I/Os). We ran
ext3 in ‘ordered’ mode, where metadata is journaled but
file contents are not.

Figure 9 plots the throughput observed by IOZone:
on disk, IsoFS matches or slightly outperforms ext2 and
ext3, saturating the tail disk on the chain. On SSD, IsoFS
is faster than ext2 and ext3 for initial writes, but is bot-
tlenecked by FUSE on rewrites. When we ran IsoFS di-
rectly using a user-space benchmark that mimics IOZone
(‘IsoFS-lib’), throughput improved to over 415MB/s. A

11

34 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 0
 100

 200
 300

 400
 500

seq-
write

seq-
rewrite

rand-
rewrite

Disk
M

B/
se

c
ext2
ext3

IsoFS
IsoFS-lib (SSD only)

seq-
write

seq-
rewrite

rand-
rewrite

SSD

Figure 9: IOZone over IsoFS and ext2/ext3.
secondary point made by this graph is that Isotope does
not slow down applications that do not use its transac-
tional features (the high performance is mainly due to
the underlying logging scheme, but ext2 and ext3 still
saturate disk and SSD for rewrites), satisfying a key con-
dition for pushing functionality down the stack [49].

7 Related Work
The idea of transactional atomicity for multi-block writes
was first proposed in Mime [18], a log-structured storage
system that provided atomic multi-sector writes. Over
the years, multiple other projects have proposed block-
level or page-level atomicity: the Logical Disk [24] in
1993, Stasis [54] in 2006, TxFlash [46] in 2008, and
MARS [19] in 2013. RVM [51] and Rio Vista [36] pro-
posed atomicity over a persistent memory abstraction.
All these systems explicitly stopped short of providing
full transactional semantics, relying on higher layers to
implement isolation. To the best of our knowledge, no
existing single-machine system has implemented trans-
actional isolation at the block level, or indeed any con-
currency control guarantee beyond linearizability.

On the other hand, distributed filesystems have often
relied on the underlying storage layer to provide con-
currency control. Boxwood [37], Sinfonia [12], and
CalvinFS [62] presented simple NFS designs that lever-
aged transactions over distributed implementations of
high-level data structures and a shared address space.
Transaction isolation has been proposed for shared block
storage accessed over a network [13] and for key-value
stores [60]. Isotope can be viewed as an extension of
similar ideas to single-machine, multi-core systems that
does not require consensus or distributed rollback pro-
tocols. Our single-machine IsoFS implementation has
much in common with the Boxwood, Sinfonia, and Calv-
inFS NFS implementations which ran against clusters of
storage servers.

Isotope also fits into a larger body of work on smart
single-machine block devices, starting with Loge [27]
and including HP AutoRAID [65]. Some of this work
has focused on making block devices smarter without
changing the interface [57], while other work has looked
at augmenting the block interface [18, 64, 30], modify-
ing it [67], and even replacing it with an object-based
interface [38]. In a distributed context, Parallax [39]
and Strata [23] provide virtual disks on storage clusters.
A number of filesystems are multiversion, starting with

WAFL [33], and including many others [50, 41, 22]. Un-
derlying these systems is research on multiversion data
structures [26]. Less common are multiversion block
stores such as Clotho [29] and Venti [47].

A number of filesystems have been built over a
full-fledged database. Inversion [43] is a conven-
tional filesystem built over the POSTGRES database,
while Amino [66] is a transactional filesystem (i.e., ex-
posing transactions to users) built over Berkeley DB.
WinFS [10] was built over a relational engine derived
from SQL Server. This route requires storage system de-
velopers to adopt a complex interface – one that does not
match or expose the underlying grain of the hardware –
in order to obtain benefits such as isolation and atomic-
ity. In contrast, Isotope retains the simple block storage
interface while providing isolation and atomicity.

TxOS [45] is a transactional operating system that
provides ACID semantics over syscalls, include file ac-
cesses. In contrast, Isotope is largely OS-agnostic and
can be ported easily to commodity operating systems, or
even implemented under the OS as a hardware device. In
addition, Isotope supports the easy creation of new sys-
tems such as key-value stores and filesystems that run
directly over block storage.

Isotope is also related to the large body of work on
software transactional memory (STM) [55, 32] systems,
which typically provide isolation but not durability or
atomicity. Recent work has leveraged new NVRAM
technologies to add durability to the STM abstraction:
Mnemosyne [63] and NV-Heaps [20] with PCM and
Hathi [52] with commodity SSDs. In contrast, Iso-
tope aims for transactional secondary storage, rather than
transactional main-memory.

8 Conclusion
We described Isotope, a transactional block store that
provides isolation in addition to atomicity and durabil-
ity. We showed that isolation can be implemented ef-
ficiently within the block layer, leveraging the inher-
ent multi-versioning of log-structured block stores and
application-provided hints for fine-grained conflict de-
tection. Isotope-based systems are simple and fast, while
obtaining database-strength guarantees on failure atom-
icity, durability, and consistency. They are also compos-
able, allowing application-initiated transactions to span
multiple storage systems and different abstractions such
as files and key-value pairs.

Acknowledgments
This work is partially funded and supported by a SLOAN
Research Fellowship received by Hakim Weatherspoon,
DARPA MRC and CSSG (D11AP00266) and NSF
(1422544, 1053757, 0424422, 1151268, 1047540). We
would like to thank our shepherd, Sage Weil, and the
anonymous reviewers for their comments.

12

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 35

References
[1] fcntl man page.

[2] Filesystem in userspace. http://fuse.
sourceforge.net.

[3] Fusion-io. www.fusionio.com.

[4] Iozone filesystem benchmark. http://www.
iozone.org.

[5] LevelDB benchmarks. http://leveldb.
googlecode.com/svn/trunk/doc/
benchmark.html.

[6] SanDisk Fusion-io atomic multi-block
writes. http://www.sandisk.com/
assets/docs/accelerate-myql-open-
source-databases-with-sandisk-
nvmfs-and-fusion-iomemory-sx300-
application-accelerators.pdf.

[7] SanDisk Fusion-io auto-commit mem-
ory. http://web.sandisk.com/
assets/white-papers/MySQL_High-
Speed_Transaction_Logging.pdf.

[8] Seagate kinetic open storage platform. http:
//www.seagate.com/solutions/cloud/
data-center-cloud/platforms/.

[9] Storage spaces. http://technet.
microsoft.com/en-us/library/
hh831739.aspx.

[10] Winfs. http://blogs.msdn.com/b/
winfs/.

[11] A. Aghayev and P. Desnoyers. Skylight a win-
dow on shingled disk operation. In USENIX FAST,
pages 135–149, 2015.

[12] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis. Sinfonia: a new paradigm
for building scalable distributed systems. ACM
SIGOPS Operating Systems Review, 41(6):159–
174, 2007.

[13] K. Amiri, G. A. Gibson, and R. Golding. Highly
concurrent shared storage. In IEEE ICDCS, pages
298–307, 2000.

[14] A. Badam and V. S. Pai. SSDAlloc: hybrid
SSD/RAM memory management made easy. In
USENIX NSDI, 2011.

[15] M. Balakrishnan, D. Malkhi, V. Prabhakaran,
T. Wobber, M. Wei, and J. D. Davis. CORFU: A
shared log design for flash clusters. In USENIX
NSDI, pages 1–14, 2012.

[16] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql iso-
lation levels. ACM SIGMOD Record, 24(2):1–10,
1995.

[17] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database sys-
tems, volume 370. Addison-wesley New York,
1987.

[18] C. Chao, R. English, D. Jacobson, A. Stepanov, and
J. Wilkes. Mime: a high performance parallel stor-
age device with strong recovery guarantees. Tech-
nical report, HPL-CSP-92-9, Hewlett-Packard Lab-
oratories, 1992.

[19] J. Coburn, T. Bunker, R. K. Gupta, and S. Swanson.
From ARIES to MARS: Reengineering transaction
management for next-generation, solid-state drives.
In SOSP, 2013.

[20] J. Coburn, A. M. Caulfield, A. Akel, L. M.
Grupp, R. K. Gupta, R. Jhala, and S. Swan-
son. NV-Heaps: making persistent objects fast
and safe with next-generation, non-volatile memo-
ries. ACM SIGARCH Computer Architecture News,
39(1):105–118, 2011.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving
systems with ycsb. In ACM SoCC, pages 143–154,
2010.

[22] B. Cornell, P. A. Dinda, and F. E. Bustamante.
Wayback: A user-level versioning file system for
linux. In USENIX ATC, FREENIX Track, 2004.

[23] B. Cully, J. Wires, D. Meyer, K. Jamieson,
K. Fraser, T. Deegan, D. Stodden, G. Lefebvre,
D. Ferstay, and A. Warfield. Strata: scalable high-
performance storage on virtualized non-volatile
memory. In USENIX FAST, pages 17–31, 2014.

[24] W. De Jonge, M. F. Kaashoek, and W. C. Hsieh.
The logical disk: A new approach to improving file
systems. ACM SIGOPS Operating Systems Review,
27(5):15–28, 1993.

[25] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker, and D. A. Wood. Implementa-
tion techniques for main memory database systems.
In ACM SIGMOD, pages 1–8, 1984.

[26] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. In Pro-
ceedings of the eighteenth annual ACM symposium
on Theory of computing, pages 109–121. ACM,
1986.

13

36 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

[27] R. M. English and A. A. Stepanov. Loge: a self-
organizing disk controller. In USENIX Winter,
1992.

[28] B. Fan, D. G. Andersen, and M. Kaminsky.
Memc3: Compact and concurrent memcache with
dumber caching and smarter hashing. USENIX
NSDI, 2013.

[29] M. Flouris and A. Bilas. Clotho: Transparent Data
Versioning at the Block I/O Level. In MSST, pages
315–328, 2004.

[30] G. R. Ganger. Blurring the line between OSes
and storage devices. School of Computer Science,
Carnegie Mellon University, 2001.

[31] R. Guerraoui and M. Kapalka. On the correctness
of transactional memory. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, pages 175–184.
ACM, 2008.

[32] T. Harris, J. Larus, and R. Rajwar. Transactional
Memory. Morgan and Claypool Publishers, 2010.

[33] D. Hitz, J. Lau, and M. A. Malcolm. File system
design for an nfs file server appliance. In USENIX
Winter, volume 94, 1994.

[34] J. Jose, M. Banikazemi, W. Belluomini, C. Murthy,
and D. K. Panda. Metadata persistence using stor-
age class memory: experiences with flash-backed
dram. In Proceedings of the 1st Workshop on In-
teractions of NVM/FLASH with Operating Systems
and Workloads, page 3. ACM, 2013.

[35] H.-T. Kung and J. T. Robinson. On optimistic meth-
ods for concurrency control. ACM Transactions on
Database Systems (TODS), 6(2):213–226, 1981.

[36] D. E. Lowell and P. M. Chen. Free transactions with
rio vista. ACM SIGOPS Operating Systems Review,
31(5):92–101, 1997.

[37] J. MacCormick, N. Murphy, M. Najork, C. A.
Thekkath, and L. Zhou. Boxwood: Abstractions as
the foundation for storage infrastructure. In OSDI,
volume 4, pages 8–8, 2004.

[38] M. Mesnier, G. R. Ganger, and E. Riedel. Object-
based storage. Communications Magazine, IEEE,
41(8):84–90, 2003.

[39] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre,
M. J. Feeley, N. C. Hutchinson, and A. Warfield.
Parallax: virtual disks for virtual machines. ACM
SIGOPS Operating Systems Review, 42(4):41–54,
2008.

[40] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: a transaction recovery method
supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transac-
tions on Database Systems (TODS), 17(1):94–162,
1992.

[41] K.-K. Muniswamy-Reddy, C. P. Wright, A. Him-
mer, and E. Zadok. A versatile and user-oriented
versioning file system. In USENIX FAST, 2004.

[42] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann,
J. Howell, and Y. Suzue. Flat datacenter storage. In
USENIX OSDI, 2012.

[43] M. A. Olson. The design and implementation of
the inversion file system. In USENIX Winter, pages
205–218, 1993.

[44] A. Pennarun. Everything you never wanted to
know about file locking. http://apenwarr.
ca/log/?m=201012#13.

[45] D. E. Porter, O. S. Hofmann, C. J. Rossbach,
A. Benn, and E. Witchel. Operating system trans-
actions. In SOSP, pages 161–176. ACM, 2009.

[46] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou.
Transactional flash. In USENIX OSDI, 2008.

[47] S. Quinlan and S. Dorward. Venti: A new approach
to archival storage. In USENIX FAST, 2002.

[48] C. Reid, P. A. Bernstein, M. Wu, and X. Yuan. Op-
timistic concurrency control by melding trees. Pro-
ceedings of the VLDB Endowment, 4(11), 2011.

[49] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-
to-end arguments in system design. ACM Transac-
tions on Computer Systems (TOCS), 2(4):277–288,
1984.

[50] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton, and J. Ofir. Deciding when
to forget in the elephant file system. ACM SIGOPS
Operating Systems Review, 33(5):110–123, 1999.

[51] M. Satyanarayanan, H. H. Mashburn, P. Kumar,
D. C. Steere, and J. J. Kistler. Lightweight recover-
able virtual memory. ACM Transactions on Com-
puter Systems (TOCS), 12(1):33–57, 1994.

[52] M. Saxena, M. A. Shah, S. Harizopoulos, M. M.
Swift, and A. Merchant. Hathi: durable transac-
tions for memory using flash. In Proceedings of the
Eighth International Workshop on Data Manage-
ment on New Hardware, pages 33–38. ACM, 2012.

14

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 37

[53] M. Saxena, M. M. Swift, and Y. Zhang. Flashtier:
a lightweight, consistent and durable storage cache.
In ACM EuroSys, pages 267–280, 2012.

[54] R. Sears and E. Brewer. Stasis: Flexible transac-
tional storage. In USENIX OSDI, 2006.

[55] N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, 10(2):99–116,
1997.

[56] J.-Y. Shin, M. Balakrishnan, T. Marian, and
H. Weatherspoon. Gecko: Contention-oblivious
disk arrays for cloud storage. In USENIX FAST,
pages 213–225, 2013.

[57] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Semantically-smart disk systems. In
USENIX FAST, 2003.

[58] D. Skourtis, D. Achlioptas, N. Watkins,
C. Maltzahn, and S. Brandt. Flash on rails:
consistent flash performance through redundancy.
In USENIX ATC, pages 463–474, 2014.

[59] G. Soundararajan, V. Prabhakaran, M. Balakrish-
nan, and T. Wobber. Extending SSD Lifetimes with
Disk-Based Write Caches. In USENIX FAST, 2010.

[60] Y. Sovran, R. Power, M. K. Aguilera, and J. Li.
Transactional storage for geo-replicated systems.
In ACM SOSP, 2011.

[61] L. Stein. Stupid File Systems Are Better. In HotOS,
2005.

[62] A. Thomson and D. J. Abadi. Calvinfs: Consis-
tent wan replication and scalable metadata manage-
ment for distributed file systems. In USENIX FAST,
pages 1–14, 2015.

[63] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. ACM SIGARCH
Computer Architecture News, 39(1):91–104, 2011.

[64] R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Virtual log based file systems for a programmable
disk. Operating systems review, 33:29–44, 1998.

[65] J. Wilkes, R. Golding, C. Staelin, and T. Sulli-
van. The hp autoraid hierarchical storage system.
ACM Transactions on Computer Systems (TOCS),
14(1):108–136, 1996.

[66] C. P. Wright, R. Spillane, G. Sivathanu, and
E. Zadok. Extending acid semantics to the file sys-
tem. ACM Transactions on Storage (TOS), 3(2):4,
2007.

[67] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. De-indirection for flash-
based ssds with nameless writes. In USENIX FAST,
2012.

15

