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Abstract
The increase in high-precision, high-sample-rate

telemetry timeseries poses a problem for existing time-
series databases which can neither cope with the through-
put demands of these streams nor provide the necessary
primitives for effective analysis of them. We present
a novel abstraction for telemetry timeseries data and a
data structure for providing this abstraction: a time-
partitioning version-annotated copy-on-write tree. An
implementation in Go is shown to outperform existing
solutions, demonstrating a throughput of 53 million in-
serted values per second and 119 million queried values
per second on a four-node cluster. The system achieves
a 2.9x compression ratio and satisfies statistical queries
spanning a year of data in under 200ms, as demonstrated
on a year-long production deployment storing 2.1 trillion
data points. The principles and design of this database
are generally applicable to a large variety of timeseries
types and represent a significant advance in the develop-
ment of technology for the Internet of Things.

1 Introduction

A new class of distributed system with unique storage
requirements is becoming increasingly important with
the rise of the Internet of Things. It involves collecting,
distilling and analyzing – in near real-time and histori-
cally – time-correlated telemetry from a large number of
high-precision networked sensors with fairly high sam-
ple rates. This scenario occurs in monitoring the internal
dynamics of electric grids, building systems, industrial
processes, vehicles, structural health, and so on. Often,
it provides situational awareness of complex infrastruc-
ture. It has substantially different characteristics from ei-
ther user-facing focus and click data, which is pervasive
in modern web applications, smart metering data, which
collects 15-minute interval data from many millions of
meters, or one-shot dedicated instrument logging.

We focus on one such source of telemetry – mi-
crosynchophasors, or uPMUs. These are a new gener-
ation of small, comparatively cheap and extremely high-
precision power meters that are to be deployed in the dis-
tribution tier of the electrical grid, possibly in the mil-
lions. In the distributed system shown in Figure 2, each
device produces 12 streams of 120 Hz high-precision
values with timestamps accurate to 100 ns (the limit of
GPS). Motivated by the falling cost of such data sources,
we set out to construct a system supporting more than
1000 of these devices per backing server – more than
1.4 million inserted points per second, and several times
this in expected reads and writes from analytics. Fur-
thermore, this telemetry frequently arrives out of order,
delayed and duplicated. In the face of these character-
istics, the storage system must guarantee the consistency
of not only the raw streams, but all analytics derived from
them. Additionally, fast response times are important for
queries across time scales from years to milliseconds.

These demands exceed the capabilities of current
timeseries data stores. Popular systems, such as
KairosDB [15], OpenTSDB [20] or Druid [7], were de-
signed for complex multi-dimensional data at low sam-
ple rates and, as such, suffer from inadequate through-
put and timestamp resolution for these telemetry streams,
which have comparatively simple data and queries based
on time extents. These databases all advertise reads and
writes of far less than 1 million values per second per
server, often with order-of-arrival and duplication con-
straints, as detailed in Section 2.

As a solution to this problem, a novel, ground-up, use-
inspired time-series database abstraction – BTrDB – was
constructed to provide both higher sustained through-
put for raw inserts and queries, as well as advanced
primitives that accelerate the analysis of the expected 44
quadrillion datapoints per year per server.

The core of this solution is a new abstraction for time
series telemetry data (Section 3) and a data structure
that provides this abstraction: a time-partitioning, multi-
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(a) Statistical summary of a year of voltage data to locate voltage
sags, representing 50 billion readings, with min, mean, and max
shown. The data density (the plot above the main plot) is 4.2 mil-
lion points per pixel column.
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(b) The voltage sag outlined in (a) plotted over 5 seconds. The data
density (the plot above the main plot) is roughly one underlying
data point per pixel column

Figure 1: Locating interesting events in typical uPMU telemetry streams using statistical summaries
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Figure 2: uPMU network storage and query processing system

resolution, version-annotated, copy-on-write tree, as de-
tailed in Section 4. A design for a database using this
data structure is presented in Section 5.

An open-source 4709-line Go implementation of
BTrDB demonstrates the simplicity and efficacy of this
method, achieving 53 million inserted values per sec-
ond and 119 million queried values per second on a four
node cluster with the necessary fault-tolerance and con-
sistency guarantees. Furthermore, the novel analytical
primitives allow the navigation of a year worth of data
comprising billions of datapoints (e.g. Figure 1a) to lo-
cate and analyse a sub-second event (e.g. Figure 1b)
using a sequence of statistical queries that complete in
100-200ms, a result not possible with current tools. This
is discussed in Section 6.

2 Related work

Several databases support high-dimensionality time-
series data, including OpenTSDB [20], InfluxDB [12],

KairosDB [15] and Druid [7]. In terms of raw telemetry,
these databases are all limited to millisecond-precision
timestamps. This is insufficient to capture phase angle
samples from uPMUs, which require sub-microsecond-
precision timestamps. While all of these are capable of
storing scalar values, they also support more advanced
“event” data, and this comes at a cost. Druid adver-
tises that “large production clusters” have reached “1M+
events per second” on “tens of thousands of cores.” Pub-
lished results for OpenTSDB show < 1k operations per
second per node [4][10]. MapR has shown OpenTSDB
running on MapR-DB, modified to support batch inserts
and demonstrated 27.5 million inserted values per second
per node (bypassing parts of OpenTSDB) and 375 thou-
sand reads per second per node [28][8]; unfortunately
this performance is with 1 byte values and counter-
derived second-precision timestamps, which somewhat
undermines its utility [27].

A study evaluating OpenTSDB and KairosDB [10]
with real PMU data showed that KairosDB significantly
outperforms OpenTSDB, but only achieves 403,500 in-
serted values per second on a 36 node cluster. KairosDB
gives an example of 133 k inserted values per second [14]
using bulk insert in their documentation. Rabl et. al [24]
performed an extensive benchmark comparing Project
Voldemort [23], Redis [26], HBase [3], Cassandra [2],
MySQL [21] and VoltDB [31][29]. Cassandra exhib-
ited the highest throughput, inserting 230k records per
second on a twelve node cluster. The records used
were large (75 bytes), but even if optimistically nor-
malised to the size of our records (16 bytes) it only
yields roughly 1M inserts per second, or 89K inserts
per second per node. The other five candidates exhib-
ited lower throughput. Datastax [6] performed a simi-

2



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 41

lar benchmark [9] comparing MongoDB [19], Cassan-
dra [2], HBase [3] and Couchbase [5]. Here too, Cassan-
dra outperformed the competition obtaining 320k insert-
s/sec and 220k reads/sec on a 32 node cluster.

Recently, Facebook’s in-memory Gorilla
database [22] takes a similar approach to BTrDB -
simplifying the data model to improve performance.
Unfortunately, it has second-precision timestamps, does
not permit out-of-order insertion and lacks accelerated
aggregates.

In summary, we could find no databases capable of
handling 1000 uPMUs per server node (1.4 million in-
serts/s per node and 5x that in reads), even without con-
sidering the requirements of the analytics. Even if ex-
isting databases could handle the raw throughput, and
timestamp precision of the telemetry, they lack the abil-
ity to satisfy queries over large ranges of data efficiently.
While many time series databases support aggregate
queries, the computation requires on-the-fly iteration of
the base data (e.g. OpenTSDB, Druid) - untenable at 50
billion samples per year per uPMU. Alternatively, some
timeseries databases offer precomputed aggregates (e.g,
InfluxDB, RespawnDB [4]), accelerating these queries,
but they are unable to guarantee the consistency of the
aggregates when data arrives out of order or is modi-
fied. The mechanisms to guarantee this consistency exist
in most relational databases, but those fare far worse in
terms of throughput.

Thus, we were motivated to investigate a clean slate
design and implementation of a time-series database
with the necessary capabilities – high throughput, fixed-
response-time analytics irrespective of the underlying
data size and eventual consistency in a graph of interde-
pendent analytics despite out of order or duplicate data.
This was approached in an integrated fashion from the
block or file server on up. Our goal was to develop
a multi-resolution storage and query engine for many
higher bandwidth (> 100 Hz) streams that provides the
above functionality essentially “for free”, in that it op-
erates at the full line rate of the underlying network or
storage infrastructure for affordable cluster sizes (< 6
servers).

BTrDB has promising functionality and performance.
On four large EC2 nodes it achieves over 119M queried
values per second (>10GbE line rate) and over 53M in-
serted values per second of 8 byte time and 8 byte value
pairs, while computing statistical aggregates. It returns
results of 2K points summarizing anything from the raw
values (9 ms) to 4 billion points (a year) in 100-250ms.
It does this while maintaining the provenance of all com-
puted values and consistency of a network of streams.
The system storage overhead is negligible, with an all-
included compression ratio of 2.9x – a significant im-
provement on existing compression techniques for syn-

chrophasor data streams.

3 Time Series Data Abstraction

The fundamental abstraction provided by BTrDB is a
consistent, write-once, ordered sequence of time-value
pairs. Each stream is identified by a UUID. In typi-
cal uses, a substantial collection of metadata is associ-
ated with each stream. However, the nature of the meta-
data varies widely amongst uses and many good solu-
tions exist for querying metadata to obtain a collection
of streams. Thus, we separate the lookup (or directory)
function entirely from the time series data store, identi-
fying each stream solely by its UUID. All access is per-
formed on a temporal segment of a version of a stream.
All time stamps are in nanoseconds with no assumptions
on sample regularity.

InsertValues(UUID, [(time, value)]) creates a new
version of a stream with the given collection of
(time,value) pairs inserted. Logically, the stream is main-
tained in time order. Most commonly, points are ap-
pended to the end of the stream, but this cannot be as-
sumed: readings from a device may be delivered to the
store out of order, duplicates may occur, holes may be
backfilled and corrections may be made to old data –
perhaps as a result of recalibration. These situations rou-
tinely occur in real world practice, but are rarely sup-
ported by timeseries databases. In BTrDB, each insertion
of a collection of values creates a new version, leaving
the old version unmodified. This allows new analyses to
be performed on old versions of the data.

The most basic access method, GetRange(UUID,
StartTime, EndTime, Version) → (Version, [(Time,
Value)]) retrieves all the data between two times in a
given version of the stream. The ‘latest’ version can be
indicated, thereby eliminating a call to GetLatestVer-
sion(UUID) → Version to obtain the latest version for a
stream prior to querying a range. The exact version num-
ber is returned along with the data to facilitate a repeat-
able query in future. BTrDB does not provide operations
to resample the raw points in a stream on a particular
schedule or to align raw samples across streams because
performing these manipulations correctly ultimately de-
pends on a semantic model of the data. Such operations
are well supported by mathematical environments, such
as Pandas [17], with appropriate control over interpola-
tion methods and so on.

Although this operation is the only one provided by
most historians, with trillions of points, it is of limited
utility. It is used in the final step after having isolated
an important window or in performing reports, such as
disturbances over the past hour. Analyzing raw streams
in their entirety is generally impractical; for example,
each uPMU produces nearly 50 billion samples per year.
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The following access methods are far more powerful for
broad analytics and for incremental generation of com-
putationally refined streams.

In visualizing or analyzing huge segments of data Get-
StatisticalRange(UUID, StartTime, EndTime, Ver-
sion, Resolution) → (Version, [(Time, Min, Mean,
Max, Count)]) is used to retrieve statistical records be-
tween two times at a given temporal resolution. Each
record covers 2resolution nanoseconds. The start time and
end time are on 2resolution boundaries and result records
are periodic in that time unit; thus summaries are aligned
across streams. Unaligned windows can also be queried,
with a marginal decrease in performance.

GetNearestValue(UUID, Time, Version, Direction)
→ (Version, (Time, Value)) locates the nearest point to a
given time, either forwards or backwards. It is commonly
used to obtain the ‘current’, or most recent to now, value
of a stream of interest.

In practice, raw data streams feed into a graph of dis-
tillation processes in order to clean and filter the raw data
and then combine the refined streams to produce useful
data products, as illustrated in Figure 2. These distillers
fire repeatedly, grab new data and compute output seg-
ments. In the presence of out of order arrival and loss,
without support from the storage engine, it can be com-
plex and costly to determine which input ranges have
changed and which output extents need to be computed,
or recomputed, to maintain consistency throughout the
distillation pipeline.

To support this, ComputeDiff(UUID, FromVersion,
ToVersion, Resolution) → [(StartTime, EndTime)]
provides the time ranges that contain differences between
the given versions. The size of the changeset returned
can be limited by limiting the number of versions be-
tween FromVersion and ToVersion as each version has
a maximum size. Each returned time range will be larger
than 2resolution nanoseconds, allowing the caller to opti-
mize for batch size.

As utilities, DeleteRange(UUID, StartTime, End-
Time): create a new version of the stream with the given
range deleted and Flush(UUID) ensure the given stream
is flushed to replicated storage.

4 Time partitioned tree

To provide the abstraction described above, we use a
time-partitioning copy-on-write version-annotated k-ary
tree. As the primitives API provides queries based on
time extents, the use of a tree that partitions time serves
the role of an index by allowing rapid location of spe-
cific points in time. The base data points are stored in the
leaves of the tree, and the depth of the tree is defined by
the interval between data points. A uniformly sampled
telemetry stream will have a fixed tree depth irrespective
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Figure 3: An example of a time-partitioning tree with version-
annotated edges. Node sizes correspond to a K=64 implemen-
tation

of how much data is in the tree. All trees logically rep-
resent a huge range of time (from −260ns to 3∗260ns as
measured from the Unix epoch, or approximately 1933
to 2079 with nanosecond precision) with big holes at the
front and back ends and smaller holes between each of
the points. Figure 3 illustrates a time-partitioning tree
for 16 ns. Note the hole between 8 and 12 ns.

To retain historic data, the tree is copy on write: each
insert into the tree forms an overlay on the previous tree
accessible via a new root node. Providing historic data
queries in this way ensures that all versions of the tree
require equal effort to query – unlike log replay mech-
anisms which introduce overheads proportional to how
much data has changed or how old is the version that is
being queried. Using the storage structure as the index
ensures that queries to any version of the stream have an
index to use, and reduces network round trips.

Each link in the tree is annotated with the version of
the tree that introduced that link, also shown in Figure
3. A null child pointer with a nonzero version annota-
tion implies the version is a deletion. The time extents
that were modified between two versions of the tree can
be walked by loading the tree corresponding to the later
version, and descending into all nodes annotated with the
start version or higher. The tree need only be walked to
the depth of the desired difference resolution, thus Com-
puteDiff() returns its results without reading the raw data.
This mechanism allows consumers of a stream to query
and process new data, regardless of where the changes
were made, without a full scan and with only 8 bytes of
state maintenance required - the ‘last version processed’.

Each internal node holds scalar summaries of the sub-
trees below it, along with the links to the subtrees. Sta-
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tistical aggregates are computed as nodes are updated,
following the modification or insertion of a leaf node.
The statistics currently supported are min, mean, max
and count, but any operation that uses intermediate re-
sults from the child subtrees without requiring iteration
over the raw data can be used. Any associative operation
meets this requirement.

This approach has several advantages over conven-
tional discrete rollups. The summary calculation is free
in terms of IO operations – the most expensive part of
a distributed storage system. All data for the calcula-
tion is already in memory, and the internal node needs to
be copied anyway, since it contains new child addresses.
Summaries do increase the size of internal nodes, but
even so, internal nodes are a tiny fraction of the total
footprint ( < 0.3% for a single version of a K = 64 k-
ary tree). Observable statistics are guaranteed to be con-
sistent with the underlying data, because failure during
their calculation would prevent the root node from being
written and the entire overlay would be unreachable.

When querying a stream for statistical records, the tree
need only be traversed to the depth corresponding to the
desired resolution, thus the response time is proportional
to the number of returned records describing the tempo-
ral extent, not the length of the extent nor the number of
datapoints within it. Records from disparate streams are
aligned in time, so time-correlated anaylsis can proceed
directly. For queries requiring specific non-power-of-two
windows, the operation is still dramatically accelerated
by using the precomputed statistics to fill in the middle
of each window, only requiring a “drill down” on the side
of each window, so that the effort to generate a window
is again proportional to the log of the length of time it
covers, not linear in the underlying data.

Although conceptually a binary tree, an implementa-
tion may trade increased query-time computation for de-
creased storage and IO operations by using a k-ary tree
and performing just-in time computation of the statistical
metrics for windows that lie between actual levels of the
tree. If k is too large, however, the on-the-fly computa-
tion impacts increases the variability of statistical query
latencies, as discussed in Section 6.3.

To allow fetching nodes from the tree in a single IO
operation, all addresses used in the tree are “native” in
that they are directly resolvable by the storage layer with-
out needing a translation step. If an indirect address were
used it would require either a costly remote lookup in a
central map, or complex machinery to synchronize a lo-
cally stored map. Multiple servers can execute reads on
the same stream at a time, so all servers require an up-
to-date view of this mapping. Native addresses remove
this problem entirely, but they require care to maintain,
as discussed below.

The internal blocks have a base size of 2× 8×K for

the child addresses and child pointer versions. On top of
that, the statistics require 4× 8×K for min, mean, max
and count making them 3KB in size for K = 64. The leaf
nodes require 16 bytes per (time, value) pair, and a 16
byte length value. For Nlea f = 1024 they are 16KB big.
Both of these blocks are compressed, as discussed below.

5 System design

The overall system design of BTrDB, shown in Figure 4,
is integrally tied to the multi-resolution COW tree data
structure described above, but also represents a family
of trade-offs between complexity, performance and re-
liability. This design prioritizes simplicity first, perfor-
mance second and then reliability, although it does all
three extremely well. The ordering is the natural evolu-
tion of developing a database that may require frequent
changes to match a dynamically changing problem do-
main and workload (simplicity leads to an easily modi-
fiable design). Performance requirements originate from
the unavoidable demands placed by the devices we are
deploying and, as this system is used in production, reli-
ability needs to be as high as possible, without sacrificing
the other two goals.

The design consists of several modules: request han-
dling, transaction coalescence, COW tree construction
and merge, generation link, block processing, and block
storage. The system follows the SEDA [34] paradigm
with processing occuring in three resource control stages
– request, write and storage – with queues capable of ex-
erting backpressure decoupling them.

5.1 Request processing stage
At the front end, flows of insertion and query requests are
received over multiple sockets, either binary or HTTP.
Each stream is identified by UUID. Operations on many
streams may arrive on a single socket and those for a par-
ticular stream may be distributed over multiple sockets.
Inserts are collections of time-value pairs, but need not
be in order.

Insert and query paths are essentially separate. Read
requests are comparatively lightweight and are handled
in a thread of the session manager. These construct and
traverse a partial view of the COW tree, as described
above, requesting blocks from the block store. The
block store in turn requests blocks from a reliable stor-
age provider (Ceph in our implementation) and a cache
of recently used blocks. Read throttling is achieved by
the storage stage limiting how many storage handles are
given to the session thread to load blocks. Requests hit-
ting the cache are only throttled by the socket output.

On the insert path, incoming data is demultiplexed into
per-stream coalescence buffers by UUID. Session man-
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Figure 4: An overview of BTrDB showing the three SEDA-style stages, and composing modules

agers compete for a shortly held map lock and then grab
a lock on the desired buffer. This sync point provides
an important write-throttling mechanism, as discussed in
Section 7.3. Each stream is buffered until either a cer-
tain time interval elapses or a certain number of points
arrive, which triggers a commit by the write stage. These
parameters can be adjusted according to target workload
and platform, with the obvious trade-offs in stream up-
date delay, number of streams, memory pressure, and ra-
tio of tree and block overhead per version commit. These
buffers need not be very big; we see excellent storage uti-
lization in production where the buffers are configured
for a maximum commit of 5 seconds or 16k points and
the average commit size is 14400 points.

5.2 COW merge
A set of threads in the write stage pick up buffers await-
ing commit and build a writable tree. This process is
similar to the tree build done by a read request, except
that all traversed nodes are modified as part of the merge,
so must remain in memory. Copying existing nodes or
creating new nodes requires a chunk of memory which
is obtained from a free pool in the block store. At this
point the newly created blocks have temporary addresses
– these will be resolved by the linker later to obtain the
index-free native addressing.

5.3 Block store
The block store allocates empty blocks, stores new
blocks and fetches stored blocks. It also provides com-
pression/decompression of storage blocks, and a cache.
Empty blocks, used in tree merges, are satisfied primarily
from the free pool to avoid allocations. After blocks are

evicted from the block cache and are about to be garbage
collected, they are inserted back into this pool.

Fields such as a block’s address, UUID, resolution
(tree depth) and time extent are useful for traversing the
tree, but can be deduced from context when a block is
read from disk, so are stripped before the block enters
the compression engine.

The block cache holds all the blocks that pass through
the block store with the least recently used blocks evicted
first. It consumes a significant (tunable) portion of the
memory footprint. Cache for a time series store may
not seem an obvious win, other than for internal nodes
in the COW tree, but it is extremely important for near-
real-time analytics. As the majority of our read workload
consists of processes waiting to consume any changes to
a set of streams – data that just passed through the system
– a cache of recently used blocks dramatically improves
performance.

5.4 Compression engine
Part of the block store, the compression engine com-
presses the min, mean, max, count, address and version
fields in internal nodes, as well as the time and value
fields in leaf nodes. It uses a method we call delta-
delta coding followed by Huffman coding using a fixed
tree. Typical delta coding works by calculating the dif-
ference between every value in the sequence and storing
that using variable-length symbols (as the delta is nor-
mally smaller than the absolute values [18]). Unfortu-
nately with high-precision sensor data, this process does
not work well because nanosecond timestamps produce
very large deltas, and even linearly-changing values pro-
duce sequences of large, but similar, delta values.

In lower precision streams, long streams of identi-
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cal deltas are typically removed with run-length encod-
ing that removes sequences of identical deltas. Unfortu-
nately noise in the lower bits of high precision sensor
values prevents run-length encoding from successfully
compacting the sequence of deltas. This noise, how-
ever, only adds a small jitter to the delta values. They
are otherwise very similar. Delta-delta compression re-
places run-length encoding and encodes each delta as the
difference from the mean of a window of previous delta
values. The result is a sequence of only the jitter values.
Incidentally this works well for the addresses and ver-
sion numbers, as they too are linearly increasing values
with some jitter in the deltas. In the course of system de-
velopment, we found that this algorithm produces better
results, with a simpler implementation, than the residual
coding in FLAC [13] which was the initial inspiration.

This method is lossless only if used with integers. To
overcome this, the double floating point values are bro-
ken up into mantissa and exponent and delta-delta com-
pressed as independent streams. As the exponent field
rarely changes, it is elided if the delta-delta value is zero.

While a quantitative and comparative analysis of this
compression algorithm is beyond the scope of this paper,
its efficacy is shown in Section 6.

5.5 Generation linker

The generation linker receives a new tree overlay from
the COW merge process, sorts the new tree nodes from
deepest to shallowest and sends them to the block store
individually, while resolving the temporary addresses
to addresses native to the underlying storage provider.
As nodes reference only nodes deeper than themselves,
which have been written already, any temporary address
encountered can be immediately resolved to a native ad-
dress.

This stage is required because most efficient storage
providers – such as append-only logs – can only write an
object of arbitrary size to certain addresses. In the case of
a simple file, arbitrarily sized objects can only be written
to the tail, otherwise they overwrite existing data. Once
the size of the object is known, such as after the linker
sends the object to the block store and it is compressed,
a new address can be derived from the previous one. The
nature of the storage may limit how many addresses can
be derived from a given initial address. For example, if
the maximum file size is reached and a new file needs to
be used.

For some storage providers, obtaining the first address
is an expensive operation e.g. in a cluster operation,
this could involve obtaining a distributed lock to ensure
uniqueness of the generated addresses. For this reason
the block store maintains a pool of pre-created initial ad-
dresses.

5.6 Root map
The root map is used before tree construction in both
reads and writes. It resolves a UUID and a version to
a storage “address.” When the blocks for a new version
have been acknowledged as durably persisted by the stor-
age provider, a new mapping for the version is inserted
into this root map. It is important that the map is fault
tolerant as it represents a single point of failure. Without
this mapping, no streams can be accessed. If the latest
version entry for a stream is removed from the map, it is
logically equivalent to rolling back the commit. Inciden-
tally, as the storage costs of a small number of orphaned
versions are low, this behaviour can be used deliberately
to obtain cheap single-stream transaction semantics with-
out requiring support code in the database.

The demands placed by these inserts / requests are
much lower than those placed by the actual data, so many
off-the-shelf solutions can provide this component of the
design. We use MongoDB as it has easy-to-use replica-
tion.

One side effect of the choice of an external provider is
that the latency in resolving this first lookup is present in
all queries – even ones that hit the cache for the rest of the
query. Due to the small size of this map, it would be rea-
sonable to replicate the map on all BTrDB nodes and use
a simpler storage solution to reduce this latency. All the
records are the same size, and the version numbers incre-
ment sequentially, so a flat file indexed by offset would
be acceptable.

5.7 Storage provider
The storage provider component wraps an underly-
ing durable storage system and adds write batching,
prefetching, and a pool of connection handles. In
BTrDB, a tree commit can be done as a single write,
as long as addresses can be generated for all the nodes
in the commit without performing intermediate commu-
nication with the underlying storage. Throttling to the
underlying storage is implemented here, for reasons de-
scribed in Section 7.3.

As the performance of a storage system generally de-
creases with the richness of its features, BTrDB is de-
signed to require only three very simple properties from
the underlying storage:

1. It must be able to provide one or more free “ad-
dresses” that an arbitrarily large object can be writ-
ten to later. Only a small finite number of these ad-
dresses need be outstanding at a time.

2. Clients must be able to derive another free “ad-
dress” from the original address, and the size of the
object that was written to it.
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3. Clients must be able to read back data given just the
“address” and a length.

Additional properties may be required based on the
desired characteristics of the BTrDB deployment as a
whole, for example distributed operation and durable
writes. Sans these additional requirements, even a simple
file is sufficient as a storage provider: (1) is the current
size of the file, (2) is addition and (3) is a random read.

Note that as we are appending and reading with a
file-like API, almost every distributed file system auto-
matically qualifies as acceptable, such as HDFS, Glus-
terFS [25], CephFS [32], MapR-FS, etc.

Note also that if arbitrary but unique “addresses” are
made up, then any database offering a key-value API
would also work, e.g. , Cassandra, MongoDB, RA-
DOS [33] (the object store under CephFS), HBase or
BigTable. Most of these offer capabilities far beyond
what is required by BTrDB, however, usually at a per-
formance or space cost.

Although we support file-backed storage, we use Ceph
RADOS in production. Initial addresses are read from
a monotonically increasing integer stored in a RADOS
object. Servers add a large increment to this integer
while holding a distributed lock (provided by Ceph). The
server then has a range of numbers it knows are unique.
The high bits are used as a 16MB RADOS object iden-
tifier, while the low bits are used as an offset within that
object. The address pool in the block store decouples the
latency of this operation from write operations.

6 Quasi-production implementation

An implementation of BTrDB has been constructed us-
ing Go [11]. This language was chosen as it offers prim-
itives that allow for rapid development of highly SMP-
scalable programs in a SEDA [34] paradigm – namely
channels and goroutines. As discussed above, one of the
primary tenets of BTrDB is performance through sim-
plicity: the entire implementation sans test code and
auto-generated libraries is only 4709 lines.

Various versions of BTrDB have been used in a year-
long deployment to capture data from roughly 35 mi-
crosynchrophasors deployed in the field, comprising 12
streams of 120 Hz data each. Data from these devices
streams in over LTE and wired connections, as shown in
Figure 2, leading to unpredictable delays, out-of-order
chunk delivery and many duplicates (when the GPS-
derived time synchronizes to different satellites). Many
of the features present in BTrDB were developed to sup-
port the storage and analysis of this sensor data.

The hardware configuration for this deployment is
shown in Figure 5. The compute server runs BTrDB (in a
single node configuration). It also runs the DISTIL ana-

Compute
Server

BTrDB

DISTIL

Mongo

20 cores (40 virtual)
256GB RAM

1Gbit
Clients

Storage
Server

28x 
4TB

OSDs

Ceph
Mon

10Gbit

4 cores (8 virtual)
128GB RAM

2x slave 
replicas on 

shared 
servers

Figure 5: The architecture of our production system

lytics framework [1] and a MongoDB replica set master.
The MongoDB database is used for the root map along
with sundry metadata, such as engineering units for the
streams and configuration parameters for DISTIL algo-
rithms. The storage server is a single-socket server con-
taining 28 commodity 4TB 5900 RPM spinning-metal
drives. The IO capacity of this server may seem abnor-
mally low for a high performance database, but it is typ-
ical for data warehousing applications. BTrDB’s IO pat-
tern was chosen with this type of server in mind: 1MB
reads and writes with excellent data locality for the pri-
mary analytics workload.

6.1 Golang – the embodiment of SEDA
SEDA advocates constructing reliable, high-
performance systems via decomposition into inde-
pendent stages separated by queues with admission
control. Although not explicitly referencing this
paradigm, Go encourages the partitioning of complex
systems into logical units of concurrency, connected by
channels, a Go primitive roughly equal to a FIFO with
atomic enqueue and dequeue operations. In addition,
Goroutines – an extremely lightweight thread-like prim-
itive with userland scheduling – allow for components of
the system to be allocated pools of goroutines to handle
events on the channels connecting a system in much the
same way that SEDA advocates event dispatch. Unlike
SEDA’s Java implementation, however, Go is actively
maintained, runs at near native speeds and can elegantly
manipulate binary data.

6.2 Read throttling
As discussed below, carefully applied backpressure is
necessary to obtain good write performance. In con-
trast, we have not yet found the need to explicitly throttle
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reads, despite having a higher read load than write load.
The number of blocks that are kept in memory to satisfy a
read is fewer than for a write. If the nodes are not already
in the block cache (of which 95% are), they are needed
only while their subtree is traversed, and can be freed
afterwards. This differs from a write, where all the tra-
versed blocks will be copied and must therefore be kept
in memory until the linker has patched them and written
them to the storage provider. In addition, Go channels
are used to stream query data directly to the socket as it
is read. If the socket is too slow, the channel applies back
pressure to the tree traversal so that nodes are not fetched
until the data has somewhere to go. For this reason, even
large queries do not place heavy memory pressure on the
system.

6.3 Real-data quantitative evaluation

Although the version of BTrDB running on production
is lacking the performance optimizations implemented
on the version evaluated in Section 7, it can provide in-
sight into the behavior of the database with large, real
data sets. At the time of writing, we have accumulated
more than 2.1 trillion data points over 823 streams, of
which 500 billion are spread over 506 streams feeding
from instruments deployed in the field. The remaining
1.6 trillion points were produced by the DISTIL analy-
sis framework. Of this analysis data, roughly 1.1 trillion
points are in extents that were invalidated due to algo-
rithm changes, manual flagging or replaced data in input
streams. This massive dataset allows us to assess several
aspects of the design.

Compression: A concern with using a copy-on-write
tree data structure with “heavyweight” internal nodes is
that the storage overheads may be unacceptable. With
real data, the compression more than compensates for
this overhead. The total size of the instrument data in
the production Ceph pool (not including replication) is
2.757 TB. Dividing this by the number of raw data points
equates to 5.514 bytes per reading including all statisti-
cal and historical overheads. As the raw tuples are 16
bytes, we have a compression ratio of 2.9x despite the
costs of the time-partitioning tree. Compression is highly
data dependent, but this ratio is better than the results
of in-depth parametric studies of compression on similar
synchrophasor telemetry [16][30].

Statistical queries: As these queries come into play
with larger data sets, they are best evaluated on months
of real data, rather than the controlled study in Section 7.
These queries are typically used in event detectors to lo-
cate areas of interest – the raw data is too big to navigate
with ease – and for visualization. To emulate this work-
load, we query a year’s worth of voltage data – the same
data illustrated in Figure 1a – to locate a voltage sag (the

Figure 6: Query latencies for 2048 statistical records covering a
varying time extent (1 year to 5 seconds), queried from a single
node

dashed box) and then issue progressively finer-grained
queries until we are querying a 5 second window (Fig-
ure 1b). Automated event detectors typically skip sev-
eral levels of resolution between queries, but this pattern
is typical of data exploration where a user is zooming in
to the event interactively. This process is repeated 300
times, with pauses between each sequence to obtain dis-
tributions on the query response times. The results can
be found in Figure 6. Typically these distributions would
be tighter, but the production server is under heavy load.

Each query is for the same number of statistical
records (2048), but the number of data points that these
records represent grows exponentially as the resolution
becomes coarser (right to left in Figure 6). In a typ-
ical on-the-fly rollup database, the query time would
grow exponentially as well, but with BTrDB it remains
roughly constant within a factor of three. The implemen-
tation’s choice of K (64 = 26) is very visible in the query
response times. The query can be satisfied directly from
the internal nodes with no on-the-fly computation every
6 levels of resolution. In between these levels, BTrDB
must perform a degree of aggregation – visible in the
query latency – to return the statistical summaries, with
the most work occurring just before the next tier of the
tree (244, 238, 232). Below 227 the data density is low
enough (< 16 points per pixel column) that the query is
being satisfied from the leaves.

Cache hit ratios: Although cache behavior is work-
load dependent, our mostly-automated-analysis is likely
representative of most use-cases. Over 22 days, the block
cache has exhibited a 95.93% hit rate, and the Ceph read-
behind prefetch cache exhibited a 95.22% hit rate.

6.4 Analysis pipeline
The raw data acquired from sensors in the field is even-
tually used for decision support; grid state estimation; is-
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land detection and reverse power flow detection, to name
a few examples. To obtain useful information the data
must first go through a pipeline consisting of multiple
transformation, fusion and synthesis stages, as shown in
Figure 2.

All the stages of the pipeline are implemented with the
same analysis framework and all consist of the same se-
quence of operations: find changes in the inputs, com-
pute which ranges of the outputs need to be updated,
fetch the data required for the computation, compute the
outputs, and insert them. Finally, if this process com-
pletes successfully, the version numbers of the inputs
that the distiller has now “caught up to” are written to
durable storage (the same MongoDB replica set used for
the root map). This architecture allows for fault tolerance
without mechanisms, as each computation is idempotent:
the output range corresponding to a given input range is
deleted and replaced for each run of a DISTIL stage. If
any error occurs, simply rerun the stage until it completes
successfully, before updating the “input → last version”
metadata records for the input streams.

This illustrates the power of the BTrDB CalculateD-
iff() primitive: an analysis stream can be “shelved,” i.e.,
not kept up to date, and when it becomes necessary later
it can be brought up-to date just-in-time with guaranteed
consistency, even if the changes to the dependencies have
occurred at random times throughout the stream. Fur-
thermore the consumer obtains this with just 8 bytes of
state per stream. The mechanism allows changes in a
stream to propagate to all streams dependent on it, even
if the process materializing the dependent stream is not
online or known to the process making the change up-
stream. Achieving this level of consistency guarantee in
existing systems typically requires a journal of outstand-
ing operations that must be replayed on downstream con-
sumers when they reappear.

7 Scalability Evaluation

To evaluate the design principles and implementation of
BTrDB in a reproducible manner, we use a configuration
of seven Amazon EC2 instances. There are four primary
servers, one metadata server and two load generators.
These machines are all c4.8xlarge instances. These were
chosen as they are the only available instance type with

Metric Mean Std. dev.
Write bandwidth [MB/s] 833 151
Write latency [ms] 34.3 40.0
Read bandwidth [MB/s] 1174 3.8
Read latency [ms] 22.0 18.7

Table 2: The underlying Ceph pool performance at max band-
width

both 10GbE network capabilities and EBS optimization.
This combination allows the scalability of BTrDB to be
established in the multiple-node configuration where net-
work and disk bandwidth are the limiting factors.

Ceph version 0.94.3 was used to provide the storage
pool over 16 Object Store Daemons (OSDs). It was con-
figured with a size (replication factor) of two. The band-
width characteristics of the pool are shown in Table 2.
It is important to note the latency of operations to Ceph,
as this establishes a lower bound on cold query laten-
cies, and interacts with the transaction coalescence back-
pressure mechanism. The disk bandwidth on a given
BTrDB node to one of the OSD volumes measured us-
ing dd was approximately 175MB/s. This matched the
performance of the OSD reported by ceph tell osd.N

bench.
To keep these characteristics roughly constant, the

number of Ceph nodes is kept at four, irrespective of how
many of the servers are running BTrDB for a given ex-
periment, although the bandwidth and latency of the pool
does vary over time. As the Ceph CRUSH data place-
ment rules are orthogonal to the BTrDB placement rules,
the probability of a RADOS request hitting a local OSD
is 0.25 for all experiments.

7.1 Throughput

The throughput of BTrDB in raw record tuples per sec-
ond is measured for inserts, cold queries (after flushing
the BTrDB cache) and warm queries (with a preheated
BTrDB cache). Each tuple is an 8 byte time stamp and
an 8 byte value. Warm and cold cache performance is
characterized independently, because it allows an esti-
mation of performance under different workloads after
estimating the cache hit ratio.

#BTrDB Streams Total points #Conn Insert [mil/s] Cold Query [mil/s] Warm Query [mil/s]
1 50 500 mil 30 16.77 9.79 33.54
2 100 1000 mil 60 28.13 17.23 61.44
3 150 1500 mil 90 36.68 22.05 78.47
4 200 2000 mil 120 53.35 33.67 119.87

Table 1: Throughput evaluation as number of servers and size of load increases
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Figure 7: Throughput as the number of BTrDB nodes increases.
The horizontal dashed line indicates the independently bench-
marked write bandwidth of the underlying storage system.

When insertion was
Throughput [million pt/s] for Chrono. Random
Insert 28.12 27.73
Cold query in chrono. order 31.41 31.67
Cold query in same order - 32.61
Cold query in random order 29.67 28.26
Warm query in chrono. order 114.1 116.2
Warm query in same order - 119.0
Warm query in random order 113.7 117.2

Table 3: The influence of query/insert order on throughput

Inserts and queries are done in 10 kilorecord chunks,
although there is no significant change in performance if
this is decreased to 2 kilorecords.

Figure 7 shows that insert throughput scales linearly,
to approximately 53 million records per second with four
nodes. The horizontal dashed line is calculated as the
maximum measured pool bandwidth (823MB/s) divided
by the raw record size (16 bytes). This is the bandwidth
that could be achieved by simply appending the records
to a log in Ceph without any processing. This shows
that despite the functionality that BTrDB offers, and the
additional statistical values that must be stored, BTrDB
performs on par with an ideal data logger.

The warm query throughput of 119 million read-
ings per second is typical for tailing-analytics workloads
where distillers process recently changed data. This
throughput equates to roughly 1815 MB/s of network
traffic, or 907MB/s per load generator.

7.2 Data and operation ordering

BTrDB allows data to be inserted in arbitrary order,
and queried in arbitrary order. To characterize the ef-

(a) Latency

(b) Aggregate bandwidth

Figure 9: Ceph pool performance characteristics as the number
of concurrent connections increases

fect of insertion and query order on throughput, mea-
surements with randomized operations were performed.
The workload consists of two hundred thousand insert-
s/queries of 10k points each (2 billion points in total).
Two datasets were constructed, one where the data was
inserted chronologically and one where the data was in-
serted randomly. After this, the performance of cold and
warm queries in chronological order and random order
were tested on both datasets. For the case of random in-
sert, queries in the same (non-chronological) order as the
insert were also tested. Note that operations were ran-
domized at the granularity of the requests; within each
request the 10k points were still in order. The results are
presented in Table 3. The differences in throughput are
well within experimental noise and are largely insignifi-
cant. This out-of-order performance is an important re-
sult for a database offering insertion speeds near that of
an in-order append-only log.

7.3 Latency

Although BTrDB is designed to trade a small increase in
latency for a large increase in throughput, latency is still
an important metric for evaluation of performance under
load. The load generators record the time taken for each
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(a) Insert latencies (b) Cold query latencies (c) Warm query latencies

Figure 8: Operation latencies as server count and workload is increased linearly

insert or query operation. Figure 8 gives an overview of
the latency of operations as the workload and number of
servers grows. Ideally all four points would be equal in-
dicating perfect scaling. The range of latencies seen for
insert operations increases as the cluster approaches the
maximum bandwidth of Ceph. This is entirely Ceph’s
latency being presented to the client as backpressure.
When a transaction coalescence buffer is full or being
committed, no data destined for that stream is admitted to
the database. Furthermore, a fixed number of tree merges
are allowed at a time, so some buffers may remain full
for some time. Although this appears counter-intuitive,
in fact it increases system performance. Applying this
backpressure early prevents Ceph from reaching patho-
logical latencies. Consider Figure 9a where it is appar-
ent that not only does the Ceph operation latency increase
with the number of concurrent write operations, but it de-
velops a long fat tail, with the standard deviation exceed-
ing the mean. Furthermore, this latency buys nothing, as
Figure 9b shows that the aggregate bandwidth plateaus
after the number of concurrent operations reaches 16 –
the number of OSDs.

With Ceph’s latency characteristics in mind, BTrDB’s
write latency under maximum load is remarkable. A four
node cluster inserting more than 53 million points per
second exhibits a third quartile latency of 35ms: less than
one standard deviation above the raw pool’s latency.

7.4 Limitations and future work

The tests on EC2 show that the throughput and latency
characteristics of the system are defined primarily by the
underlying storage system. This is the ideal place to be,
as it renders most further optimization in the timeseries
database tier irrelevant.

The exception to this is optimizations that reduce the
number of IO operations. We have already optimized the
write path to the point of one write operation per commit.

Nevertheless, there are significant performance gains to
be had by optimizing the read path. One such avenue is
to improve the block cache policy, reducing read ops. At
present, the cache evicts the least recently used blocks.
More complex policies could yield improved cache uti-
lization: for example, if clients query only the most re-
cent version of a stream, then all originals of blocks
that were copied during a tree merge operation could be
evicted from the cache. If most clients are executing sta-
tistical queries, then leaf nodes (which are 5x bigger than
internal nodes) can be prioritized for eviction. Further-
more, as blocks are immutable, a distributed cache would
not be difficult to implement as no coherency algorithm
is required. Querying from memory on a peer BTrDB
server would be faster than hitting disk via Ceph.

8 Conclusion

BTrDB provides a novel set of primitives, especially
fast difference computation and rapid, low-overhead sta-
tistical queries that enable analysis algorithms to lo-
cate subsecond transient events in data comprising bil-
lions of datapoints spanning months – all in a fraction
of a second. These primitives are efficiently provided
by a time-partitioning version-annotated copy-on-write
tree, which is shown to be easily implementable. A Go
implementation is shown to outperform existing time-
series databases, operating at 53 million inserted values
per second, and 119 million queried values per second
with a four node cluster. The principles underlying this
database are potentially applicable to a wide range of
telemetry timeseries, and with slight modification, are
applicable to all timeseries for which statistical aggre-
gate functions exist and which are indexed by time.
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