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Abstract
Distributed storage systems are increasingly transition-
ing to the use of erasure codes since they offer higher
reliability at significantly lower storage costs than data
replication. However, these codes tradeoff recovery per-
formance as they require multiple disk reads and network
transfers for reconstructing an unavailable data block. As
a result, most existing systems use an erasure code either
optimized for storage overhead or recovery performance.

In this paper, we present HACFS, a new erasure-coded
storage system that instead uses two different erasure
codes and dynamically adapts to workload changes. It
uses a fast code to optimize for recovery performance
and a compact code to reduce the storage overhead. A
novel conversion mechanism is used to efficiently up-
code and downcode data blocks between fast and com-
pact codes. We show that HACFS design techniques are
generic and successfully apply it to two different code
families: Product and LRC codes.

We have implemented HACFS as an extension to the
Hadoop Distributed File System (HDFS) and experimen-
tally evaluate it with five different workloads from pro-
duction clusters. The HACFS system always maintains a
low storage overhead and significantly improves the re-
covery performance as compared to three popular single-
code storage systems. It reduces the degraded read la-
tency by up to 46%, and the reconstruction time and
disk/network traffic by up to 45%.

1 Introduction

Distributed storage systems storing multiple petabytes of
data are becoming common today [4, 25, 2, 15]. These
systems have to tolerate different failures arising from
unreliable components, software glitches, machine re-
boots, and maintenance operations. To guarantee high
reliablity and availablity despite these failures, data is

∗Work done as an intern at IBM Research Almaden

replicated across multiple machines and racks. For ex-
ample, the Google File System [11] and the Hadoop Dis-
tributed File System [4] maintain three copies of each
data block. Although disk storage seems inexpensive to-
day, replication of the entire data footprint is simply in-
feasible at massive scales of operation. As a result, most
large-scale distributed storage systems are transitioning
to the use of erasure codes [3, 2, 15, 20], which provide
higher reliability at significantly lower storage costs.

The trade-off for using erasure codes instead of repli-
cating data is performance. If a data block is three-way
replicated, it can be reconstructed by copying it from
one of its available replicas. However, for an erasure-
coded system, reconstructing an unavailable block re-
quires fetching multiple data and parity blocks within the
code stripe, which results in significant increase in disk
and network traffic. Recent measurements on a Face-
book’s data warehouse cluster [19, 20] storing multiple
petabytes of erasure-coded data, required a median of
more than 180 Terabytes of data transferred to recover
from 50 machine-unavailability events per day.

This increase in the amount of data to be read and
transferred during recovery for an erasure-coded system
results in two major problems: high degraded read la-
tency and longer reconstruction time. First, a read to an
unavailable block requires multiple disk reads, network
transfers and compute cycles to decode the block. The
application accessing the block waits for the entire dura-
tion of this recovery process, which results in higher la-
tencies and degraded read performance. Second, a failed
or decommissioned machine, or a failed disk results in
significantly longer reconstruction time than in a repli-
cated system. Although, the recovery of data lost from
a failed disk or machine can be performed in the back-
ground, it severely impacts the total throughput of the
system as well as the latency of degraded reads during
the reconstruction phase.

As a result, the problem of reducing the overhead of
recovery in erasure-coded systems has received signifi-
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cant attention in the recent past both in theory and prac-
tice [19, 2, 20, 15, 24, 3, 14, 26]. Most of the solutions
tradeoff between two dimensions: storage overhead and
recovery cost. Storage overhead accounts for the addi-
tional parity blocks for a coding scheme. Recovery cost
is the total number of blocks required to reconstruct a
data block after failure.

In general, most production systems use a single era-
sure code, which either optimizes for recovery cost or
storage overhead. For example, Reed-Solomon [21]
is a popular family of codes used in Google’s Colos-
susFS [2], Facebook’s HDFS [3], and several other stor-
age systems [20, 25, 16]. The Reed-Solomon code used
in ColossusFS has a storage overhead of 1.5x, while it
requires six disk reads and network transfers to recover a
lost data block. In contrast, the Reed-Solomon code used
in HDFS reduces the storage overhead to 1.4x, but has a
recovery cost of ten blocks. The other popular code fam-
ily is the Local Reconstruction Codes (LRC) [15, 24, 26],
and has similar tradeoffs.

In this paper, we present Hadoop Adaptively-Coded
Distributed File System (HACFS), a new erasure-coded
storage system, which instead uses two different erasure
codes from the same code family. It uses a fast code
with low recovery cost and a compact code with low stor-
age overhead. It exploits the data access skew observed
in Hadoop workloads [9, 7, 22, 5] to decide the initial
encoding of data blocks. The HACFS system uses the
fast code to encode a small fraction of the frequently ac-
cessed data and provide overall low recovery cost for the
system. It uses the compact code to encode the major-
ity of less frequently accessed data blocks and maintain
a low and bounded storage overhead.

After initial encoding, the HACFS system dynami-
cally adapts to workload changes by using two novel
operations to convert data blocks between the fast and
compact codes. Upcoding blocks initally encoded with
fast code into compact code enables the HACFS system
to reduce the storage overhead. Similarly, downcoding
data blocks from compact code to fast code representa-
tion lowers the overall recovery cost of the HACFS sys-
tem. The upcode and downcode operations are very effi-
cient and only update the associated parity blocks while
converting blocks between the two codes.

We have designed and implemented HACFS as an
extension to the Hadoop Distributed File System [3].
We find that adaptive coding techniques in HACFS are
generic and can be applied to different code families.
We successfully implement adaptive coding in HACFS
with upcode and downcode operations designed for two
different code families: Product codes [23] and LRC
codes [15, 24, 26]. In both cases, HACFS with adaptive
coding using two codes outperforms HDFS with a single
Reed-Solomon [2, 3] or LRC code [15]. We evaluate our

design on an HDFS cluster with workload distributions
obtained from production environments at Facebook and
four different Cloudera customers [9].

The main contributions of this paper are as follows:

• We design HACFS, a new erasure-coded storage
system that adapts to workload changes by using
two different erasure codes - a fast code to optimize
recovery cost of degraded reads and reconstruction
of failed disks/nodes, and a compact code to provide
low and bounded storage overhead.

• We design a novel conversion mechanism in
HACFS to efficiently up/down-code data blocks be-
tween the two codes. The conversion mechanism
is generic and we implement it for two code fami-
lies – Product and LRC codes – popularly used in
distributed storage systems.

• We implement HACFS as an extension to HDFS
and demonstrate its efficacy using two case studies
with Product and LRC family of codes. We evaluate
HACFS by deploying it on a cluster with real-world
workloads and compare it against three popular sin-
gle code systems used in production. The HACFS
system always maintains a low storage overhead,
while improving the degraded read latency by 25-
46%, reconstruction time by 14-44%, and network
and disk traffic by 19-45% during reconstruction.

The remainder of the paper is structured as follows.
Section 2 motivates HACFS by describing the different
tradeoffs for erasure-coded storage systems and HDFS
workloads. Section 3 and 4 present the detailed descrip-
tion of HACFS design and implementation. Finally, we
evaluate HACFS design techniques in Section 5, and fin-
ish with related work and conclusions.

2 Motivation

In this section, we describe the different failure modes
and recovery methods in erasure-coded HDFS [3]. We
discuss how the use of erasure codes within HDFS re-
duces storage overhead, however it increases the recov-
ery cost. This motivates the need to design HACFS,
which exploits the data access characteristics of Hadoop
workloads to achieve better recovery cost and storage ef-
ficiency than the existing HDFS architecture.

Failure Modes and Recovery in HDFS. HDFS has
different failure modes, for example, block failure, disk
failure, and a decommisioned or failed node. The causes
of these failures may be diverse such as hardware fail-
ures, software glitches, maintenance operations, rolling
upgrades that take certain percentage of nodes offline,
and hot-spot effects that overload particular disks. Most
of these failures typically result in the unavailability of
a single block within an erasure code stripe. An erasure
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Figure 1: Degraded reads for HDFS block failure: The
figure shows a degraded read for an HDFS client read-
ing an unavailable block B1. The HDFS client retrieves
available data and parity blocks and decodes the block
B1.

code stripe is composed of multiple data blocks striped
across different disks or nodes in an HDFS cluster. Over
98% of all failure modes in Facebook’s data-warehouse
and other production HDFS clusters require recovery of
a single block failure [20, 19]. Another 1.87% have two
blocks missing, and just less than 0.05% are three or
more block failures. As a result, most recent research on
erasure-coded storage systems has focused on reducing
the recovery cost of single block failures [24, 20, 15, 16].

The performance of an HDFS client or a MapReduce
task can be affected by HDFS failures in two ways: de-
graded reads and reconstruction of an unavailable disk or
node. Figure 1 shows a degraded read for an HDFS client
reading an unavailable data block B1, which returns an
exception. The HDFS client recovers this block by first
retrieving the available data and parity blocks within the
erasure-code stripe from other DataNodes. Next, the
HDFS client decodes the block B1 from the available
blocks. Overall, the read to a single block B1 is delayed
or degraded by the time it takes to perform several disk
reads and network transfers for available blocks, and the
time for decoding. Reed-Solomon codes used in two pro-
duction filesystems - Facebook’s HDFS [3] and Google
ColossusFS [2] - require between 6-10 network transfers
and several seconds for completing one degraded read
(see Section 5.3).

A failed disk/node or a decomissioned node typically
requires recovery of several lost data blocks. When a
DataNode or disk failure is detected by HDFS, several
MapReduce jobs are launched to execute parallel recov-
ery of lost data blocks on other live DataNodes. HDFS
places data blocks in an erasure-code stripe on different
disks and nodes. As a result, the reconstruction of most
disk and node failures effectively requires recovery of
several single block failures similar to degraded reads.

Figure 2 shows the network transfers required by the
reconstruction job running on live DataNodes. An HDFS
client trying to access lost blocks B1 and B2 during the
reconstruction phase encounters degraded reads. Over-

DataNode

B1

Reconstruction Job

HDFS

B2

DataNode DataNode

B1 B2

Figure 2: Reconstruction for HDFS node/disk fail-
ure or decomissioned nodes: The figure shows a re-
construction MapReduce job launched to recover from
a disk failure on an HDFS DataNode. The reconstruc-
tion job executes parallel recovery of the lost blocks B1

and B2 on other live DataNodes by retrieving available
data and parity blocks. An HDFS client accessing a lost
block encounters degraded reads during the reconstruc-
tion phase.

all, the reconstruction of lost data from a failed disk or
node results in several disk reads and network transfers,
and can take from tens of minutes to hours for complete
recovery (see Section 5.4).

Erasure Coding Tradeoffs. Figure 3 show the recov-
ery cost and storage overhead for Reed-Solomon family
of codes widely used in production systems [2, 3, 25].
In addition, it also shows the recovery cost and stor-
age overhead of three popular erasure-coded storage sys-
tems: Google ColossusFS [2], Facebook HDFS [3], and
Microsoft Azure Storage [15].

Google ColossusFS and Facebook HDFS use two dif-
ferent Reed-Solomon codes - RS(6, 3) and RS(10, 4)-
that encode six and ten data blocks within an erasure-
code stripe with three and four parity blocks respectively.
As a result, they have a recovery cost of six and ten
blocks, and storage overheads of 1.5x and 1.4x respec-
tively. Microsoft Azure Storage uses an LRC code -
LRCcomp, which reduces the storage overhead to 1.33x
and has a similar recovery cost of six blocks as Google
ColossusFS. It encodes twelve data blocks with two
global and two local parity blocks (see Section 3.3 for
more detailed description on LRC codes). In contrast,
three-way data replication provides recovery cost of one
block, but a higher storage overhead of 3x. In general,
most erasure-codes including Reed-Solomon and LRC
codes trade-off between recovery cost and storage over-
head, as shown in Figure 3.

In this work, we focus on the blue region in Figure 3
to achieve recovery cost for HACFS less than that of
both Reed-Solomon and LRC codes used in ColossusFS
and Azure. We further exploit the data access skew in
Hadoop workloads to maintain a low storage overhead
for HACFS and keep it bounded between the storage
overheads of these two systems.
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Figure 3: Recovery Cost vs. Storage Overhead: The
figure shows the tradeoff between recovery cost and stor-
age overhead for the popular Reed-Solomon family of
codes. It also shows three production storage systems
each using single erasure code.

Data Access Skew. Data access skew is a common
characteristic of Hadoop storage workloads [9, 7, 22, 5].
Figure 4 shows the frequency of data accessed in pro-
duction Hadoop clusters at Facebook and four different
Cloudera customers [9]. All workloads show skew in
data access frequencies. The majority of the data vol-
ume is cold and accessed only a few times. Similarly, the
majority of the data accesses go to a small fraction of
data, which is hot. In addition, HDFS does not allow in-
place block updates or overwrites. As a result, the read
accesses primarily characterize this data access skew.

Why HACFS? The HACFS design aims to achieve the
following goals:

• Fast degraded reads to reduce the latency of reads
when accessing lost or unavailable blocks.

• Low reconstruction time to reduce the time for
recovering from failed disks/nodes or decommis-
sioned nodes, and the associated disk and network
traffic.

• Low storage overhead that is bounded under practi-
cal system constraints and adjusted based on work-
load requirements.

As shown in Figure 3, the use of a single erasure code
tradesoff recovery cost for storage overhead. To achieve
the above design goals, the HACFS system uses a combi-
nation of two erasure codes and exploits the data access
skew within the workload. We next describe HACFS de-
sign in more detail.
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Figure 4: Data Access Skew in Hadoop Workloads:
The figure shows the data access distributions of Hadoop
workloads collected from production clusters at Face-
book (FB) and four different Cloudera customers (CC-
1,2,3,4). Both axes are on log scale.

3 System Design

In this section, we first describe how the HACFS system
adapts between the two different codes based on work-
load characteristics to reduce recovery cost and storage
overhead. We next discuss the application of HACFS’s
adaptive coding to two different code families: Product
codes with low recovery cost and LRC codes with low
storage overhead.

3.1 Adaptive Coding in HACFS
The HACFS system is implemented as an extension to
the HDFS-RAID module [3] within HDFS. We show our
extensions to HDFS-RAID as three shaded components
in Figure 5. The adaptive coding module maintains the
system states of erasure-coded data and manages state
transitions for ingested and stored data. It also interfaces
with the erasure coding module, which implements the
different coding schemes.

System States. The adaptive coding module of
HACFS manages the system state. The system state
tracks the following file state associated with each
erasure-coded data file: file size, last modification time,
read count and coding state. The file size and last modifi-
cation time are attributes maintained by HDFS, and used
by HACFS to compute the total data storage and write
age of the file. The adaptive coding module also tracks
the read count of a file, which is the total number of read
accesses to the file by HDFS clients. The coding state of
a file represents if it is three-way replicated or the erasure
coding scheme used for it. The file state can be updated
on a create, read or write operation issued to the file from
an HDFS client.

The adaptive coding module also maintains a global
state, which is the total storage used for data and par-
ity. Every block in a replicated data file is replicated at
three different nodes in the HDFS cluster and the two
replicas account for the parity storage. In contrast, every
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Figure 5: HACFS Architecture: The figure shows the
different components of the HACFS architecture imple-
mented as extensions to HDFS in the shaded modules.

block in an erasure-coded data file has exactly one copy.
Each erasure-coded file is split into different erasure code
stripes, with blocks in each stripe distributed across dif-
ferent nodes in the HDFS cluster. Each erasure-coded
data file also has an associated parity file whose size is
determined by the coding scheme. The global state of the
system is updated periodically when the adaptive coding
module initiates state transitions for erasure-coded files.
A state transition corresponds to a change in the coding
state of a file and is invoked by using the following inter-
faces to the erasure-coding module.

Coding Interfaces. As shown in Table 1, the erasure
coding module in HACFS system exports four major in-
terfaces for coding data: encode, decode, upcode and
downcode. The encode operation requires a data file and
coding scheme as input, and generates a parity file for
all blocks in the data file. The decode operation is in-
voked on a degraded read for a block failure or as part of
the reconstruction job for a disk or node failure. It also
requires the index of the missing or corrupted block in
a file, and reconstructs the lost block from the remaining
data and parity blocks in the stripe using the input coding
scheme.

The adaptive coding module invokes upcode and
downcode operations to adapt with workload changes
and convert a data file representation between the two
coding schemes. As we show later in Section 3.2 and
3.3, both of these conversion operations only update the
associated parity file when changing the coding scheme
of a data file. The upcode operation transforms data from
a fast code to a compact code representation, thus reduc-
ing the size of the parity file to achieve lower storage
overhead. It does not require reading the data file and
is a parity-only transformation. The downcode operation
transforms from a compact code to a fast code represen-
tation, thus reducing the recovery cost. It requires read-

Function Input Output
encode data file, codec parity file
decode data file, parity file, codec,

lost block index
recovered block

upcode parity file, original fast
codec, new compact codec

parity file encoded
with compact codec

downcode data file, parity file, orig-
inal compact codec, new
fast codec

parity file encoded
with fast codec

Table 1: The HACFS Erasure Coding Interfaces

ing both data and parity files, but only changes the parity
file. We next explain how HACFS uses these interfaces
for transitioning files between different coding schemes
based on the file state and global system state.

State Transitions. The HACFS system extends
HDFS-RAID to use different erasure coding schemes
for files with different read frequency, thus achieving
the low recovery cost of a fast code and the low storage
overhead of a compact code. We first describe the basic
state machine used in HDFS-RAID and then elaborate
on the HACFS extensions.

As shown in Figure 6(a), a recently created file in
HDFS-RAID is classified as write hot based on its last
modified time and therefore three-way replicated. The
HDFS-RAID process (shown as RaidNode in Figure 5)
scans the file system periodically to select write cold files
for erasure coding. It then schedules several MapRe-
duce jobs to encode all such candidate files with a Reed-
Solomon code [3]. After encoding, the replication level
of these files is reduced to one and the coding state
changes to Reed-Solomon. As HDFS only supports ap-
pends to files, a block is never overwritten and these files
are only read after being erasure-coded.

Figure 6(b) shows the first extension of the HACFS
system. It replicates write hot files similar to HDFS-
RAID. In addition, HACFS also accounts for the read
accesses to data blocks in a file. All write cold files are
further classified based on their read counts and encoded
with either of the two different erasure codes. Read hot
files with a high read count are encoded with a fast code,
which has a low recovery cost. Read cold files with a low
read count are encoded with a compact code, which has
a low storage overhead.

However, a read cold file can later get accessed and
turn into a read hot file, thereby requiring low recovery
cost. Similarly, encoding all files with the fast code may
result in a higher total storage overhead for the system.
As a result, the HACFS system needs to adapt to the
workload by converting files between fast and compact
codes (as shown in Figure 6(c)). The conversion for a
file is guided by its own file state (read count) as well
as the global system state (total storage). When the to-
tal storage consumed by data and parity blocks exceeds a
configured system storage bound, the HACFS system se-
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Figure 6: Execution States: The figure shows the functional state machines for HDFS and two extensions for HACFS.
Transitions between different states are triggered by the adaptive coding module, which invokes the coding interface
exported by the erasure-coding module in HACFS.

PCfast PCcomp LRCfast LRCcomp

DRC 2 5 2 6
RC 2 5 3.25 6.75
SO 1.8x 1.4x 1.66x 1.33x
MTTF 1.4 × 1012 2.1 × 1011 6.1 × 1011 8.9 × 1010

Table 2: Fast and Compact Codes: This table shows the
two codes in the Product and LRC code families used for
adaptive coding in HACFS (DRC: Degraded Read Cost,
RC: Reconstruction Cost, SO: Storage Overhead, MTTF:
Mean-Time-To-Failure in years).

lects some files encoded with fast code and upcodes them
to the compact code. Similarly, it selects some repli-
cated files and encodes them directly into the compact
code. The HACFS system selects these files by first sort-
ing them based on their read counts and then upcodes/en-
codes the files with lowest read counts into compact code
to make the total storage overhead bounded again.

The downcode operation transitions a file from com-
pact to fast code. As a result, it reduces the recovery
cost of a future degraded read to a file, which was ear-
lier compact-coded but has been recently accessed. As
shown in Figure 4, the data access skew for Hadoop
workloads result in a small fraction of read hot files
and large fraction of read cold files. This skew allows
HACFS to reduce the recovery cost by encoding/down-
coding the read hot files with a fast code and reduces the
storage overhead by encoding/upcoding a large fraction
of read cold files with a compact code.

Fast and Compact Codes. The adaptive coding tech-
niques in HACFS are generic and can be applied to dif-
ferent code families. We demonstrate its application to
two code families: Product codes [23] with low recov-
ery cost and LRC codes [15, 24] with low storage over-
head. Table 2 shows the three major characteristics use-
ful for selecting fast and compact codes from a code fam-
ily. The fast code must have a low recovery cost for
degraded reads and reconstruction. The compact code
must have a low storage overhead. Finally, the reliability
of both codes measured in terms of mean-time-to-failure
for data loss must be greater than that for three-way repli-
cation (3.5 × 109 years) [13]. In addition, the HACFS

system requires a storage bound, which can be set from
the practical requirements of the system or can be opti-
mally tuned close to the storage overhead of the compact
code. We use a storage bound of 1.5x with Product codes
and 1.4x with LRC codes in the two case studies of the
HACFS system.

We next describe the design of the erasure cod-
ing module in HACFS for Product and LRC codes in
Section 3.2 and 3.3 respectively.

3.2 Product Codes
We now describe the construction and coding interfaces
of Product codes used in the HACFS system.

Encoding and Decoding. Figure 7 shows the con-
struction of a Product code, PCfast or PC(2 × 5),
which has a stripe with two rows and five columns of
data blocks. The encode operation for PCfast retrieves
the ten data blocks from different locations in the HDFS
cluster and generates two horizontal, five vertical and one
global parity. The horizontal parities are generated by
transferring the five data blocks in each row and perform-
ing an XOR operation on them. A vertical parity only re-
quires two data block transfers in a column. The global
parity can be constructed as an XOR of the two horizon-
tal parities. The decode operation for a Product code is
invoked on a block failure. A single failure in any data or
parity block of the PCfast code requires only two block
transfers from the same column to reconstruct it.

As a result, the PCfast code can achieve a very low
recovery cost of two block transfers at the cost of a
high storage overhead of eight parity blocks for ten data
blocks (1.8x). We choose the PCcomp or PC(6 × 5) as
the compact code (see Figure 7), which provides a lower
storage overhead of 1.4x and higher recovery cost of five
block transfers (see Table 2). In addition, both fast and
compact Product codes have reliability better than three-
way replication. We select a storage bound of 1.5x for
the HACFS system with these Product codes since it is
close to the storage overhead of the PCcomp code. This
bound also matches the practical limits prescribed by the
Google ColossusFS [2], which uses the Reed-Solomon
RS(6, 3) code similarly optimized for recovery cost.
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Figure 7: Product Code - Upcode and Downcode Op-
erations: The figure shows the upcode and downcode
operations on the data and parity blocks for Product
codes. The shaded horizontal parity blocks in the out-
put code are only computed, and the remaining blocks
remain unchanged from the input code.

Upcoding and Downcoding. Figure 7 shows upcod-
ing from PCfast to PCcomp and downcoding from
PCcomp to PCfast codes. Upcode is a very efficient
parity-only conversion operation for Product codes. All
data and vertical parity blocks remain unchanged in up-
coding from the PCfast to PCcomp code. Further, it
only performs XOR over the old horizontal and global
parity blocks of the three PCfast codes to compute the
new horizontal and global parity blocks of the PCcomp

code. As a result, the upcode operation does not require
any network transfers of the data blocks from the three
PCfast codes to compute the new parities in the PCcomp

code.
The downcode operation converts a PCcomp code into

three PCfast codes. Only the horizontal and global par-
ities change between the PCcomp code and the three
PCfast codes. However, computing the horizontal and
global parities in the first two PCfast codes requires net-
work transfers and XOR operations over the data blocks
in the two horizontal rows of the PCcomp code. The
horizontal and global parities in the third PCfast code
is computed from the those of the old PCcomp code
and those newly computed ones of the first two PCfast

codes. This optimization saves on the network transfers
of two horizontal rows of data blocks. Similar to the up-
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Figure 8: LRC Code - Upcode and Downcode Op-
erations: The figure shows the upcode and downcode
operations with data and parity blocks for LRC codes.
The shaded blocks are only computed during these oper-
ations, and remaining blocks remain unchanged.

code operation, data and vertical parity blocks in the re-
sulting three PCfast codes remain unchanged from the
PCcomp code and do not require any network transfers.

3.3 LRC Codes
We now describe the construction and coding inter-
faces of the erasure coding module using LRC codes in
HACFS.

Encoding and Decoding. Figure 8 shows the con-
struction of the LRCfast or LRC(12, 6, 2), with twelve
data blocks, six local parities, and two global parities.
The encode operation for an LRC code computes the lo-
cal parities by performing an XOR over a group of data
blocks. Two data blocks in each column form a different
group in LRCfast. The two global parities are computed
by performing a Reed-Solomon encoding over all of the
twelve data blocks [24]. The Reed-Solomon encoding
of the global parities has properties similar to the LRC
code construct used in Microsoft Azure Storage [15] for
the most prominent single block failure scenarios. The
decode operation for LRCfast code is similar to Product
Codes for data and local parity blocks. Any single fail-
ure in data or local parity blocks for LRCfast requires
two block transfers from the same column to reconstruct
it. However, a failure in a global parity block requires
all twelve data blocks to reconstruct it using the Reed-
Solomon decoding.

Degraded reads from an HDFS client only occur on
data blocks, while reconstructing a failed disk or node
can also require recovering lost global parity blocks.
As a result, the degraded read cost for the fast code -
LRCfast or LRC(12, 6, 2) - is very low at two blocks
(see Table 2). Unlike Product codes, the average re-
construction cost for the LRCfast code is asymmetri-
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cal to its degraded read cost since reconstruction re-
quires twelve block transfers for global parity failures:
(12+6)∗2+2∗12

12+6+2 or 3.25 blocks. However, the storage over-
head for an LRCfast code is 1.66x corresponding to
eight parity blocks required for twelve data blocks.

We use the LRCcomp or LRC(12, 2, 2) code used in
Azure [15] as the compact code for adaptive coding in
HACFS. The LRCcomp code has a lower storage over-
head of 1.33x due to fewer local parities. However, each
of its two local parities is associated with a group of six
data blocks. Thus, recovering a lost data block or local
parity requires six block transfers from its group in the
LRCcomp code. The global parities require twelve data
block transfers for recovery. As a result, the LRCcomp

code also has a lower recovery cost for degraded reads
than its reconstruction cost similar to the LRCfast code.
Both LRC codes are more reliable than three-way repli-
cation. We select a storage bound of 1.4x for the HACFS
system with LRC codes since it is close to the storage
overhead of LRCcomp code and lower than HACFS with
Product codes.

Upcoding and Downcoding. Upcode and downcode
operations for Product codes require merging three
PCfast codes into a PCcomp code and splitting a
PCcomp code into three PCfast codes respectively. The
LRC codes can be upcoded and downcoded in a similar
manner. However, such upcoding and downcoding with
LRC codes requires several data block transfers to com-
pute the new local and global parities. As a result, we use
a more efficient code collapsing technique for the LRC
upcode and downcode operations. This does not require
computing the global parities again because collapsing
converts exactly one LRCfast code to one LRCcomp

code (and reverse for downcoding).

Figure 8 shows the LRC upcode operation by comput-
ing the new local parities in LRCcomp code and preserv-
ing the global parities from the LRCfast code. The two
local parities in the LRCcomp code are computed as an
XOR over three local parities in the LRCfast code. As
a result, the HACFS system requires only six network
transfers to compute the two new local parities of the
LRCcomp code in an upcode operation. The downcode
operation computes two of the three new local parities
in LRCfast code from the data blocks in the individual
columns of the LRCcomp code. The third local parity
is computed by performing an XOR over the two new
local parities and the old local parity in the LRCcomp

code. Overall, the downcode operation requires ten block
transfers for computing the new local parities. The global
parities remain unchanged and do not require any net-
work transfers in the downcode operation as well.

4 Implementation

We have implemented HACFS as an extension to the
HDFS-RAID [3] module in the Hadoop Distributed File
System (HDFS). The HDFS-RAID module is imple-
mented by Facebook to support a single erasure code for
distributed storage in an HDFS cluster. Our implementa-
tion of HACFS spans nearly 2 K lines of code, contained
within the HDFS-RAID module, and requires no modi-
fication to other HDFS components such as the NameN-
ode or DataNode.
Erasure Coding in HDFS. The HDFS-RAID module
overlays erasure coding on top of HDFS and runs as a
RaidNode process. The RaidNode process periodically
queries the NameNode for new data files that need to
be encoded and for corrupted files that need to be re-
covered. The RaidNode launches a MapReduce job to
compute the parity files associated with data files on dif-
ferent DataNodes for the encode operation. The decode
operation is invoked as part of a degraded read or the re-
construction phase.

A read from an HDFS client requests the block con-
tents from a DataNode. A degraded read can occur due
to failures on DataNodes such as a CRC check error.
In those cases, the HDFS client queries the RaidNode
for locations of the available blocks in the erasure-code
stripe required for recovery. The client then retrieves
these blocks and performs decoding itself to recover the
failed block. The recovered block is used to serve the
read request, but it is not written back to HDFS since
most degraded reads are caused by transient failures that
do not necessarily indicate data loss [20, 24].

When a disk or node failure is detected, the Name-
Node updates the list of corrupted blocks and lost files.
The RaidNode then launches two MapReduce recon-
struction jobs, one to recover lost data blocks and the
other for lost parity blocks. The reconstruction job re-
trieves the available blocks for decoding, recovers the
lost blocks using the decode operation, writes the recov-
ered blocks to HDFS, and informs the NameNode of suc-
cessful recovery. If there is a file which has many errors
and can not be recovered, then it is marked as perma-
nently lost.
HACFS and Two Erasure Codes. Figure 5 shows the
three major components of HACFS implementation: era-
sure coding module, system states and the adaptive cod-
ing module. In addition, we also implement a fault injec-
tor to trigger degraded reads and data reconstruction.

The HDFS-RAID only supports a single Reed-
Solomon erasure code for encoding data. We implement
two new code families as part of the HACFS erasure cod-
ing module: Product and LRC codes. The erasure coding
module in HACFS exports the same encode/decode in-
terfaces as HDFS-RAID. In addition, the erasure coding
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module also provides two new upcode/downcode inter-
faces to the extended state machine implemented in the
adaptive coding module of HACFS. The upcode opera-
tion either merges three fast codes for Product codes or
collapses one fast code for LRC codes into a new com-
pact code of smaller size. Downcoding performs the re-
verse sequence of steps. Both operations change the cod-
ing state of the data file and reduce its replication level to
one.

The adaptive coding module tracks the system states
and invokes the different coding interfaces. As desribed
earlier, the HDFS-RAID module selects the three-way
replicated files which are write cold based on their last
modification time for encoding. The extended state ma-
chine implemented as part of the adaptive coding module
in HACFS further examines these candidate files based
on their read counts. It retrieves the coding state of all
files classified as read cold and launches MapReduce
jobs to upcode them into the compact code. Similarly,
if the global system storage exceeds the bound, it up-
codes the files with the lowest read counts into the com-
pact code. If the global system storage is lower than the
bound or a cold file has been accessed, the adaptive cod-
ing module downcodes the file into the fast code and also
updates its coding state.

On a disk or node failure, the RaidNode in HACFS
launches MapReduce jobs to recover lost data and par-
ity blocks similar to HDFS-RAID. It prioritizes the jobs
for reconstructing data over parities to quickly restore
data availability for HDFS clients. There are four dif-
ferent types of reconstruction jobs in HACFS, which re-
cover data and parity files encoded with fast and compact
codes. Data files encoded with a fast code have a lower
recovery cost, but they are also fewer in number than
compact-coded data files. As a result, the reconstruc-
tion of data files encoded with a fast code is prioritized
first among all reconstruction jobs. This prioritization
also helps to reduce the total number of degraded reads
during the reconstruction phase since fast-coded files get
accessed more frequently.

We also implement a fault injector outside HDFS to
simulate different modes of block, disk and node failures
on DataNodes. The fault injector deletes a block from the
local file system on a DataNode, which is detected by the
HDFS DataNode as a missing block, and triggers a de-
graded read when an HDFS client tries to access it. The
fault injector simulates a disk failure by deleting all data
on a given disk of the target DataNode and then restart-
ing the corresponding DataNode process. A node failure
is injected by killing the target DataNode process itself.
In both disk and node failure, the NameNode updates the
list of lost blocks, and then the RaidNode launches the
MapReduce jobs for reconstruction.

5 Evaluation

We evaluate HACFS’s design techniques along three dif-
ferent axes: degraded read latency, reconstruction time
and storage overhead.

5.1 Methods
Experiments were performed on a cluster of eleven dif-
ferent nodes, each of which is equipped with 24 Intel
Xeon E5645 CPU cores running at 2.4 GHz, six 7.2 K
RPM disks each of 2 TB capacity, 96 GB of memory, and
1 Gbps network link. The systems run Red Hat Enter-
prise Linux 6.5 and HDFS-RAID [3]. We use the default
HDFS filesystem block size of 64 MB.

The HACFS system uses adaptive coding with fast
and compact codes from Product and LRC code fami-
lies. We refer these two different systems as: HACFS-
PC using PCfast and PCcomp codes, and HACFS-
LRC using LRCfast and LRCcomp codes. We compare
these two HACFS systems against three HDFS-RAID
systems using exactly one of these codes for erasure
coding: Reed-Solomon RS(6, 3) code, Reed-Solomon
RS(10, 4) code, and LRC(12, 2, 2) or LRCcomp code.
These three codes are used in production storage sys-
tems: RS(6, 3) used in Google Colossus FS [2],
RS(10, 4) used in Facebook HDFS-RAID [3], and
LRCcomp used in Microsoft Azure Storage [15]. We
configure the storage overhead bound for HACFS-PC
and HACFS-LRC systems as 1.5x (similar to Colossus
FS) and 1.4x (similar to Facebook’s HDFS-RAID) re-
spectively.

We use the default HDFS-RAID block placement
scheme to evenly distribute data across the cluster en-
suring that no two blocks within an erasure code stripe
reside on the same disk. We measure the degraded read
latency by injecting single block failures (as described
in Section 4) for a MapReduce grep job that is both net-
work and I/O intensive. We measure the reconstruction
time by deleting all blocks on a disk. The block place-
ment scheme ensures that the lost disk does not have two
blocks from the same stripe. As a result, the NameNode
starts the reconstruction jobs in parallel using the remain-
ing available disks. We report the completion time and
network bytes transferred for reconstruction jobs aver-
aged over five different executions.

We use five different workloads collected from pro-
duction Hadoop clusters in Facebook and four Cloudera
customers [9]. Table 3 shows the distribution of each
workload: number of files accessed, percentage of files
accounting for 90% of the total accesses, percentage of
data volume corresponding to such files, and percentage
of reads in all accesses to such files.

5.2 System Comparison
HACFS improves degraded read latency, reconstruction
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HACFS-PC HACFS-LRC
Colossus FS HDFS-RAID Azure Colossus FS HDFS-RAID Azure

Degraded Read Latency 25.2% 46.1% 25.4% 21.5% 43.3% 21.2%
Reconstruction Time 14.3% 43.7% 21.4% -3.1% 32.2% 5.6%

Storage Overhead 2.3% -4.7% -10.2% 7.7% 1.1% -4.2%

Table 4: System Comparison. The table shows the percentage improvement of two HACFS systems using Product
and LRC codes for recovery performance and storage overhead over three single code systems: Google ColossusFS
using RS(6, 3), Facebook HDFS-RAID using RS(10, 4), and Microsoft Azure Storage using LRCcomp codes.

Workload Files Hot Files % Hot Data % Hot Reads
CC1 20.1K 1.2K 5.9 86.1
CC2 10.2K 1.6K 15.7 75.9
CC3 2.1K 1.1K 52.4 75.5
CC4 5.2K 1.4K 26.9 85.2
FB 802K 103K 12.8 90.2

Table 3: Workload Characteristics: The table shows the dis-
tributions of five different workloads from Hadoop clusters de-
ployed at four different Cloudera customers (CC1/2/3/4) and
Facebook (FB).

time, and provides low and bounded storage overhead.
We begin with a high-level comparison of HACFS us-
ing adaptive coding on Product and LRC codes with
three single code systems: ColossusFS, HDFS-RAID
and Azure.

Degraded Read Latency. Table 4 shows the percent-
age improvement of adaptive coding in HACFS with
Product and LRC codes averaged over five different
workloads. HACFS reduces the degraded latency by 25-
46% for Product codes and 21-43% for LRC codes com-
pared to three single-coded systems. This improvement
in HACFS primarily comes from the use of fast codes
(PCfast and LRCfast) for hot data, which is primarily
dominated by read accesses (see Table 3). As a result,
the degraded read latency of HACFS is lower than all of
the three other production systems relying on RS(6, 3),
RS(10, 4) and LRCcomp codes. We describe these re-
sults in more detail for each of the five different work-
loads in Section 5.3.

Reconstruction Time. HACFS improves the recon-
struction time to recover from a disk or node failure by
14-43% for Product codes and up to 32% for LRC codes.
The reconstruction time is dominated by the volume of
data and parity blocks lost in a disk or node failure. The
fast and compact Product codes used in HACFS have a
lower reconstruction cost than the two LRC codes. As
described in Section 3.3, this is because LRC codes have
a higher recovery cost for failures in local and global par-
ity blocks than data blocks. As a result, the HACFS sys-
tem with LRC codes takes slightly longer to reconstruct
a lost disk than ColossusFS, which uses the RS(6, 3)
code with a symmetric cost to recover from data and par-
ity failures. We discuss these results in more detail in

Figure 9: Degraded Read Latency: The figure shows
the degraded read latency and storage overhead for two
HACFS systems and three single code systems.

Section 5.4.

Storage Overhead. HACFS is designed to provide low
and bounded storage overheads. The Azure system using
the LRCcomp code has the lowest storage overhead (see
Table 2), and is up to 4-10% better than the two HACFS
systems. The HDFS-RAID system using RS(10, 4) has
about 5% lower storage overhead than HACFS optimized
for recovery with Product codes. However, the HACFS
system with LRC codes has storage overheads lower
or comparable to the three single-coded production sys-
tems [2, 15, 24]. This is primarily because adaptive cod-
ing in HACFS bounds the storage overhead by 1.5x for
Product codes and by 1.4x for LRC codes. We discuss
the storage overheads of each system across different
workloads in Section 5.3.

5.3 Degraded Read Latency
HACFS uses a combination of recovery-efficient fast
codes (PCfast and LRCfast) and storage-efficient com-
pact codes (PCcomp and LRCcomp). Figure 9 shows
the degraded read latency on y-axis and storage over-
head on x-axis for the five different workloads. A nor-
mal read from an HDFS client to an available data block
can take up to 1.2 seconds since it requires one local
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Figure 10: Reconstruction Time: The figure shows the
reconstruction time to recover from data loss with two
HACFS systems and three single code systems.

disk read and one network transfer if the block is re-
mote. In contrast, a degraded read can require multiple
network transfers, and takes between 16-21 seconds for
the three single coded systems. These systems do not
adapt with the workload and only use a single code. As
a result, their degraded read latency and storage over-
head is the same across all five workloads. Adaptive
coding in HACFS reduces the degraded read latency by
5-10 seconds for three workloads (CC1, CC4 and FB),
which have a higher percentage of reads to hot data en-
coded with the fast code (85-90%, see Table 3). The
two shaded boxes in Figure 9 demonstrate that HACFS
adapts to the characteristics of the different workloads.
However, HACFS always outperforms the three single
coded systems since all of them require more blocks to be
read and transferred over the network to decode a miss-
ing block.

Both HACFS systems have a lower storage overhead
for workloads (CC1, CC2 and FB) with a higher per-
centage of cold files (85-95%) encoded with the com-
pact codes. The lowest possible storage overhead for
HACFS is shown by the left boundary of the two shaded
regions marked with 1.33x and 1.4x for the compact
codes (LRCcomp and PCcomp codes respectively). In
addition, HACFS also bounds the storage overhead by
1.5x for Product codes and 1.4x for LRC codes. As a
result, workloads (CC3 and CC4) with fewer cold files
still never exceed these storage overheads marked by the
right edges in the two shaded regions. If we do not en-
force any storage overhead bounds, these two workloads
benefit even further by a reduction of 6-20% in their de-
graded read latencies.

Figure 11: Reconstruction Traffic: The figure shows
the reconstruction traffic for recovering lost data and par-
ity blocks with two HACFS systems and three single
code systems.

5.4 Reconstruction Time
Figure 10 shows the reconstruction time of the three sin-
gle code systems and HACFS system with adaptive cod-
ing when a disk with 100 GB of data fails. The recon-
struction job launches map tasks on different DataNodes
to recreate the data and parity blocks from the lost disk.
The time to reconstruct a cold file encoded with a com-
pact code is longer than that for a fast code. The HACFS
system with Product codes outperforms the three single
code systems for all five workloads. It takes about 10-
35 minutes less reconstruction time than the three sin-
gle code systems. This is because both fast and com-
pact Product codes reconstruct faster than the two Reed-
Solomon codes and the LRCcomp code.

The HACFS system with the use of faster LRCfast

code for reconstruction outperforms the LRCcomp code
with the lowest storage overhead. However, the HACFS
system with LRC codes is generally worse for all work-
loads than the RS(6, 3) code used in the ColossusFS.
This is because both LRC codes used in HACFS have a
recovery cost for global parities higher than the RS(6, 3)
code (see Table 2).

Figure 11 shows the reconstruction traffic measured as
HDFS read and writes incurred by the reconstruction job
to recover 100 GB of data and additional parity blocks
lost from the failed disk. The reconstruction job reads all
blocks in the code stripe for recovering the lost blocks,
and then writes the recovered data and parity blocks back
to HDFS. The HDFS-RAID system using the RS(10, 4)
code results in the highest traffic: 1550 GB of recon-
struction traffic for 100 GB of lost data. This is close
to the theoretical reconstruction traffic of nearly fifteen
blocks per lost data block, including ten block reads for
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Figure 12: Encoding Cost: The figure shows the encod-
ing time for three single code systems and two HACFS
systems normalized over the HDFS-RAID (RS(10, 4)).
The black bars show the c-onversion time component of
the total e-ncoding time for the two HACFS systems.

data recovery, four block reads for parity recovery, and
then writes of the recovered data block and parity blocks
(RS(10, 4) uniformly stores 0.4 parity blocks with each
data block on a disk). Similarly, LRCcomp in Azure and
RS(6, 3) in Colossus, require nearly ten HDFS block
read/writes for recovering a block from the lost disk.

The HACFS system with Product codes always re-
quires fewer blocks for reconstruction than the three sin-
gle code systems: between eight blocks for CC3 and
CC4 workloads and nine blocks for CC1, CC2 and FB
workloads (with more than 85% cold files) based on the
data skew distributions. The HACFS system with LRC
codes requires more blocks for global parity recovery
than Product codes. As a result, its reconstruction traffic
is close to RS(6, 3) and LRCcomp codes at nearly ten
blocks per lost data block.

5.5 Encoding and Conversion Time
Figure 12 shows the encoding cost for initial encoding
of three-way replicated data in three single code sys-
tems, and the encoding cost for initial encoding and later
conversion between the fast and compact codes in the
two HACFS systems. We normalize the encoding cost
per block to eliminate the differences in dataset sizes
across the five workloads. All compared systems are
based on HDFS-RAID implementation, which sched-
ules the encoding and conversion operations as MapRe-
duce jobs in background to minimize their impacts on
user jobs. As a result, we show the impact of encod-
ing cost for all systems relative to RS(10, 4) used in
HDFS-RAID in Figure 12. Encoding cost is a function
of the coding scheme used for data blocks and does not
change with workload for the three single code systems.

Reed-Solomon codes used in HDFS-RAID and Colos-
susFS have the highest encoding cost because of com-
plex Galois Field operations required to compute parity
blocks [18]. LRC code in Azure uses such operations
only to compute global parities and uses cheaper XOR
operations for all local parities. Similarly, HACFS with
Product codes only uses XOR operations for encoding.
As a result, the encoding time component of the two
HACFS systems is similar to the LRC codes in Azure
for all workloads.

The HACFS system also converts (upcodes/down-
codes) data between fast and compact codes. The con-
version cost is only high when the HACFS system ag-
gressively converts blocks to limit the storage overhead
by upcoding hot files into compact code. As a result, the
three workloads (CC2, CC3 and CC4) with a higher per-
centage of hot data spend up to 18% of total encoding
time for conversion operations. For these workloads, the
total encoding and conversion cost of the HACFS sys-
tems is up to 16% higher than the Azure system using a
single LRC code. In general, the encoding cost of the two
HACFS systems is about 3-28% lower than the single-
code ColossusFS and HDFS-RAID systems using Reed-
Solomon codes for all workloads.

6 Related Work

Our work builds on past work on distributed storage sys-
tems, faster recovery techniques, and tiered storage sys-
tems.

Distributed Storage Systems. Petabytes of storage is
becoming common with the fast growing data require-
ments of modern systems today. Erasure codes offer
an attractive alternative to provide lower storage over-
head than data replication. As a result, many distributed
filesystems such as Google ColossusFS [2], Facebook
HDFS [3], and IBM General Parallel File System [6] are
moving to the use of erasure codes. Many popular object
stores used for cloud storage, for example, OpenStack
Swift [17], Microsoft Azure Storage [15] and Clever-
safe [1] are also adopting erasure codes for low storage
overhead. However, most of these systems use a single
erasure code and address the recovery cost by trading for
storage overhead. In contrast, HACFS is the first sys-
tem that uses a combination of two codes to dynamically
adapt with workload changes and provide both low re-
covery cost and storage overhead.

Faster Recovery for Erasure-Codes. Recently, there
has been a growing focus on improving recovery per-
formance for erasure-coded storage systems. Reed-
Solomon codes [21] offer optimal storage overhead
but generally have high recovery cost. Rotated Reed-
Solomon codes have been proposed as an alternative con-
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struction, which requires fewer data reads for faster de-
graded read recovery [16]. HitchHiker proposes a new
encoding technique by dividing a single Reed-Solomon
code stripe into two correlated substripes and improves
recovery performance [20]. However, both of them trade
extra encoding time for faster recovery. In contrast,
adaptive coding techniques in HACFS provide lower re-
covery cost without increasing encoding time. In gen-
eral, adaptive coding can be applied to most code fami-
lies, which tradeoff between storage overhead and recov-
ery cost. We have found efficient up/downcode opera-
tions for applying adaptive coding to different constructs
of Reed-Solomon code and other modern storage codes
such as PMDS [8] and HoVer [12]. For example, we
devised up/downcode operations for converting m (n,r)
Reed-Solomon codes into a (mn, r) Reed-Solomon code
using a parity-only conversion scheme.
Tiered Storage Systems. Adaptive coding in HACFS
is inspired by tiering in RAID architectures [27, 3, 10].
AutoRAID [27] provides a two-level storage hierar-
chy within the storage controller. It automatically mi-
grates data between different RAID levels to provide
high I/O performance for active data and low storage
overhead for inactive data. Similarly, HACFS migrates
data between fast and compact erasure codes, how-
ever with the objective to reduce extra network transfers
for recovery in distributed storage. Facebook’s HDFS-
RAID [3] and DiskReduce [10] propose tiered storage by
asynchronously migrating data between replicated and
erasure-coded storage tiers. HACFS extends this further
by splitting the erasure-coded storage tier into two parts
to optimize for both storage overhead and recovery per-
formance.

7 Conclusions

Distributed storage systems extensively deploy erasure-
coding today for lower storage overhead than data repli-
cation. However, most of these systems trade storage
overhead for recovery performance. We present a novel
erasure-coded storage system, which uses two different
erasure codes and dynamically adapts by converting be-
tween them based on workload characteristics. It uses
a fast code for fast recovery performance and a com-
pact code for low storage overhead. In the future, as we
move to cloud storage, it will be important to revisit sim-
ilar erasure-coding tradeoffs, and extend adaptive coding
techniques to large-scale object stores in the cloud.
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