usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Towards SLO Complying SSDs
Through OPS Isolation

Jaeho Kim and Donghee Lee, University of Seoul; Sam H. Noh, Hongik University

https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho

This paper is included in the Proceedings of the
13th USENIX Conference on
File and Storage Technologies (FAST '15).
February 16-19, 2015 - Santa Clara, CA, USA
ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on
File and Storage Technologies
is sponsored by USENIX

Towards SLO Complying SSDs Through OPS Isolation

Jaeho Kim!, Donghee Lee!, and Sam H. Noh?

1University of Seoul, {kjhnet10, dhl_express} @uos.ac.kr
ZHongik University, http:/next.hongik.ac.kr

Abstract

Virtualization systems should be responsible for satisfy-
ing the service level objectives (SLOs) for each VM. Per-
formance SLOs, in particular, are generally achieved by
isolating the underlying hardware resources among the
VMs. In this paper, we show through empirical evalua-
tion that performance SLOs cannot be satisfied with cur-
rent commercial SSDs. We show that garbage collection
is the source of this problem and that this cannot be eas-
ily controlled because of the interaction between VMs.
To control the effect of garbage collection on VMs, we
propose a scheme called OPS isolation. OPS isolation
allocates flash memory blocks so that blocks of one VM
do not interfere with blocks of other VMs during garbage
collection. Experimental results show that performance
SLO can be achieved through OPS isolation.

1 Introduction

The use of flash memory based Solid State Drives (SSDs)
is now commonplace and is being extended to server
virtualization [1, 2]. Virtualization systems should be
responsible for satisfying the service level objective
(SLO) for each VM. Performance service level objec-
tives (SLOs), in particular, are generally achieved by
isolating the underlying hardware resources among the
VMs. Consequently, many studies for allocating the re-
sources for each VM have been conducted and existing
products such as VMware ESX server hypervisor that
provide isolated CPU and memory are available [3, 4].
Recent studies making use of SSDs as a shared cache
resource among virtual machines (VM) in virtualization
systems have been conducted [1, 2]. In this work, we
revisit this issue, first, by quantitatively examining 10
performance and interference among the VMs within the
SSD. We show that depending on the status of the SSD,
experimental results can vary significantly, and this dif-
ference comes from the interference among the VMs. We
then propose OPS (Over-Provisioning Space) Isolation

Table 1: Characteristics of IO workloads

Request | Write Average
Workload Total Ratio | Write Size
Financial 7.1GB 0.76 14KB
MSN 14.6GB | 0.96 27KB
Exchange | 9.8GB 0.67 17KB

at the FTL (Flash Translation Layer) layer such that the
OPS of each VM is isolated from being affected by other
VMs. We show that performance SLOs of VMs can be
satisfied through OPS isolation.

The rest of the paper is organized as follows. In the
next section, we present the motivation of this work and
work related to this study. In Section 3, we look into the
internals of SSDs to understand the effects of garbage
collection on concurrently executing VMs. In Section 4,
we present OPS isolation, the main contribution of this
work along with performance evaluations. Finally, in
Section 5, we give a summary and conclude.

2 Motivation and Related Work

As motivation, we conduct a set of experiments and ob-
serve the performance results that are returned. We show
that the performance reported by SSDs vary widely even
when executing the same workloads and that the perfor-
mance of SSDs are strongly affected by their state, which
is difficult to control. The results serve as motivation to
develop SSDs that are performance predictable.

All experiments in this section are conducted using
a commercial SSD that is purchased off-the-shelf. The
product uses MLC-based flash memory with a capacity
of 128GB. The experiments conducted start from either a
clean state or an aged state. Aging is conducted by issu-
ing random writes (including overwrites) of sizes ranging
from 4KB through 32KB for a total write that exceeds
the SSD capacity. As the SSD becomes full, the SSD be-
comes busy performing garbage collection. We consider
an SSD at this state to be an aged SSD.

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST "15) 183

Table 2: KVM environment

Description ‘ Host VM-1~4
CPU core 8 1
Memory size 32GB 1GB
oS Ubuntu-14.x with KVM Ubuntu-14.x
Storage Dedicated storage Each 30GB SSD

Three workloads, specifically, Financial, MSN, and
Exchange, are used in the experiments. The details re-
garding the characteristics of the workloads are shown
in Table 1. The original workloads used here are traces
provided by UMass Trace Repository and MSR [5, 6].
As the experiments in this section use real SSDs, we re-
quire real IO requests. Hence, we make use of a replayer
tool that takes requests from the trace and turns them into
real requests to the device [7]. For each request, a single
threaded replayer waits for it to complete, upon which
various statistics are gathered.

2.1 Effect of SSD aging

We conduct a set of experiments to show how VMs are
affected by various conditions of the storage system.
First, we show how proportionality varies as the state of
the SSD varies. Our goal is to proportionally distribute
10 usage of a shared SSD among VMs. To do so, we first
create kernel-based virtual machine (KVM) VMs with
the same workloads. The VM settings and the rest of the
environment for the experiments are summarized in Ta-
ble 2. We use the Cgroup [8] Linux feature that limits,
accounts, and isolates hardware resource usage of pro-
cess groups to assign different weights to the VMs (al-
locating higher throughput for higher weights). We then
measure 10 performance of each VM.

The results in Figure 1 show that for all the workloads,
on the HDD, proportionality is close to the IO weight ex-
cept for VM-10. However, for the SSDs, proportionality
deviates. Note that deviation is worse for the aged SSD
than the clean SSD. One can conjecture that this is due to
garbage collection (GC), which is largely considered to
be the bandit of all wrong in SSDs. Indeed, we show later
that during GC, VMs are actually moving other VM’s
data around, which is unnecessary data movement from
the GC triggering VM’s point of view, resulting in inac-
curate performance control. Another observation from
Figure 1 is that the effect of GC on the various VMSs is
not uniform. That is, we understand that GC is affect-
ing performance in a negative way, but how each VM is
affected is not clear.

2.2 Effect of concurrent execution

We perform another set of experiments, this time with
a mix of workloads. Four sets of results are presented
in Figure 2, and we discuss how they were obtained and

12 12 12

£ 10 1 10 - 10 -
b1
=
g 8 8 - 8 OVM-1
S OVM-2
= 6 7 6 6
s BVM-5
=
E 4 - 4 - 4 HVM-10
2
g 2 2 - 2
<]
a

o - o [}

HDD SSD SSD
clean aged

HDD SSD SSD
clean aged

HDD SSD SSD
clean aged

(a) Financial (b) MSN (c) Exchange
Figure 1: 10 bandwidth with Cgroup relative to VM-
1 for various workloads. (Notation: VM-x, where X is

weight value.)

OVM-F (Financial)
EVM-M (MSN) 300
mVM-E (Exchange) 250

OVM-F (Financial)
TVM-M (MSN)
mVM-E (Exchange)

1/0 Bandwidth (MB/s)

& <
(a) SSD clean (b) SSD aged

Figure 2: 10 bandwidth of individual and concurrent ex-
ecution of VMs.

what they imply. Figure 2(a) shows the observed band-
width with a clean SSD. The individual results are ob-
tained by executing each workload starting from a clean
SSD for each workload. The concurrent results are ob-
tained by executing the three workloads concurrently on
a clean SSD. The three workloads are exactly the same
for both individual and concurrent executions, so the to-
tal footprint is also the same.

We observe from the results, however, that concurrent
execution performs markedly worse than executing each
VM individually. With concurrent execution, each VM
performance is roughly a third of each individual exe-
cution with some deviation among the individual VMs.
We also observe that bandwidth is not being consumed
in full with the total bandwidth consumed by the three
concurrent workloads being roughly 270MB/s.

The results for Figure 2(b) were obtained in a man-
ner similar to that of the clean SSD, only that the SSD
goes through an aging process that was described ear-
lier. Three points are noteworthy regarding these results.
First, the overall performance drop is significant. Again,
the culprit will be GC. Second, we also see that with
concurrent execution the performance drop is significant
compared to individual execution as was observed with
the clean SSD, but the drop is more significant. Finally,
and more importantly, the effect of aging on the individ-
ual VMs varies considerably depending on the VM. That
is, the effect of aging is not uniform. For example, for
the individual execution, while the bandwidth of VM-F

184 13th USENIX Conference on File and Storage Technologies (FAST "15)

USENIX Association

VM-E
(Exchange)

VMM
(MSN)

Sector number

VMF
(Financial)

[——)

Request time

Figure 3: Sector access pattern of the Financial, MSN,
and Fileserver workloads.

Table 3: Parameters of SSD simulator

Parameter Description
Page size 4KB
Block size 512KB
Page read 60us
Page write 800us
Block erase 1.5ms
Page Xfer latency 102us

is reduced by only half, for VM-M, observed bandwidth
is reduced to only 15% of the clean SSD case.

Again, we reach the same conclusion as in the pre-
vious subsection. That is, we point our fingers at GC
for the reduction in performance. However, the effect of
GC on individual VMs is not at all uniform. We know
GC have negative effects, but how the VMs are being
affected is not clear.

2.3 Related Work

In virtualization systems, service level objectives (SLOs)
for VMs is achieved through transparent allocation of re-
sources for each VM. Products such as VMware ESX
server hypervisor provides isolated CPU and memory to
satisfy SLOs [3, 4]. Numerous studies have been con-
ducted to satisfy SLOs for VMs [1, 2, 9, 10, 11, 12, 13,
14]. In particular, DeepDive identifies and manages per-
formance interference between VMs sharing hardware
resources [11]. It is regarded as the first end-to-end sys-
tem that handles interference of major resources such as
CPU, memory, and IO.

Studies to provide IO SLOs among VMs have
also been conducted [9, 10, 14]. mClock provides
proportional-share fairness among the VMs through 10
scheduling of the hypervisor [10]. Research on alloca-
tion of a shared SSD cache for VMs have also been con-
ducted [1, 2]. S-CAVE effectively manages a shared SSD
cache by using runtime information among VMs [1].
vCacheShare addresses the allocation decision for server
flash cache (SFC) based on IO access characteristics of
running VMs [2]. The goal of their work is in maxi-
mizing the utilization of the SSD cache and achieving
performance isolation. Our work shows that controlling
the SSD from outside the SSD is difficult as one cannot

OVM-F (Financial)
0.9 DVM-M (MSN)
0.8 1 mVM-E (Exchange)

OVM-F (Financial)
DVM-M (MSN)
®VM-E (Exchange)

1/0 bandwidth (MB/s)
N
o
u of victim

Individual Concurrent

Individual Concurrent

(a) 170 performance (b) GC overhead

Figure 4: (a) IO performance and (b) GC overhead with
SSD simulator

control the internal workings of GC.

A recent study called the Multi-streamed SSD pro-
poses a technique similar to what we propose [15]. Here,
Kang et al. propose to make changes to the block de-
vice interface to manage blocks based on what they call
streams, that is, blocks with similar expected lifetime.
This work is different from ours in that their focus is
on maximizing the overall performance of SSDs through
workload independent block characterization, while we
concentrate on controlling each VM within an SSD for
SLO compliance.

3 Understanding the Effect of GC

In this section, we first discuss the effect of GC on indi-
vidual workloads when workloads are run concurrently.
This is done using a simulation environment. Then, we
present experimental results that imply that commercial
SSDs have similar effects.

3.1 GC effect on concurrent workloads

To analyze GC overhead with concurrent workloads, we
conduct experiments with SSD extension for DiskSim as
the internal workings can be monitored. DiskSim em-
ploys a page-mapped FTL used in most SSD products.
As for GC, it uses a greedy policy to select the victim
block when the number of free blocks drops below a cer-
tain threshold. Other parameters of the simulator are pre-
sented in Table 3. Also, we use the same workloads as
the previous section, and to take into account the VM na-
ture of the previous experiments, the traces that we use
for these experiments are those captured as the experi-
ments are performed in Section 2. Fig. 3 shows the sec-
tor access patterns for the workloads. The figure shows
distinct bands of space being accessed by each workload.

Figure 4(a) shows the 10 performance for cases where
the workloads are executed individually and concur-
rently, similarly to those described in Section 2. Here,
we age the DiskSim simulator in similar fashion as the
commercial SSD before the performance is measured.
For the individually run case, the trend in performance
is similar to those obtained for the real SSD. For the
concurrent case, the trend is quite different, but this is

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST '15) 185

W Owned by Exchange
B Owned by MSN
O0Owned by Financial
5 -
4.5
4
3.5

Financial (MSN) (Exchange)

2.5

Number of pages moved (x10°)

[vmF data [I): VMM data [V€ data
2D nvatid data [Free page <§
(a) Data layout (b) GC overhead
Figure 5: (a) Data layout of concurrent workloads in con-
ventional SSD and (b) number of pages moved for each

workload during GC.

expected as the FTL employed will be different and the
three workloads are simultaneously affecting the FTL in
various ways. Note, however, that though the exact per-
formance trend may be different, the performance drop
of the individual workload varies as was observed for the
commercial SSD.

Let us now turn to the reason behind this observation.
For this, we observe the internal status and movements of
the pages within the device. This is done by tagging each
page (in the OOB (Out-Of-Band) area) with the ID of the
particular VM that instigated the request and monitoring
the tags as the experiments are conducted.

Figure 4(b) shows the average number of valid pages
(denoted u, for utilization) of the victim blocks selected
for GC. This value is lower when each workload is exe-
cuted individually than when the workloads are executed
concurrently. In particular, the difference in u is propor-
tional to the difference in performance observed in Fig-
ure 4(b), that is, largest for Financial and smallest for
Exchange. This is to say that while each workload is be-
ing negatively influenced by each other as they execute
concurrently, Financial is being influenced the most.

The reason behind this negative influence can be ex-
plained through Figure 5. Figure 5(a) shows a data lay-
out of a typical SSD when requests from multiple work-
loads arrive concurrently. The FTL takes each page and
randomly places them among the available blocks. Con-
sequently, blocks contain pages from various workloads.
Hence, upon an erase while servicing a particular work-
load, live pages from other workloads in the victim block
will be moved to a new block during the GC process.

Figure 5(b) shows the number of pages that are moved
during GC for each workload. The pages are distin-
guished by the owner of the page when they are moved.
For example, of the 190K number of pages moved while
executing the Financial workload, only 30% of them are
those of its own. This says that though GC is a necessity,
much of the work involved in the GC process are actually
unnecessary work induced by other workloads. Then the
solution to this problem is to find a means to isolate the

OVM1 (64KB) OVM1 (512KB)
WVM2 (512KB) WVM2 (64KB)
450 450 450

400 400 400
350 350 350
300 300 300
250 250 250
200 200 200
150 150 150
100 100 100
50 50 50
0 0 0

OVM1 (512KB)
WVM2 (512KB)

1/0 bandwidth (MB/s)

S & A
& o o

O)
G

”/4%

)
¥

(a) 64KB - 512KB
Figure 6: 10 bandwidth of VMs generating synthetic re-
quests on a commercial SSD after the ‘Mixed’ and ‘Sep-
arated’ initialization steps. With ‘Mixed’, initialization
is done with VM1 and VM2 workloads executed concur-
rently, while for ‘Separated’, initialization is done by first
executing VM1, followed by VM2 execution.

(b) 512KB - 64KB (c) 512KB - 512KB

GC process so that GC for each workload does not inter-
fere with other workloads.

3.2 Observation in commercial SSDs

In the previous subsection, we showed results that al-
luded to the interfering phenomenon using the DiskSim
simulation environment. Though simulations are the ba-
sis of many important studies and innovations, one still
has to wonder if what we observed in the previous sub-
section actually occurs in real SSDs. To verify this, we
perform the following set of experiments.

Taking the commercial SSD that we used previously,
we create two VMs, VM1 and VM2 that generates writes
and over-writes of 64KB and 512KB sized random re-
quests, which represent small and large requests, respec-
tively. The choice of the two sizes is to vary the mix of
data within blocks as will be described below. Hence, the
results that we show do not vary for different size choices
so long as the two sizes differ by some significant value.

With the two VMs, we perform two different experi-
ments. In the first, starting from a clean SSD, the two
VMs are run simultaneously as an initialization step for
some amount of time. As a result, the SSD will be pop-
ulated with data from VM1 and VM2 resulting in data
from the two VMs being intermixed. Then, the VMs are
run again, but this time the performance is measured and
is reported as ‘Mixed’ in Figure 6(a). In the second set of
experiments, we also go through an initialization process
but this time the VMs are run one at a time filling in the
same amount of data as before. This time, because of the
request size and as the VMs are run in sequence, the FTL
will (generally) not place data from the two VMs within
the same block. Then, the VMs are run and the perfor-
mance measured. The results for these are reported as
‘Separated’ in Figure 6(a). Note that the ‘Separated’ sce-
nario performs substantially better than ‘Mixed’.

The results shown in Figure 6(b) are results from the

186 13th USENIX Conference on File and Storage Technologies (FAST "15)

USENIX Association

Flnanclal (MSNi 1Exchan e)

[J: vW-F data [IE): vm-m data [E: VM- data
D Free page

Figure 7: Sample data layout with OPS isolation

2 Invalid data

same experiments with only the order of initialization
(512KB first, then 64KB random writes) for the ‘Sepa-
rate’ result being different. Figure 6(c) shows the results
for the same sequence of experiments, but with same
sized (512KB) random writes. These results are shown
to contrast them to those of Figures 6(a) and (b).

The reason the ‘Separated’ scenario performs substan-
tially better than the ‘Mixed’ scenario is likely because in
the ‘Separated’ scenario the pages from one VM do not
negatively influence the other VM. Though we cannot be
definite regarding the workings of the SSD due to their
propriety nature, these results are in line with the findings
of the DiskSim evaluation.

4 SLO Complying SSD and Its Perfor-
mance Evaluation

In this section, we discuss how the negative effect of
garbage collection can be mitigated so that SLO requests
may be satisfied. We start by reviewing previous work
that formulates IO performance of flash memory based
SSDs. We propose OPS isolation as a means to control
the performance of individual VMs. Experimental re-
sults showing that performance proportionality of VMs
can be obtained through OPS isolation are presented.

4.1 Calculating IOPS of SSD

To guarantee IO performance SLO among VMs sharing
an SSD, we need to understand the relation between 10
performance and the GC overhead. Performance char-
acterizations of NAND flash memory SSDs have been
studied extensively, and from these it is well understood
that write IO performance can be represented as shown
in Equation 1 [16, 17].

1
10PSssoy 1Gc +1PRG + X fer W
where tpgpg and tx s, are constant values determined
by the flash chip manufacturers representing the time
to program a page and the time to transfer a page, re-
spectively, and 7G¢, which is the time to GC defined as
tc = WAF (u) - tprg. WAF (u), which stands for Write

s
o
N

9.7 OVM-F (Financial)

BVM-M (MSN)

®VM-E (Exchange)
48

OVM-F (Financial)
BYM-M (MSN)
=VM-E (Exchange)

|

1:5: 1510 1024 125 1510 1510 1021 125
(STATIC) (DYN) ~ (DYN) (DYN) (STATIC) (DYN) (DYN) (DYN)

(a) I/O bandwidth

o o 3

1/0 bandwidth (MB/s)

Proportionality of /0 bandwidth
IS

°
o @
° ~

(b) I/O proportionality
Figure 8: Evaluation results

Amplication Factor and which is a function of u, the uti-
lization of the flash memory blocks, refers to the addi-
tional page writes caused by GC to service the write re-
quests [16]. Studies have shown that WAF () can be rep-
resented as shown in Equation 2 where N, is the number
of pages per block. Note that # can be measured from the
SSD or can be estimated from the ratio of the user data
and initial OPS size [18, 19]. Also note, however, u is a
value that represents the entire SSD.

u-Np _ u
(1—u)-Np (1—u)

From Equations 1 and 2, we know that write perfor-
mance of SSDs is determined by the GC overhead, which
is determined by u, which in turn, is determined by the
OPS [20]. Therefore, to control 10 performance, manag-
ing OPS properly is imperative.

Typically, OPS is globally managed in SSDs. Hence,
VM based 10 performance guarantees are difficult, if not
impossible, to handle. We propose to isolate OPS han-
dling so that OPS is managed per VM. This allows more
manageable control over 1O performance for each VM.

WAF (u) =

2

4.2 OPS isolation

To satisty SLO requests from VMs, we propose to ded-
icate flash memory blocks, including OPS, to each VM
separately when allocating pages to VMs so that interfer-
ence can be prevented during GC. Figure 7 shows an ex-
ample of how blocks would be allocated among the three
VMs concurrently requesting flash space. Contrasting
this figure with that of Figure 5(a) shows how the two
differ. Observe in Figure 7 all blocks consists of free
pages or pages from only one VM. As OPS is also dedi-
cated to a single VM, write requests from each VM will
be placed only within the same block preventing pages
from different VMs from being mixed.

To satisfy SLO requests, IO performance must also be
guaranteed. As discussed in Section 4.1, performance is
eventually influenced by the OPS allocated to each VM.
Algorithm 1 presents the algorithm that we use to parti-
tion the OPS among the competing concurrent VMs. For
this study, we simply take the proportional division of the
total possible IOPS as satifying the SLO request.

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST '15) 187

VM-F (Financial)
/

1 VM-F (Financial)

09
08
07
06
05+
0.4
03
02
0.1

VM-M (MSN) VM-M (MSN) 7|

u of victim block
u of victim block

VM-E (Exchange)

' VM-E (Exchange)

o" P O S S S O N S N
SESIS SIS SESISSSS
a2 RN RN ¢ « RN AN

(a) u with Static (b) u with Dynamic

Figure 9: Average u of victim block along GC time

Initially, the flash memory blocks, including the OPS,
are partitioned among the competing VMs based on the
weight requested. Using the IOPS specified for the SSD,
we calculate the estimated IOPS of each VM based on
the requested weight. Then, a separate u for each VM can
be calculated using Equation 1. After this initialization
phase (lines 3 through 11), the OPS size is dynamically
and periodically adjusted to maintain the IOPS that was
initially designated (lines 12 through 20). For example,
take 3 VMs, A, B, and C that are given target propor-
tional IO performance weights of 1, 3, and 6 with higher
weights being allotted higher bandwidth. The initial OPS
size for each VM is set by the ratio of the weights (lines
3 and 4), that is, 10%, 30%, and 60% of the total OPS is
allotted to VMs A, B, C, respectively. If we assume that
the specified IOPS for the SSD is 1000, the target IOPS
is also set by the weight designated for each VM (line
9). Finally, the target utilization is set for each VM using
Equation 1 (line 11). Then, utilization is monitored so
that the OPS size can be adjusted if the utilization drifts
from the target utilization. This adjusting is done before
every GC with the OPS size increased or decreased by
one block when necessary.

To implement features such as this in an SSD, the
storage interface must change. Recent studies such as
the Multi-streamed SSD [15] have proposed changes to
the interface for enhanced performance benefits. Simi-
larly, our method requires minimal information, such as
a tag identifying the workload, which is already provided
with eMMC flash [21], and the SLO requirement such as
weight, to be transferred to the SSD.

4.3 Performance Evaluation

To evaluate the SLO complying SSD that we propose,
we implement Algorithm 1 in the DiskSim SSD exten-
sion [22] that we used in Section 3. For the workloads,
we again use the same traces that were previously used.
Figure 8(a) shows the results for the various workloads
as the weight of each VM is given differently. In the fig-
ure, the x-axis shows groups of VMs that are executed
concurrently with the weights allotted to the VMs. For
the static case, only lines 3 and 4 of Algorithm 1 are ex-
ecuted and the OPS size does not change throughout the
execution. For the rest of the results, the OPS size is

Algorithm 1 OPS Allocation
1: //N: Number of VMs running concurrently

2: //IW(VM;) refers to weight given to VM;
3: for each VM; do //Initialize OPS size for VM;
4: OPS(VM;) < OPS;,;; x Ratio of W(VM;)
5: //[Use SSD IOPS value
6: TOPS;,ra1 < SSD IOPS specification
7. for each VM; do
8: //Divide total IOPS according to VM; weight
9: IOPS(VM;) < IOPS,,;; x Ratio of W(VM;)
10: //Find u for each VM; using Equation 1
11: u(IOPS(VM;)) < Equation 1
12: Begin Do periodically adjust OPS:
13: for each VM; do
14: //Otherwise if current utilization is higher
15: if u(Cur(VM;)) > u(IOPS(VM;)) then
16: Increase OPS(VM;)
17: //Find VM; with max current utilization
18: VM; < Max(VM(u(Cur(VM,))))
19: Decrease OPS(VM;)
20: End Do

dynamically adjusted according to Algorithm 1. The y-
axis represents the absolute bandwidth achieved and the
numbers on top of each bar represents the performance
ratio relative to the bar with the smallest weight. For
easy comparison, Figure 8(b) shows the same results in
Figure 1 format.

The results show that using OPS isolation and dy-
namically adjusting the OPS size based on u results in
quite accurate proportionality of I0 bandwidth. How-
ever, static OPS isolation is not effective as there is no
leeway to adjust the OPS size according to the workload
characteristics.

Figure 9(a) shows how u changes when OPS is set to a
static value determined by the proportional weight of the
VMs. In contrast, Figure 9(b) shows u changing when
the whole of Algorithm 1 is employed, dynamically ad-
justing the OPS size as need be.

5 Conclusion

In this paper, we showed that performance SLOs can-
not be satisfied with current commercial SSDs because of
garbage collection interference among competing virtual
machines (VM). To resolve this problem, we proposed
OPS isolation, a scheme that allocates flash memory
blocks in such a way that blocks are not shared among
VMs, but are wholly dedicated to each individual VM.
Our experimental results showed that OPS isolation is an
effective way for SSDs to provide performance SLOs to
competing VMs.

188 13th USENIX Conference on File and Storage Technologies (FAST "15)

USENIX Association

Acknowledgement

We would like to thank our shepherd John Strunk and
the anonymous referees for their constructive comments
that helped to improve the presentation of the paper. We
also thank Yongseok Oh for providing us with the trace
replayer and Sooyeong Bae for helping with some of
the experiments. This research was supported in part
by Seoul Creative Human Development Program funded
by Seoul Metropolitan Government(No. HM120006),
by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MEST) (No.
2012R1A2A2A01045733), and by Basic Science Re-
search Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Education,
Science and Technology(2010-0025282).

References

[1] Tian Luo, Siyuan Ma, Rubao Lee, Xiaodong Zhang, Deng Liu,
and Li Zhou. S-CAVE: Effective SSD Caching to Improve Virtual
Machine Storage Performance. In Proc. of International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT), pages 103-112, 2013.

[2] Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchandani,
and Deng Liu. vCacheShare: Automated Server Flash Cache
Space Management in a Virtualization Environment. In Proc. of
USENIX Conference on USENIX Annual Technical Conference
(ATC), pages 133—-144, 2014.

[3] VMware Inc. Distributed Resource Sched-
uler. http://www.vmware.com/files/pdf/
VMware-Distributed-Resource-Scheduler-DRS-DS-EN.
pdf.

[4] Carl A. Waldspurger. Memory Resource Management in
VMware ESX Server. SIGOPS Oper. Syst. Rev., 36(S1):181-194,
2002.

[S] UMASS TRACE REPOSITORY.
http://traces.cs.umass.edu, 2002.

OLTP Application I/O.

[6] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh
Elnikety, and Antony Rowstron. Migrating Server Storage to
SSDs: Analysis of Tradeoffs. In Proc. of ACM European Confer-
ence on Computer Systems (EuroSys), pages 145-158, 2009.

[7] Yongseok Oh. Trace-replay. https://bitbucket.org/
yongseokoh/trace-replay.

[8] Paul Menage. CGROUPS. https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt.

[9] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. PARDA:
Proportional Allocation of Resources for Distributed Storage Ac-
cess. In Proc. of USENIX Conference on File and Storage Tech-
nologies (FAST), pages 85-98, 2009.

Ajay Gulati, Arif Merchant, and Peter J. Varman. mClock: Han-
dling Throughput Variability for Hypervisor IO Scheduling. In
Proc. of USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 1-7, 2010.

Dejan Novakovi¢, Nedeljko Vasi¢, Stanko Novakovi¢, Dejan
Kosti¢, and Ricardo Bianchini. DeepDive: Transparently Identi-
fying and Managing Performance Interference in Virtualized En-
vironments. In Proc. of USENIX Conference on Annual Technical
Conference (ATC), pages 219-230, 2013.

R. Prabhakar, S. Srikantaiah, C. Patrick, and M. Kandemir. Dy-
namic Storage Cache Allocation in Multi-Server Architectures.
In Proc. of Conference on High Performance Computing Net-
working, Storage and Analysis (SC), pages 8:1-8:12, 2009.

David Shue, Michael J. Freedman, and Anees Shaikh. Perfor-
mance Isolation and Fairness for Multi-tenant Cloud Storage. In
Proc. of USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 349-362, 2012.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagian-
nis, Antony Rowstron, Tom Talpey, Richard Black, and Timothy
Zhu. IOFlow: A Software-defined Storage Architecture. In Proc.
of ACM Symposium on Operating Systems Principles (SOSP),
pages 182-196, 2013.

Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun
Cho. The Multi-streamed Solid-State Drive. In USENIX Work-
shop on Hot Topics in Storage and File Systems (HotStorage),
2014.

Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis,
and Roman Pletka. Write Amplification Analysis in Flash-based

Solid State Drives. In Proc. ACM International Ststems and Stor-
age Conference (SYSTOR), pages 10:1-10:9, 2009.

Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H. Noh.
Caching Less for Better Performance: Balancing Cache Size and
Update Cost of Flash Memory Cache in Hybrid Storage Systems.
In Proc. of USENIX Conference on File and Storage Technologies
(FAST), pages 313-326, 2012.

Hunki Kwon, Eunsam Kim, Jongmoo Choi, Donghee Lee, and
Sam H. Noh. Janus-FTL: Finding the Optimal Point on the Spec-
trum between Page and Block Mapping Schemes. In Proc. Inter-
national Conference on Embedded Software (EMSOFT), pages
169-178, 2010.

Wenguang Wang, Yanping Zhao, and Rick Bunt. HyLog: A High
Performance Approach to Managing Disk Layout. In Proc. of
USENIX Conference on File and Storage Technologies (FAST),
pages 145-158, 2004.

Radu Stoica and Anastasia Ailamaki. Improving Flash Write Per-
formance by Using Update Frequency. Proc. VLDB Endowment,
6(9):733-744, 2013.

JEDEC. Data Tag Mechanism of eMMC, JEDEC Standard Spec-
ification No. JESD84-B45. http://www.jedec.org/sites/
default/files/docs/jesd84-B45.pdf.

Vijayan Prabhakaran and Ted Wobber.
sion for DiskSim Simulation Environment.

//research.microsoft.com/en-us/downloads/
b41019e2-1d2b-44d8-b512-ba35ab814cd4, 2009.

SSD Exten-
http:

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST "15)

189

