
This paper is included in the Proceedings of the 
13th USENIX Conference on 

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the  
13th USENIX Conference on 

File and Storage Technologies 
is sponsored by USENIX

Chronicle: Capture and Analysis of  
NFS Workloads at Line Rate

Ardalan Kangarlou, Sandip Shete, and John D. Strunk, NetApp, Inc.

https://www.usenix.org/conference/fast15/technical-sessions/presentation/kangarlou



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 345

Chronicle: Capture and Analysis of NFS Workloads at Line Rate

Ardalan Kangarlou, Sandip Shete, and John D. Strunk

NetApp, Inc.

Abstract

Insights from workloads have been instrumental in

hardware and software design, problem diagnosis, and

performance optimization. The recent emergence of

software-defined data centers and application-centric

computing has further increased the interest in studying

workloads. Despite the ever-increasing interest, the lack

of general frameworks for trace capture and workload

analysis at line rate has impeded characterizing many

storage workloads and systems. This is in part due to

complexities associated with engineering a solution that

is tailored enough to use computational resources effi-

ciently yet is general enough to handle different types of

analyses or workloads.

This paper presents Chronicle, a high-throughput

framework for capturing and analyzing Network File

System (NFS) workloads at line rate. More specifi-

cally, we designed Chronicle to characterize NFS net-

work traffic at rates above 10Gb/s for days to weeks.

By leveraging the actor programming model and a

pluggable, pipelined architecture, Chronicle facilitates a

highly portable and scalable framework that imposes lit-

tle burden on application programmers. In this paper, we

demonstrate that Chronicle can reconstruct, process, and

record storage-level semantics at the rate of 14Gb/s using

general-purpose CPUs, disks, and NICs.

1 Introduction

The storage industry is in a state of flux. As new work-

loads emerge and the characteristics and economics of

the storage media change, it is vital to reevaluate the de-

sign of storage systems. Many of yesterday’s caching,

prefetching, and data tiering techniques have limited

applicability to today’s workloads and hardware. The

recent emergence of software-defined data centers and

data-driven management that support a more application-

centric view of storage has further increased the interest

in workloads. The latest trends aside, characterizing tra-

ditional workloads and storage systems is also critical.

Designing benchmarks for legacy workloads and trou-

bleshooting deployed systems, product and service se-

lection, capacity planning, and billing all hinge on some

understanding of workloads.

Despite the ever-increasing interest, the lack of high-

quality workload traces and general workload analysis

frameworks have been major stumbling blocks in char-

acterizing storage workloads and systems. Ideally, work-

load traces should be thorough and fine-grained enough

to accurately capture the dynamics of the workloads.

An I/O-by-I/O view of workloads undoubtedly provides

richer insights compared to views based on aggregate

statistics or sampling. Additionally, the trace collection

and analysis procedure should cause the least amount of

interference with the systems under study.

This paper presents Chronicle [2], a high-throughput

framework for capturing and analyzing workloads at line

rate for an extended period of time. Specifically, we

designed Chronicle to characterize Network File Sys-

tem (NFSv3) traffic at rates above 10Gb/s for days to

weeks. Chronicle runs as a Linux-based middlebox that

passively monitors network traffic via network taps or

port mirroring. The most important aspect of Chronicle

is that, through deep packet inspection (DPI), it can re-

construct storage protocol semantics at line rate. Chron-

icle has the flexibility to capture long-term traces, per-

form real-time analytics on the in-flight network traffic,

or do some combination of both.

We favored a middlebox approach over instrumenting

NFS servers or clients because it is independent of the

systems under study; and more importantly, it has no im-

pact on system performance. We also opted for a solution

based on commodity hardware. Although there are very

efficient solutions based on specialized hardware, such as

FPGA packet capture cards, monitoring in the network-

ing hardware (e.g., [5, 35]), or GPUs (e.g., MIDeA [33]

and PacketShader [21]), these systems tend to be lim-
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ited in scope. Capture cards are generally limited to

timestamping and DMAing packets; networking hard-

ware is generally optimized to perform a few operations

like lookup, filtering, and counting; and GPUs excel for

applications that conform to the single instruction, mul-

tiple threads (SIMT) mode of programming.

Earlier efforts in fields such as software routing, net-

work security, and software-defined networking (SDN)

have shown the applicability of general-purpose hard-

ware for high-speed packet processing. For instance,

RouteBricks [16] achieves a throughput of 10Gb/s,

6.4Gb/s, and 1.4Gb/s for forwarding, routing, and IPsec

encryption of 64B packets respectively. In this paper we

demonstrate that general-purpose hardware can also han-

dle more complex operations like TCP reassembly, pat-

tern matching, data checksumming, compression, real-

time analysis, and trace storage at rates higher than

10Gb/s.

Parallelizing packet processing using multicore ar-

chitectures has been the focus of many efforts in the

past [12, 16, 19, 27, 29, 34]. Partitioning and pipelining

work across threads, judicious placement and schedul-

ing of threads for better cache hit rates, and minimizing

synchronization overhead (e.g., by using lock-free data

structures for thread communication) are a few examples

of the techniques discussed in the literature. However,

constructing such carefully engineered systems imposes

great burdens on programmers, because it requires inti-

mate knowledge of hardware platforms and careful man-

agement of shared state and resources among threads.

These designs often result in systems that are heavily tai-

lored to specific hardware platforms and require manual

tuning.

To address these challenges, we developed a user-

space programming library, called Libtask, which hides

such complexities from application programmers. Lib-

task is based on the actor model paradigm [22] and en-

ables a lock-free, pluggable, pipelined architecture for

applications that use it. There are several advantages to

this architecture: (1) applications built on top of Libtask

are completely decoupled from the underlying hardware,

resulting in highly portable and scalable software; (2) in-

teractions among threads are well-defined, thus reducing

the possibility of concurrency bugs; and (3) supporting

different types of input sources, output formats, anal-

yses, and protocols, beyond what we demonstrate with

NFS, simply involves plugging in the right module in the

pipelined architecture.

To the best of our knowledge, Chronicle is the first

system of its kind to show the applicability of the ac-

tor programming model to workload capture and analy-

sis. Another novel aspect of Chronicle is that we extend

zero-copy packet parsing to what is considered the appli-

cation layer in the OSI reference model [36]. Therefore,

there is no need to copy packet payloads to a contigu-

ous buffer to reconstruct storage-level semantics. We

demonstrate the versatility of the Chronicle framework

by describing the implementation of two pipelines, one

for trace capture and one for characterizing NFS work-

loads. These pipelines can operate at the rate of 14Gb/s

using only 8 cores, a testament to the framework’s ef-

ficiency. We have successfully deployed Chronicle in a

number of production environments. Our intent is to cre-

ate a comprehensive trace library that represents different

classes of workloads across the industries that constitute

our customer base.

The rest of this paper is organized as follows:

Section 2 describes some of the main differences be-

tween Chronicle and earlier work. Section 3 presents a

high-level overview of the Chronicle architecture. Sec-

tions 4 and 5 describe the implementation of Libtask and

Chronicle pipelines respectively. Section 6 highlights

unique aspects of Chronicle relative to other frameworks.

Section 7 presents a comprehensive evaluation of Libtask

and Chronicle, and Section 8 briefly discusses of some

of the insights gained through implementing and using

Chronicle.

2 Related Work

Capture and analysis of network storage workloads

(e.g., NFS and CIFS) have been the focus of a few efforts

in the past [8, 18, 26]. Of these efforts, Driverdump [8],

a system based on modifying the network driver to di-

rectly store packets in the pcap format, is the most pow-

erful software-only solution that can operate at the rate of

1.4Gb/s. It is unfair to directly compare the performance

of Chronicle to these systems because of the hardware

advances. Instead, we would like to highlight the unique

features of Chronicle that have advanced the state of the

art in capture and analysis of network-attached storage

(NAS) workloads. These features can be summarized

as (1) TCP reassembly; (2) inline parsing; and (3) effi-

cient trace storage. As a result, Chronicle can charac-

terize workloads at higher rates, for a longer time, and

with better coverage of I/O operations compared to all

the previous efforts.

The use of multiple cores for efficient packet process-

ing is an active area of research in packet forwarding and

software routing [10, 12, 16, 17, 21, 27, 32]. These ef-

forts differ from Chronicle in that they typically do not

perform any DPI and are limited to parsing the network

header. This simple difference, however, has great im-

plications for Chronicle with respect to programmability

and functionality.

Kernel frameworks, such as the elegant and modu-

lar kernel-mode Click [25], require expert knowledge to

extend them in a performance-optimized way. Extend-

2
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ing such frameworks with arbitrary types of processing

(e.g., custom or preexisting libraries for parsing, com-

pression, etc.) can be especially daunting for nonex-

perts. The recent port of netmap [31] to user-mode Click

along with techniques such as batching packet process-

ing and recycling allocated memory, have improved the

forwarding throughput by 10x, close to the throughput of

Click’s kernel-mode implementation [32]. In Section 6,

we extensively compare the implementation of Chronicle

with a few well-known packet-processing frameworks

and demonstrate that our actor model framework facil-

itates implicit concurrency, serialization, and batching to

achieve high throughput.

Dobrescu, Argyraki et al. [15] proposed a framework

to eliminate the “tedious manual tuning” that underlay

RouteBricks [16]. They devised a formula to identify the

optimal parallelization strategy when packet-processing

elements can be cloned or pipelined across cores. This

type of framework tends to be effective in scenarios

where the exact processing cost of each packet is known.

In Chronicle’s application scenario, per-packet process-

ing cost can be quite variable, because factors such as

packet reordering and the type of the NFS operation em-

bedded in a packet affect the processing overhead.

Many papers and projects (e.g., [1, 13, 29, 34]) have

addressed efficient use of multicore architectures for DPI

or network monitoring. In addition to supporting lower

rates, many of these systems have a much narrower scope

than Chronicle because (1) their implementations are tied

to specific multicore architectures; (2) many do not do

TCP reassembly; and (3) DPI is not performed on the

whole packet payload. De Sensi [14] addresses some

of these limitations by leveraging structured parallel pro-

gramming on top of FastFlow [7].

DPI on FastFlow is similar to Chronicle, in that both

define higher-level abstractions for users to represent a

workflow. The main difference lies in the programming

model. For example, actors cannot share state in the ac-

tor model paradigm (Section 4). Another difference is

zero-copy parsing beyond the network layer by Chroni-

cle. Unfortunately, a direct comparison of the through-

put of the two frameworks is not possible because DPI

on FastFlow was evaluated using HTTP network traces,

as opposed to live NFS traffic, and presumably with

less CPU-intensive processing compared to our evalua-

tion scenario; however, this framework could operate at

11Gb/s.

3 Chronicle Overview

This section outlines at a high level the design and ar-

chitecture of Chronicle. It also describes and justifies

some of the design decisions we made to address many

challenges of workload characterization at line rate. We

especially highlight three important challenges: (1) DPI

to construct application layer semantics; (2) trace storage

at line rate; and (3) efficient use of CPU cores.

Although it is not unique to Chronicle, it is important

to point out that performing DPI to construct application

layer semantics is more involved than simply examin-

ing a few bytes of packets beyond the network header.

This complexity is due to the fact that the TCP/IP layer

is completely oblivious to the nature of the application

layer data it transports. For instance, to characterize NFS

traffic over TCP/IP, Chronicle needs to handle situations

where an RPC protocol data unit (PDU) starts in the

middle of a packet or crosses multiple packets. There-

fore, unlike high-speed packet forwarding and routing,

this type of DPI requires reassembly of TCP segments

and stateful parsing across packets. Additionally, TCP

reassembly should cope with packet loss and packet re-

transmissions.

Another important challenge is trace storage at rates

higher than 10Gb/s. At such high rates, storage band-

width can easily become a cause for concern. We could

use a high-end array of disks or SSDs, but that would

conflict with our goal of using affordable off-the-shelf

hardware. Additionally, workload capture for an ex-

tended period of time at these rates requires a consider-

able amount of storage. For example, capturing network

traces using a standard tool like tcpdump at 10Gb/s for a

week requires more than 750TB of storage.

We use three techniques to address these data stor-

age challenges. The first technique is to prune the raw

data that we capture off the wire. One by-product of

performing DPI inline is that we can identify fields of

interest in the stream of bytes we capture. For exam-

ple, in the context of our NFS workload capture imple-

mentation, Chronicle records several fields of interest in

the network header and almost all of the RPC and NFS

fields. The second technique is inline checksumming

of the NFS read and write data, which results in sub-

stantial savings over storing the raw data for data dedu-

plication analysis [28]. The third technique is to per-

form inline compression prior to writing traces. By di-

rectly writing traces in the DataSeries [9] format, we

can leverage DataSeries’ inline compression, nonblock-

ing I/O, and delta encoding functions, which reduce both

the bandwidth and capacity requirements of trace stor-

age. These techniques collectively reduce the amount of

data recorded to a rate that a single standard disk can

handle.

Although performing DPI along with inline compres-

sion and checksumming help to alleviate the storage bot-

tleneck issues, these techniques come at the expense

of increased CPU utilization. As illustrated by other

high-throughput systems such as PacketShader [21] and

RouteBricks [16], excessive processing at high rates can

3
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easily make CPU the bottleneck and hurt the overall

throughput of the system. For instance, RouteBricks

achieves a throughput of 10Gb/s for forwarding 64B

packets, but performing more complex operations like

routing or IPsec dropped the throughput to 6.4Gb/s and

1.4Gb/s respectively. Similarly, with netmap [31] pack-

ets can be received at 14.88Mpps (at 10Gb/s), but Open

vSwitch [30] packet forwarding on top of netmap drops

the throughput by more than 75% [32]. Considering

the more complex nature of the operations performed by

Chronicle, efficient use of CPU cores is critical.

The rest of this section describes a host of techniques

that prevent CPU from becoming the bottleneck. The

first technique, and arguably the most important one, is

the use of the Libtask library. Section 4 describes the im-

plementation of Libtask in detail. Here we briefly discuss

our main objectives in designing Libtask and its place in

the Chronicle architecture. Libtask’s main purpose is to

provide seamless scalability to many cores. It enables a

pluggable, pipelined architecture, in which each module

performs a different task in parallel. Applications writ-

ten on top of Libtask can then use all the cores in the

system without any knowledge of underlying hardware,

such as the number of cores or their topology. The seam-

less scalability to many cores results in great portability

for the Chronicle software. Additionally, the pluggable,

pipelined architecture results in a very flexible frame-

work in which, by chaining the right set of modules,

Chronicle can capture traces, do statistical analysis, or

perform some combination of both. Section 5.1 covers

the Chronicle pipelines extensively.

The second technique is zero-copy packet parsing at

both the application and network layers. As packets pass

through different modules in our pipelined architecture,

each module parses a specific layer (e.g., the network,

RPC, or NFS layer) or performs some kind of com-

putation based on information from previous pipeline

modules (e.g., checksumming of the read/write data or

compression). Therefore, to keep the overhead of the

pipelined architecture low, it is imperative to avoid any

sort of copying between different modules. Section 5.2

elaborates on our zero-copy packet parsing method.

The third technique is the use of custom network

drivers, which allows a user-space application to bypass

the kernel when reading packets. Techniques such as

DPDK [3] and netmap [31] are proposed to eliminate

most of the overhead associated with packet processing

in standard operating systems, like the overhead of copy-

ing packets, memory allocation for packet descriptors

(e.g., sk buff structures in Linux), and interrupt process-

ing. Our Chronicle implementation uses netmap to read

packets from the NICs.

4 Libtask Library

We developed Libtask as a general actor model

(AM) [22] library that facilitates seamless scalability to

many cores. Central to the AM paradigm are the con-

cepts of actor, task, and communication among actors.

An actor refers to a computational agent that processes

tasks. Each task is addressed to a target actor and in-

cludes some message, which is the information to be

shared with the target [6]. As actors process the mes-

sages in tasks, the computation in an AM system ad-

vances. Processing a task by an actor can lead to sending

a message (either to itself or to some other actor), cre-

ation of new actors, or actor replacement.

Two aspects of the AM programming that make

it highly attractive to high-throughput computing are

no sharing of state and asynchronous communication

among actors. In this paradigm, the only way in which

actors can affect each other is through sending messages

(as opposed to sharing variables). The outcome is a very

modular design in which bugs caused by concurrent ex-

ecution can be easily avoided. Asynchronous commu-

nication among actors is necessary for an actor to send

a message to itself and is desirable for our purposes be-

cause actors do not block to receive acknowledgements

from targets. These properties enable a highly scalable

and programmer-friendly framework in which many ac-

tors can be created and pipelined to carry out tasks in

parallel.

Many languages such as D, Erlang, and Scala (with

Akka toolkit) have borrowed concepts from the AM

framework. Additionally, there are languages like Go

that are based on the somewhat similar paradigm of

Communicating Sequential Processes (CSP) [23]. In-

stead of relying on existing AM frameworks, we decided

to implement our own standalone AM library in C++ for

better performance and a finer level of control. Libtask

is quite lightweight and small (fewer than 2,000 lines of

code).

The rest of this section describes a few Libtask con-

structs such as Process, Scheduler, and Message. A Lib-

task Process is equivalent to an actor, and its implemen-

tation can be thought of as an event-driven state machine

that performs a certain task. A Process has complete

ownership of the data it processes. Therefore, there is

no sharing of state among different Processes, as spec-

ified by the actor model. Each Process has a queue for

receiving incoming Messages and is runnable as long as

there is a pending Message in its queue.

A Scheduler’s job is to schedule and run Processes.

Each Scheduler has a queue of runnable Processes. On

the occasion that the queue becomes empty, the Sched-

uler may steal a Process from other Schedulers. The

Scheduler’s run queue can become empty either as a re-

4
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Figure 1: Simplified UML diagram for Libtask.

sult of exhausting its list of runnable processes or due

to Process-stealing. Upon getting scheduled, a Process

runs a bounded number of Messages, where each Mes-

sage is run to completion before the next is processed.

The Scheduler is implemented as a POSIX thread, and

there are typically as many Schedulers as there are logi-

cal cores (i.e., hardware threads) in the system.

We have developed two versions of Libtask for bal-

ancing load across cores. In one version, Schedulers

are pinned to distinct logical cores and prefer to steal

Processes from Schedulers running in the same NUMA

node (i.e., the same CPU), thus preserving warm caches.

In the other version, Schedulers are not tied to specific

cores and perform NUMA-agnostic Process-stealing.

Section 7.1 compares the performance of these two ver-

sions relative to implementations in Erlang and Go.

Processes use Messages as the communication mech-

anism between themselves. The main purpose of a Mes-

sage is to specify the action to be performed by the

next Process in the pipeline. A Message can contain

the data to be passed or some reference to it. In either

case, a Message exchange signals the transfer of data

ownership between the sender and the target. Figure 1

illustrates the simplified UML diagram for the Libtask

classes described earlier. One point to note is that Pro-

cess::enqueueMessage is implemented as a protected

method. This is to ensure that the sending and receiving

Processes agree on the exchanged Message type or types.

All subclasses of Process have a public wrapper method

for Process::enqueueMessage (one per Message type)

to force type checking at compile time.

5 Chronicle Implementation

We have implemented Chronicle as multiple pipelines of

Libtask Processes. Each Process corresponds to a mod-

ule in the Chronicle architecture, and performs functions

such as parsing, computation, and trace storage. All

modules and all messages exchanged between them are

implemented as subclasses of Process and Message re-

spectively. Section 5.1 describes Chronicle pipelines and

Section 5.2 describes the zero-copy parsing method used

by different pipeline modules.

5.1 Chronicle Modules and Pipelines

Figure 2(a) depicts the high-level view of the Chronicle

architecture. This figure shows a few Packet Reader and

Network Parser modules and a few Chronicle pipelines.

Each pipeline itself is made up of more modules, as il-

lustrated in Figure 2(b). The rest of this section describes

the functions of each module and its role in the overall ar-

chitecture. Discussion of the Messages passed between

modules is postponed to Section 5.2.

A Packet Reader (Reader) module reads Ethernet

frames from a NIC using the netmap [31] drivers men-

tioned in Section 3. We made small changes to netmap

to support jumbo frames and larger buffer sizes. Our im-

plementation dedicates one Reader per NIC. However,

for modern NICs that have multiple queues, it is possible

to dedicate one Reader per queue for faster processing of

the packets. Each Reader polls the corresponding NIC,

timestamps all the available packets, and copies them to

an internal packet buffer pool.

The main functions of a Network Parser module are

parsing the network header portion of a packet and mul-

tiplexing further processing across different Chronicle

pipelines. A Network Parser parses L2, L3, and L4 head-

ers in an Ethernet frame and retrieves information such

as source and destination IP addresses and port numbers,

TCP sequence number, and TCP payload offset. It then

uses the 5-tuple of source IP address, destination IP ad-

dress, source port number, destination port number, and

transport protocol to delegate further processing to one of

the Chronicle pipelines. To avoid cross-pipeline commu-

nication or locking, Network Parser designates the same

pipeline to process the packets belonging to either direc-

tion of a connection.

Figure 2(b) illustrates two examples of the pipelines

that Chronicle currently supports. The DataSeries

Pipeline is the pipeline of choice for trace capture at

high rates due to the reasons mentioned in Section 3.

We use the Workload Sizer Pipeline as an example of

a pipeline whose purpose is to perform real-time analyt-

ics on the NFS traffic. The rest of this section describes

these pipelines and their constituent modules.

5.1.1 Trace Capture Pipeline

The DataSeries pipeline receives a stream of packets

on one end and generates traces in the DataSeries for-

mat [9] on the other end. The DataSeries format is char-

acterized by efficient storage of structured serial data.

Each DataSeries trace file is composed of a series of

records, where each record is in turn composed of a se-

ries of fields. The records of the same type are orga-

nized into groups of extents, which are similar to tables

in databases. For example, in our application scenario,

we have one extent type for storing network-level infor-

5
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Figure 2: Overview of the Chronicle architecture.

mation, another extent type for storing RPC header in-

formation, and additional extent types for different NFS

operation types. The records in these extents correspond

to a packet, to an RPC PDU, and to an NFS operation

respectively. We use a common field called record ID to

link related records in the network, RPC, and NFS ex-

tents. The DataSeries Writer module at the end of the

DataSeries pipeline is responsible for storing traces in

the DataSeries format. This module makes extensive use

of a few features of DataSeries such as inline lzf com-

pression, relative packing (delta encoding), and unique

value packing.

For DataSeries Writer to store all the fields of inter-

est in the DataSeries format, it has to rely on informa-

tion provided by the preceding modules in the pipeline,

starting with the RPC Parser module. This module per-

forms the following main functions: (1) filtering of TCP

and RPC traffic; (2) reassembly of TCP segments; (3)

detection and parsing of RPC headers; (4) construction

of RPC PDUs; and (5) matching RPC replies with the

corresponding calls.

The RPC Parser module is the key module that facil-

itates DPI on NFS traffic. To perform DPI, this module

needs to have some kind of receive-side TCP function-

ality to handle in-order, out-of-order, and retransmitted

packets. Given that Chronicle passively captures net-

work traffic via network taps or port mirroring, it is pos-

sible for an RPC Parser to see an acknowledgement for a

TCP segment that will be seen in the future or that will

never be seen. Under these circumstances, we could not

rely on a standard TCP implementation and had to de-

velop a custom TCP reassembly facility.

Packet losses and out-of-order packets directly im-

pact the performance of the RPC Parser module and the

overall throughput of Chronicle. In the absence of any

losses and out-of-order packets, the identification of RPC

header in the byte stream is very straightforward, because

the length of a PDU is part of the header. Advancing

from the current RPC header by the length of a PDU re-

sults in finding the next RPC header in the byte stream.

This technique works well not only for cases where an

RPC header starts immediately after the TCP header but

also for commonly occurring cases where a PDU starts

in the middle of a packet, when a packet contains multi-

ple PDUs, or when a PDU spans multiple packets. When

an RPC Parser uses this technique to find RPC headers,

we deem that it is operating in the fast mode. Unfortu-

nately, this technique falters in the event of packet loss

or out-of-order delivery of packets and causes the mod-

ule to enter the slow mode. In the slow mode, the RPC

Parser module has to scan the byte stream and perform

pattern matching to find an RPC header based on its sig-

nature. Once a header is found, RPC Parser can return to

the fast mode if a complete PDU is present.

The NFS Parser module is responsible for parsing the

NFS fields in an RPC PDU. The values for these fields

are provided to the DataSeries Writer module to sup-

ply the records for the NFS operation-specific extents

in a DataSeries trace file. The Checksum module op-

erates on NFS read and write PDUs and computes 64-

bit checksums for 512B read/write data blocks at 512B-

aligned offsets. These checksums are also passed to the

DataSeries Writer module to be stored in a data check-

sum extent. The checksums computed by this module

can be used for online or offline data deduplication anal-

ysis [28].

In addition to supporting NICs with netmap drivers

for input, Chronicle supports input from NICs or files

through the standard pcap interface. It also supports writ-

ing traces in the pcap format. We will not elaborate these

capabilities much further for the following reasons: (1)

pcap NIC interfaces are quite lossy at high data rates;

(2) the focus of this paper is to characterize live NFS

network traffic; and (3) trace storage in the pcap format

is quite bulky and requires further parsing of the data.

However, these capabilities demonstrate the flexible na-

ture of our pluggable, pipelined architecture where sup-

porting new input sources, output formats, or protocols

merely involves plugging the right set of modules in the

right place in the pipeline.

6
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5.1.2 Workload Sizer Pipeline

Another example of our flexible, pipelined architecture is

a pipeline for sizing storage workloads. Workload sizing

is a pre-sales practice in the storage industry to identify

the right platform for a given workload. A sizer typically

takes as input workload-specific information such as the

rate of I/Os, the random read working set size, and the

ratio of random reads and writes, and generates as output

the number of heads and spindles as well as the estimated

CPU and disk utilization levels for different storage plat-

forms.

The main function of the Workload Sizer module is to

generate a workload profile that will be used as input to

an off-box sizer. This module processes each I/O request

and leverages synopsis data structures [20] due to their

speed in absorbing updates and their small memory foot-

print. This module also performs top-k analysis [11] and

quantile calculation. Other examples of real-time analy-

sis that Chronicle can support are pipelines to determine

the data deduplication rate, the hottest files by the num-

ber of bytes or requests, and the most active clients. The

insights from these pipelines are helpful in dynamically

tuning a storage system.

5.2 Zero-Copy Packet Parsing

Zero-copy parsing at the network level is a standard prac-

tice and has been used extensively in operating systems

and packet processing frameworks to avoid the cost of

data copy between different modules. Our contribution

is that we extend zero-copy parsing to the application

layer. Our approach is novel in that it does not require

copying packet payloads to a contiguous buffer to recon-

struct application layer semantics.

The key idea behind our parsing technique is to main-

tain ancillary data structures on top of the packet buffer

pool. Each entry in the buffer pool has a corresponding,

fixed packet descriptor structure that serves as a handle

to a particular buffer pool entry and holds all network-

level information about a packet (either the data itself or

its offset). Packet descriptors are allocated once at the

beginning of a Chronicle run as opposed to upon every

packet arrival.

Upon receipt of a packet, the Packet Reader mod-

ule passes the corresponding descriptor to the Network

Parser module. The Network Parser module populates

most entries in the descriptor and passes it along to the

appropriate Chronicle pipeline. The RPC Parser mod-

ule then chains packet descriptors belonging to the same

flow based on their TCP sequence number values. Prior

to chaining, the RPC Parser may adjust packet descrip-

tors to ensure that no two descriptors overlap in the TCP

Figure 3: Simplified UML diagram for the facility that

navigates TCP byte streams.

sequence number space.1 When an RPC Parser finds

an RPC PDU, it creates another ancillary data structure

called a PDU descriptor. Each PDU descriptor holds

RPC- and NFS-level information and points to the chain

of packet descriptors that constitute the PDU. The RPC

Parser then passes PDU descriptors to the next module

in the pipeline. Packet or PDU descriptors passed be-

tween modules are the embodiment of the actor model

messages described in Section 4.

The main enabler for the application layer zero-copy

parsing is the implementation of a facility for traversing

packet payloads. Figure 3 presents a simplified UML di-

agram for this facility. This facility maintains a point

of reference, which consists of a packet descriptor and a

byte offset in the payload, and uses the TCP information

to retrieve certain bytes in the byte stream. We imple-

mented an XDR parser on top of this facility for parsing

the RPC header and NFS fields. One important aspect of

this facility is that it enables parsing data (e.g., a single

field or a group of fields as in the RPC header) that cross

multiple packets. This capability is unique to Chroni-

cle and does not exist in previous NFS tracing efforts

(e.g., [8, 18]) and in standard tools like Wireshark. An-

other advantage is that it enables skipping all nonrelevant

bytes for the DPI task at hand without any data copy.

6 Comparison with Other Frameworks

This section compares and contrasts Chronicle with

the implementation of a few high-throughput packet-

processing frameworks. On the surface, there are

many similarities between Chronicle and frameworks

like Click [25]. For instance, a Click router consists of

a number of modules called elements. These elements

can get pipelined, packets can get multiplexed across

pipelines of elements, and there is zero-copy packet pars-

ing across elements. Additionally, elements can run in

the context of multiple scheduler threads [12]. However,

there are some subtle differences, particularly with re-

1This condition may occur as a result of TCP retransmissions.
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spect to the application scenario and programmability,

which are highlighted in the rest of this section.

Latency vs. Throughput: For a software router like

Click, low latency in the processing path can be as cru-

cial as high throughput. The processing path in Click

typically consists of a sequence of push and pull ele-

ments, where each element either pushes a packet to a

downstream element or pulls a packet from an upstream

element. Queue elements are typically used only when

there are transitions between pull or push paths or when

multiple paths converge to temporarily store packets.

Because only the source of a push path and the sink

of a pull path are schedulable elements, other elements

in the path must run in the context of the same thread

that schedules the source or sink element [12]. This im-

plementation minimizes thread communication, reduces

scheduling overhead and cache conflicts, and imposes

minimal queuing delay, which together reduce process-

ing latency. However, to improve throughput, recent ef-

forts [24, 32] have suggested better use of I/O and com-

putation batching so that an element can process multiple

packets at a time. In our application scenario, achieving

high throughput is the primary objective and Chronicle’s

actor model architecture, with the implicit queues at in-

dependently schedulable processing elements, facilitates

seamless I/O and computation batching.

Explicit vs. Implicit Parallelism: Despite some sim-

ilarities, parallelism in Click and Chronicle is different

in a number of ways. First, every module in Chron-

icle is schedulable and can run on any core. Second,

with the exception of Packet Readers, when a Chroni-

cle module gets scheduled, it is guaranteed that it has

some useful work to do. This is a side effect of our im-

plementation, where a Libtask Process gets placed on a

Scheduler’s queue only when it has a pending Message,

and the fact that Processes only “push” Messages to each

other. Third, for some frameworks, certain layouts of

modules require use of thread-safe queues or modules.

A positive aspect of our actor model implementation is

that such complexities are not exposed to the users of

Chronicle because the framework itself provides implicit

parallelization and serialization.

Network vs. Application Layer: Differences between

packet processing at the network and application layers

explain some of the design decisions behind Chronicle.

For instance, parsing a network header is generally not

CPU-intensive enough to justify the use of multiple cores

per packet. Therefore, spatial assignment techniques

(e.g., NetSlices [27] and TNAPI [19]) that impose fixed

mappings between packets and cores are very efficient

for parsing network headers. On the other hand, these

techniques may result in load imbalances and CPU un-

derutilization when processing is expensive or variable.

In fact, as we discovered during the evaluation of Chron-

icle (Section 7), in some scenarios, pinning threads to

cores may have adverse effects on throughput. Another

issue is that parsing at the application layer requires a

framework to be general enough to support different ap-

plication layer constructs beyond just packets (e.g., RPC

PDUs). Our general actor model framework again seam-

lessly facilitates efficient use of cores as well arbitrary

types of application layer constructs.

7 Evaluation

This section presents a comprehensive evaluation of Lib-

task and Chronicle. For these experiments, Libtask and

Chronicle run on a server with two Intel Xeon E5-2690

2.90GHz CPUs. Each CPU has 8 cores (16 logical cores

or hardware threads). The server is configured with

128GB of 1600MHz DDR3 DRAM memory (64GB per

CPU). Additionally, it has two dual-port Intel� 82599EB

10GbE NICs, which allows capture from two tapped

links or four mirrored links. The storage configuration

consists of ten 3TB SATA disks. The total cost of our

setup amounted to about $10,000. Section 7.2 illustrates

that Chronicle can support network rates higher than

10Gb/s with a much less powerful hardware configura-

tion. The server runs on a 3.2.32 Linux kernel with a

patched ixgbe driver to support netmap. The NFS server

was a NetApp� FAS6280 with two 10GbE NICs.

7.1 Libtask Evaluation

We used two microbenchmarks to measure the perfor-

mance of Libtask against similar frameworks in Erlang

(version R15B01) and Go (version 1.0.2). These evalua-

tions also compare the performance of the NUMA-aware

and NUMA-agnostic versions of Libtask. In the Message

Ring benchmark, 1,000 Processes form a ring and pass

approximately 100 million Messages around the ring, so

that there are 100 outstanding Messages within the ring

at any given time. In the All-to-All benchmark, 100 Pro-

cesses send approximately 100 million Messages to each

other in a random way.

Figure 4 presents the number of Messages exchanged

per second for different implementations as the number

of Scheduler threads varies. The results are for averages

of 10 runs. For all configurations, the NUMA-aware

Libtask performs the best, and both Libtask implemen-

tations outperform implementations in Erlang and Go,

because Libtask is a much leaner messaging framework

with none of the overhead associated with copying mes-

sage data, running inside of a virtual machine, or activ-

ities like garbage collection. The drop between the 16-

and 32-thread configurations for the NUMA-aware Lib-

task is a result of cross-socket communication. Although
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(a) Message Ring benchmark (b) All-to-All benchmark

Figure 4: Libtask evaluation.

these benchmarks do not reflect CPU-intensive tasks per-

formed by Chronicle, they are indicative of the rate at

which Libtask can distribute tasks across the cores.

To test Libtask under a more realistic setup where

competing load is present, we ran one CPU-intensive

thread in the background for the “+load” configurations

of Figure 4. Because this thread is not pinned to any

core, it only degrades the 32-thread setup for the NUMA-

aware configurations. One interesting finding for the 32-

thread setup is that NUMA-awareness degraded through-

put for Message Ring. This is because for the NUMA-

aware setup, at any given time one Scheduler was pinned

to the same core as the competing thread. The interfer-

ence resulted in a convoy effect for the Message Ring

benchmark that hurt the overall throughput.

Another interesting finding is that for the 2-, 4-, and 8-

thread NUMA-agnostic configurations, adding the extra

load improved the throughput for both benchmarks. This

effect is a direct consequence of the competing thread

pushing a larger number of Schedulers to run on the same

CPU, resulting in better cache locality for them.

The impact of the extra load suggests possible im-

provements to the NUMA-aware version of Libtask: (1)

pinning a Scheduler to a CPU, not to a core, to allevi-

ate the convoy effect; and (2) taking into account the

communication patterns of Processes to reduce the cross-

socket communication. A comprehensive analysis of

these enhancements is left as future work.

7.2 Chronicle Evaluation

We chose to evaluate Chronicle using the DataSeries

pipeline because it was more CPU- and disk-intensive

than the analysis pipelines. Figure 7 shows the experi-

ment setup. In this setup, a client machine was directly

connected to an NFS server via two 10Gb/s links. The

server running Chronicle received network traffic on both

directions of the client-server links using two fiber taps.

For all the experiments described in this section, we used

two Chronicle pipelines (one pipeline per client-server

link). Hereafter, for brevity, we use the term core when

referring to logical cores.

We experimented with many configurations to stress

Chronicle. We observed that a mix of NFS read and write

workloads resulted in the highest rates for both through-

put and I/Os per second (IOPS) on the NFS server. The

results presented in this section were all generated using

30-minute, constant-rate fio [4] workload runs. Interest-

ingly, we obtained better results with NUMA-agnostic

Libtask due to the convoy effect described in Section 7.1.

The competing activities in the trace capture scenario

were threads used by DataSeries for compression and I/O

as well as applications like Apache that ran in the back-

ground. Therefore, we present results for this configu-

ration only. This section measures the performance of

Chronicle for a number of metrics, including multicore

scalability, CPU and memory usage, and the success rate

in capturing and parsing NFS operations.

7.2.1 Maximum Throughput

Figure 5(a) shows the maximum sustained throughput

rates as we varied the number of cores used by Chron-

icle.2 The sustained throughput rates are characterized

by constant utilization of the buffer pool (Section 5.2).

Therefore, Chronicle should handle these workload rates

for an infinitely long duration. This also means that

Chronicle can support higher data rates at the expense

of higher buffer pool utilization, albeit for a bounded

amount of time.

As shown in Figure 5(a), Chronicle with one core

could support 3.05Gb/s. Adding a second core did not

help much with throughput, although it did help with

better coverage (Figure 5(d)). We suspect that polling

the NICs by the four Packet Reader modules left little

time for other modules. Near maximum CPU utilization

for these configurations, shown in Figure 5(b), illustrates

this point. However, for the 4- and 8-core configurations,

2The bars in figures 5(a), 5(b), 6(a), and 6(b) denote the average

values, and the error bars show the minimum and maximum.
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(a) Max. sustained throughput (b) CPU utilization (c) Max. buffer pool utilization (d) NFS capture loss rate

Figure 5: Maximum sustained throughput evaluation.

(a) Max. sustained IOPS (b) CPU utilization (c) Max. buffer pool utilization (d) NFS capture loss rate

Figure 6: Maximum sustained IOPS evaluation.

NFS client NFS server

Chronicle server

Network tap

Network tap

Figure 7: Experiment setup.

there were enough spare CPU cycles to sustain 5.43Gb/s

and the near maximum 13.68Gb/s respectively. Adding

an extra thread per core or the second CPU (i.e., the 16-

and 32-core configurations) did not significantly increase

the maximum sustained throughput because with 8 cores

we could almost handle the maximum rate supported by

the NFS server.

Figure 5(c) shows the highest usage of the buffer pool

to handle the maximum throughput configurations. Al-

though our application scenario is mostly concerned with

high throughput and not processing latency (except in

reading packets), the relatively low buffer utilization sug-

gests that Chronicle processed packets very quickly. It

is worth noting that the 16- and 32-core configurations

had considerably less memory utilization than the 8-

core configuration, because with more computational re-

sources Chronicle could process packets much faster.

Another important metric is the loss rate in capturing

NFS operations. These losses can happen either as a re-

sult of Packet Readers not getting scheduled fast enough

to empty the NIC ring buffers or as a result of capture

via lossy methods (e.g., port mirroring). We compared

the number of NFS operations seen by the NFS server

with the number of operations captured in the DataSeries

traces to measure Chronicle’s loss rate. For all configura-

tions in Figure 5(d), Chronicle had a negligible loss rate.

Most notably, for the 32-core configuration at 14.0Gb/s,

Chronicle missed only 84 out of the total 48,600,042

NFS operations. An interesting conclusion we can draw

from the results in Figure 5 is that a hardware configura-

tion with 1GB of RAM dedicated for Chronicle, and an

8-core CPU with hyper-threading enabled, should han-

dle 14Gb/s relatively loss-free, provided that there is a

high-quality data feed (Section 7.2.3).

7.2.2 Maximum IOPS

The goal of the experiments described in this section

was to stress Chronicle with an increasingly higher num-

ber of NFS operations until Chronicle reached its limit

and could no longer keep up. For the experiments de-

scribed in Section 7.2.1, the NFS client issued 64KB

read and write operations to maximize throughput. To

maximize IOPS, the client issued 1B read and write oper-

ations. Figure 6(a) shows the maximum sustained IOPS

Chronicle could handle for different numbers of cores.

The results suggest that with 8 cores and only 40MB

of buffer space, Chronicle could handle the maximum

IOPS supported by the NFS server (106 kIOPS) rela-

tively loss free. The CPU utilization for the 8-core setup

also implies that only 5 out of 8 cores were fully uti-

lized. Therefore, Chronicle could potentially support

10
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Figure 8: This figure illustrates a controlled experiment

to study the impact of packet loss, when the network traf-

fic rate is about 10Gb/s. The highlighted 1-minute in-

tervals correspond to periods when packets got dropped

at the rate of 0.5% to 5%. Although high loss rates

caused significant backlog for RPC Parser, Chronicle

performed well under normal network conditions and re-

covered quickly when the losses were intermittent.

much higher IOPS rates. In fact, when we traced a cus-

tomer’s metadata-intensive workload, which was gener-

ated by more than 3,000 clients, we saw that Chronicle

could sustain 150 kIOPS.

The maximum sustained IOPS results illustrate an im-

portant point about Chronicle. Chronicle with 1 core can

support twice as many small NFS operations as the 32-

core setup of Section 7.2.1 (55,000 vs. 27,000 opera-

tions/s). Clearly, the cost of processing small PDUs is

much less than that of processing large PDUs. Through

CPU profiling and by examining the size of the Mes-

sage queues for different modules, we have confirmed

that when operating in the slow mode, RPC Parser con-

sumes the most CPU cycles among all the modules. Re-

calling the discussion in Section 5.1.1, RPC Parser has to

scan packet payloads in order to find the next RPC header

while operating in the slow mode. When PDUs are small,

it scans relatively few bytes before getting back to the

fast mode. However, for large PDUs the module may po-

tentially scan 64KB or more before it can find a header.

Therefore, unlike in packet forwarding, where a high vol-

ume of small packets poses the largest overhead, a high

volume of out-of-order packets belonging to large PDUs

poses the biggest challenge to Chronicle.

7.2.3 The Impact of Packet Loss

The previous section discussed how packet loss can de-

grade Chronicle’s performance. This section describes

a controlled experiment to study this effect. For this

experiment, we used the 32-core setup of Section 7.2.1

but made two changes. We limited the network traffic

rate to about 10Gb/s, and we modified the Packet Read-

ers to uniformly drop data packets (i.e., packets that are

not empty acks) at specific time intervals. The 1-minute

time intervals during which the Packet Readers induced

packet loss are highlighted in Figure 8 and are annotated

with the loss rates. The packet loss rates ranged from

0.5% to 5% and were interspersed with 2-minute inter-

vals when there were no induced losses.

The top graph in Figure 8 shows the effective network

traffic rate ingested by Chronicle during the course of the

experiment. The middle graph illustrates the number of

NFS operations that were processed by Chronicle. The

dips in the graph correspond to the lower number of com-

plete PDUs that Chronicle managed to find during the

loss intervals. As loss rates increased, the dips became

deeper and wider. They became deeper because there

were fewer complete PDUs to be processed and they be-

came wider because the RPC Parsers stayed in the slow

mode longer (even beyond the 1-minute loss interval).

However, as soon as Chronicle processed all the packets

received during the loss intervals, it reverted to the fast

mode and very quickly made up the lost ground. The

spikes following the dips signify this behavior.

One metric that clearly captures the behavior of

Chronicle under packet loss is the size of the Mes-

sage backlog for the RPC Parsers (the bottom graph in

Figure 8). Because an RPC Parser spends more time in

the slow mode, the number of outstanding Messages in

its queue grows. Although the backlog was negligible

when packet loss was 2% or less, it grew very fast at

higher rates. Because each Message in an RPC Parser’s

queue corresponds to one packet, the backlog had a direct

impact on increased buffer pool utilization. The results

in Figure 8 suggest that Chronicle can handle packet loss

at low rates fairly well provided that the losses are inter-

mittent and that there is a buffer pool of sufficient size

to accommodate the additional processing of the out-of-

order packets.

7.2.4 Trace Compression Ratio

Unsurprisingly, the size of a trace generated by Chroni-

cle depends on the workload being captured. This sec-

tion briefly discusses a 7-hour-long trace, captured from

a production environment, to shed some light on the

advantages of inline parsing, storing the checksums of

read and write data, and inline compression over stor-

ing the raw network data, as was done in the previous

efforts. For this trace, Chronicle processed 1.8TB of net-

work traffic where 36% of the operations corresponded

to NFS reads and writes. The total trace size generated
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Figure 9: The size of different extents with and without

compression.

by Chronicle amounted to 44.6GB, which is a 40x reduc-

tion over saving raw packets. The extents corresponding

to the network header and data checksums amounted to

84% of the trace, while the extents storing the RPC and

NFS fields accounted for the rest. The trace compres-

sion ratio varied from extent to extent. For instance, the

extents storing the NFS, RPC, network, and checksum

data had compression ratios of 20:1, 15:1, 12:1, and 3:1

respectively (Figure 9).

8 Lessons Learned

Our experience with Chronicle suggests that the ac-

tor programming model is an effective, programmer-

friendly framework for workload characterization at line-

rate. We believe that some of the techniques described

in this paper have applicability beyond the NFS proto-

col. For instance, the fast- and slow-mode techniques to

identify message boundaries (Section 5.1.1) have appli-

cability to other network storage protocols such as iSCSI,

SMB/CIFS, and the RESTful key-value store protocols.

Similarly, the zero-copy application layer parsing tech-

nique (Section 5.2) has no limitations in supporting other

protocols. The experiments described in sections 7.1 and

7.2 revealed that preserving cache locality should not

come at the expense of balancing load across cores, par-

ticularly in the presence of competing load.

Chronicle has been deployed in a number of produc-

tion environments to collect traces and perform sizing.

For these deployments, the average traffic rates (3 to

6Gb/s) were lower than the results presented in this pa-

per, and Chronicle could accurately capture the dynam-

ics of the workload. One common theme among our

deployments thus far has been the concentration of I/O

by clients and by files. For instance, in a 3-day deploy-

ment there were 573 unique NFS clients, where the 25

most active clients accounted for more than 60% of read

and write bytes served by the server. Accesses to files

were also heavily concentrated. In a week-long deploy-

ment, the 25 hottest files, out of 9 million unique files

accessed, accounted for 40% of total operations on the

server. The insights facilitated by Chronicle can guide a

storage administrator or a software-defined storage con-

troller to dynamically tune a storage system. As an ex-

ample, the knowledge of hot files and their access pat-

terns can lead to better data caching and tiering solutions.

One powerful aspect of Chronicle is that it enables de-

tection of problematic scenarios that are often not fore-

seen. For instance, we noticed that in a production envi-

ronment, 8 clients out of more than 3,000 unique clients

were reissuing read operations at the aggregate rate of

40 kIOPS for days. A closer examination revealed that

these reads accounted for 31% of all the operations re-

ceived by the server and that they were all failing due to

a stale file handle!

Identifying misconfigurations is another application

scenario for Chronicle. During one deployment, we ob-

served that a server was serving getattr requests at the

average rate of 56 kIOPS. Further analysis of the top 25

client-file pairs that were present in the getattr requests

revealed that these requests were targeted at static files,

with many being Linux system utilities that rarely get

updated. Shockingly, there were on average 214 getattr

requests per second for the top client-file pair! With in-

sights from Chronicle traces, we were able to recom-

mend configuring the NFS clients with correct attribute

caching parameters to eliminate a sizable portion of un-

necessary getattr requests. Another interesting finding

was that for some clients more than 80% of read and

write operations did not fall on 4096-byte boundaries.

These misaligned I/Os are generally more expensive to

serve by a block-based storage system and can be the

result of nonbuffered I/Os at clients or incorrectly con-

figured virtual disks for virtual machines.

9 Conclusions

This paper presented the design and implementation of

Chronicle, an extremely flexible framework for charac-

terizing workloads at line rate. We demonstrated that it is

possible to capture and analyze NFS traffic at 14.0Gb/s

using general-purpose CPUs, disks, and NICs. Chron-

icle’s high-throughput architecture is facilitated by a

pluggable, pipelined design that is based on actor pro-

gramming model. Such a design enables seamless scal-

ability to many cores where CPU-intensive operations

such as stateful parsing, pattern matching, data check-

summing, and inline compression can be done inline.

Chronicle’s source code [2] is available under an aca-

demic, noncommercial license.
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