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Abstract

Host-side flash storage opens up an exciting avenue for
accelerating Virtual Machine (VM) writes in virtual-
ized datacenters. The key challenge with implement-
ing such an acceleration layer is to do so without break-
ing live VM migration which is essential for provid-
ing distributed resource management and high availabil-
ity. High availability also powers-on VMs on new host
when the previous host crashes. We introduce FVP,
a fault tolerant host-side flash write acceleration layer
that seamlessly integrates with the virtualized environ-
ment while preserving dynamic resource management
and high availability, the holy tenets of a virtualized en-
vironment. FVP integrates with the VMware ESX hy-
pervisor kernel to intercept VM I/O and redirects the I/O
to host-side flash devices. VMs experience flash laten-
cies instead of SAN latencies and write intensive appli-
cations such as databases and email servers benefit from
predictable write throughput. No changes are required
to the VM guest operating systems so VM applications
can continue to function seamlessly without any mod-
ifications. FVP pools together all the host-side flash
devices in the cluster so every host can access another
host’s flash device preserving VM mobility. By repli-
cating VM writes onto peer host-side flash devices, FVP
is able to tolerate multiple cascading host and flash fail-
ures. Failure recovery is distributed, requiring no central
co-ordination. We describe the workings of the FVP key
components and demonstrate how FVP reduces VM la-
tencies to accelerate VM writes, improves performance
predictability, and increases virtualized datacenter effi-
ciency.

1 Introduction
Virtualization has revolutionized how we build and op-

erate data centers today. Large cost savings and in-
creased operational efficiencies have made virtualization

the biggest trend in data centers. However, as more appli-
cations become virtualized, and Virtual Machine (VM)
density increases, shared storage performance does not
scale with the high volumes of cumulative I/O gener-
ated by the VMs. I/O bottlenecks in the storage array
add significant latency to virtual applications, resulting
in slow response times at best and unusable applications
at worst [1-3].

Provisioning better or more storage hardware is one
way to address this problem. Some of these strategies
include provisioning faster disks, improving the Stor-
age Area Network (SAN) interconnect speeds, deploying
flash caches in storage controllers [4-8], and replacing
spinning disks with an all flash array [9, 10]. Replacing
spinning disks with an all flash array is disruptive, incur-
ring system downtime which may not be viable. Also,
upgrading the SAN is usually a temporary fix in that
even the new storage array will reach peak performance
at some point resulting in the need for constant upgrades.
Adding more CPUs or hosts is less disruptive.

An alternative approach is to install a flash device on
the host and use it to cache VM writes. By co-locating
the application’s working set close to the application at
the beginning of the I/O path, applications experience re-
sponse times of the order of microseconds as opposed to
milliseconds for shared storage. Host-side flash is thus
used to accelerate applications and decouple storage per-
formance from storage capacity [11-16].

Host-side flash has been typically used to cache re-
cently accessed data to accelerate reads alone. VM reads
are first issued to the flash device and, in case of a cache
miss, issued to the SAN. The newly read data are also
cached. VM writes are issued to the flash device and
to the SAN. This approach of using the host-side flash
device to accelerate reads is called write-through (wt)
acceleration [12, 14]. Because a significant number of
reads are offloaded from the SAN, it frees up the SAN’s
resources to service writes and un-cached reads. There-
fore, write-through yields some improvement in write
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performance as well.

Another approach is to use the host-side flash to ac-
celerate both writes and reads. This is called write-
back (wb) acceleration [11]. In wb, VM writes are is-
sued to flash and on flash write completion, acknowl-
edged back to the VM without issuing them to the SAN.
This accelerates the writes since writes complete at flash
speed, not SAN speed. In the background, writes on the
flash device are batched and then issued periodically to
the SAN to flush dirty VM data and to free up flash space
for future writes. This process of issuing batched writes
to the SAN is called destaging.
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Figure 1: Combined throughput of Microsoft Exchange
Server JetStress and fio, in wb, wt, un-cached

Write-back acceleration has a significant impact on
write performance, because writes are acknowledged to
the VM as soon as they are committed to the flash de-
vice alone. This creates a very short I/O path, resulting
in very low latencies (typically microseconds). Write-
through, in contrast, requires writes to cross the storage
fabric to get to the SAN and be acknowledged before
completion. Hence, VM writes in wt incurs SAN la-
tencies. Figure 1 depicts the combined throughput of
two VMs, one running Microsoft Exchange Server Jet-
stress [17] and the other running fio [18]. JetStress sim-
ulates the workload of an Exchange database consisting
of transactions (reads and writes) by issuing 32 KB ran-
dom reads and writes, and 14 KB sequential writes. fio
was setup to issue 64 K sequential writes. Clearly, wb
yields much better throughput than wt. Though the the-
ory is sound and these benefits are appealing, accelerat-
ing writes using host-side flash in a clustered virtualized
environment is not trivial.

The first challenge using host side flash in virtualized
environments is that it must be done without breaking
VM mobility [19]. For Distributed Resource Schedul-
ing and Power Management (DRS) [20, 21], to bal-
ance resources utilization, VMs are live migrated or re-
distributed across hosts. For High Availability (HA) [22],

in case of a host failure, VMs are migrated away from the
failed host. VM mobility, therefore, must be preserved.

To ensure VM mobility, all the hosts must have ac-
cess to the VM’s data. Virtualized datacenters achieve
this by consolidating storage arrays under a shared SAN.
Host-side flash, in contrast, is a local resource so hosts
cannot access each others flash. If a VM with data on a
host’s flash device gets migrated to another host, the VM
loses access to its data. This precludes VM mobility and
consequently breaks DRS and HA. Byan etal. [12] and
Holland eral. [13] cite these reasons for why host-side
flash cannot be used for accelerating writes.

The second challenge using host-side flash for acceler-
ating writes is that it creates potential fault tolerance and
consistency problems. In case of a flash device failure
VM writes which were not yet destaged are not retriev-
able resulting in data loss. Koller etal. [11] argue that
the only way to prevent data loss is to retrench to wt.

The third challenge using host-side flash for accelerat-
ing writes is that write-heavy applications may fill up the
flash device at a faster rate than the rate at which those
writes can be destaged to the SAN. This happens if SAN
latency is high. If there is no space left on the flash de-
vice, the application cannot be allowed to write to the
SAN because the SAN has stale data and overwriting
stale data would cause data inconsistency and corruption.
In this scenario, the application will stall until space can
be made available on the flash device. A stalled applica-
tion is clearly unacceptable; it would be preferable not to
accelerate writes at all.

We introduce FVP, a write acceleration layer that uses
host-side flash devices to accelerate VM writes in a clus-
tered virtualized environment, while tolerating multiple
cascading flash and host failures. FVP is a kernel mod-
ule installed inside the ESX hypervisor [23] which in-
tercepts VM I/Os and forwards them to the flash device.
Since FVP sits inside the hypervisor, the I/O path from
the guest OS to the flash device is short, resulting in good
application performance. No change is required to the
guest VM operating system.

FVP pools together the flash devices from all the hosts
such that each host can access the data on another host’s
flash device. When a VM migrates to another host, its
data on the previous host’s flash device can be accessed
by the new host eliminating inconsistency and data loss.
VM mobility, DRS and HA are preserved.

VM writes are replicated to other hosts or peers.
Therefore, in the event of a host or flash failure, other
hosts co-ordinate with each other to destage their copy of
VM writes to the SAN and restore VM consistency. By
replicating VM writes, FVP can tolerate multiple host
and flash failures. Recovery is distributed and happens
without any central co-ordination. Our contributions are
as follows:
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1. FVP is a host-side write acceleration layer which
supports transparent VM migration and seamlessly
integrates into the virtualized environment.

2. FVP can handle multiple, cascading host and flash
failures. To the best of our knowledge, ours
is the only solution that provides fault tolerance.
Recovery is distributed without requiring any co-
ordination.

3. We introduce Flow Control, an 1/0 control mecha-
nism designed to prevent write heavy applications
from running out of flash space.

Though FVP has been implemented for ESX, the de-
sign principles are hypervisor independent and can be
applied to any well-known hypervisor architecture, in-
cluding Xen [24], Hyper-V [25], and KVM [26]. In the
subsequent sections, we describe FVP in more detail.

2 Overview

[ vCenter |

VM VM VM VM
ESX Host ESX Host

VMEFS Volume

VM disk | [ VM disk |
& on-disk locks E
datastore 1

VM disk | [VM disk |
& on-disk locks @]
datastore 2

Figure 2: Virtualized Environment

Figure 2 depicts a typical virtualized environment with
physical machines/hosts running the ESX hypervisor. A
Storage Area Network (SAN) is used to consolidate stor-
age and provide hosts shared access to it. A clustered
file system, VMFS [27], provides multiple hosts simul-
taneous access to file system volumes or datastores. A
datastore is a VMEFS (block) based volume that houses
VM virtual disks. A hypervisor cluster is a group of such
hosts sharing one or more datastores via SAN. All the
components and operations in the cluster are managed
by a central entity, the vCenter.

A VM can only migrate to a host that has access to its
datastore. Though a VM’s files are accessible to every
host in the cluster, VMFS moderates this access to one
host alone. This is done using on-disk locks co-located
on the same datastore as the VM’s virtual disk. Only
one host can acquire the VM’s on-disk lock and this is
the host that can write to the datastore on behalf of that
VM. When DRS live migrates a VM, from one host to
another, VMFS releases the on-disk lock for that VM.
The new host now acquires the lock and runs the VM.

A FVP cluster is a hypervisor cluster in which every
host runs FVP. VMs, thus, migrate only among FVP
hosts. Henceforth, the term ‘host’ assumes that it is a
FVP host, and ‘cluster’ assumes that all hosts in the clus-
ter are FVP hosts.

3 VM Acceleration Policies

Each VM on an FVP host is configured with an accel-
eration policy. The acceleration policy dictates how
VM writes and/or reads should be cached. Data center
administrators can configure VMs with an appropriate
write policy depending on VM workload.

Write Through (wr) policy: In wr [12, 13, 28] mode,
FVP intercepts VM writes and issues them simultane-
ously to SAN and to flash. The write is acknowledged
to the VM after it has been acknowledged by both
the flash and the SAN. Typically, the longest time to
acknowledgment is from the SAN, and the VM sees
SAN latencies for writes.

Write-Back (no peers) (wb): For a VM in wb, FVP
intercepts VM writes and issues them to the host’s local
flash alone. The write is acknowledged to the VM after
flash completion. As writes accumulate on the flash
device, they are batched and destaged/issued in batches
to the SAN. Destaging is completely transparent to the
VM. The VM, thus, sees flash latencies instead of SAN
latencies for writes.

Write-Back with Peering (wbp): For a VM in wbp,
FVP synchronously duplicates every write and sends it to
another host, or peer, in the cluster while simultaneously
writing it to local flash. When the peer writes VM data to
its flash, an acknowledgment is sent back to the primary
host housing the VM. FVP on the primary host then ac-
knowledges the write to the VM. The peer holds on to
the write until the primary has destaged it. Typically,
data transmission over the network to the peer takes the
longest. VM writes experience network and peer flash
latencies.

FVP selects peer hosts based on rules/policies setup
by administrators.
Datacenter administrators can setup fault domains that
group together hosts based on the datacenter topology
such as, hosts on a rack belong to one fault domain efc.
Further, FVP also allows administrators to choose that
hosts be configured with local peers within their fault
domain and/or remote peers in other fault domains.

Un-cached: For a VM that is un-cached, FVP does not
cache its data. Neither reads nor writes are accelerated.
For wt, wb, and wbp VMs reads are first issued to
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flash. In case of a cache miss, the read is issued to SAN
and the data written to flash. Evictions, irrespective of
caching policy are done on a LRU basis.

4 Seamless VM Migration

To balance resource utilization in datacenters, VMs are
live migrated, or re-distributed across hosts [20]. An el-
igible host is one that has access to the VM’s datastore.
After migration, VMs continue to have access to their
data because datacenters consolidate storage arrays un-
der a shared SAN. However, host side flash is local to
the host. If a VM having dirty data on its host’s flash
is migrated to another host, it loses access to that data.
FVP solves this problem by enabling the new host to ac-
cess the previous host’s flash.

v Remotp
ma! Read
Flash Flash
Flash
Host 1 \ Cluster Host 2

Remote Local

VM VM

footprint footprint

Figure 3: Virtual Machine Migration

Figure 3 illustrates how FVP orchestrates VM migra-
tion between two hosts. When a VM migrates from
Host 1 to Host 2, its cached data on Host 1’s flash, i. e.,
its footprint, remains on Host 1. Host1 is free to evict
the VM’s cache if it so requires.

FVP maintains state about the VM’s previous host.
This obviates the need for Host 2 to poll every other host
to locate that VM’s footprint. So, when the VM issues a
read that causes a cache miss on Host2’s flash, Host2
re-transmits the read to Host1. Such a read is called
a remote read. If the read request causes a cache miss
on Host 1’s flash (possibly because Host 1 has already
evicted that data to reclaim flash space) Host 2 re-issues
the read to the SAN.

In case of a cache hit on Host 1°s flash, Host 1 trans-
mits that data to Host2. When Host 2 receives the data,
it copies the data onto its own local flash. Thus, Host 2
begins building the VM’s footprint locally. Owing to re-
mote reads, VM reads that are a cache hit are faster, see-
ing only network and flash latency than if they were is-
sued to SAN. Remote reads also alleviate traffic to the
storage array while VM footprint is rebuilt on Host 2. By
issuing remote reads for only what the VM requires, in-
stead of eagerly copying the entire VM footprint, Host 2
conserves network bandwidth and flash wear.

The VM’s footprint eventually rebuilds on Host2’s
flash. When the number of cache misses for remote
reads hits a pre-defined value, Host2 stops issuing re-
mote reads to Host 1. VM mobility is thus transparently
preserved.

It would be ideal if a wbp VM were to migrate to one
of its peers. The VM would then run off of its own foot-
print on the peer obviating the need to issue remote reads.
However, FVP has no say over which host is chosen as
the destination host for a VM. This is a decision made by
the DRS process into which FVP has no visibility.

S The Destager

The destager is a process that collects dirty VM writes
cached on the flash device and issues them to the SAN.
The writes are batched and all writes in a batch are is-
sued concurrently. Batching is used to improve per-
formance and ensure correctness as is described in this
section. When the SAN acknowledges the writes, FVP
marks those writes as destaged. Those writes can now
be evicted from the cache. We discuss how the underly-
ing storage fabric drives the design and behavior of the
destager.

| Flash Device

Checkpoint
to Flash

Staging Area on RAM
Batched Writes

Staging Queue

I:I
I;I

To SAN

Figure 4: Workings of the destager

The sequence in which a storage controller may order
concurrent writes is opaque to FVP, and indeed, to the
application issuing such writes. This is not an issue for
concurrent non-overlapping writes. However, concurrent
overlapping writes, if not handled correctly, can cause
application inconsistency and data corruption. Consider
a write X at offset Y, denoted as X(Y). Consider two
concurrent overlapping writes A(O) and B(O). FVP con-
strues an ordering of A(O) followed by B(O) and issues
them to flash. FVP only indexes the last write and there-
fore records B for offset O. So, when the VM issues a
read for offset O it receives B. Meanwhile, the destager
begins destaging the writes and both (A, O) and (B, O)
being concurrent writes, issues them concurrently to the
VM’s datastore. The storage controller orders them (B,
0) followed by (A, O), overwriting B with A. The datas-
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tore is now inconsistent with the VM.

To avoid such inconsistencies, a gatekeeper, assigns
a monotonically increasing serial number (ser#) to ev-
ery write. Non-overlapping writes tagged with a ser#
are issued simultaneously to the flash. However, concur-
rent overlapping writes are serialized, i. e., the gatekeeper
waits for the flash device to acknowledge the write be-
fore issuing the next overlapping write. The writes are
then enqueued in a staging queue in the staging area.

Figure 4 depicts the workings of the destager. The
staging area is kept in RAM to save flash space and
wear. It consists of a staging queue where writes are
enqueued in order of their ser#. Note that the queue
contains metadata only. The data resides on the flash de-
vice. The destager scans these writes, batches them up
such that no two writes in a batch overlap. All writes
in a batch are issued concurrently to the SAN. After the
SAN acknowledges all those writes, the destager issues
a checkPoint to the flash. A checkPoint is a spe-
cial record consisting of the VM UUID, and ser# of
the VM’s last write record acknowledged by the SAN.
FVP uses checkPoint records during failure recovery
described in Section 7.

After the destager receives acknowledgment from the
flash that it has completed writing the checkPoint, the
destager proceeds to scan the staging queue again. If the
VM was configured with peers, the checkPoint record
is also transmitted to the peer/s. Each peer commits the
checkPoint record to its flash. FVP on the primary and
peer hosts is now free to evict from its flash device all
records for that VM whose ser# < checkPoint (sert).

The storage controller may or may not order the writes
in ser# order (indeed, it is unaware of any such meta-
data), but, since these writes are non-overlapping, writ-
ing them in any order it wishes does not lead to data
corruption. The justification for such behavior is that
even in the absence of FVP, for concurrent writes the
storage controller gives the same consistency guarantees
and therefore after the entire batch of writes has been
committed to the SAN, the SAN is consistent with VM,
though lagging by some time.

The staging queue is maintained on a per VM basis.
The destager cycles through staging queues in a round
robin fashion destaging one batch per queue before pro-
ceeding to the next VM’s queue. To allow each VM a
fair share of the SAN’s bandwidth for servicing writes
and reads, the size of each batch is capped to a config-
urable value. The maximum batch size, defined in the
number of writes, is configured to match the queue depth
of the storage’s host bus adapter.

As a rule of thumb, issuing fewer but larger sets of
concurrent writes to storage yields better throughput than
issuing smaller and frequent concurrent writes. There-
fore, deferring and consolidating writes while destaging

yields better flash acceleration. A VM that issues fre-
quent overlapping writes does not see the level of flash
acceleration that another VM issuing fewer overlapping
writes would see. If such writes are bursty, the flash is
able to absorb the burst, simultaneously destage writes
and catch up with the VM a few moments after the burst
of writes has stabilized without degrading application
throughput.

6 Flow Control

The flash space on an ESX host could potentially be
shared by hundreds of VMs. Though every VM may
have different space requirements which change over
time [29], FVP implements a fair share policy when
carving out flash space for individual VMs. Fair share,
though an early implementation, has advantages such
that it isolates VMs from any noisy neighbors. Noisy
neighbors are VMs that claim a high proportion of flash
space due to their large working sets. Consequentially,
other VMs experience degraded performance. FVP im-
plements fair share for its simplicity and to insulate VMs.

For sustained write bursts, a VM’s writes accumulate
on flash at a high rate filling up its quota of flash space.
The destager works in tandem with the VM to clear up
that flash space to accommodate new writes. However,
the destager’s throughput is predicated on the latency of
the SAN. If SAN latency is high, during a sustained write
burst, a VM’s flash space fills up before the destager has
a chance to catch up. The VM, then, would have to be
stalled, i. e., it cannot be allowed to issue I/Os until (a)
the destager is able to reclaim space by flushing out ac-
cumulated writes and/or (b) FVP is able to evict cached
reads from the flash device. When space is reclaimed,
the VM can continue to issue I/Os, but if the write burst
continues, the VM would have to be stalled once again
to allow the destager to make more space and so on. At
such times, the VM would experience degraded perfor-
mance or SAN latencies.

The VM cannot be allowed to write to SAN because
SAN has stale data. If the VM were allowed to write,
and those writes overlapped with writes that are yet to be
destaged, data corruption would occur.

To prevent VM performance degradation, FVP trig-
gers a process called flow control. Flow control throttles
the VM by introducing an artificial delay before a write is
acknowledged back to the VM. Though this slows down
the VM, it gives the destager some extra time to make
space for new writes. The delay is calculated as a mov-
ing average over SAN latencies observed in the near past.
FVP uses three heuristics to trigger flow control per VM:

1. The number of dirty VM writes.

2. The cumulative size of the dirty writes.
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3. The expected time to destage those writes.

These were chosen because they are indicative of how
fast the destager would be able make progress given its
pending workload. A high number of writes in propor-
tion to their cumulative size indicates that the VM is pri-
marily issuing small writes. The destager’s batch size
being fixed, this means the destager has to cycle through
a larger number of batches, and consequentially, engage
in those many conversations with the SAN. A higher cu-
mulative size of dirty writes in proportion to the num-
ber of dirty writes indicates that the VM is issuing large
writes which typically incur higher SAN latencies. The
expected time to destage all the writes is calculated us-
ing a moving average of SAN latencies seen in the past.
Together, these three heuristics indicate the probability
of whether the destager would be able to clear up flash
space in time to accommodate VM writes. If any of
the above heuristic counters cross pre-defined trigger-
ing values, flow control kicks in, progressively injecting
increasing amounts of delay when acknowledging VM
writes. Flow control slows down the incoming writes by
introducing delays of the order of 1x to up to 4x the
SAN latency to reduce the pressure on the staging area.
However, if VM writes fill up its flash space because the
destager is not able to make progress on account of a very
slow SAN, the VM performance degrades to match that
of the SAN.

Stalling is extremely rare. Only in the case of work-
loads that are write intensive over a prolonged period of
time coupled with a very slow SAN would the VM be
stalled.

Most VMs, however, are not continuously write in-
tensive, but rather bursty [30]. Short write bursts are
absorbed by the flash device and the VM throughput
remains unaltered during the bursty period. Sustained
write bursts may need to be throttled for the latter part
of the bursty period, and in majority of the cases, con-
tinue to run while experiencing SAN latencies instead of
flash latencies. Also, once the sustained burst of writes
has lapsed the destager once again regains ground and
the VM is freed from flow control.

Besides undesirable degraded VM performance, hold-
ing on to a large size of dirty VM data on the flash de-
vice increases the impact of data loss to a wb VM in case
of a flash failure and the window of vulnerability in the
case of host failure. Flow control, thus, prevents VM
performance degradation, mitigates the consequences of
failures, and speeds up VM migration.

7 Distributed Fault Tolerance

For wb VM, in the event of a failure the SAN is left in an
inconsistent state with respect to the VM in that some of
the VM’s writes have not yet been persisted to the SAN

but have been acknowledged to the VM right after they
were persisted to the host-side flash. The key challenge
towards achieving crash consistent fault tolerance when
using host-side flash devices for write back acceleration
is ensuring that at the end of failure recovery cached VM
writes are destaged correctly and completely to the SAN.

In the case of a host failure, for wb VMs, after the host
recovers the destager flushes VM writes from its flash to
the SAN from the last checkPoint onwards in order of
their ser#. The ser# is persisted to flash as part of other
metadata for every write. This ensures correctness, viz.,
the writes are replayed in the order in which they were
received by FVP.

However, HA may migrate affected wb VMs to an-
other host while the failed host is recovering. If those
VMs issue I/Os that overlap with previous 1/Os that have
not yet made it to the SAN, data corruption will occur.

To prevent data corruption, and co-ordinate the re-
covery process between two hosts as a wb VM mi-
grates between them, FVP uses an on-disk lock file
called vault.lock. For every VM, FVP persists its cur-
rent acceleration policy and checkPoint record in the
vault.lock file. The vault.lock file is located on the
VM’s datastore. Through atomic vault.lock access,
VMES arbitrates ownership of a VM’s datastore between
hosts such that the vault.lock file is locked and kept
open by one host only. Only this host is eligible to exe-
cute I/Os on behalf of the VM to the SAN. The lock is
held by the recovering host until recovery is complete.

In the case of a flash failure the cached writes are lost.
FVP solves this problem by replicating VM writes onto
peer hosts’ flash devices. The peers can now flush those
replicated writes to the SAN to complete recovery.

When a host loses connectivity to the storage fabric,
the cached writes cannot be flushed to the SAN resulting
in data loss. If any of the peers has access to the SAN, it
can flush the replicated writes from its flash.

In addition to on-disk locks, hosts also monitor net-
work, storage, and, peer health via regular heart beats.
Thus, atomic access to the on-disk vault.lock file,
read-only access to the vault file contents and heart
beats together form the basis of FVP’s failure recovery
mechanism. FVP is designed to tolerate multiple flash,
host, and network failures. Recovery is distributed; there
is no master-slave protocol between hosts. We now dis-
cuss how this distributed failure recovery is instrumented
for each of the failure scenarios.

7.1 Flash Failure

For a wr VM, in the event of a flash failure there is no
data loss.

For a wb VM, in the event of a flash failure, if there
was dirty data on the flash device, FVP stalls the VM. To

292 13th USENIX Conference on File and Storage Technologies (FAST "15)

USENIX Association



] Failure | wt | wh

\ wbp

Flash wt —un-cached Data loss Peer online replay
No data loss wb —wt —un-cached
Host No recovery re- | Offline replay Peer online replay
quired wb —wt —wb wbp —wt —wbp
Network NA NA Primary online replay

wbp —wt —wbp

Multiple Failures | NA

For host failures, offline replay,
or surrogate offline replay

Online/offline replay by pri-
mary, peer, or surrogate hosts

Table 1: Recovery from flash, host, network and multiple failures

avoid data corruption the VM cannot be allowed to write
to the SAN. A flash failure for a wb VM results in data
loss.

For a VM in wbp, in the event of a flash failure,
to avoid data corruption FVP stalls the VM, and relin-
quishes lock on vault.lock. The peers, who periodi-
cally poll vault.lock, attempt to acquire the lock, con-
tending against each other, where contention is resolved
by VMFS. The peer that acquires the lock begins destag-
ing VM writes starting from the last checkPoint that
it had received from the primary host, regularly updat-
ing the checkPoint in vault.lock. After destaging is
complete the peer updates vault.lock with the latest
checkPoint, a cache policy of wr, and relinquishes lock
on vault.lock. The process of destaging writes by a
live host in the event of a failure is called Online Replay.

The VM policy of wr indicates to the peers that the
VMs dirty data has been flushed. They drop all of the
VM’s writes from their flash and stop polling vault.
The host that destages VM writes updates vault.lock
checkPoint regularly so as to communicate to the re-
maining peers, via vault, that they can clear up writes
that have already been destaged. Also, in case of peer
failure or peer flash failure, the remaining peers can
pick up where the last peer left off by starting with the
checkPoint in vault.lock minimizing recovery time.

When the primary host detects from vault that the
VM has transitioned to wz, it reacquires vault.lock,
updates vault.lock with an acceleration policy of ‘un-
cached’, and, un-stalls the VM.

7.2 Host Failure

There is no data loss for a wt VM in the case of a host
failure.

In the event of a host failure all the vault.lock files
for the affected VMs are released as part of the failure
detection process. After the host recovers, the host reac-
quires those locks. For a wb VM, after the failed host
recovers, FVP scans all the cached writes on the flash,
building an inventory of resident wb VMs and their dirty
data. This scan is necessary because as a consequence

of host failure, the ‘in RAM’ staging data structures used
during normal destaging and online replay operations are
no longer available.

As soon as the scan is complete, the host and FVP
come back online, and the VMs are powered on. VMs
having dirty data on flash are stalled until their data is
destaged, but FVP is ready to service VMs not affected
by the host failure. For VMs with dirty data, FVP tries to
lock vault.lock. For those VMs whose vault.lock
was acquired, their dirty writes are destaged in or-
der of ser# while regularly updating vault.lock
checkPoint. At the end of replay, each vault.lock
is updated with a cache policy of wr. This process of
destaging records by a host recovering from a failure is
called Offline Replay.

If HA has migrated any wb VMs to another host before
the previous host has recovered, the new host is now able
to acquire a lock on their vault.lock file and is, there-
fore, now eligible to issue I/Os on behalf of the migrated
VM. This could cause data corruption. To prevent this
from happening, FVP persists VM acceleration policy in
vault.lock. When the new host acquires vault.lock
for a migrated VM, it gleans that the VM was in wb on
the previous host. This indicates to the new host that
the VM has pending writes on the previous host’s flash
which have not yet been flushed to the SAN. It releases
vault.lock and stalls the VM.

A read only copy of vault . lock is kept in another file
called vault. The new host polls vault periodically so
it can re-acquire vault.lock when the previous host is
done destaging.

For wbp VMs, while the primary host is down, the
peer/s detect host failure due to missing heart beats. Ei-
ther that, or the peer/s detect host failure because one of
them is able to acquire vault.lock for affected VMs.
The peer that succeeds, executes an online replay on be-
half of those VMs regularly updating the checkPoint in
vault.lock. At the end of online replay vault.lock
is updated with the last VM checkPoint, and wt cache
policy. The other peers, on gleaning transition of the VM
to wt, drop all data belonging to that VM from their flash.
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The peers no longer participate in providing fault toler-
ance for the VM.

Meanwhile, FVP on the recovering primary host tries
to acquire vault.lock, and fails. When it eventually
acquires vault.lock it detects that the VM has transi-
tioned to wt. No offline replay is required for this VM.
The VM is un-stalled, new peers are configured and it
transitions back to running in wbp.

7.3 Network Failure

A network failure is one when peers lose connectivity
with each other. This only affects VMs in wbp. In case
of a network failure, writes can no longer be replicated
to peers. When FVP on the primary host detects a net-
work failure, it initiates a wb — wt transition of the af-
fected VMs. The destager flushes all the dirty data for
those VMs. Flow control is invoked to allow the destager
to make quick progress. During this stage, the affected
VMs continue running in wb, but without the desired
level of write redundancy. When a very small number
of writes remain to be destaged, the VM is stalled, the
remaining writes are destaged, the VM is un-stalled, re-
leased from flow control, and the transition to wt is com-
plete.

The peers glean the transition to wt from vault and
drop all cached data for the concerned VMs. For every
affected VM, FVP chooses new peers from a list of other
candidate hosts. Once the desired number of peers are
re-established the VM is transitioned back to wbp.

It is possible that after the failed peer comes back up,
the VM has already transitioned to wb/wbp. The peer
may then incorrectly deduce that it should continue hold-
ing on to the VMs dirty data on its flash. To prevent this,
FVP maintains a generation number (gen#) for every
VM which is also persisted in vault.lock. The gen#
is a monotonically increasing number that keeps track
of a VM’s transitions through cache policies. It is in-
cremented every time a VM transitions from wb —wt or
wbp —wt. The incremented gen# indicates to the freshly
recovered peer that the VM’s data it contains on its flash
has already been replayed. It is now free to evict that
data.

Lastly, a network failure, could be misconstrued by
peers, as a primary host failure. They try to acquire
vault.lock while monitoring vault and take over re-
play if the primary host fails.

7.4 SAN Failure

A SAN failure is when hosts are unable to connect to the
storage array. It is possible that such disruption affects
only partial hosts. If FVP on the primary host has lost
connectivity to the storage array, it stalls the VMs. For

VMs in wbp, the primary host depends on the peers to
replay dirty data. If only the peers have lost connectivity
to storage, they begin to fail remote writes sent for repli-
cation by the primary host. This indicates to the primary
host that the peers are no longer able to keep replicas.
The VMs are flow controlled, their data is destaged and
then transitioned to wb. To summarize, any host that has
access to the storage array can acquire vault.lock and
replay dirty data. Note that even if all hosts have experi-
enced SAN failure, data on the flash device is still intact.

7.5 Multiple Cascading Failures

If during an online or offline replay, the concerned host
fails, the remaining replay can be completed either by
its peers or itself on recovery. If the primary host and
peers fail and are unable to recover, the flash device can
be re-installed on another host that has access to the
VM’s datastore. This is possible because all necessary
metadata required to conduct replay is persisted on
the flash device itself. The surrogate host would scan
the flash device, acquire the necessary vault.lock
from the VM’s datastore and then complete replay for
affected VMs. To minimize recovery time in the case
of cascading failures, vault.lock (and consequently,
vault) are regularly updated with the last checkPoint.

7.6 Distributed Recovery

The key to distributed recovery is access to shared stor-
age and exclusive ownership of vault.lock among par-
ticipating hosts. Shared storage access enables primary
and peer hosts to monitor VM acceleration policy tran-
sitions and destaging progress. VMEFS ensures access
to the on-disk lock is atomic preventing any split-brain
scenarios allowing hosts to co-ordinate failure recovery
one at a time via online/offline replay picking up from
where the last host left off. For instance, in the case of
primary host failure, one of the peers takes over online
replay. If this peer fails, the next peer may take over. If
both peers fail and the primary host comes back online,
the remaining data, is destaged by the primary host via
offline replay.

Table 1 summarizes how FVP recovers from various
failure scenarios. FVP recovery is crash consistent. Data
corruption is prevented by use of checkPoint, gen# and
ser#. Recovery is complete when every write acknowl-
edged to the VM before failure/crash is committed to the
SAN. Hence, after recovery, affected VMs return to a
crash consistent state. VMs in wt are always crash con-
sistent. For VM in wb, in case of a flash failure, there is
data loss. VMs in wbp are protected against p flash, and
p+ 1 host failures, where p is the number of peers.
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8 Evaluation

Our setup consists of two hosts, each a HP Proliant DL
380 G6, 8 cores, ®Intel Xeon CPU E5540 at 2.533 GHz,
55 GB RAM, and 120 GB flash drive. Each host runs
VMware vSphere 5.5 Enterprise Plus. The shared stor-
age is a storage appliance with disk spindles and a flash
cache. We will show that even when used with this faster
than average SAN, FVP provides significant speed and
latency improvement. With a slower HDD-based SAN,
latency improvements will be more significant.

8.1 Short Write Bursts
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Figure 5: Short Write Bursts: (a) VM Writes/sec, (b)
Write Latency

The objective of the first experiment is to demonstrate
how FVP absorbs short write bursts thereby masking the
VM from latency spikes of the SAN. To do this, we gen-
erated a workload resembling writes issued by a database
servicing an OLTP application [31]. The workload, gen-
erated using Iometer [32], issued a burst of sequential
writes for a short duration (40 seconds) followed by a
slow and steady pace of random writes for 280 seconds.
The short bursts of sequential writes simulated writes
generated by a database as a result of multiple transac-
tion commits, and log flushing. The steady stream of

random writes simulated inserts/updates to support short
database transactions. All writes were 8 KB in size, and
8 KB aligned.

To illustrate the benefits of using FVP to accelerate
such workloads, we compared VM performance in wb
and in an un-cached mode. The workload was run twice,
once with the VM configured in wb and next with the VM
in un-cached mode. In the un-cached mode, writes were
not cached on the flash device but were issued directly to
the SAN.

Figure 5 (a) compares the rate at which writes were
acknowledged to the VM when running in wb with that
when the VM ran in un-cached mode. In un-cached
mode, writes were acknowledged to the VM after they
were written to the SAN, at about 7,500 writes/second.
In wb, during the first write burst (between 0 and 50 sec-
onds) FVP acknowledged the writes to the VM as soon
as the writes issued to the flash device were completed,
at the rate of about 30,000 writes/second. Even though
the SAN was slower to acknowledge writes during the
bursty period, the VM did not see a degradation in per-
formance when running in wb. This is because the write
burst was absorbed by the flash device and the VM writes
were acknowledged at flash speed. In the background,
the destager issued those accumulated writes to the SAN.

Next, lometer issued a steady stream of random writes
at a slower rate for 280 seconds. During this period, as
seen in Figure 5(a), VM writes were acknowledged at
the same rate in wb and in the un-cached mode. This is
because, the incoming rate of writes was slow enough so
that FVP and the SAN were able to service all the writes
in a batch before the next batch of writes was issued.

This cycle of short bursts followed by steady writes
was repeated once more.

Figure 5 (b) plots the average write latency, i. e., the
time from write issue to write completion, as observed
by the VM. The figure also plots the flash write latency
when VM writes were cached (wb). Together, the Fig-
ures 5 (a) and (b) demonstrate two key strengths of FVP:
the first being that during the bursty period, the VM la-
tency in wb tracked flash latency, not SAN latency. This
allowed the VM to issue 4 x the number of writes during
the bursty period in wb than when un-cached. The sec-
ond, is that the write latencies in wb were steady and low.
In contrast, write latencies observed by the un-cached
VM varied from 0.4 ms at best, to 1 ms during the bursty
period.

8.2 Sustained Write Bursts

Figures 6 (a) and (b), demonstrate how FVP handles sus-
tained write bursts. Figure 6 (a) depicts the rate at which
writes were acknowledged to the VM by FVP and to the
destager by the SAN, while Figure 6 (b) depicts VM, and

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST '15) 295



35

Destager (SAN) -- x- -

J

VM (FVP) ——
n Wited/

30 /\/\/ \f\ a)-Writes/sec
25

3
2
S 20
(=3
=
8 15
=
10
Koo A
5 H ) %t \
0 & 2
1 T T
,wb Flash device -
0.9
’é- (b) Write Latency
<08
o]
5 0.7
>
2 06
<
= 05
i)
2
§ 0.4
<
] 03 A
B L/ %W\/\f WY
g 02 M
2 § WA
o
0.1 e e RGN R R AL
PRy v T N W W VNV S
0 Y
0 100 200 300 400 500 600

Time (s)

Figure 6: Sustained Write Bursts: (a) Writes/sec, (b)
Write Latency

flash write latencies for those corresponding times.

To demonstrate how flow control manifests, we gen-
erated a workload similar to the OLTP workload, but
quadrupled the write burst period (160 seconds). For the
first 80 seconds, writes were acknowledged to the VM
at flash speed. After 80 seconds, due to the volume and
rate at which writes accumulated on flash, FVP triggered
flow control. Flow control introduced delays in the write
completion path before the writes were acknowledged to
the VM. The induced delays were equal to the SAN’s
latency. Hence, VM writes experienced SAN latencies.
These additional delays are shown in the Figure 6 (b)
where VM latencies increased over and above flash la-
tencies during the flow control period. Flash latencies
were always steady at about 70 pseconds.

Once the sustained burst was over, the rate of incom-
ing writes dropped. This allowed the destager to catch
up and destage the pending records. The VM was then
released from flow control. We know it was released,
because at the beginning of the next burst, the VM ac-
knowledged writes at flash speed again.

SAN latencies may increase if/when the SAN is over-
loaded because of the cumulative I/Os issued by several
VMs or due to SAN administrative tasks. This too can

trigger flow control. By using flow control, FVP avoids
stalling applications/VMs which would unacceptably in-
terrupt business processes. Instead VMs continue to run
gracefully at SAN speed.

8.3 Read Latencies during VM migration

The objective of the next experiment is to demonstrate
how FVP preserves VM mobility with minimal impact to
VM performance. Figure 7 shows latencies observed by
a VM running Iometer while issuing random 4K reads.
For the first 700 seconds, the VM experiences millisec-
ond latencies as the data is fetched from SAN. This was
because, none of the data was cached before the work-
load was started. As the cache was populated and hits
increased, read latencies gradually reduced. Once the
working set is cached, the VM experiences flash laten-
cies of the order of 450 useconds. Then the VM is mi-
grated to another host. In response to cache misses the
new host begins to issue reads to the previous host and
gradually builds up the VM’s footprint on its local flash.
The increased read latencies in the graph after VM mi-
gration when the new host issues remote reads are due
to the additional latency incurred in transmitting the read
data over the network from the previous host to the new
one. As the new host gradually builds up the VM’s foot-
print, fewer remote reads are issued. This can be seen
from the graph where read latencies gradually reduce af-
ter migration. Once the VM footprint on the new host’s
flash is complete, remote reads are no longer issued and
the VM experiences flash latencies once again.
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Figure 7: VM observed read latencies after migration

8.4 Fault Tolerance Cost vs Benefit

The objective of the final experiment is to analyze the
trade-off between fault tolerance and performance. To
do this, we compare VM throughput in wz with that in
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Figure 8: Combined throughput of two VMs in wt, wb,
wbp (p=1), wbp (p=2). Workloads: Microsoft Exchange
Server Jetstress and fio

fio JetStress
Throughput Transactional
IOPs
wb 468.81 MB/s 9325
wbp (p=1) 322.48 MB/s 7677
wbp (p=2) 235.32 MB/s 6605
wit 149.44 MB/s 5514

Table 2: Application performance in wt, wb, wbp (p=1),
whp (p=2)

wb, wbp (p = 1), and wbp (p = 2). Figure 8 depicts the
combined throughput of two VMs. The guest OS of one
VM was Windows 2008, running Microsoft Exchange
Server Jetstress [17]. Jetstress simulates the workload
of an Exchange database consisting of database trans-
actions (reads and writes), log writes, and maintenance
tasks such as database compaction, defragmentation and
checksums. Jetstress was configured with 150 mailboxes
allocated over 40 GB. The guest OS of the second VM
was Ubuntu running fio [18], an IO workload genera-
tor. fio was configured to simulate a throughput intensive
workload with two threads, each thread issuing 64 KB
sequential writes with 8 writes in flight.

The first observation from Figure 8 is that write
caching (wb) has clearly accelerated VM throughput, a
definite gain over wt. The second observation is that
when writes were replicated to the peer (wbp), the VM
throughput slowed down compared to that in wb. In
wb, the average throughput of the VMs was around
600 MB/s, while in wbp (p = 1) it was 475 MB/s. This
difference was because in wbp, every write incurred an
additional latency when it was replicated across the net-
work onto the peer’s flash.

DRS and HA use the network interconnect between
hosts to migrate VMs between them. FVP uses the

same network to transmit writes between a host and its
peers for fault tolerance. The cumulative throughput for
wbp (p = 2) was lesser than that with wbp (p = 1) be-
cause currently the FVP network stack instrumentation
does not exploit multiple NICs. This work is, however,
planned for the coming future. With multiple NIC sup-
port, VM throughput would track that of the slowest peer
network.

Table 2 lists the performance of the individual applica-
tions in wt, wb, and wbp (p = 1, p = 2). For fio, the table
lists the average throughput whereas for JetStress, the ta-
ble lists the transaction rate (IOPs). Figure 8 and Ta-
ble 2, together illustrate that the cost of replicating writes
is reduced VM throughput. However, the throughput of
a wbp VM is still better than a wt VM with the added
advantage of fault tolerance. To summarize, FVP solves
fault tolerance by replicating writes, and achieves write
acceleration by using host-side flash.

9 Related Work

Holland etal. [13] and Byan etal. [12] prescribe using
host side flash for wt only because wb causes consistency
issues with VM migration. Byan efal. explore various
options for deploying host-side flash: integrated with the
storage controller, the network, the hypervisor efc., and
choose to deploy their solution within the hypervisor.

Koller etal. [11] discuss the trade-offs of using host-
side flash with respect to data consistency, staleness and
performance for wr and wb. They propose ordered and
journaled destaging. Ordered destaging evicts writes in
the order in which they were issued, like FVP. In ad-
dition, Koller etal. parallelize evictions for unrelated
writes. Journaled destaging coalesces writes to absorb
write bursts. Using application specified hints Jour-
naled destaging provides application level consistency.
FVP also offers a best-effort application level consistent
destager, but for the sake of brevity, and to focus on our
key contributions, we have not elaborated on it.

Qin etal. [14] use application specified write barriers
to achieve application consistency when using host-side
flash to accelerate writes. Application specified write
barriers, or hints are not distinguishable to the FVP ker-
nel module. This was a deliberate decision; one that al-
lows FVP to seamlessly integrate into the virtualized en-
vironment. Further, in an enterprise environment third
party softwares [33] are employed to perform backups.
These software quiesce the guest OS to allow for appli-
cation consistent snapshots. FVP seamlessly detects this
activity and transitions those wb VMs to wt for the dura-
tion of the snapshot operation. The details of this mech-
anism have not been discussed in the paper since that is
not the main focus. In addition FVP also provides data-
center administrators a switch to initiate a wb — wt tran-
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sition on VMs for the duration of the backup/snapshot
window.

Koller etal. also discuss the cost in terms of the po-
tential data loss that might be incurred in the case of fail-
ure for applications when they use wb acceleration. With
wbp in FVP VMs are protected against p flash failures
and p + 1 host failures to minimize the probability of a
data loss. The cost, however, is increased recovery time
for when the affected VMs are stalled until their wb data
has been flushed to the storage.

How long a VM is kept stalled depends on several
multi-dimensional factors. The most critical being the
volume of dirty writes. The time required to destage
those writes, and therefore, the period for which the VM
is kept stalled is proportional to the size of staged data.
The other factors being the SAN speed/performance, the
saturation of the SCSI network, the load on the disk ar-
ray, the number of VMs being hosted, the workload those
VMs are generating efc. These factors, other than staged
data size, change dynamically depending on the work-
load supported by the datacenter. If these were steady,
then the time for a which a VM needs to be stalled is
proportional to the amount of staged data that needs to
be flushed. To mitigate the cost of recovery, FVP caps
the size of dirty data that can accumulate for a VM. As
discussed in 6, flow control is invoked to moderate VM
write footprint. To tune this further, datacenter adminis-
trators can configure the staging size based on the RPO
requirements for applications.

Also, in the case of FVP, recovery speeds up when
peers are involved. When a host fails, the peers can fin-
ish destaging so that when the VMs are brought back up
most or all of their data has been already flushed to SAN.
Thus, peering reduces the cost of recovery for whp VMs.

10 Future Work

We are working on building more intelligence into FVP;
an adaptive resource manager that detects VM workload
characteristics and priority, and in response, tunes VM
flash space usage, acceleration policy, eviction policies,
and destager behavior for that VM.

11 Conclusion

FVP brings seamless, fault tolerant write acceleration us-
ing host-side flash to HA and DRS enabled virtualized
datacenters. Failure recovery is distributed and, with p
peers, is p + 1 host/flash failure tolerant. FVP absorbs
short write bursts so VMs see flash latencies instead of
degraded SAN latencies during the bursty period. This
masks VMs from SAN latency spikes, improves VM
performance predictability to help deliver SLA objec-
tives allowing IT teams to accelerate write heavy ap-

plications, such as databases and Virtual Desktop In-
frastructure [34]. For sustained write bursts FVP uses
flow control; write intensive applications continue with-
out stalling. The storage can now be provisioned linearly
with new hosts, instead of being provisioned for bursty
workloads. FVP helps increase VM density allowing ex-
isting hosts to support more VMs without having to pro-
vision additional storage. This increase in performance
means happier end users and, consequently, fewer sup-
port calls relating to poor application performance. This
allows IT organizations to consolidate more hosts and
economize.
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