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Abstract

Virtualization is the ubiquitous way to provide computa-

tion and storage services to datacenter end-users. Guar-

anteeing sufficient data storage and efficient data access

is central to all datacenter operations, yet little is known

of the effects of virtualization on storage workloads. In

this study, we collect and analyze field data from pro-

duction datacenters that operate within the private cloud

paradigm, during a period of three years. The datacen-

ters of our study consist of 8,000 physical boxes, host-

ing over 90,000 VMs, which in turn use over 22 PB of

storage. Storage data is analyzed from the perspectives

of volume, velocity, and variety of storage demands on

virtual machines and of their dependency on other re-

sources. In addition to the growth rate and churn rate of

allocated and used storage volume, the trace data illus-

trates the impact of virtualization and consolidation on

the velocity of IO reads and writes, including IO dedupli-

cation ratios and peak load analysis of co-located VMs.

We focus on a variety of applications which are roughly

classified as app, web, database, file, mail, and print, and

correlate their storage and IO demands with CPU, mem-

ory, and network usage. This study provides critical stor-

age workload characterization by showing usage trends

and how application types create storage traffic in large

datacenters.

1 Introduction

Datacenters provide a wide spectrum of data related ser-

vices. They feature powerful computation, reliable data

storage, fast data retrieval, and, more importantly, ex-

cellent scalability of resources. Virtualization is the key

technology to increase the resource sharing in a seamless

and secure way, while reducing operational costs without

compromising performance of data related operations.

To optimize data storage and IO access in virtualized

datacenters, storage and file system caching techniques

have been proposed [13, 18, 28], as well as data dupli-

cation and deduplication techniques [22]. The central

theme is to move the right data to the right storage tier,

especially during periods of peak loads of co-located vir-

tual machines (VMs). Therefore, it is crucial to under-

stand the characteristics of IO workloads of individual

VMs, as well as the workload seen by the hosting boxes.

There are several storage-centric studies that have shed

light on file system volume [14, 20, 31] and IO veloc-

ity, i.e., read/write data access speeds [15, 17, 28]. De-

spite these studies, it is unclear how virtualization im-

pacts storage and IO demands at the scale of datacenters,

and what their relationship to CPU, memory, and net-

work demands are.

The objective of this paper is to provide a better un-

derstanding of storage workloads in datacenters from the

following perspectives: storage volume, read/write ve-

locity, and application variety. Using field data from pro-

duction datacenters that operate within the private cloud

paradigm, we analyze traces that correspond to 90,000

VMs hosted on 8,000 physical boxes, and containing

over 22 PB of actively used storage, covering a wide

range of applications, over a time span of three years,

from January 2011 to December 2013. Due to the scale

of the available data, we adopt a black-box approach in

the statistical characterization of the various performance

metrics. Due to the lack of information about the system

topologies and the employed file system architectures,

this study falls short in analyzing latency, file contents,

and data access patterns at storage devices. Our analy-

sis provides a multifaceted view of representative virtual

storage workloads and sheds light on the storage man-

agement of highly virtualized datacenters.

The collected traces allow us to look at the volume of

allocated, used, and free space in virtual disks per VM,

with special focus on the yearly growth rate and weekly

churn rate. We measure velocity by statistically charac-

terizing the loads of read and write operations in GB/h as

well as IO operations per second (IOPS) in multiple time
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scales, i.e., hourly, daily, and monthly, focusing on char-

acterization of the time variability and peak load analy-

sis. We deduce the efficiency of storage deduplication in

a virtualized environment, by analyzing the IO workload

of co-located VMs within boxes. To see how storage

and IO workloads are driven by different applications,

we perform a per-application analysis that allows us to

focus on a few typical applications, such as web, app,

mail, file, database, and print applications, highlighting

their differences and similarities in IO usage. Finally, we

present a detailed multi-resource dependency study that

centers on data storage/access and provides insights for

the current state-of-the-practice in data management in

datacenters.

Our findings can be quickly summarized as follows:

VM capacity and used space have annual growth rates

of 40% and 95%, respectively. The fullness per VM has

a growth rate of 19%, though the distribution of storage

fullness remain constant across VMs over the three years

of the study. The lower bound of VM storage space churn

rate is 17%, which is slightly lower than the churn rate

of 21% reported from backup systems [31].

Regarding IO velocity, the IO access rates of boxes

scales almost linearly with the number of consolidated

VMs, despite the non-negligible overhead from virtual-

ization. Both VMs and boxes are dominated by write

workloads, with 11% of boxes experiencing higher vir-

tual IO rates than physical ones. Deduplication ratios

grow linearly with the degree of virtualization. Peak

loads occur at off-hours and are contributed to a very

small number of VMs. VMs with high velocity tend to

have higher storage fullness and higher churn rates.

Regarding IO variety, different applications use stor-

age in different ways, with file server applications having

the highest volume, fullness, and churn rates. Databases

have similar characteristics but low fullness. Overall,

we observe that high IO demands strongly and positively

correlate with CPU and network activity.

The outline of this work is as follows. Section 2

presents related work. Section 3 provides an overview

of the dataset. The volume, velocity and variety analysis

are detailed in Sections 4, 5 and 6, respectively. A data-

centric multi-resource dependency study is discussed in

Section 7, followed by conclusions in Section 8.

2 Related Work

Managing storage is an expensive business [19]. Cou-

pled with the fact that the cost of storage hardware is sev-

eral times that of server hardware, efficient use of storage

for datacenters becomes critical [29]. Workload charac-

terization studies of storage/IO are pivotal for the devel-

opment of new techniques to better use systems, but it

is difficult to define what is truly a representative sys-

tem due to the wide variety of workloads. In general,

from the various studies on file system workloads, those

that stand out are the ones based on academic prototypes

and those based on personal computers, in addition to

a plethora of lower level storage studies. Virtualization

adds additional layers of complexity to any storage me-

dia [10, 16]. As virtualization is indeed the standard for

datacenter usage, workload studies of virtualized IO are

important and relevant. Nonetheless, analyzing all rele-

vant features of all relevant virtualized IO workloads is

outside the scope of this work. Here, given the collected

trace data, we conduct a statistical analysis with the aim

of better understanding how IO occurs in a virtualized

environment of a very large scale.

Typically, related work covers aspects of volume [2,

14, 20, 30], velocity [17] and variety, with a focus on file

systems. Regarding file system volume, there are several

studies that focus on desktop computers [2,14,20]. Using

file system metadata during periods of four weeks [20]

and five years [2], performance trends and statistics that

shed light on fullness, counts of files/directories, file

sizes, and file extensions are provided. Recognizing the

need to better understand the behavior of backup work-

loads, Wallace et al. [31] present a broad characterization

analysis and point out that the data churn rate is roughly

21% per week. Their study shows that the capacity of

physical drives approximately doubles annually while

their utilization only drops slightly. The study compares

backup storage systems with primary storage ones and

finds that their fullness is 60− 70% and 30− 40%, re-

spectively. Characterization of backup systems has been

traditionally used to drive the development of deduplica-

tion techniques [20, 24].

Most works on IO characterization analysis focus

on specific file systems within non-virtualized envi-

ronments, e.g., NFS [7], CIFS [17], Sprite/VxFs [9],

NTFS [25], and the EMC Data Domain backup sys-

tem [31]. Common characteristics include large and

sequential read accesses, increasing read/write ratios,

bursty IO, and a small fraction of jobs accounting for a

large fraction of file activities. Self-similar behavior [9]

is identified and proposed to use to synthesize file system

traffic. Backup systems [31] have been observed to have

significantly more writes than reads, whereas file sys-

tems for primary applications have twice as many reads

as writes [17].

Following the advances in virtualization technologies,

several recent works focus on optimizing data storage

and access performance in virtualized environments with

an emphasis on novel shared storage design [11, 13] and

data management [15, 18, 28]. To reduce the load on

shared storage systems, distributed-like VM storage sys-

tems such as Lithium [13] and Capo [28] are proposed.

Gulati et al. design and implement the concept of a stor-
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Figure 1: Number of file systems associated with a VM and a box: (a) cumulative distribution, (b) boxplots of file

systems as a function of the number of CPUs, and (c) boxplots of file systems as a function of memory size. The

boxplots present the 10th, 50th, and 90th percentiles.

age resource pool, shared across a large number of VMs,

by considering IO demands of multiple VMs [11]. Sys-

tems that aim at improving IO load balancing for virtu-

alized datacenters using performance models have been

proposed [10, 23]. Combining intelligent caching, IO

deduplication can be achieved by reducing duplicated

data across different storage tiers, such as VMs, hosting

boxes [18], and disks [15]. Everest [21] addresses the

challenges of peak IO loads in datacenters by allowing

data written to an overloaded volume to be temporarily

off-loaded into a short-term virtual store. Nectar [12]

proposes to interchangeably manage computation and

data storage in datacenters by automating the process of

generating data, thus freeing space of infrequently used

data. Workload characterization that focuses on specific

server workloads (i.e., application variety) such as web,

database, mail, and file server, has been done for the pur-

pose of evaluating energy usage [27]. Till now, only

a rather small scale virtual storage workload character-

ization has been presented [28], pointing out that virtual

desktop workloads are defined by their peaks.

The workload study presented here presents a broad

overview of virtual machine storage demands at produc-

tion datacenters, covering IO volume, velocity, and vari-

ety, and how these relate to the degree of virtualization

as well as usage of other resources. The analysis pre-

sented here compliments many existing IO and file sys-

tem studies by using a very large dataset from production

datacenters in highly virtualized environments.

3 Statistics Collection

We surveyed 90,000 VMs, hosted on 8,000 physical

servers in different data centers dispersed around the

globe, serving over 300 corporate customers from a wide

variety of industries, over a three year period and ac-

counting for 22 PB of storage capacity. The servers use

several operating systems, including Windows and dif-

ferent UNIX versions. VMware is the prevalent virtual-

ization technology used. For a workload study on current

virtualization practices, we direct the interested readers

to [5].

The collected trace data is retrieved via vmstat,

iostat and supervisor specific monitoring tools, and is

collected for VMs as well as for physical servers, termed

hosting boxes. Each physical box may host multiple (vir-

tual) file systems, which are the smallest units of stor-

age media considered in this study. To characterize data

workloads in virtualized datacenters, we focus on three

types of IO-related statistics for VMs.

Volume refers to the allocated space, free space, and

degree of fullness, defined as the ratio between the total

used space and the total allocated space, of a VM after

aggregating all of its file systems. Here, we focus on

long-term trends, i.e., growth rates, and short-term vari-

ations, i.e., churn rates.

Velocity refers to read and write speeds measured in

number of operations and transfered bytes per time unit,

as IOPS and GB/h, respectively. We compare virtual IO

velocity, measured at the VMs, with physical IO velocity,

measured at the underlying boxes.

Variety refers to volume and velocity of specific appli-

cations, i.e., app, web, database, file, mail, and print, on

specific VMs. To conduct storage-centric multi-resource

analysis, we also collect CPU utilization, memory usage,

and network traffic for VMs as well as boxes.

The trace data is available in two granularities: (1)

in 15-minute/hourly averages from April 2013 and (2)

coarse-grain monthly averages from January 2011 to

December 2013. When exploring the differences be-

tween VMs in a day, we use the detailed traces with

15-minute/hourly granularity from 04/17 and 04/21.

Monthly averages are used to derive long-term trends.

We note that the statistics of interest have long tails,

therefore we focus on presenting CDFs as well as cer-

tain percentiles, i.e., 10th, 50th and 90th percentiles. As

the degree of virtualization (i.e., consolidation) on boxes

is quite dynamic, we report on daily averages per phys-



180 12th USENIX Conference on File and Storage Technologies  USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f 
V

M
s

Capacity [TB]

2011
2012
2013

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f 
V

M
s

Used Space [TB]

2011
2012
2013

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f 
V

M
s

Free Space [%]

2011
2012
2013

(a) Storage Capacity (b) Used Volume (c) % of fullness

Figure 2: CDF of storage volume per VM over three years.

ical box. To facilitate the analysis connecting the per

VM storage demands with the per file system storage de-

mands, we present the CDF of the number of file sys-

tems across VMs and boxes (see Figure 1 (a)) and also

how file system distributions vary across different sys-

tems, which we distinguish by the number of CPUs per

box and memory (see boxplots in Figure 1 (b) and (c),

respectively). Figure 1 (a) shows that boxes typically

have a much higher (more than 21) number of virtual file

systems than VMs, which have on the average 2 virtual

file systems. Such values are very different from desktop

studies [2] and underline the uniqueness of our dataset,

especially in light of virtualized datacenters. Moreover,

looking at the trends of medians in Figure 1 (b) and 1 (c),

the number of file systems grows with servers equipped

with more CPUs and, particularly, with larger memory.

As our data is obtained by standard utilities at the op-

erating system level, we lack specific information about

file systems, such as type, file counts, depth, and exten-

sions. In addition, since the finest-grained granularity of

the trace data is for 15-minute/hourly periods, IO peaks

within such intervals cannot be observed. For example,

the maximum GB/h within a day identified in this study

is based on hourly averages, and is much lower than the

instantaneous maximum GB/h. The coarseness of the in-

formation gathered is contrasted by the huge dataset of

this study: 8,000 boxes with high average consolidation

levels, i.e., 10 VMs per box, observed over a time-span

of three years.

4 Volume

One of the central operations for datacenter management

is to dimension storage capacity to handle short term as

well as long term fluctuations in storage demand. These

fluctuations are further accentuated by data deduplica-

tion and backup activities [6, 20]. Surging data demands

and data retention periods drive storage decisions; how-

ever, existing forecasting studies either adopt a user or

a per file system perspective, not necessarily targeting

entire datacenters. Here, the aim is to adopt a differ-

ent perspective and provide an overview on the yearly

growth rates and weekly churn rates of storage demand

at the VM level. In the following subsections, we fo-

cus on the storage demands placed by 90,000 VMs, their

used/allocated storage and fullness, followed by statisti-

cal analysis of their yearly growth rates and weekly churn

rates.

4.1 Data Storage Demands across VMs

Taking yearly averages of the monitored VMs over 2011,

2012, and 2013, we present how storage demands evolve

over time and how they are distributed across VMs. Fig-

ure 2 (a) and 2 (b) present the CDF of the total sum of

allocated and used storage volume per VM over all file

systems belonging to each VM. Figure 2 (c) summarizes

the resulting fullness. Visual inspection shows that the

overall capacity and the used space per VM grow simul-

taneously, and result in fullness being constant over time.

This observation illustrates a similar behavior as the one

observed at the file system level [20], and provides in-

formation on how to dimension storage systems for dat-

acenters where VMs are the basic compute units.

Via simple statistical fitting, we find that exponential

distributions can capture well the VM storage demands

in terms of allocated storage capacity and used storage

volume. Table 1 summarizes the measured and fitted

values, means and 95th percentiles of capacity and used

volume are reported. Since there are on average 10 VMs

sharing the same physical box [5], a system needs to be

equipped with 450 GB of storage space for very aggres-

sive storage multiplexing schemes, i.e., only the used

space is taken into account (45× 10), or 1120 GB for

a more conservative consolidation scheme based on the

allocated capacity (112× 10). The uniform distribution

can approximately model fullness. Since the relative ra-

tio of two independently exponential random variables

is uniform [26], this further confirms that the exponen-

tial distribution is a good fit. Overall, the above analysis

gives trends for the entire VM population, which in turn

increases over the years, but does not provide any infor-
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Table 1: Three year storage volume: measured and fitted

data from exponential distribution.
mean 95th

Year 2011 2012 2013 2011 2012 2013

Capacity [GB] 122 148 186 365 436 569

Exponential 122 148 186 365 442 556

Used [GB] 47 60 76 128 165 207

Exponential 47 60 76 140 180 228

Fullness [%] 42 44 42 83 83 81

mation on how the storage volume of individual VMs

changes. In the following subsections, we focus on com-

puting the yearly growth rate and weekly upper bound of

the churn rate for each VM by presenting CDFs for the

entire VM population.

On average, a VM has 2.55 file systems with a total

capacity of 185 GB, of which roughly 42% is utilized,

implying that each VM on average stores 77 GB of data.

In general, the allocated capacity and free storage space

increases over the years, while storage fullness remains

constant.

4.2 Yearly Growth Rate

The data growth rate is predicted to double every two

years [1]. Yet, it is still not clear how this value trans-

lates into growth at the per VM data volume level, or

more importantly, whether the existing storage resources

can sustain future data demands. Here, we analyze the

long-term volume growth rates from two perspectives:

supply, i.e., from the perspective of storage capacity, and

demand, i.e., from the perspective of used storage vol-

ume.

In Figure 3, we show the CDF of the yearly relative

growth rate of allocated capacity, used space, and full-

ness, across all VMs. We compute the relative yearly

growth rate as the difference in used capacity between

June 2012 and May 2013, and divide it by the start value.

A positive (negative) growth indicates an increasing (de-

creasing) trend. Overall, the CDF of used space is very

close to fullness, meaning that the storage space utiliza-

tion is highly affected by the data demand, rather than by

the supply of the capacity.

One can see that most VMs (roughly 86%) do not up-

grade their storage, whereas the remaining 14% VMs in-

crease their storage capacity quite significantly, i.e., up to

200%. Due to this long tail, the mean increase is 40.8%.

As for the demand of space, almost all VMs increase

their used storage. Only a small amount (below 25%) of

VMs decrease their used space and have negative growth

rates. On the other hand some VMs have a three-fold in-

crease in used space. As a net result, the mean growth

of used space is 95.1%. The smallest growth belongs to

fullness: the mean rate is 19.1%. Such a value is higher
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Figure 3: CDF of yearly growth rate of VM storage vol-

ume: capacity, used space, and fullness.

than the fullness trend evaluated across the entire VM

population in Figure 2(c). Both storage capacity and

used space increase over time for each individual VM

with a mean yearly growth rate of 40% and 95%, respec-

tively. The resulting fullness also increases by 19% every

year.

4.3 Weekly Churn Rate: Lower Bound

Here, we study short-term fluctuations of storage volume

utilization, defined by the percentage of bytes that have

been deleted during a time period of a week with respect

to the used space. Note that this value represents a lower

bound on the churn rate, since what is available in the

trace is total volume in 15-minute intervals, i.e., if a VM

writes and deletes the same amount of data within the

15-minute interval, there is no way to know how much

is truly deleted during that period. We therefore report

here a lower bound on the churn rate; the true value may

be larger than the one reported here. The inverse of the

lower bound of the churn rate reveals the upper bound

of the data retention period. For example, a 20% weekly

churn rate here means that the data is kept up to 5 weeks

before being deleted. We base our computation of the

weekly churn rate of VMs on the 15-minute data col-

lected between 04/22/2013 to 04/28/2013. The churn

rate is computed as the sum of all relative drops in used

space, i.e., all negative differences between two adjacent

15-minute samples. We note that as data is also added

over this one week time frame and we consider the sum

of all deleted data, this value can go over 100%.

We present CDFs of two types of weekly churn rates

in Figure 4 (a): by VMs and by file systems (FSs). The

former gives the data volume deleted by VMs and the

latter focuses on data volume deleted from an individual

file system. Seen from the starting point and long tail of

file system’s CDF, a high fraction of file systems have a

churn rate of zero, while a small fraction of file systems

have very high churn rates. Thus a higher variability of

churn rates is observed at file systems than at VMs. To
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further validate this observation, we compute the churn

CDF of the most commonly seen volume labels of file

systems, i.e., C, D, E, F, G, and H, from Windows sys-

tems, that account for roughly 87% of the entire VM pop-

ulation. Shown in Figure 4 (b), one can clearly see that

volume label C has very low churn rate, compared to the

other labels. Such an observation matches with the com-

mon practice that C drives on Windows systems store

program files that are rarely updated and other drives are

used to store user data.

Overall, the churn rates of VMs have a mean around

17.9%, whereas churn rates of file systems have a mean

around 20.8%. This value, being a lower bound, is on

par with previous results in the literature, where a true

churn rate, computed from detailed file system traces, is

21% [31]. Most VMs have rather low churn rate lower

bounds; from Figure 4 (a) one can see that 75% of VMs

have churn rates below 15%. However, 10% of VMs

have a churn rate higher than 50%. VMs with high churn

rates pose challenges for the storage system, because a

large amount of space needs to be reclaimed and written.

5 Velocity

The most straight-forward performance measure for stor-

age systems is the IO speed, which we term velocity

within the context of VMs accessing big data in data cen-

ters. The performance at peak loads [21] has long been

a target focus for optimization. To expedite IO opera-

tions, caching [28] and IO deduplication [15] algorithms

are critical. This is especially true within the context

of virtualized data centers where the system stack, e.g.,

the additional hypervisor layer, for IO activities becomes

deeper and more complex. The evaluation of caching

and IO deduplication schemes in virtualized datacen-

ters is usually done at small scale or lab-like environ-

ments [15, 28]. We quantify VM velocity via the speed

by which data is placed in and retrieved from datacenter

storage, and further pinpoint “hot” or “cold” VMs from

the IO perspective. The statistics presented in the fol-

lowing subsections are based on hourly averages from

04/17/2013, which is shown representative for IO veloc-

ity in Section 5.1. The focus is on understanding their

variability over time and their dependency on the virtu-

alization level (i.e., on the number of simultaneous exe-

cuting VMs), as well as on peak IO load analysis.

5.1 Overview

We start this section by presenting an overview of the

daily velocity of VMs (and their corresponding boxes)

in terms of (1) transferred data per hour (GB/h) includ-

ing both read and write operations; and (2) the per-

centage of transferred data associated with read opera-

tions. Figure 5 depicts the aforementioned information

in three types of statistics: the hourly average based on

04/17/2013 (weekday), 04/21/2013 (weekend), and daily

average computed over the entire month of April 2013.

The aim is to see if the IO velocity of a randomly selected

date is sufficiently representative. Overall, the statistics

of the daily velocity on 04/17/2013 are very close to

those of a weekend day and to the statistics aggregated

from the daily average over the entire April, see the al-

most overlapping lines in all three subfigures of Figure 5.

Hence, in the rest of this paper we focus on a specific day

04/17/2013, which we consider as representative.

Shown by a lower CDF in Figure 5 (a), boxes have

higher IO velocity than VMs. The average IO velocity

for boxes and VMs are 26.7 GB/h and 2.9 GB/h, respec-
tively, i.e., the velocity for boxes is larger roughly by a

factor of 9. This factor is in line with the average con-

solidation level [5], i.e., 10 VMs per box and hints to a

linear scaling of IO activity. Regarding the percentage

of read operations, boxes have heavier read workloads

than VMs do, as shown by the CDF curve in Figure 5 (b)
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Figure 5: Daily velocity: IO read and write activities per VM and box on 4/17, 4/21, and the entire April.

that corresponds to boxes. There is roughly 12% of VMs

having only write workloads, as indicated by the leftmost

point of the VM CDF. Meanwhile, less than 1% of VMs

have read workloads only. Indeed, the mean read ratio of

boxes and VMs are 38% and 21%, respectively. Over-

all, the velocity of VMs and boxes is dominated by write

workloads.

To verify how the virtualization level affects the box

IO activity, we group the box IO activity by virtualiza-

tion level and present the 10th, 50th, and 90th percentiles,

see the boxplots in Figure 5 (c). The box IO activity in-

creases almost linearly with the virtualization level, this

can be seen by the 50th percentile. When further normal-

izing the IO velocity of a box by the number of consoli-

dated VMs, the average values per box drop slightly with

the virtualization level. This implies that there is a non-

negligible fixed overhead associated with virtualization.

We omit this graphical presentation due to lack of space.

5.2 Deduplication of Virtual IO

IO deduplication techniques [15] are widely employed to

reduce the amount of IO. The discussion in this section

is limited to virtual IO since, from the traces, there is no

way to distinguish how and where the data is dedupli-

cated and/or cached. We compare the sum of all virtual

IO activity aggregated over all consolidated VMs within

a box, termed virtual IO, divided by the IO activity mea-

sured at the underlying physical box, termed box IO, and

call this ratio the virtual deduplication ratio. In contrast

to the rest of the paper, we here use IOPS as the measure-

ment of velocity, instead of GB/h. When the deduplica-

tion ratio is greater (or smaller) than one, the virtual IO is

higher (or lower) than the physical box IO, respectively.

A deduplication ratio of one is used as the threshold be-

tween deduplication and amplification.

We summarize the CDF of the deduplication ratio in

Figure 6 (a). Roughly 50% of boxes have a deduplication

ratio ranging from 0.8 to 1.2, i.e., close to one, indicat-

ing similar IO activities at the physical and virtual lev-

els. Another observation is that most boxes experience

amplification, as indicated by deduplication ratios less

than one (including close to one), i.e., virtual IO loads

are lower than physical IOs. This can be explained by

the fact that hypervisors induce IO activities due to VM

management, e.g., VM migration.

There is a very small number of boxes (roughly 11%)

experiencing IO deduplication, as indicated by the boxes

having deduplication ratios greater than one. To under-

stand the cause of such deduplication, we compute the

separate deduplication ratio for read and write activities.

We see that the observed deduplication stems more from

read than write operations, as indicated by a higher frac-

tion of boxes (roughly 18%) having deduplication read

ratios greater than one. One can relate this observation

to the fact that read caching techniques are more straight-

forward and effective than write caching techniques.

To see how virtualization affects deduplication ratios,

we group the deduplication ratios by their virtualization

level and present them using boxplots, see Figure 6 (b).

Looking at the lower and middle bars of each boxplot,

i.e., the 10th and 50th percentiles, we see that the dedupli-

cation ratios increase with the virtualization level. Such

an observation can be explained by the fact that IO activ-

ities of co-located VMs have certain dependencies that

further present opportunities for reducing IO operations

for hypervisors. Higher virtualization levels can lead to

better IO deduplication. We note that similar observa-

tions and conclusions can be deduced by using IO in

GB/h, with the deduplication ratios roughly ranging be-

tween 0 to 3.

In addition to virtualization, the effectiveness of IO

deduplication can be highly dependent on the cache size.

Unfortunately, our data set does not contain information

about cache sizes, only memory sizes, which in turn are

often positively correlated to the cache sizes. There-

fore, to infer the dependency between cache size and IO

deduplication ratio, we resort to memory size and cat-

egorize deduplication ratios by box memory sizes, see

Figure 6 (c). The trend is that the IO deduplication ra-

tio increases with increasing memory size, though with a

drop for systems having memory greater than 512 GB.
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all consolidated VMs.

5.3 Peak Velocity of Virtual IO

Virtualization increases the randomness of access pat-

terns due to the general lack of synchronized activity

between the VMs and the larger data volume accessed,

which in turn imposes several challenges to IO man-

agement [8]. The first question is how IO workloads

fluctuate over time. To such an end, for each VM and

box, we compute their coefficient of variation (CV) of

the IO activity in GB/h during a day using the hourly

data. The higher the CV value, the higher the variabil-

ity of the IO workload during the day. Our results show

that boxes have rather stable IO velocity with an average

CV of around 0.8, while VMs have an average CV of

around 1.3.

The confirmation of higher time variability of VMs

lead us to focus on the characteristics of virtual IO ag-

gregated over all VMs hosted on the same box, in partic-

ular their peak loads. We try to capture when the peaks

of aggregated velocity happen, and how each VM con-

tributes to the peak. We do this both for a Wednesday

(04/17/2013) and a Sunday (04/21/2013) based on the

hourly IO activity data.
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Figure 8: Number of VMs to reach 80% of peak load

over all consolidated VMs.

5.3.1 Peak Timings

Figure 7 presents the empirical frequencies showing

which hour of the day the aggregated virtual peak IO

loads happen. Clearly, most VMs have peaks during

after-hours, i.e., between 6pm to 6am, for both days.

This observation matches very well with timings for peak

CPU [4] and peak network [3] activities but does not

match the belief that IO workloads are driven by the

working hours schedule [18]. Indeed, in prior work [5]

we have observed that most VM migrations occur during

midnight/early morning hours, which is consistent with

the activity seen in Figure 7. Clearly, the intensity of

virtual IO workloads is affected by background activities

such as backup and update operations that are typically

run during after-hours.

5.3.2 Top VM Contributors

Another interesting question is how consolidated VMs

contribute to peak loads. Information on top VM con-

tributors to peak loads is critical for improving peak load

performance via caching [21, 28]. We define as top con-

tributors the co-located VMs having the highest contribu-

tions to the peak load in order to reach a certain thresh-

old, i.e., 80% of the peak load in this study. We sum-

marize the distribution of the number of top VM contrib-
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Figure 9: Cold vs Hot VMs: volume, time variability in a day, and weekly storage space churn. The x-axis is IO in

GB/h and y-axes are fullness [%], coefficient of variation (CV), and weekly churn rate.

utors for both days in Figure 8. Interestingly, one can

see a clear trend indicating that it is very common that

a small number of VMs dominates peak loads for both

days. Such a finding is similar to the one reported in [28],

where only independent (i.e., not co-located) VMs are

considered. These results further show that making a pri-

ority the optimization of the IO of a few top VMs may

have a large impact on overall performance.

5.4 Characteristics of Cold/Hot VMs

Motivated by the fact that a few number of VMs con-

tribute to peak loads, we try to capture the character-

istics of VMs based on their IO activity in GB/h, aim-

ing to classify the VMs as cold/hot. The hotness of the

data is very useful to dimension and tier storage systems;

e.g., cold data in slow storage media and hot data in flash

drives. To this end, we compare the used volume, time

variability, and churn rate of VMs grouped by different

levels of IO activity, see Figure 9 (a), (b), and (c), respec-

tively. Each box represents a group of VMs having an

average activity falling into the IO activity range shown

on the x-axis.

The 50th percentile, i.e., the middle bar in each box-

plot, increases with the IO activity level for both the full-

ness and churn rate. Overall, VMs with high IO activ-

ities are also fuller and have higher churn rates, com-

pared to VMs with low IO activities. For fullness, not

only the 50th percentile, but also the entire boxes shift

with the IO activity level. To see if the reverse is also

true, we classify the IO activity level by different lev-

els of used space both in GB and percentage. The data

shows that high space usage indeed results in high IO ac-

tivity, especially when measured in GB. However, VMs

with very full storage systems, i.e., 90-100% occupancy,

have slightly lower IO activity than VMs with 80-90%.

This stems from the fact that most storage systems have

optimal performance when they are not completely full.

A common rule of thumb is that the best performance

is achieved when the used space is up to 80%. Hence,

only cold data is placed on disks with a higher percent-

age of used space. Due to space constraints, we omit the

presentation of this set of results.

The time variability shows a different trend, i.e., the

CV first increases as IO velocity increases but later de-

creases, see Figure 9 (b). The hottest VMs, i.e., the ones

with IO greater than 9 GB/h, have the second lowest

CV, as can be seen from the 50th percentile. We thus

conclude that hot VMs have relatively constant, high IO

loads across time.

Regarding churn rates, both the 50th and 90th per-

centiles clearly grow with IO activity levels, indicating

strong correlation between IO activity and churn. Such

an observation matches very well with common under-

standing that hot VMs have frequent reads/writes, re-

sulting in frequent data deletion and short data retention

periods. This is confirmed by our data showing quan-

titatively that 50% of hot VMs, i.e., VMs having an IO

activity level of 9 GB/h or more, have data retention pe-

riods ranging between 11.11 (1/0.09) and 1.02 (1/0.98)
weeks. In summary, hot VMs have higher volume con-

sumption (55%) and churn rates (9%).

6 Variety

The trace data allows to distinguish application types for

a subset of VMs. Here, we select the following applica-

tions: app, web, database (DB), file, mail, and print, and

characterize their volume and velocity. Our aim here is

to provide quantitative as well as qualitative analysis that

could be used in application-driven optimization studies

for storage systems. The app servers host key applica-

tions for clients, such as business analytics. DB servers

run different database technologies, such as DB2, Ora-

cle, and MySQL. File servers are used to remotely store

files. Due to business confidentiality, it is not possible

to provide detailed information about these applications.

We summarize the storage capacity, used space, weekly

churn rate, IO velocity, percentage of read operations,

and time variability using boxplots for each application
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Figure 10: Application’s storage volume and IO velocity.

type, see Figure 10. We mark the 10th, 50th, and 90th

percentile of VMs belonging to each application. Most

statistics are based on the data collected on 04/17/2013,

except for the weekly churn rate that is based on data

between 04/22/2013 to 04/28/2013.

Storage Capacity: File VMs have the highest ca-

pacities, followed by DB VMs – see the relative values

of their respective 50th percentiles. Mail, print, web, and

app have similar storage capacities, but print VMs have

the highest variance – see the height of the boxplot.

Volume: Fullness shows a slightly different trend

from the allocated storage capacity. File VMs are also

the fullest, hence they store the largest data volume.

Database VMs that have the second highest allocated ca-

pacities are now the least full, hinting to large amounts

of free space. In terms of variability of fullness across

VMs in the same application type, print VMs still have

very different storage fullness.

Weekly Churn Rate: DB VMs have the highest

weekly churn rate, with some VMs having churn rates

greater than 120%, hinting to frequent updates where a

lot of storage volume is deleted and reclaimed. Unfor-

tunately, due to the coarseness of the trace data, we can-

not confirm whether this is due to the tmp space used

for large queries, although this is a possible explanation.

Such an observation goes hand-in-hand with low fullness

of DB. Based on the value of 50th percentile, print VMs

have the second highest churn rate, as print VMs store

many temporary files, which are deleted after the print

jobs are completed. Due to dynamic contents, app and

web VMs have high churn rates as well, i.e., similar to

the mean churn rate of 17.9% shown in Section 4.3.

IO Velocity: Applying characteristics of hot/cold

VMs summarized in Section 5, it is no surprise that file

VMs have the highest IO velocity, measured in GB/h.

According to the 50th percentile, mail and DB VMs have

the second and third highest IO velocity. Print, web, and

app VMs experience similar access speeds.

Read/Write Ratio: All application VMs have

their 50th percentile of read ratio less than 50%, i.e., all

application types have more write intensive operations

than read operations. Indeed, as discussed in Section 5,

VMs are more write intensive. Among all, app VMs

have the lowest read ratio, i.e., lower than 20%. In con-

trast, print VMs have the highest read ratio close to 50%,

which is reasonable as print VMs have rather symmetric

read/write operations, i.e., write files to storage and read

them for sending to the printers.

Time Variability: To see the IO time variability

per application, we use their CV across a day, computed

from 24 hourly averages. DB and file show high time

variability by their 50th percentile being around 1.8. As

web VMs frequently interact with users who have strong

time of day patterns, web VMs exhibit time variability

as high as file and DB VMs. Mail, print, and app VMs

have their CV slightly higher than 1, i.e., IO activities are

spread out across the day.

In summary, file VMs have the highest volume, veloc-

ity and IO load variability, but with a rather low weekly

churn rate around 10%. DB VMs have high volume, ve-

locity, IO load variability and churn rate, but with very

low fullness. Mail VMs have moderate volume, and high

velocity evenly across the day. All application VMs are

write intensive.
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Figure 11: Dependency among IO [GB/h], CPU[%], Network [Mb/s].

7 Interdependency of CPU and Network

Since the statistical analysis presented here is based on

the perspective of VMs and boxes, it is possible to corre-

late the storage workloads with those of other resources,

in particular CPU and network. Using hourly averages

from 04/17/2013, we capture the dependency of VM IO

activities on CPU utilization and network traffic mea-

sured in megabits per second (Mb/s). We focus on the

following two questions: (1) what are the most repre-

sentative patterns of IO, CPU, and network usage; and

(2) what is the degree of dependency among these three

resources. For the first question, we use K-means clus-

tering to find the representative VM workloads. For the

second question, we use the correlation coefficients for

each VM for any pair of IO, CPU, and network, and sum-

marize their distributions.

7.1 Representative VM Workloads

When presenting the VMs’ daily average IO, CPU, and

network by means of a three dimensional scatter plot,

there are roughly 90,000 VM points. Due to the unavoid-

able over-plotting, there is no obvious pattern that can

be identified via visual inspection. To identify represen-

tative VM workloads, we resort to K-means clustering.

Due to the lack of a priori knowledge on the number of

VM clusters, we first vary the target number of clusters

from 3 to 20 to observe clustering trends over an increas-

ing number of clusters. Our results show that the overall

trajectories of cluster centroids are consistent across dif-

ferent number of clusters. In Figure 11 (a), we present

the centroids of 5 clusters. When the cluster number fur-

ther increases beyond 5, more centroids appear on the

line between the first two lowest centroids.

To take an IO-centric perspective, we analyze the rep-

resentative VM workloads by looking at projections of

VM centroids on the IO-CPU and IO-network planes,

see Figure 11 (b). When looking at the IO-CPU plane,

we see that IO workloads increase with CPU utilization

in an exponential manner. The VM centroid with the

highest IO (around 342GB/h), i.e., the rightmost point,

has the highest CPU utilization (around 36%). In the IO-

network plane the trend is less clear. One can observe

that the first four VM centroids roughly lie on a line hav-

ing their network traffic increasing at the same rate as

their IO velocity. However, the last VM centroid with

the highest network traffic (around 917Mb/s) has a rel-

atively low IO activity (around 97GB/h). Overall, the

majority of representative VMs have IO workloads that

increase commensurately with CPU loads and network

traffic, while very IO intensive VMs tend to heavily uti-

lize the CPU but not the network.

7.1.1 Correlation Coefficients

In Figure 11 (c), we present the 10th, 50th, and 90th per-

centiles of the correlation coefficients of IO-CPU, IO-

network, and CPU-network. To compute correlation

coefficients of the aforementioned three pairs, for each

VM/box, we use three time series of 24 hourly averages:

IO GB/h, CPU Utilization, and network traffic.

Among all three pairs, IO-CPU shows the highest cor-

relation coefficients, especially for VMs. The 50th per-

centile of the IO-CPU correlation coefficient for VMs

and boxes is around 0.65 and 0.45, respectively. This

indicates that IO activities closely follow CPU activities.

Such an observation is consistent with the clustering re-

sults. The correlation coefficients for boxes are slightly

lower than for those of VMs. Indeed, there is a certain

fraction of boxes and VMs that exhibit negative depen-

dency, and this is observed more prominently between

IO and network. As for the network-CPU pair, VMs and

boxes demand both resources roughly in a similar man-

ner, supported by that fact that the correlation coefficient

values are mostly above zero.

8 Conclusions

We conducted a very large scale study in virtualized, pro-

duction datacenters that operate under the private cloud
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paradigm. We analyze traces that correspond to the ac-

tivity across three years of 90,000 VMs, hosted on 8,000

physical boxes, and containing more than 22 PB of ac-

tively used storage. IO and storage activity is reported

from three viewpoints: volume, velocity, and variety, i.e.,

we take a holistic view of the entire system but also look

at individual applications. This workload characteriza-

tion study differs from others from its sheer size both

from observation length and number of traced systems.

Yet while some of our findings confirm those reported

on smaller studies, some others provide a different per-

spective. Overall, the degree of virtualization is iden-

tified as an important factor in perceived performance,

ditto for the per application storage requirements and de-

mand, pointing to directions to focus on for better re-

source management of virtualized datacenters.
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