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Abstract
Scalable, highly reliable distributed systems supporting
data deduplication have recently become popular for
storing backup and archival data. One of the important
requirements for backup storage is the ability to delete
data selectively. Unlike in traditional storage systems,
data deletion in distributed systems with deduplication is
a major challenge because deduplication leads to mul-
tiple owners of data chunks. Moreover, system config-
uration changes often due to node additions, deletions
and failures. Expected high performance, high availabil-
ity and low impact of deletion on regular user operations
additionally complicate identification and reclamation of
unnecessary blocks.

This paper describes a deletion algorithm for a scal-
able, content-addressable storage with global dedupli-
cation. The deletion is concurrent: user reads and
writes can proceed in parallel with deletion with only mi-
nor restrictions established to make reclamation feasible.
Moreover, our approach allows for deduplication of user
writes during deletion. We extend traditional distributed
reference counting to deliver a failure-tolerant deletion
that accommodates not only deduplication, but also the
dynamic nature of a scalable system and its physical re-
source constraints. The proposed algorithm has been ver-
ified with an implementation in a commercial dedupli-
cating storage system. The impact of deletion on user
operations is configurable. Using a default setting that
grants deletion maximum 30% of system resources run-
ning the deletion reduces end performance by not more
that 30%. This impact can be reduced to less than 5%
when deletion is given only minimal resources.

1 Introduction

A scalable secondary storage keeps backups for
a large number of protected systems. Backup
servers write concurrently many backup streams

(full/incremental/differential) and delete specified back-
ups according to implemented backup retention policies.
Backup applications access such system usually with a
standard protocol like NFS or CIFS; these applications
are often not aware of special functionality provided by
the storage system like deduplication.

Secondary storage for enterprise market needs to of-
fer key features like large capacity, high performance
and high reliability. Since backup involves storage of
multiple versions of similar data, deduplication is also
naturally a desired functionality of such systems. With
deduplication, logical storage capacity is far larger than
physical space available resulting in substantial savings.
Moreover, storing highly duplicated backup streams is
usually much faster than writing the same data without
deduplication. As a result, powerful scalable deduplica-
tion systems [9, 10, 12, 13, 14, 16, 21, 28] deliver short-
ened backup windows which is of primary importance to
enterprise customers.

In this work we present a deletion algorithm designed
for scalable deduplicating systems, in which dedupli-
cation is delivered with a content-addressable storage
(CAS) using variable size blocks. This approach is quite
popular today in commercial systems [10, 12, 13, 14].
We assume that block references as pointers to other
blocks are made explicit in the storage. Deleting data in
such system is in a way similar to the traditional concur-
rent garbage collection. However, in our case the dele-
tion is significantly complicated by deduplication. For
example, a simple solution of disabling deduplication
when deletion is running may increase space consump-
tion considerably, which may be not acceptable. Far bet-
ter approach is to allow deduplication all the time, even
concurrently with deletion. Desired system scalability,
failure tolerance and support for dynamic reconfigura-
tion further complicate the deletion for such systems.

This paper makes the following contributions. First, it
identifies requirements for deletion in a distributed block
store supporting deduplication. Second, we present an

1



162  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

algorithm satisfying these requirements and its imple-
mentation in a commercial system HYDRAstor [10] (in
particular, this new algorithm allows for writing with
deduplication during deletion, whereas the one described
in [10] required a read-only period to perform deletion).
Third, this work discusses the results of an evaluation of
the deletion procedure, demonstrates its efficiency and
illustrates impact of the deletion on user operations.

The remainder of this paper is organized as follows.
Section 2 discusses deletion requirements. The chal-
lenges for deletion introduced by CAS with deduplica-
tion are identified in Section 3. Section 4 defines user-
visible data model and proposed semantics of deletion
which allows for active deduplication during deletion.
The deletion algorithm implementing this semantics in
a centralized storage is discussed in Section 5. Section 6
introduces a CAS-based distributed system and discusses
modifications of our deletion algorithm for such archi-
tecture. Section 7 describes how the implemented dele-
tion addresses the requirements identified earlier. The
implementation of our deletion algorithm in a commer-
cial system and the resulting performance are discussed
in Section 8. Related work is given in 9. We conclude
and discuss future work in Section 10.

2 Requirements on deletion

The deletion in all systems must first of all let users
delete data selectively and preserve data which users de-
cided to keep. Usually, once data is marked for dele-
tion, space reclamation is done immediately to ensure
high storage utilization. However, for a secondary stor-
age supporting deduplication, space reclamation can be
delayed because such storage is already highly space-
efficient due to deduplication. Moreover, immediate
retrieving of unused space in such systems could re-
quire significant resources like CPU and disk spindles,
whereas delayed reclamation of unused space in batches
can be implemented efficiently.

In enterprise backup system we need to minimize the
impact of deletion on user operations such as backup, re-
store and replication. This functionality is expected to
be available 24x7 and its performance should not suffer
much from deletion running. Limiting running deletion
to read-only periods is difficult to accept as it may result
in insufficient backup windows. During deletion, dedu-
plication of data being written by clients should be con-
tinued, as disabling it could lead to system becoming full
and stopping user backup.

Additionally, the impact of deletion on user operations
should scale proportionally with the whole system.

With an increasing number of machines and disks
in the system, the probability of hardware failures in-
creases. To ensure system availability, the deletion pro-

cess must be able to continue its operation in the presence
of multiple disk, node and network failures. Moreover,
since ability to delete data is critical for operation of the
system, the deletion process should be able to re-start
and finish even in case of permanent data failure; that is
why resiliency of deletion should be in fact higher than
resiliency of user data.

Last but not least, the deletion should not require ad-
ditional significant storage to complete.

3 Challenges for deletion introduced by
content-addressable storage

Standard garbage collection techniques are not easily ap-
plicable to the problem of deleting data in a CAS-based
system with deduplication.

3.1 Simplified model of CAS-based system
supporting deduplication

A CAS-based storage comes with an interface available
for its clients. A backup application usually does not
use this interface directly, instead it is used by a software
driver to implement standard protocols like NFS or CIFS,
as depicted in Figure 1(a). A basic data unit used in this
interface is a block. Besides binary data, blocks can con-
tain pointers to other blocks which are those block ad-
dresses. A block address is derived from the block con-
tent, including pointers to other blocks if there are any.
Content-addressing implies that blocks are immutable, as
otherwise their addresses would change. However, the
metadata associated with each block is mutable.

(a) (b)

Figure 1: (a) System architecture. (b) User-visible data
model (shaded rectangles represent data, white - block
addresses). The first two backups of fs1 have been fin-
ished. Root of the third backup has not been written yet.

Because of deduplication, an address returned by a
block write can refer to an already existing block called
a base block for this duplicate write.

By writing blocks, a client can create a graph of
blocks. Since blocks are immutable, such graphs are
acyclic so our simplified model is similar to hash-based
directed acyclic graphs (HDAGs) described in [15].
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In our model, each file system version is represented
by one tree of blocks, with multiple trees sharing dedu-
plicated blocks. Exposing pointers as part of block data
not only makes block references explicit which simpli-
fies deletion, but also allows for deduplication of blocks
with pointers. This is very important for ensuring high
dedup efficiency when subsequent backups do not dif-
fer much and backup differentials contain mostly blocks
with pointers. An example of consecutive backups is pre-
sented in Figure 1(b).

Additionally, there is a mechanism to specify which of
the trees are alive and should be preserved and which are
dead and should be deleted. The details of this mecha-
nism are described later.

3.2 Root set determination
In a traditional garbage collection, object accessibility
is determined with respect to the root set usually com-
posed of global and active local variables of a running
program. Alive objects belong directly to the root set or
can be reached from it by graph traversal. Since garbage
collection in program runtime has full knowledge of pro-
gram variables, computation of the root set is easy. How-
ever, it is more difficult in a storage system like described
above, because its root set contains not only alive tree
roots (corresponding to global variables), but also blocks
which addresses can still be used by clients. These ad-
dresses are like values of local variables in programming
languages, but the selection of such addresses by clients
can be potentially arbitrary.

Without any restrictions on remembering block ad-
dresses by clients, potentially all blocks would constitute
a root set. Therefore, we need to limit the set of addresses
a client can keep in the least restrictive way for a client.

3.3 Supporting deduplication while run-
ning deletion

To avoid increased storage consumption caused by dele-
tion, we reject solutions disabling deduplication during
deletion. While it is running, an address of a block al-
ready scheduled for deletion can be returned to the client
again as a result of deduplication. Since such block ad-
dress can be used by the client, this block should not be
removed even if deletion algorithm was about to decide
otherwise. Therefore, a block resurrection through du-
plicate elimination must be traced by the deletion algo-
rithm. For comparison, in the standard garbage collec-
tion, an inaccessible object cannot be resurrected. Preser-
vation of deduplicated blocks is in fact a fundamental
challenge for our deletion algorithm.

An alternative solution of writing new copies of dupli-
cates of blocks to be deleted is not implementable, since

we do not know which blocks will be marked for deletion
until new counters are computed.

4 Client-visible semantics

In this section we extend the simplified model described
in 3.1 to make it more realistic and to facilitate deletion.
Besides enabling deletion, this model has been also vali-
dated with an implementation of a file system [30].

4.1 Block types
To access a tree of blocks, a client would have to re-
member cryptic block address of a root block. To avoid
that, we introduce two block types: regular blocks and
named blocks. Regular blocks are like described earlier
and can be pointed by other blocks. Named blocks can
be read with associated client-specified search keys. The
search key can be an arbitrary string and is provided by
the client along with binary data and pointers on named
block write. For simplicity and to express intention of
being root blocks, named blocks cannot be pointed by
other blocks. Because named blocks are read with their
keys only, the system prevents writing two named blocks
with the same key and different content. Deduplication
also works for named blocks.

The address of a regular block is not just a hash of
its content; instead such address includes system-specific
information unique to write which created this block. As
a result, the block address cannot be derived from a block
content by clients without writing such block first; there-
fore, block graphs can be built bottom-up only.

4.2 Deletion granularity
Removal of an arbitrary block should not be supported
in a CAS-based system, as it could lead to creation of
a dangling reference by deleting a block pointed by an-
other existing block in the system. Instead, a CAS-based
system should allow to mark all blocks reachable from a
given named block as no longer needed.

To express this, we introduce two sub-types of named
blocks (after [10]): retention roots and deletion roots.

A retention root marks blocks reachable from it as the
ones to be preserved, whereas a deletion root ”cancels
out” this property for the matching retention root. A
deletion root matches to a corresponding retention root
only if both have the same search key (this is an excep-
tion to the rule that any two named blocks should have
their search keys different). Instead of having two differ-
ent types of named blocks there could be just one type
with retention flag in mutable block metadata. However,
with a distinct deletion root there is a separate persistent
request to remove a given tree of blocks. This allows
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for simplification of the deletion algorithm, as it does not
have to process deletion requests immediately, and in-
stead can process them in batches as described later.

An example of graph of blocks can be found in Fig-
ure 2.

Figure 2: User-visible data model with named block
types marked.

A retention root is alive if there is no matching dele-
tion root in the system. Otherwise it is dead. Note that
regular blocks not reachable from alive retention roots
are treated as not to be preserved. An opposite ap-
proach would lead to leaving inaccessible garbage for-
ever if a client application crashes during building a tree
of blocks.

As discussed in 3.2, the root set includes also blocks
remembered by clients, which leads to the following:

Invariant 4.1. (Invariant of block preservation) The sys-
tem preserves all blocks reachable from alive retention
roots and blocks whose addresses can be used by clients.

We call all blocks to be preserved as alive. If a block
is not alive, we call it dead.

As explained earlier, to enable deletion we need to
have an agreement between clients and the system that
restricts the set of addresses which can be used by clients.
Details of this protocol are given in the next section.

4.3 Restrictions on client-kept addresses
Since a client can potentially keep all obtained block ad-
dresses, we define restrictions on how clients can use
them. This is done by introducing a virtual client-visible
time built with so-called epochs. An epoch is a global
counter with an advance operation. At any given point
of time, the system is in only one epoch called the cur-
rent epoch. We later show that frequency of advances is
bound to frequency of garbage collection cycles.

Each block address obtained by a client has an epoch
associated with this address. The system verifies on writ-
ing that an address with the associated epoch T can only
be used in epoch T and T + 1. For reading, client can
still use an address with an older epoch associated but the
read may fail if the block was deleted.

An epoch associated with an address of a given block
depends on how this address was obtained. The rules of
epoch assignment are given in Table 1 and are also dis-
cussed below. These rules have been selected to ensure
correctness of the deletion implementation, as shown in
Section 5.6.

Epoch of Epoch of
written block addresses

(new and within
deduplicated) read block

Regular block
without
pointers

current epoch N/A

Regular block
with
pointers

minimum of epoch of
epochs of block supplied address

addresses inserted

Retention root N/A current epoch

Table 1: Rules of epoch assignment for read and write
operations.

On writing of a regular block without pointers the sys-
tem returns a block address with the current epoch as-
sociated. When a block being written contains point-
ers, the epoch returned with this write is the minimum
of epochs of these pointers (so-called minimum rule).
Named blocks do not have regular addresses, so no epoch
is assigned. An epoch returned on write does not depend
on the duplicate status of a block being written.

Block addresses can also be obtained by reading
blocks with pointers. Epochs of pointers obtained by
reading a block are identical. For a regular block with
pointers, this epoch is equal to the epoch associated with
the address of the read block. For a named block with
pointers, this epoch is equal to the current epoch.

Recall that the process of tree building requires a client
to keep the addresses of already written blocks to insert
them into parent blocks. However, after epoch introduc-
tion, only addresses stamped with the current and the pre-
vious epoch are allowed in successive blocks creation.

After the current epoch is advanced from T to T + 1,
all clients are notified in order to discard all addresses
with epoch T . Here discarding pointers means commit-
ting them to a tree pointed by an alive retention root. This
needs to be completed before the epoch can be advanced
to T + 2. In epoch T + 2, the system rejects writing
blocks with pointers when even a single pointer has an
address with an associated epoch smaller than T +1. The
system also rejects attempts to read dead retention roots
to restrict the set of block addresses that can be kept by
clients. Such constraint is irrelevant for correctly behav-
ing clients but essential for a correct implementation of
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our deletion procedure.
Note that epochs of addresses are not persistent and

exist only in memory of the system and its clients. In par-
ticular, disk representation of block with pointers does
not contain any epochs, instead they are assigned to ad-
dresses only in the context of client operations according
to the rules defined above.

With epochs, we can more precisely describe the in-
variant for block preservation because only blocks with
addresses in the current and previous epochs can be used
by clients.

4.4 Alternatives

It is possible to hide epochs from user by refreshing them
in some intermediate layer which is informed by a client
about addresses it wants to keep alive even though they
are not yet reachable from any alive retention root. In
such approach, this layer would automatically refresh
such addresses on epoch changes as described above.
Since there are only few client types so far, packaging
epoch operations in such layer has not been done yet.

One more alternative is to provide an atomic operation
to write a set of blocks with a temporary retention root (to
be deleted later). This approach has a nice property that
all blocks kept by the system are reachable from some re-
tention root. However, a buggy or malicious client would
be able to use addresses of deleted blocks and in conse-
quence write a block with dangling pointers, which is
impossible with epochs.

5 Deletion algorithm on block level

Below we describe the deletion procedure assuming it
works on block level in a centralized system. The issues
related to distributed storage architecture are addressed
in later sections.

5.1 Deletion organization

Our deletion algorithm uses a well-understood tech-
nique of reference counting. Each block has a reference
counter tracking the number of other blocks pointing to
the counter owner. However, when a new block is writ-
ten, counters of pointed blocks are not altered on-the-fly.
Such immediate update would be very expensive due to
possibly random I/O for every child block that can be
located anywhere in the system. Instead, reference coun-
ters are updated in the background.

The whole deletion consists of two phases run period-
ically: garbage identification in which new counter val-
ues are computed and space reclamation during which

storage space is reclaimed by removing garbage identi-
fied in the first part. As pointed out in Section 2, imme-
diate reclamation is not necessary in secondary storage
systems. Moreover, it is not advisable because of po-
tential for increased resource consumption and required
synchronization with ongoing deduplication.

In the remainder of this paper, by deletion we denote
the garbage identification phase only. Deletion is started
on demand, and in real usage scenarios its frequency
varies from 1 per day to 1 per week. This frequency
depends on available space (the less space, the higher
frequency) and a particular backup policy implemented
(for example it makes sense to run deletion each time the
oldest backup is removed).

5.2 Base garbage identification
We now describe a base algorithm for garbage identifica-
tion that serves as an extendable base for the final version
of block-level deletion. The procedure as sketched here
works smoothly but only if there are no writes overlap-
ping with deletion. Handling of such case requires epoch
mechanism and is described later.

Each run of garbage identification phase calculates
counters of blocks written only up to a certain moment in
time. For every block, there are two versions of counter
during deletion: an effective one that is persistent and
a temporary one used to store partial result of the dele-
tion algorithm. On a deletion abort caused for example
by a failure temporary counters can be discarded with no
harm to the persistent ones.

Every started run divides blocks in three disjoint
classes as shown in Figure 3. Membership in those
classes is based on the time when block is written to the
system for the first time. The first class contains blocks
written before the last successful deletion start. We call
them done blocks. The second class contains blocks writ-
ten later but still before the current deletion start - we call
them todo blocks. Finally, blocks written after the current
deletion start belong to the third class called new blocks.
Todo blocks will be processed by the current deletion to
reflect not yet processed pointed-to relations to both todo
and done blocks. This can result both in incrementation
and decrementation of a counter of some done or todo
block. New blocks are not processed in this deletion run
and they do not influence counter values of other blocks
for now. This influence will be computed in the next
deletion run. In particular, all new deletion roots have
no effect in this deletion run. Until the current deletion
finishes, all new blocks are simply preserved and their
counters are set to a special initial value. The next dele-
tion run will process only new blocks which will become
todo blocks for this run, i.e. the counters update process
is incremental.
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
















Figure 3: The statuses of blocks during garbage identifi-
cation.

Each deletion run proceeds in subphases as follows.
First, in the incrementation subphase all todo blocks that
point to other blocks are read in and their target blocks
counters are incremented. During such incrementation
the initial value is treated as 0.

Next, in the decrementation subphase we first identify
starting blocks for the counters decrementation. These
are all retention roots with matching deletion roots as
well as regular todo blocks that did not get their coun-
ters incremented (for now, we assume there are no new
blocks pointing to them). Counters of such blocks are
changed to 0.

All pointers from so identified garbage cause counters
decrementation in blocks pointed by the garbage. Decre-
mentation may also cause some other block counters fall
to 0. Thus, new garbage is possibly identified again,
and decrementation is repeated until no new garbage is
found.

After that, in the commit subphase garbage blocks are
made as no longer readable by making temporary coun-
ters persistent.

5.3 Space reclamation
We assume here a container-based storage organization
similar to the one described in [10], but in a centralized
system. A container keeps a set of blocks with associ-
ated block metadata. The system tries to keep a size of
each container within a specified range of allowed sizes.
Initially, a new container keeps all non-duplicate blocks
written sequentially in a given window of time. After a
new container reaches its desired size, it is closed, and
newly written blocks are stored in a new container.

After garbage identification, space is reclaimed by a
container sweep which discards deleted blocks. To speed
up reclamation, priority is given to containers that have
the highest ratio of data to be removed. After space recla-
mation, adjacent containers can be merged into one to

avoid too small containers. Storage is reclaimed in the
background as needed or when there are free cycles to
perform the reclamation. The priority of reclamation in-
creases when the system is close to become full.

5.4 Problems with the base garbage identi-
fication algorithm

Consider the case in Figure 4(a), in which a block A has
been written just before the deletion start and a retention
root R pointing to A has been written just after this point
in time. Here, A is definitely not pointed by any other
block but R which is new; hence, skipped by the identi-
fication process. As a result, A is removed mistakenly.

(a) (b)

Figure 4: (a) Retention root is written to A after the dele-
tion starts. A should not be deleted. (b) A becomes du-
plicate after deletion starts and should not be deleted.

The next problem is caused by deduplication and is il-
lustrated by Figure 4(b). Consider a todo block A which
is not pointed by any other block when the current dele-
tion starts. If a client writes a duplicate block A and then
a retention root R that points to A, both should be pre-
served. However, the deletion process will identify A as
garbage since neither any todo nor old block points to it.
Removing of A is then incorrect and leads to data loss.

5.5 Refinements of the base algorithm to
accommodate new writes

5.5.1 Double advance

A solution to the problem illustrated in Figure 4(a) makes
use of epoch restriction described in Section 4.3. Re-
call that a client is not allowed to keep an address older
than the previous epoch. With deletion start there are
two epoch advances, one after the other. As a result,
no new references to block A can be created using an
address of A stamped with old epoch after such double
advance. Still, such reference can be created between
the first and the second advance. To solve problem com-
pletely, we need to increment counters of blocks pointed
by all blocks written for the first time between the first
and the second advance. Note that we do not decre-
ment counters of blocks pointed by such pointers, as it
would lead to removal of some new blocks and violation
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of our basic assumption to preserve unconditionally new
blocks during deletion. Therefore, increments are always
shifted by one epoch ahead as shown in Figure 5. Also,
we should note here that references to A can also be cre-
ated via deduplication during deletion but handling this
cases is described in the next section.




























Figure 5: Borders of incrementation and decrementation
during garbage identification when writes are allowed.

A deletion run covers one full epoch and a part of
the next one as shown in Figure 5. The first epoch
called preparation epoch allows clients to discard ad-
dresses with old epochs, as described above. In the sec-
ond epoch, called deletion marking epoch, actual dele-
tion computation is performed. There is no reason to
bump current epoch at the end of the deletion run. Ad-
vance operations are coordinated by a separate manage-
ment entity in the system that makes sure that the next
advance is executed only if all clients confirmed the dis-
posal of the old addresses. Misbehaving clients that do
not confirm this within a limited time (for example due
to a failure) are ignored.

The frequency of garbage identification automatically
impacts the number of epoch advances. In theory, the
frequency of epoch advances could be higher than the
frequency of running the identification phase but there is
no good reason to do so.

5.5.2 Preserving deduplicated blocks

To solve the problem shown in Figure 4(b), base blocks
of duplicate writes are marked on write as non-removable
during the current deletion by setting a so-called undelete
marker. These markers are set from the beginning of
deletion until start of the commit subphase. In this sub-
phase, whenever a block is about to be logically removed
(i.e. its newly computed counter is 0) and has the un-
delete marker set, such block is preserved by restoring its
counter to the special initial value. As a result of this pro-
cess called undeletion, the affected blocks are undeleted.
Note that we do not undelete base blocks that are also

new blocks because such blocks are not removed by the
current deletion run anyway.

While the commit subphase is in progress we still need
to deduplicate writes. However, continuing writing un-
delete markers in the commit subphase would create a
race between setting and using them to restore counters
to the initial value. Instead, we use the base block filter-
ing. A write is deduplicated only in one of the following
cases: the newly computed counter of the base block is
positive; or undelete marker is set; or the base block is
a new block. Otherwise, a fresh block is written even
if its potential base block already exists in the system.
This process allows for accurate deduplication during the
commit subphase, i.e. it avoids resolving a write as a du-
plicate if the corresponding base block is just about to be
deleted. Undelete markers are cleared on deletion com-
pletion.

Fast access to undelete markers is critical for dedupli-
cation speed, so we keep markers in RAM as bitmaps.

A completed deletion run may result in undeleted
blocks with counter values set to the initial value. The
next deletion run needs to decide if these blocks really
should be kept. This is done with additional incremen-
tation which is recursive, unlike regular incrementation
from todo blocks. In a recursive incrementation, for each
undeleted block from the previous deletion pointed by at
least one of the new deletion todo blocks, we increment
counters of pointed blocks and continue the increments
as long as undeleted blocks are encountered. Counters
of undeleted blocks not reached by recursive incremen-
tation are simply changed to zero.

Note that, in the context of the last completed dele-
tion run, undeleted blocks can only be pointed by other
undeleted blocks or new blocks. If a given undeleted
block is reachable from any new block, such undeleted
block will be reached by recursive incrementation pro-
cess described above. Otherwise, an unreachable un-
deleted block will be identified as garbage by this dele-
tion run.

5.6 Deletion correctness analysis
We claim that our deletion procedure is correct, i.e. it
does not remove blocks reachable from root set defined
in Section 3.2. Ideally, we should also be able to show
that garbage identification is complete i.e. removes all
blocks not reachable from the root set. However, it is
not the case, because all blocks written during the cur-
rent deletion run are preserved: non-duplicates are pre-
served unconditionally, and duplicates are preserved be-
cause of undelete markers. In particular, such recently
written blocks not reachable from any retention root are
also preserved. This is only a minor problem, since we
show below that such blocks will be deleted by the next
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deletion run.
Now we introduce some terminology useful to prove

our claims. All client operations that can affect the set of
remembered addresses are writes, reads and discarding
some of these addresses. The number of such operations
executed during garbage identification is finite (n) and
they are done in some order; let us assign consecutive
natural numbers to them (i = 1..n). We denote as the i-th
moment the time when the operation i finishes. Note that
the first advance precedes any operation in this sequence
and the second advance happens somewhere in the mid-
dle of it. Having the order defined, let {Ui}i∈1..n be a
sequence of sets of addresses remembered by a client re-
stricted to addresses valid for writing, i.e. we assume
that in epoch T the client does not keep addresses from
epochs T − 2 and earlier. Additionally, we define a par-
allel sequence {Ri}i∈1..n of sets consisting of retention
roots alive before the first advance or written after first
advance. Sets Ri change with each newly written root
after the first advance. Deletion roots written after the
first advance are not taken into account here as they do
not influence this deletion run. Let Si = Ui ∪ Ri. Op-
erations that modify Ui are regular block writes, reads of
any type of block with pointers, and discarding of kept
addresses. Operations that modify Ri are retention root
writes. Every operation changes only one of these sets.

Note that at i-th moment any member of Ui is read-
able. Also, note that at every point of time Si is a su-
perset of a root set, because Si contains also retention
roots which have already a deletion root associated writ-
ten during this deletion run. To prove the correctness
of the deletion procedure, it is enough to show that all
blocks reachable from Sn are preserved. Using mathe-
matical induction the stronger thesis could be proven.

Theorem 5.1. (Correctness property) The following
members of set Si will be preserved by the deletion run
that ends in epoch T :

1. all retention roots that belong to Ri,

2. all addresses in Ui with an associated epoch equal
to T − 1 or T ,

3. addresses in Ui with epoch T − 2 if pointed by any
retention root from Rn,

4. all blocks reachable from (1), (2), or (3)

The complete proof has been omitted due to space
constraints. For almost all cases which modify set Ui an
inductive step is trivial, non-trivial cases, like writing du-
plicates or reading old blocks, are covered by: undelete
markers, base block filtering (see Section 5.5.2) and the
fact that deletion preserves blocks with addresses with
associated epoch T − 2 reachable from retention roots
written in system epoch T − 1 (see Section 5.4).

Now we will define the class of blocks that the deletion
removes.

Theorem 5.2. (Non-emptiness property) A deletion run
identifies as garbage the blocks that are written before
the deletion starts and are simultaneously

1. not reachable from any retention root alive when the
deletion starts and

2. not reachable from any retention roots written after
the first and before the second advance and

3. not used as base blocks for duplicate elimination
during this run.

Proof. From setup of borders of increments and decre-
ments, such blocks will have their counters computed as
0. If such blocks were not used as base blocks for du-
plicate elimination during deletion, these blocks are re-
moved.

As discussed above, blocks written during the cur-
rent deletion run are preserved even when they are not
reachable from any block in the root set. Applying non-
emptiness property to the next deletion run shows that
such blocks will be deleted in this run unless they are
written again.

6 Deletion in distributed architecture

6.1 CAS-based distributed system
We assume a CAS-based distributed system similar to
one described in [10] consisting of a set of dedicated stor-
age nodes (SNs). Logically, the system is built around a
distributed hash table (DHT) composed of supernodes.
Each supernode is identified by prefix of hash space it is
responsible for. Hash spaces of supernodes are disjoint
and cover the entire hash space. Every supernode is re-
sponsible for handling client writes and reads of blocks
with content-based hashes belonging to the hash space
of this supernode. The supernode itself is divided into
a fixed number of peers usually distributed over SNs to
provide node failure resiliency. Figure 6 presents exem-
plary distribution of peers over physical machines in the
system with 4 supernodes and number of peers within a
single supernode equal to 4.

On write, a block is routed to appropriate supernode,
erasure coded and the obtained fragments are then dis-
tributed to peers that append received fragments to frag-
ment containers which are separate for each peer. Fig-
ure 7 visualizes stream chunked into blocks, and focuses
on block A that is routed to supernode 01, fragmented
into fragments Ai sent to peers and appended there to
fragments containers.
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Figure 6: Supernodes, peers
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Figure 7: Fragments, fragment containers

The architecture described above delivers dynamic
and failure-tolerant system. In particular, peers are not
statically bound to storage nodes. Instead, once a node
becomes unavailable, peers are reconstructed on differ-
ent nodes along with peer data. Similarly, when a new
node is added, some peers are transferred to it. There-
fore, some data may not be available in the current lo-
cation of a peer until this data is transferred or recon-
structed.

6.2 Challenges for deletion introduced by
distributed architecture

Distributed architecture complicates application of dele-
tion algorithm on block level presented earlier. A dele-
tion algorithm must be able to locate necessary data and
metadata in spite of their changing locations. The algo-
rithm must also make a consistent decision to preserve
or remove all fragments of one block. Beyond fail-stop
failures, deletion should cope with nodes that are tem-
porarily unavailable due to intermittent network failures
and which will re-appear sometime in the future. In par-
ticular, a deletion algorithm should be able to distinguish
fragments of logically removed blocks found on previ-
ously dead machines from the fragments of blocks that
are still alive.

6.2.1 Redundancy of computation

To provide failure tolerance, for each block we replicate
its persistent counter with all block fragments. Addition-
ally, temporary counters and undelete markers are com-
puted independently by multiple selected peers in each
supernode. These peers are called good peers and must
have good-enough data state: for example, all blocks
with pointers must be present in the current peer loca-
tion.

Since each good peer performs identical tasks to iden-
tify garbage blocks, there is a high redundancy in dele-
tion computation. Deletion will not start until sufficient
number of good peers can be identified in each supern-
ode. The remaining peers are idle during the deletion al-
gorithm and eventually receive final counters from others
in the background after the deletion ends. Any peer fail-
ure reduces the set of good peers. If the number of good
peers within any supernode drops below some config-
urable minimum, the whole deletion process is aborted
and its partial results are abandoned.

Undelete marker setting and base block filtering are
done individually on each peer. Setting an undelete
marker for a given base block needs to complete on all
good peers before a write is resolved as a duplicate. Sim-
ilarly, the result of base block filtering is computed as a
logical conjunction of answers from all good peers.

Undeletion in the distributed architecture is done inde-
pendently on each good peer, so it is critical to have all
markers consistent across good peers. Undelete markers
on each peer can be inconsistent because undelete marker
writes issued earlier may fail leaving markers set only on
some good peers. Markers are made consistent by ap-
plying logical conjunction of marker bits from all good
peers within a supernode and distributing the result back
to all good peers. After making the markers consistent
each peer applies the markers to temporary counters kept
by this peer.

To recognize obsolete counters, each persistent
counter is stamped with deletion marking epoch of the
latest deletion run in which this counter value was valid.
For all fragments, counter stamps are refreshed on each
good peer by setting stamp value to the deletion mark-
ing epoch. Unreachable peers get their counters inval-
idated implicitly, because stamps associated with frag-
ments kept by such peers are not refreshed.

6.2.2 New counters commit

Once the undeletion is completed, the equality of com-
puted counters is verified for each supernode. Counters
mismatch on any supernode would indicate software fail-
ure. If any mismatch is found, the deletion process is
aborted. After successful verification, temporary coun-
ters are made persistent and the system is ready to use
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them. Good peers vote to enter proper commit subphase
in which the system starts to use new counters. From
now on, each node restarted after failure strives to com-
plete counters commit. The switch itself is quick as it re-
quires only the replacement of metadata of all fragment
containers.

7 Deletion evaluation

The deletion algorithm satisfies all requirements men-
tioned in Section 2. The algorithm observes a well-
defined block aliveness semantics introduced earlier. All
alive blocks are preserved, most dead blocks are deleted.
Some potential garbage blocks may be temporarily kept
by the system because the deletion algorithm is conser-
vative. However, such blocks are kept only until the next
deletion run, which will identify these blocks as garbage.

Clients are able to write concurrently to deletion be-
cause of the epochs advance restriction described in Sec-
tion 4.3. The lightweight mechanism of undelete mark-
ers allows for good deduplication effectiveness and write
performance while the deletion is running.

As the performance evaluation presented in Section 8
shows, the deletion causes quite limited drop in overall
user-visible system performance because of design deci-
sions like: (1) deferring space reclamation and reference
counters update; (2) efficient distribution of increments
and decrements and their application in batches to tem-
porary counters; (3) starting space reclamation from con-
tainers with the highest ratio of space to be reclaimed;
and (4) keeping undelete markers in good peers memory.

The scalability of the deletion algorithm is similar to
the scalability of the entire system as deletion compu-
tation is distributed among supernodes. The deletion
copes with the dynamic nature of the system using inter-
nal DHT in the same way as it is done for data location
for user writes and reads.

The deletion process is resilient to peer failures. They
rarely terminate the garbage identification process due to
redundancy of computation among peers. The identifi-
cation continues as long as there is sufficient number of
good peers for each supernode. Counters verification,
described in Section 6.2.2, ensures the consistency of the
decision to keep or remove blocks on good peers and
gives protection from the most harmful software failures.
Additionally, counter stamps allow for identification of
obsolete metadata.

8 Performance evaluation

Our deletion algorithm has been implemented in a com-
mercial system called HYDRAstor designed as a stor-
age target for backup and archival data. It is a dis-

tributed system - besides storage nodes (SNs), the sys-
tem consists of a front-end built of so-called access nodes
(ANs). A typical HYDRAstor deployment varies from
1 to 8 SNs, but there are also larger installations con-
sisting of tens of SNs. The system uses content-derived
block addresses and provides global in-line block dedu-
plication. HYDRAstor distributed architecture is similar
to the one described earlier in 3.1. The system supports
self-recovery from failures and uses erasure codes to pro-
vide multiple user-selectable data resiliency levels.

All experiments except where noted use the 3rd gen-
eration HYDRAstor composed of 4 storage nodes and 2
access nodes. All servers run the Red Hat EL 5.4 Linux,
have 2 quad core 2.4GHz CPUs and 4 GigE cards. Each
SN has 24GB of RAM and 12 1TB SATA disks, whereas
each AN has 12GB of RAM and a limited local storage.
The system is configured with 8 supernodes, each con-
sisting of 12 peers.

The experiments were performed with the average
block size of 64KB compressible by 33%. The data
blocks were written as 9 original and 3 redundant frag-
ments providing resiliency to 3 disk failures. We mea-
sured client-side bandwidth only, without contribution of
redundant fragments.

HYDRAstor allows user to alter default resource divi-
sion by setting the division of system resources among
user load, deletion and other background tasks. For in-
stance, a user can assign only minimal resources to dele-
tion to have the lowest impact of deletion on user load
which results in slower garbage identification and recla-
mation. Alternatively, a user can trade certain user load
performance degradation to speed up deletion. By de-
fault, the percentage of resources assigned to deletion is
30%.

8.1 Garbage identification vs. user reads
and writes

This experiment measures the mutual impact of garbage
identification and user operations like reads and writes.

Each measurement started with a prologue simulating
client backup activity with the following 5 steps: filling
an empty system with E = 16 TB of non duplicated
data; running an initial deletion to compute block coun-
ters; loading C = 1.6 TB of new data; writing C TB
of existing data and writing deletion roots marking for
deletion C TB of data.

We measured the impact of garbage identification on
performance of user writes as a function of dedup ra-
tio of the data written. We collected 15 data points in
total, in groups of 3 for each of the 5 values of dedup
ratio varying from 0% up to almost 100% with a step
of 25%. In each group, the first number indicates write
bandwidth when no deletion is running; the second with
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deletion running and assigned default maximum 30% of
resources; and the third also with deletion running, but
with only minimal (maximum 1%) resources assigned to
it. We recorded duration of garbage identification when
writing and also with no user load present.

The results are shown in Figures 8 and 9. When dele-
tion is given default 30% of system resources, user writes
are slowed down by less than this fraction. Moreover, in
such default setting, deletion is prolonged by less than
three times compared to the case when no user load is
present. (see Figure 9). When deletion is configured to
use minimal resources, its impact on user writes is below
5%. In general, handling of undelete markers affects end
performance of writes just negligibly although in fact we
observed increased CPU consumption on storage nodes.

The impact of the deletion on user reads is smaller
than on writes, with only 10% reduction of read band-
width (1024 MB/s vs 1135 MB/s) when deletion is given
up to 30% of resources. In such case, deletion is pro-
longed by a factor of 2.27 as a result of user reads. This
impact is practically negligible when deletion runs with
only minimal resources assigned. This is because reads
do not require additional action during deletion, unlike
in the case of duplicate writes.

Figure 8: Write bandwidth during garbage identification.
Throttled deletion is given only 1% of resources instead
of standard 30%.

Figure 9: Duration of garbage identification with 30%
resource share while user operations (writes or reads) are
in progress. Percentages on x-axis denote fraction of du-
plicate writes. N/A stands for no user load.

8.2 Deletion after node failure and all data
deletion

Using the same prologue as in 8.1 we measured duration
of garbage identification with no user load present after
failure of one storage node. It took only 20% more com-
pared to the case of all nodes healthy. Finally, garbage
identification after removal of 16 TB from the healthy
system after completion of the prologue took 1066 sec-
onds which translates into 15.4 GB/s of logical deletion
speed.

8.3 Deletion scalability
The goal of this series of experiments is to examine how
deletion performance changes when the system grows.
We used the 2nd generation storage nodes which have
slightly slower disks and CPU than the 3rd generation
nodes. In four individual experiments number of stor-
age nodes n is varied from 4 to 16 with a step of 4. For
each point the prologue defined in 8.1 is performed, but
with data amount now depending on number of storage
nodes: E = n∗38 TB and C = n∗3.8 TB. We measured
duration of initial deletion (i.e. computing the counters,
which is the second step of the prologue) as well as du-
ration of garbage identification with no user load present
(this step identifies data marked for deletion in the last
step of the prologue). Results in Figure 10 show that du-
ration of garbage identification remains roughly the same
when the system grows in number of storage nodes and
the size of data used per storage node remains constant.

Figure 10: Duration of garbage identification when the
number of storage nodes grows.

9 Related work

The implemented deletion bears some resemblance
to concurrent garbage collection in programming lan-
guages with dynamic data structures which is well-
understood [2, 32]. However, there are significant dif-
ferences. On the one hand, our deletion is more com-
plicated because of deduplication, scalability and fail-
ure tolerance of CAS-based distributed storage system;

11



172  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

on the other hand, the deletion is simplified because the
graphs of blocks must be acyclic which is not the case in
programming language-related garbage collection.

Our deletion is based on deferred reference count-
ing [32]. Alternatively, we could have used mark and
sweep [8] to implement our deletion. We decided against
it to avoid traversing all data on each deletion run.

Grouped mark and sweep (GMS) [11, 18] attempts
to solve this problem by grouping backups and marking
only those containers which keep objects from groups
with some files added or deleted since the previous run of
the algorithm. With grouped mark and sweep, old mark
results are preserved for each group and each container.
With approximately constant size of each group, scalable
storage and high dedup ratio such results may be non-
empty, which will result in large metadata per container.

Our undelete markers are in a way similar to gray-
ing of a white object on read in the tricolor mark-and-
sweep scheme [32]. GMS authors propose also to handle
deduplication during deletion with a special in-memory
protection map. Such map keeps fingerprints of blocks
used for deduplication during deletion and prevents such
blocks from being reclaimed. However, if deletion runs
for too long, the protection map may not fit in the mem-
ory, whereas undelete markers by design avoid this prob-
lem.

Our epochs may superficially resemble generations in
garbage collection theory [32]: new blocks are written
to the new generation whereas every deletion run moves
surviving blocks to the old generation. However, our
algorithm is not generational at all as blocks from old
generations not reachable from alive retention roots are
garbage-collected during every deletion run.

Without deduplication, deletion in a distributed stor-
age system is relatively simple and can be done with
leases like in Glacier [19], or with simple reclamation
of obsolete versions like in Ursa Minor [1]. However,
with deduplication, deletion becomes difficult for rea-
sons explained earlier. For example, Venti [27], Deep
Store [33] and Sparse Indexing [22] have not imple-
mented deletion. Another class of systems implements
garbage collection on their storage units in a disruptive
manner. MAD2 [31] reference-counts fingerprints but
freezes all involved tankers during the physical deletion
period. DDE [20] revokes all data locks held by clients
to free dereferenced blocks. dedupv1 [23, 24] in back-
ground marks unreferenced blocks as ”garbage collect-
ing candidates” but commits their removal only if the
system is idle. Other works include: usage of backpoint-
ers (reference lists) in SIS [6] and in FARSITE [3]; col-
lecting unused blocks during exclusive scanning of a part
of global hash index updated out-of-band in DeDe [7].

Data Domain [25, 26, 34] patented a garbage collec-
tion procedure in a centralized system with inline dedu-

plication. Selection of blocks for removal is done there
using Bloom filter which results in some garbage remain-
ing in the system. EMC Centera [13, 17, 29] patented an
explicit deletion of a content unit but does not mention
how concurrent deletion and deduplication is handled;
Extreme Binning [5] localizes their deduplication within
bins and claims this easies garbage collection although
no details are given.

10 Conclusions and future work

We have described the deletion algorithm for a scalable
distributed storage with deduplication. Our deletion has
been implemented and deployed in a commercial system
- HYDRAstor. The algorithm allows for deletion to pro-
ceed concurrently to user reads and writes. Moreover,
it satisfies other critical functional requirements such as
high availability, limited performance impact on user op-
erations and resiliency to multiple disk, node and net-
work failures.

Epoch mechanism and undelete markers are two key
techniques allowing for writing with deduplication while
deletion is running. By creating boundary between old
and newly written data and limiting set of block ad-
dresses kept by clients, epochs define clear semantics for
a concurrent deletion process. Together with undelete
markers this semantics enables also deduplication of data
scheduled for deletion.

Performance impact, in turn, is reasonable because
deletion operations are performed in batches and this
work is distributed over the entire network. Importantly,
undelete markers are kept in the main memory which re-
sults in a low overhead of marker handling on user writes.

Failure tolerance is achieved by redundancy of com-
putation associated with good peers. Selected peers
perform critical computations redundantly allowing the
deletion process to proceed even if several of them crash.
Good peers are also responsible for deletion procedure
scalability, which is ensured by distributing deletion
work among supernodes, without having any centralized
component.

Although deletion is fully functional today, important
features could still improve its value for the end user.
Since the deletion procedure is concurrent, most im-
provements involve ensuring further performance boosts.
One of the potential improvements is an introduction of
separate containers for blocks with pointers which may
speed up the counter incrementation subphase. Apart
from improving performance, other directions for future
work include making the deletion restartable by check-
pointing intermediate deletion results.
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