
USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 31

A Study of Linux File System Evolution
Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan Lu

Computer Sciences Department, University of Wisconsin, Madison

Abstract
We conduct a comprehensive study of file-system code
evolution. By analyzing eight years of Linux file-system
changes across 5079 patches, we derive numerous new
(and sometimes surprising) insights into the file-system
development process; our results should be useful for both
the development of file systems themselves as well as the
improvement of bug-finding tools.

1 Introduction
Open-source local file systems, such as Linux Ext4 [31],
XFS [46], and Btrfs [30], remain a critical component
in the world of modern storage. For example, many re-
cent distributed file systems, such as Google GFS [17] and
Hadoop DFS [43], all replicate data objects (and associ-
ated metadata) across local file systems. On smart phones,
most user data is managed by a local file system; for ex-
ample, Google Android phones use Ext4 [2, 23] and Ap-
ple’s iOS devices use HFSX [34]. Finally, many desktop
users still do not backup their data regularly [21, 29]; in
this case, the local file system clearly plays a critical role
as sole manager of user data.

Open-source local file systems remain a moving target.
Developed by different teams with different goals, these
file systems evolve rapidly to add new features, fix bugs,
and improve performance and reliability, as one might ex-
pect in the open-source community [38]. Major new file
systems are introduced every few years [12, 30, 32, 39,
46]; with recent technology changes (e.g., Flash [11, 18]),
we can expect even more flux in this domain.

However, despite all the activity in local file system
development, there is little quantitative understanding of
their code bases. For example, where does the complex-
ity of such systems lie? What types of bugs are common?
Which performance features exist? Which reliability fea-
tures are utilized? These questions are important to an-
swer for different communities: for developers, so that
they can improve current designs and implementations
and create better systems; for tool builders, so that they
can improve their tools to match reality (e.g., by finding
the types of bugs that plague existing systems).

One way to garner insight into these questions is to
study the artifacts themselves. Compared with proprietary
software, open source projects provide a rich resource for
source code and patch analysis. The fact that every ver-
sion of Linux is available online, including a detailed set

of patches which describe how one version transforms to
the next, enables us to carefully analyze how file systems
have changed over time. A new type of “systems software
archeology” is now possible.

In this paper, we perform the first comprehensive study
of the evolution of Linux file systems, focusing on six ma-
jor and important ones: Ext3 [47], Ext4 [31], XFS [46],
Btrfs [30], ReiserFS [13], and JFS [10]. These file sys-
tems represent diverse features, designs, implementations
and even groups of developers. We examine every file-
system patch in the Linux 2.6 series over a period of eight
years including 5079 patches. By carefully studying each
patch to understand its intention, and then labeling the
patch accordingly along numerous important axes, we can
gain deep quantitative insight into the file-system devel-
opment process. We can then answer questions such as
“what are most patches for?”, “what types of bugs are
common?”, and in general gain a new level of insight into
the common approaches and issues that underlie current
file-system development and maintenance.

We make the following high-level observations (§3). A
large number of patches (nearly 50%) are maintenance
patches, reflecting the constant refactoring work needed to
keep code simple and maintainable. The remaining dom-
inant category is bugs (just under 40%, about 1800 bugs),
showing how much effort is required to slowly inch to-
wards a “correct” implementation; perhaps this hard labor
explains why some have found that the quality of open
source projects is better than the proprietary software av-
erage [1]. Interestingly, the number of bugs does not
die down over time (even for stable file systems), rather
ebbing and flowing over time.

Breaking down the bug category further (§4), we find
that semantic bugs, which require an understanding of
file-system semantics to find or fix, are the dominant
bug category (over 50% of all bugs). These types of
bugs are vexing, as most of them are hard to detect
via generic bug detection tools [9, 35]; more complex
model checking [52] or formal specification [24] may be
needed. Concurrency bugs are the next most common
(about 20% of bugs), more prevalent than in user-level
software [26, 42, 45]. Within this group, atomicity viola-
tions and deadlocks dominate. Kernel deadlocks are com-
mon (many caused by incorrectly using blocking kernel
functions), hinting that recent research [22, 49] might be
needed in-kernel. The remaining bugs are split relatively

1

32 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

evenly across memory bugs and improper error-code han-
dling. In the memory bug category, memory leaks and
null-pointer dereferences are common; in the error-code
category, most bugs simply drop errors completely [19].

We also categorize bugs along other axes to gain further
insight. For example, when broken down by consequence,
we find that most of the bugs we studied lead to crashes or
corruption, and hence are quite serious; this result holds
across semantic, concurrency, memory, and error code
bugs. When categorized by data structure, we find that
B-trees, present in many file systems for scalability, have
relatively few bugs per line of code. When classified by
whether bugs occur on normal or failure-handling paths,
we make the following important discovery: nearly 40%
of all bugs occur on failure-handling paths. File systems,
when trying to react to a failed memory allocation, I/O er-
ror, or some other unexpected condition, are highly likely
to make further mistakes, such as incorrect state updates
and missing resource releases. These mistakes can lead
to corruption, crashes, deadlocks and leaks. Future sys-
tem designs need better tool or language support to make
these rarely-executed failure paths correct.

Finally, while bug patches comprise most of our study,
performance and reliability patches are also prevalent, ac-
counting for 8% and 7% of patches respectively (§5). The
performance techniques used are relatively common and
widespread (e.g., removing an unnecessary I/O, or down-
grading a write lock to a read lock). About a quarter of
performance patches reduce synchronization overheads;
thus, while correctness is important, performance likely
justifies the use of more complicated and time saving syn-
chronization schemes. In contrast to performance tech-
niques, reliability techniques seem to be added in a rather
ad hoc fashion (e.g., most file systems apply sanity checks
non-uniformly). Inclusion of a broader set of reliability
techniques could harden all file systems.

Beyond these results, another outcome of our work
is an annotated dataset of file-system patches, which
we make publicly available for further study (at this
URL: pages.cs.wisc.edu/˜ll/fs-patch) by
file-system developers, systems-language designers, and
bug-finding tool builders. We show the utility of PatchDB
by performing a case study (§6); specifically, we search
the dataset to find bugs, performance fixes, and reliabil-
ity techniques that are unusually common across all file
systems. This example brings out one theme of our study,
which is that there is a deep underlying similarity in Linux
local file systems, even though these file systems are sig-
nificantly different in nature (e.g., designs, features, and
groups of developers). The commonalities we do find are
good news: by studying past bug, performance, and relia-
bility patches, and learning what issues and challenges lie
therein, we can greatly improve the next generation of file
systems and tools used to build them.

2 Methodology
In this section, we first give a brief description of our
target file systems. Then, we illustrate how we analyze
patches with a detailed example. Finally, we discuss the
limitations of our methodology.

2.1 Target File Systems
Our goal in selecting a collection of disk-based file sys-
tems is to choose the most popular and important ones.
The selected file systems should include diverse reliabil-
ity features (e.g., physical journaling, logical journaling,
checksumming, copy-on-write), data structures (e.g., hash
tables, indirect blocks, extent maps, trees), performance
optimizations (e.g., asynchronous thread pools, scalable
algorithms, caching, block allocation for SSD devices),
advanced features (e.g., pre-allocation, snapshot, resize,
volumes), and even a range of maturity (e.g., stable, under
development). For these reasons, we selected six file sys-
tems and their related modules: Ext3 with JBD [47], Ext4
with JBD2 [31], XFS [46], Btrfs [30], ReiserFS [13], and
JFS [10]. Ext3, JFS, ReiserFS and XFS were all stable and
in production use before the Linux 2.6 kernel. Ext4 was
introduced in Linux 2.6.19 and marked stable in Linux
2.6.28. Btrfs was added into Linux 2.6.29 and is still un-
der active development.

2.2 Classification of File System Patches
For each file system, we conduct a comprehensive study
of its evolution by examining all patches from Linux 2.6.0
(Dec ’03) to 2.6.39 (May ’11). These are Linux main-
line versions, which are released every three months with
aggregate changes included in change logs. Patches con-
sist of all formal modifications in each new kernel ver-
sion, including new features, code maintenance, and bug
fixes, and usually contain clear descriptions of their pur-
pose and rich diagnostic information. On the other hand,
Linux Bugzilla [3] and mailing lists [4, 5] are not as well
organized as final patches, and may only contain a subset
or superset of final changes merged in kernel.

To better understand the evolution of different file sys-
tems, we conduct a broad study to answer three categories
of fundamental questions:

• Overview: What are the common types of patches in
file systems and how do patches change as file sys-
tems evolve? Do patches of different types have dif-
ferent sizes?

• Bugs: What types of bugs appear in file systems?
Do some components of file systems contain more
bugs than others? What types of consequences do
different bugs have?

• Performance and Reliability: What techniques are
used by file systems to improve performance? What
common reliability enhancements are proposed in
file systems?

2

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 33

[PATCH] fix possible NULL pointer in fs/ext3/super.c.

In fs/ext3/super.c::ext3 get journal() at line 1675
‘journal’ can be NULL, but it is not handled right
(detect by Coverity’s checker).

--- /fs/ext3/super.c
+++ /fs/ext3/super.c
@@ -1675,6 +1675,7 @@ journal_t *ext3_get_journal()

1 if (!journal){
2 printk(KERN_ERR "EXT3: Could not load ... ");
3 iput(journal_inode);
4 + return NULL;
5 }
6 journal->j_private = sb;

Figure 1: An Example Patch. An Ext3 patch.

To answer these questions, we manually analyzed each
patch to understand its purpose and functionality, exam-
ining 5079 patches from the selected Linux 2.6 file sys-
tems. Each patch contains a patch header, a description
body, and source-code changes. The patch header is a
high-level summary of the functionality of the patch (e.g.,
fixing a bug). The body contains more detail, such as steps
to reproduce the bug, system configuration information,
proposed solutions, and so forth. Given these details and
our knowledge of file systems, we categorize each patch
along a number of different axes, as described later.

Figure 1 shows a real Ext3 patch. We can infer from the
header that this patch fixes a null-pointer dereference bug.
The body explains the cause of the null-pointer derefer-
ence and the location within the code. The patch also in-
dicates that the bug was detected with Coverity [9].

This patch is classified as a bug (type=bug). The size is
1 (size=1) as one line of code is added. From the related
source file (super.c), we infer the bug belongs to Ext3’s
superblock management (data-structure=super). A null-
pointer access is a memory bug (pattern=memory,nullptr)
and can lead to a crash (consequence=crash).

However, some patches have less information, making
our analysis harder. In these cases, we sought out other
sources of information, including design documents, fo-
rum and mailing-list discussions, and source-code analy-
sis. Most patches are analyzed with high confidence given
all the available information and our domain knowledge.
Examples are shown throughout to give more insight as to
how the classification is performed.

Limitations: Our study is limited by the file systems
we chose, which may not reflect the characteristics of
other file systems, such as other non-Linux file systems
and flash-device file systems. We only examined ker-
nel patches included in Linux 2.6 mainline versions, thus
omitting patches for Ext3, JFS, ReiserFS, and XFS from
Linux 2.4. As for bug representativeness, we only studied
the bugs reported and fixed in patches, which is a biased
subset; there may be (many) other bugs not yet reported.
A similar study may be needed for user-space utilities,
such as mkfs and fsck [33].

Type Description
Bug Fix existing bugs

Propose more efficient designs or implementations
Performance to improve performance (e.g., reducing

synchronization overhead or use tree structures)
Improve file-system robustness

Reliability (e.g., data integrity verification, user/kernel
pointer annotations, access-permission checking)

Feature Implement new features
Maintain the code and documentation

Maintenance (e.g., adding documentation, fix compiling
error, changing APIs)

Table 1: Patch Type. This table describes the classification and
definition of file-system patches.

3 Patch Overview
File systems evolve through patches. A large number of
patches are discussed and submitted to mailing lists, bug-
report websites, and other forums. Some are used to im-
plement new features, while others fix existing bugs. In
this section, we investigate three general questions regard-
ing file-system patches. First, what are file-system patch
types? Second, how do patches change over time? Lastly,
what is the distribution of patch sizes?

3.1 Patch Type
We classify patches into five categories (Table 1): bug
fixes (bug), performance improvements (performance),
reliability enhancements (reliability), new features (fea-
ture), and maintenance and refactoring (maintenance).
Each patch usually belongs to a single category.

Figure 2(a) shows the number and relative percentages
of patch types for each file system. Note that even though
file systems exhibit significantly different levels of patch
activity (shown by the total number of patches), the per-
centage breakdowns of patch types are relatively similar.

Maintenance patches are the largest group across all
file systems (except Btrfs, a recent and not-yet-stable file
system). These patches include changes to improve read-
ability, simplify structure, and utilize cleaner abstractions;
in general, these patches represent the necessary costs of
keeping a complex open-source system well-maintained.
Because maintenance patches are relatively uninteresting,
we do not examine them further.

Bug patches have a significant presence, comprising
nearly 40% of patches. Not surprisingly, the Btrfs has
a larger percentage of bug patches than others; however,
stable and mature file systems (such as Ext3) also have
a sizable percentage of bug patches, indicating that bug
fixing is a constant in a file system’s lifetime (Figure 5).
Because this class of patch is critical for developers and
tool builders, we characterize them in detail later (§4).

Both performance and reliability patches occur as well,
although with less frequency than maintenance and bug
patches. They reveal a variety of techniques used by dif-
ferent file systems, motivating further study (§5).

3

34 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

0%

20%

40%

60%

80%

100%
XF

S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

20
04

11
54

80
9

53
7

38
4

19
1

50
79

Bug

Feature

Performance

Maintenance

Reliability

(a) Patch Type

0%

20%

40%

60%

80%

100%

XF
S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

51
1

45
0

35
8

22
9

15
8

80 17
86

Semantic

Memory

Concurrency

Error Code

(b) Bug Pattern

Figure 2: Patch Type and Bug Pattern. This figure shows
the distribution of patch types and bug patterns. The total number of
patches is on top of each bar.

Finally, feature patches account for a small percentage
of total patches; as we will see, most of feature patches
contain more lines of code than other patches.

Summary: Nearly half of total patches are for code
maintenance and documentation; a significant number of
bugs exist in not only new file systems, but also stable file
systems; all file systems make special efforts to improve
their performance and reliability; feature patches account
for a relatively small percentage of total patches.

3.2 Patch Trend
File systems change over time, integrating new features,
fixing bugs, and enhancing reliability and performance.
Does the percentage of different patch types increase or
decrease with time?

We studied the changes in patches over time and found
few changes (not shown). While the number of patches
per version increased in general, the percentage of main-
tenance, bug, reliability, performance, and feature patches
remained relatively stable. Although there were a few
notable exceptions (e.g., Btrfs had a time where a large
number of performance patches were added), the statistics
shown in the previous section are relatively good sum-
maries of the behavior at any given time. Perhaps most
interestingly, bug patches do not decrease over time; liv-
ing code bases constantly incorporate bug fixes (see §4).

Summary: The patch percentages are relatively stable
over time; newer file systems (e.g., Btrfs) deviate occa-
sionally; bug patches do not diminish despite stability.

3.3 Patch Size
Patch size is one approximate way to quantify the com-
plexity of a patch, and is defined here as the sum of lines
of added and deleted by a patch. Figure 3 displays the size
distribution of bug, performance, reliability, and feature
patches. Most bug patches are small; 50% are less than
10 lines of code. However, more complex file systems

1 10 100 1000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Lines of Code

Pe
rc

en
ta

ge

Bug Performance Reliability Feature

Figure 3: Patch Size. This figure shows the size distribution for
different patch types, in terms of lines of modifications.

Name Description
balloc Data block allocation and deallocation

dir Directory management
extent Contiguous physical blocks mapping

file File read and write operations
inode Inode-related metadata management
trans Journaling or other transactional support
super Superblock-related metadata management

tree Generic tree structure procedures
other Other supporting components (e.g., xattr, ioctl, resize)

Table 2: Logical Components. This table shows the classifi-
cation and definition of file-system logical components.

tend to have larger bug patches (e.g., Btrfs and XFS) (not
shown due to lack of space). Interestingly, feature patches
are significantly larger than other patch types. Over 50%
of these patches have more than 100 lines of code; 5%
have over 1000 lines of code.

Summary: Bug patches are generally small; compli-
cated file systems have larger bug patches; reliability and
performance patches are medium-sized; feature patches
are significantly larger than other patch types.

4 File System Bugs
In this section, we study file-system bugs in detail to
understand their patterns and consequences comprehen-
sively. First, we show the distribution of bugs in file-
system logical components. Second, we describe our bug
pattern classification, bug trends, and bug consequences.
Finally, we analyze each type of bug with a more detailed
classification and a number of real examples.

4.1 Correlation Between Code and Bugs
The code complexity of file systems is growing. FFS had
only 1200 lines of code [32]; modern systems are notably
larger, including Ext4 (29K LOC), Btrfs (47K LOC), and
XFS (64K LOC). Several fundamental questions are ger-
mane: How is the code distributed among different logi-
cal components? Where are the bugs? Does each logical
component have an equal degree of complexity?

File systems generally have similar logical compo-
nents, such as inodes, superblocks, and journals. To en-

4

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 35

0.0 0.1 0.2 0.3 0.40.0

0.1

0.2

0.3

0.4

Percentage of Code

Pe
rc

en
ta

ge
 o

f B
ug

s XFS

0.0 0.1 0.2 0.3 0.40.0

0.1

0.2

0.3

0.4

Percentage of Code
Pe

rc
en

ta
ge

 o
f B

ug
s Ext4

0.0 0.1 0.2 0.3 0.40.0

0.1

0.2

0.3

0.4

Percentage of Code

Pe
rc

en
ta

ge
 o

f B
ug

s Btrfs

0.0 0.1 0.2 0.3 0.40.0

0.1

0.2

0.3

0.4

Percentage of Code

Pe
rc

en
ta

ge
 o

f B
ug

s Ext3

0.0 0.1 0.2 0.3 0.40.0

0.1

0.2

0.3

0.4

Percentage of Code

Pe
rc

en
ta

ge
 o

f B
ug

s ReiserFS

0.0 0.1 0.2 0.3 0.40.0

0.1

0.2

0.3

0.4

Percentage of Code

Pe
rc

en
ta

ge
 o

f B
ug

s JFS

balloc
trans

dir
super

extent
tree

file
other

inode

Figure 4: File System Code and Bug Correlation. This
figure shows the correlation between code and bugs. The x-axis shows
the average percent of code of each component (over all versions); the
y-axis shows the percent of bugs of each component (over all versions).

able fair comparison, we partition each file system into
nine logical components (Table 2).

Figure 4 shows the percentage of bugs versus the per-
centage of code for each of the logical components across
all file systems and versions. Within a plot, if a point is
above the y = x line, it means that a logical component
(e.g., inodes) has more than its expected share of bugs,
hinting at its complexity; a point below said line indicates
a component (e.g., a tree) with relatively few bugs per line
of code, thus hinting at its relative ease of implementation.

We make the following observations. First, for all file
systems, the file, inode, and super components have a high
bug density. The file component is high in bug density ei-
ther due to bugs on the fsync path (Ext3) or custom file I/O
routines added for higher performance (XFS, Ext4, Reis-
erFS, JFS), particularly so for XFS, which has a custom
buffer cache and I/O manager for scalability [46]. The
inode and superblock are core metadata structures with
rich and important information for files and file systems,
which are widely accessed and updated; thus, it is per-
haps unsurprising that a large number of bugs arise therein
(e.g., forgetting to update a time field in an inode, or not
properly using a superblock configuration flag).

Type Sub-Type Description

Se
m

an
tic

State Incorrectly update or check file-system state
Logic Wrong algorithm/assumption/implementation

Config Missed configuration
I/O Timing Wrong I/O requests order

Generic Generic semantic bugs: wrong type, typo

C
on

cu
rr

en
cy

Atomicity The atomic property for accesses is violated
Order The order of multiple accesses is violated

Deadlock Deadlock due to wrong locking order
Miss unlock Miss a paired unlock

Double unlock Unlock twice
Wrong lock Use the wrong lock

M
em

or
y

Resource leak Fail to release memory resource
Null pointer Dereference null pointer
Dangling Pt Dereference freed memory
Uninit read Read uninitialized variables
Double free Free memory pointer twice

Buf overflow Overrun a buffer boundary

Er
ro

r
C

od
e Miss Error Error code is not returned or checked

Wrong Error Return or check wrong error code

Table 3: Bug Pattern Classification. This table shows the
classification and definition of file-system bugs.

Second, transactional code represents a substantial per-
centage of each code base (as shown by the relatively high
x-axis values) and, for most file systems, has a propor-
tional amount of bugs. This relationship holds for Ext3 as
well, even though Ext3 uses a separate journaling module
(JBD); Ext4 (with JBD2) has a slightly lower percentage
of bugs because it was built upon a more stable JBD from
Linux 2.6.19. In summary, transactions continue to be
a double-edged sword in file systems: while transactions
improve data consistency in the presence of crashes, they
often add many bugs due to their large code bases.

Third, the percentage of bugs in tree components of
XFS, Btrfs, ReiserFS, and JFS is surprisingly small com-
pared to code size. One reason may be the care taken
to implement such trees (e.g., the tree code is the only
portion of ReiserFS filled with assertions). File systems
should be encouraged to use appropriate data structures,
even if they are complex, because they do not induce an
inordinate amount of bugs.

Although bug patches also relate to feature patches, it is
difficult to correlate them precisely. Code changes partly
or totally overlap each other overtime. A bug patch may
involve both old code and recent feature patches.

Summary: The file, inode, and superblock compo-
nents contain a disproportionally large number of bugs;
transactional code is large and has a proportionate number
of bugs; tree structures are not particularly error-prone,
and should be used when needed without much worry.

4.2 Bug Patterns
To build a more reliable file system, it is important to
understand the type of bugs that are most prevalent and
the typical patterns across file systems. Since different
types of bugs require different approaches to detect and

5

36 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

0 10 20 30 400

10

20

30

40

0 10 20 30 400

10

20

30

40

N
um

be
r o

f B
ug

s XFS

0 10 20 30 400

10

20

30

40
Ext4

0 10 20 30 400

20

40

60

80

0 10 20 30 400

20

40

60

80

N
um

be
r o

f B
ug

s Btrfs

0 10 20 30 400

5

10

15 Ext3

0 10 20 30 400

10

20

30

40

0 10 20 30 400

10

20

30

40

N
um

be
r o

f B
ug

s

0 10 20 30 400

10

20

30

40

Linux Version

ReiserFS

0 10 20 30 400

5

10

0 10 20 30 400

5

10

Linux Version

JFS

Semantic Concurrency Memory Error Code

Figure 5: Bug Pattern Evolution. This figure shows the bug
pattern evolution for each file system over all versions.

fix, these fine-grained bug patterns provide useful infor-
mation to developers and tool builders alike.

We partition file-system bugs into four categories based
on their root causes as shown in Table 3. The four ma-
jor categories are semantic [26, 44], concurrency [16, 28],
memory [14, 26, 44], and error code bugs [19, 40].

Figure 2(b) (page 4) shows the total number and per-
centage of each type of bug across file systems. There are
about 1800 total bugs, providing a great opportunity to ex-
plore bug patterns at scale. Semantic bugs dominate other
types (except for ReiserFS). Most semantic bugs require
file-system domain knowledge to understand, detect, and
fix; generic bug-finding tools (e.g., Coverity [9]) may
have a hard time finding these bugs. Concurrency bugs
account for about 20% on average across file systems (ex-
cept for ReiserFS), providing a stark contrast to user-level
software where fewer than 3% of bugs are concurrency-
related [26, 42, 45]. ReiserFS stands out along these mea-
sures because of its transition, in Linux 2.6.33, away from
the Big Kernel Lock (BKL), which introduced a large
number of concurrency bugs. There are also a fair num-
ber of memory-related bugs in all file systems; their per-
centages are lower than that reported in user-level soft-
ware [26, 45]. Many research and commercial tools have

Type Description

Corruption
On-disk or in-memory data structures are corrupted
(e.g., file data or metadata corruption, wrong statistics)

Crash
File system becomes unusable
(e.g., dereference null pointer, assertion failures, panics)

Error
Operation failure or unexpected error code returned
(e.g., failed write operation due to ENOSPC error)

Deadlock Wait for resources in circular chain

Hang
File system makes no progress
(e.g., infinite loop, live lock)

Leak
System resources are not freed after usage
(e.g., forget to free allocated file-system objects)

Wrong
Diverts from expectation, excluding the above ones
(e.g., undefined behavior, security vulnerability)

Table 4: Bug Consequence Classification. This table shows
the definitions of various bug consequences.

been developed to detect memory bugs [9, 35], and some
of them are used to detect file-system bugs. Error code
bugs account for only 10% of total bugs.

Summary: Beyond maintenance, bug fixes are the
most common patch type; over half of file-system bugs
are semantic bugs, likely requiring domain knowledge to
find and fix; file systems have a higher percentage of con-
currency bugs compared with user-level software; mem-
ory and error code bugs arise but in smaller percentages.

4.3 Bug Trends
File systems mature from the initial development stage to
the stable stage over time, by applying bug-fixing, per-
formance and reliability patches. Various bug detection
and testing tools are also proposed to improve file-system
stability. A natural question arises: do file-system bug
patterns change over time, and in what way?

Our results (Figure 5) show that within bugs, the rel-
ative percentage of semantic, concurrency, memory, and
error code bugs varies over time, but does not converge; a
great example is XFS, which under constant development
goes through various cycles of higher and lower numbers
of bugs. Interesting exceptions occasionally arise (e.g.,
the BKL removal from ReiserFS led to a large increase in
concurrency bugs in 2.6.33). JFS does experience a de-
cline in bug patches, perhaps due to its decreasing usage
and development [6]. JFS and ReiserFS both have rel-
atively small developer and user bases compared to the
more active file systems XFS, Ext4 and Btrfs.

Summary: Bug patterns do not change significantly
over time, increasing and decreasing cyclically; large de-
viations arise due to major structural changes.

4.4 Bug Consequences
As shown in Figure 2(b) (on page 4), there are a signifi-
cant number of bugs in file systems. But how serious are
these file-system bugs? We now categorize each bug by
impact; such bug consequences include severe ones (data
corruption, system crashes, unexpected errors, deadlocks,

6

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 37

0%

20%

40%

60%

80%

100%
XF

S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

52
5

46
1

36
6

23
5

16
6

80 18
33

Corrupt

Hang

Crash

Leak

Error

Wrong

Deadlock

(a) By File Systems

0%

20%

40%

60%

80%

100%

C
or

ru
pt

C
ra

sh

Er
ro

r

D
ea

dL

H
an

g

Le
ak

W
ro

ng

Al
l_

Bu
g

66
1

36
3

25
0

18
5

73 13
3

16
8

17
86

Semantic

Memory

Concurrency

Error Code

(b) By Bug Patterns

Figure 6: Bug Consequences. This figure displays the break-
down of bug consequences for file systems and bug patterns. The to-
tal number of consequences is shown on top of each bar. A single bug
may cause multiple consequences; thus, the number of consequences in-
stances is slightly higher than that of bugs in Figure 2(b).

system hangs and resource leaks), and other wrong behav-
iors. Table 4 provides more detail on these categories.

Figure 6(a) shows the per-system breakdowns. Data
corruption is the most predominant consequence (40%),
even for well-tested and mature file systems. Crashes
account for the second largest percentage (20%); most
crashes are caused by explicit calls to BUG() or
Assert() as well as null-pointer dereferences. If the
patch mentions that the crash also causes corruption, then
we classify this bug with multiple consequences. Unex-
pected errors and deadlocks occur quite frequently (just
under 10% each on average), whereas other bug conse-
quences arise less often. For example, exhibiting the
wrong behavior without more serious consequences ac-
counts for only 5-10% of consequences in file systems,
whereas it is dominant in user applications [26].

Given that file-system bugs are serious bugs, we were
curious: do certain bug types (e.g., semantic, concurrency,
memory, or error code) exhibit different levels of severity?
Figure 6(b) shows the relationship between consequences
and bug patterns. Semantic bugs lead to a large percent-
age of corruptions, crashes, errors, hangs, and wrong be-
haviors. Concurrency bugs are responsible for nearly all
deadlocks (almost by definition) and a fair percentage of
corruptions and hangs. Memory bugs lead to many mem-
ory leaks (as expected) and a fair amount of crashes. Fi-
nally, error code bugs lead to a relatively small percentage
of corruptions, crashes, and (unsurprisingly) errors.

Summary: File system bugs cause severe conse-
quences; corruptions and crashes are most common;
wrong behavior is uncommon; semantic bugs can lead
to significant amounts of corruptions, crashes, errors, and
hangs; all bug types have severe consequences.

4.5 Bug Pattern Examples and Analysis
To gain further insight into the different classes of bugs,
we now describe each class in more detail. We present
examples of each and further break down each major class
(e.g., memory bugs) into smaller sub-classes (e.g., leaks,
null-pointer dereferences, dangling pointers, uninitialized
reads, double frees, and buffer overflows).

4.5.1 Semantic Bugs
Semantic bugs are dominant in file systems, as shown
in Figure 2(b). Understanding these bugs often requires
file-system domain knowledge. Semantic bugs usually
are difficult to categorize in an informative and general
way. However, we are the first to identify several com-
mon types of file-system specific semantic bugs based on
extensive analysis and careful generalization of many se-
mantic bugs across file systems. These common types and
typical patterns provide useful guidelines for analysis and
detection of file-system semantic bugs. We partition the
semantic bugs into five categories as described in Table 3,
including state, logic, config, I/O timing and generic. Fig-
ure 7(a) shows the percentage breakdown and total num-
ber of semantic bugs; each is explained in detail below.

File systems maintain a large amount of in-memory
and on-disk state. Generally, operations transform the file
system from one consistent state to another; a mistaken
state update or access may lead to serious consequences.
As shown in Figure 7(a), these state bugs contribute to
roughly 40% of semantic bugs.

An example of a state bug is shown in S1 of Table 5 (on
page 9), which misses an inode-field update. Specifically,
the buggy version of ext3 rename() does not update
the mtime and ctime of the directory into which the file
is moved, leaving metadata in an incorrect state.

There are also numerous logic bugs, which arise via the
use of wrong algorithms, bad assumptions, and incorrect
implementations. An example of a wrong algorithm is
shown in S2 of Table 5: find group other() tries to
find a block group for inode allocation, but does not check
all candidate groups; the result is a possible ENOSPC error
even when the file system has free inodes.

File system behavior is also affected by various con-
figuration parameters, such as mount options and special
hardware support. Unfortunately, file systems often for-
get or misuse such configuration information (about 10%
to 15% of semantic bugs are of this flavor). A semantic
configuration bug is shown in S3 of Table 5; when Ext4
loads the journal from disk, it forgets to check if the de-
vice is read-only before updating the on-disk superblock.

Correct I/O request ordering is critical for crash con-
sistency in file systems. The I/O timing category contains
bugs involving incorrect I/O ordering. For example, in
ordered journal mode, a bug may flush metadata to disk
before the related data blocks are persisted. We found

7

38 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

0%

20%

40%

60%

80%

100%

XF
S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

31
6

27
0

19
6

13
8

66 36 10
22

State

I/O Timing

Logic

Generic

Config

(a) Semantic Bugs

0%

20%

40%

60%

80%

100%

XF
S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

95 80 65 38 67 21 36
6

Atomicity

Miss_UL

Deadlock

Double_UL

Order

Wrong_L

(b) Concurrency Bug

0%

20%

40%

60%

80%

100%

XF
S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

56 62 47 26 13 15 21
9

Leak

Uninit_R

Null

Double_F

Dangling

Overflow

(c) Memory Bugs

0%

20%

40%

60%

80%

100%

XF
S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

44 38 50 27 12 8 17
9

Miss Error Wrong Error

(d) Error Code Bugs

Figure 7: Detailed Bug Patterns. The detailed classification for each bug pattern; total number of bugs is shown on top of each bar.

that only a small percentage of semantic bugs (3-9%) are
I/O timing bugs; however, these bugs can lead to potential
data loss or corruption.

A fair amount of generic bugs also exist in all file sys-
tems, such as using the wrong variable type or simple
typos. These bugs are general coding mistakes (such as
comparing unsigned variable with zero [48]), and may be
fixed without much file-system knowledge.

Summary: Incorrect state update and logic mistakes
dominate semantic bug patterns; configuration errors are
also not uncommon; incorrect I/O orderings are rare (but
can have serious consequences); generic bugs require the
least file-system knowledge to understand.

4.5.2 Concurrency Bugs
Concurrency bugs have attracted a fair amount of atten-
tion in the research community as of late [16, 22, 28, 49,
50]. To better understand file-system concurrency bugs,
we classify them into six types as shown in Table 3 (on
page 5): atomicity violations, deadlocks, order violations,
missed unlocks, double unlocks, and wrong locks.

Figure 7(b) shows the percentage and total number of
each category of concurrency bugs. Atomicity violation
bugs are usually caused by a lack of proper synchroniza-
tion methods to ensure exclusive data access, often lead-
ing to data corruption.

An example of an atomicity violation bug in Ext4 is
shown in C1 of Table 5. For this bug, when two CPUs
simultaneously allocate blocks, there is no protection for
the i cached extent structure; this atomicity viola-
tion could thus cause the wrong location on disk to be
read or written. A simple spin-lock resolves the bug.

There are a large number of deadlocks in file sys-
tems (about 40%). Two typical causes are the use of
the wrong kernel memory allocation flag and calling a
blocking function when holding a spin lock. These pat-
terns are not common in application-level deadlocks, and
thus are useful to both developers (who should be wary of
such patterns) and tool builders (who should detect them).

Many deadlocks are found in ReiserFS, once again due to
the BKL. The BKL could be acquired recursively; replac-
ing it introduced a multitude of locking violations, many
of which led to deadlock.

A typical memory-related deadlock is shown in C2
of Table 5. Btrfs uses extent readpages() to
read free space information; however, it should not use
GFP KERNEL flag to allocate memory, since the VM
memory allocator kswapd will recursively call into file-
system code to free memory. The fix changes the flag to
GFP NOFS to prevent VM re-entry into file-system code.

The remaining four categories account for a small per-
centage. Missing unlocks happen mostly in exit or fail-
ure paths (e.g., putting resource releases at the end of
functions with goto statements). C3 of Table 5 shows
a missing-unlock bug. ext3 group add() locks super
block (line 1) but forgets to unlock on an error (line 4).

Summary: Concurrency bugs are much more common
in file systems than in user-level software. Atomicity and
deadlock bugs represent a significant majority of concur-
rency bugs; many deadlock bugs are caused by wrong ker-
nel memory-allocation flags; most missing unlocks hap-
pen on exit or failure paths.

4.5.3 Memory Bugs
Memory-related bugs are common in many source bases,
and not surprisingly have been the focus of many bug
detection tools [9, 35]. We classify memory bugs into
six categories, as shown in Table 3: resource leaks,
null pointer dereferences, dangling pointers, uninitialized
reads, double frees, and buffer overflows.

Resource leaks are the most dominant, over 40% in ag-
gregate; in contrast, studies of user-level programs show
notably lower percentages [26, 42, 45]. We find that
roughly 70% of resource leaks happen on exit or failure
paths; we investigate this further later (§4.6).

An example of resource leaks (M1 of Table 5) is found
in btrfs new inode() which allocates an inode but
forgets to free it upon failure.

8

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 39

ext3/namei.c, 2.6.26 Semantic (S1) ext3/ialloc.c, 2.6.4 Semantic (S2)
1 ext3 rename(...){ 1 find group other(...){
2 + new dir->i ctime = CURRENT TIME SEC; 2 - group = parent group + 1;
3 + new dir->i mtime = CURRENT TIME SEC; 3 - for (i = 2; i < ngroups; i++) {
4 + ext3 mark inode dirty(handle, new dir); 4 + group = parent group;

5 + for (i = 0; i < ngroups; i++) {
ext4/super.c, 2.6.37 Semantic (S3) ext4/extents.c, 2.6.30 Concurrency (C1)
1 ext4 load journal(...){ 1 ext4 ext put in cache(...){
2 - if (journal devnum && ...) 2 + spin lock(i block reservation lock);
3 + if (!read only && journal devnum ...) 3 cex = &EXT4 I(inode)->i cached extent;
4 es->s journal dev = devnum; 4...6 cex->ec FOO = FOO; // elided for brevity

7 + spin unlock(i block reservation lock);
btrfs/extent io.c, 2.6.39 Concurrency (C2) ext3/resize.c, 2.6.17 Concurrency (C3)
1 extent readpages(...){ 1 lock super(sb);
2 if (!add to page cache lru(page, mapping, 2 if (input->group != sbi->s groups count){
3 - page->index, GFP KERNEL)) { 3
4 + page->index, GFP NOFS)) { 4 + unlock super(sb);
5 extent read full page(...); 5 err = -EBUSY;

6 goto exit journal;
btrfs/inode.c, 2.6.30 Memory (M1) ext3/super.c, 2.6.7 Memory (M2)
1 btrfs new inode(...){ 1 ext3 get journal(...){
2 inode = new inode(...); 2 if (!journal) {
3 ret = btrfs set inode index(...); 3
4 - if (ret) 4 + return NULL;
5 - return ERR PTR(ret); 5 }
6 + if (ret) { 6 journal->j private = sb;
7 + iput(inode); return ERR PTR(ret);
8 + }
reiserfs/xattr acl.c, 2.6.16 Error Code (E1) jfs/jfs imap.c, 2.6.27 Error Code (E2)
1 reiserfs get acl(...){ 1 diAlloc(...){
2 acl = posix acl from disk(...); 2 jfs error(...);
3 - *p acl = posix acl dup(acl); 3 - return EIO;
4 + if (!IS ERR(acl)) 4 + return -EIO;
5 + *p acl = posix acl dup(acl);
ext4/extents.c, 2.6.31 Performance (P1) btrfs/free-space-cache.c, 2.6.39 Performance (P2)
1 ext4 fiemap(...){ 1 btrfs find space cluster(...){
2 - down write(&EXT4 I(inode)->i data sem); 2 + if (bg->free space < min bytes){
3 + down read(&EXT4 I(inode)->i data sem); 3 + spin unlock(&bg->tree lock);
4 error = ext4 ext walk space(...); 4 + return -ENOSPC;
5 - up write(&EXT4 I(inode)->i data sem); 5 + }
6 + up read(&EXT4 I(inode)->i data sem); 6 /* start to search for blocks */

Table 5: Code Examples. This table shows the code examples of bug patterns and performance patches.

As we see in Figure 7(c), null-pointer dereferences are
also common in both mature and young file systems (the
remaining memory bugs account for small percentages).
An example is shown in M2 of Table 5; a return statement
is missing, leading to a null-pointer dereference.

Summary: Resource leaks are the largest category of
memory bug, significantly higher than that in user-level
applications; null-pointer dereferences are also common;
failure paths contribute strongly to these bugs; many of
these bugs have simple fixes.

4.5.4 Error Code Bugs
File systems need to handle a wide range of errors, in-
cluding memory-allocation failures, disk-block allocation
failures, I/O failures [7, 8], and silent data corruption [37].
Handling such faults, and passing error codes through
a complex code base, has proven challenging [19, 40].
Here, we further break down error-code errors.

We partition the error code bugs into missing error
codes and wrong error codes as described in Table 3. Fig-
ure 7(d) shows the breakdown of error code bugs. Miss-
ing errors are generally twice as prevalent as wrong errors
(except for JFS, which has few of these bugs overall).

A missing error code example is shown in E1 of Ta-
ble 5. The routine posix acl from disk() could re-

turn an error code (line 2). However, without error check-
ing, acl is accessed and thus the kernel crashes (line 3).

An example of a wrong error code is shown in E2 of
Table 5. diAlloc()’s return value should be -EIO.
However, in line 3, the original code returns the close (but
wrong) error code EIO; callers thus fail to detect the error.

Summary: Error handling bugs occur in two flavors,
missing error handling or incorrect error handling; the
bugs are relatively simple in nature.

4.6 The Failure Path
Many bugs we found arose not in common-case code
paths but rather in more unusual fault-handling cases [19,
52]. This type of error handling (i.e., reacting to disk or
memory failures) is critical to robustness, since bugs on
failure paths can lead to serious consequences. We now
quantify bug occurrences on failure paths; Tables 6 (a)
and (b) present our accumulated results.

As we can see from the first table, roughly a third of
bugs are introduced on failure paths across all file systems.
Even mature file systems such as Ext3 and XFS make a
significant number of mistakes on these rarer code paths.

When broken down by bug type in the second table, we
see that roughly a quarter of semantic bugs occur on fail-
ure paths, usually in the previously-defined state and logic

9

40 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

XFS Ext4 Btrfs Ext3 ReiserFS JFS
200 149 144 88 63 28

(39.1%) (33.1%) (40.2%) (38.4%) (39.9%) (35%)
(a) By File System

Semantic Concurrency Memory Error Code
283 93 117 179

(27.7%) (25.4%) (53.4%) (100%)
(b) By Bug Pattern

Table 6: Failure Related Bugs. This table shows the number
and percentage of the bugs related to failures in file systems.

categories. Once a failure happens (e.g., an I/O fails),
the file system needs to free allocated disk resources and
update related metadata properly; however, it is easy to
forget these updates, or perform them incorrectly, leading
to many state bugs. In addition, wrong algorithms (logic
bugs) are common; for example, when block allocation
fails, most file systems return ENOSPC immediately in-
stead of retrying after committing buffered transactions.

A quarter of concurrency bugs arise on failure paths.
Sometimes, file systems forget to unlock locks, resulting
in deadlock. Moreover, when file systems output errors
to users, they sometimes forget to unlock before calling
blocking error-output functions (deadlock). These types
of mistakes rarely arise in user-level code [28].

For memory bugs, most resource-leak bugs stem from
forgetting to release allocated resources when I/O or other
failures happen. There are also numerous null-pointer
dereference bugs which incorrectly assume certain point-
ers are still valid after a failure. Finally (and obviously),
all error code bugs occur on failure paths (by definition).

It is difficult to fully test failure-handling paths to find
all types of bugs. Most previous work has focused on
memory resource leaks [41, 52], missing unlock [41, 52]
and error codes [19, 40]; however, existing work can only
detect a small portion of failure-handling errors, espe-
cially omitting a large amount of semantic bugs on failure
paths. Our results provide strong motivation for improv-
ing the quality of failure-handling code in file systems.

Summary: A high fraction of bugs occur due to im-
proper behavior in the presence of failures or errors across
all file systems; memory-related errors are particularly
common along these rarely-executed code paths; a quarter
of semantic bugs are found on failure paths.

5 Performance and Reliability
A small but important set of patches improve performance
and reliability, which are quantitatively different than bug
patches (Figure 3). Performance and reliability patches
account for 8% and 7% of patches respectively.

5.1 Performance Patches
Performance is critical for all file systems. Performance
patches are proposed to improve existing designs or im-
plementations. We partition these patches into six cat-
egories as shown in Table 7, including synchronization
(sync), access optimization (access), scheduling (sched),

Type Description
Inefficient usage of synchronization methods

Synchronization (e.g., removing unnecessary locks, using
smaller locks, using read/write locks)

Access Apply smarter access strategies
Optimization (e.g., caching metadata and statistics, avoiding

unnecessary I/O and computing)

Schedule
Improve I/O operations scheduling
(e.g., batching writes, opportunistic readahead)
Scale on-disk and in-memory data structures

Scalability (e.g., using trees or hash tables, per block group
structures, reducing memory usage of inodes)

Locality
Overcome sub-optimal data block allocations
(e.g., reducing file fragmentation, clustered I/Os)

Other
Other performance improvement techniques
(e.g., reducing function stack usage)

Table 7: Performance Patch Type. This table shows the
classification and definition of performance patches.

scalability (scale), locality (locality), and other. Fig-
ure 8(a) shows the breakdown.

Synchronization-based performance improvements ac-
count for over a quarter of all performance patches across
file systems. Typical solutions used include removing
a pair of unnecessary locks, using finer-grained locking,
and replacing write locks with read/write locks. A sync
patch is shown in P1 of Table 5; ext4 fiemap() uses
write instead of read semaphores, limiting concurrency.

Access patches use smarter strategies to optimize per-
formance, including caching and work avoidance. For ex-
ample, Ext3 caches metadata stats in memory, avoiding
I/O. Figure 8(a) shows access patches are popular. An ex-
ample Btrfs access patch is shown in P2 of Table 5; before
searching for free blocks, it first checks whether there is
enough free space, avoiding unnecessary work.

Sched patches improve I/O scheduling for better per-
formance, such as batching of writes, opportunistic reada-
head, and avoiding unnecessary synchrony in I/O. As can
be seen, sched has a similar percentage compared to sync
and access. Scale patches utilize scalable on-disk and in-
memory data structures, such as hash tables, trees, and per
block-group structures. XFS has a large number of scale
patches, as scalability was always its priority.

Summary: Performance patches exist in all file sys-
tems; sync, access, and sched each account for a quarter of
the total; many of the techniques used are fairly standard
(e.g., removing locks); while studying new synchroniza-
tion primitives, we should not forget about performance.

5.2 Reliability Patches
Finally we study our last class of patch, those that aim
to improve file-system reliability. Different from bug-fix
patches, reliability patches are not utilized for correctness.
Rather, for example, such a patch may check whether the
super block is corrupted before mounting the file system;
further, a reliability patch might enhance error propaga-
tion [19] or add more debugging information. Table 8
presents the classification of these reliability patches, in-
cluding adding assertions and other functional robustness

10

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 41

Type Description
Enhance file-system robustness

Robust (e.g., boundary limits and access permission
checking, additional internal assertions)

Corruption Improve file systems’ ability to handle various
Defense possible corruptions

Error Improve original error handling (e.g., gracefully
Enhancement handling failures, more detailed error codes)

Annotation
Add endianness, user/kernel space pointer and lock
annotations for early bug detection

Debug Add more internal debugging or tracing support

Table 8: Reliability Patch Type. This table shows the classi-
fication and definition of reliability patches.

(robust), corruption defense (corruption), error enhance-
ment (error), annotation (annotation), and debugging (de-
bug). Figure 8(b) displays the distributions.

Robust patches check permissions, enforce file-system
limits, and handle extreme cases in a more friendly man-
ner. Btrfs has the largest percentage of these patches,
likely due to its early stage of development.

Corruption defense patches validate the integrity of
metadata when reading from disk. For example, a patch
to the JBD (used by Ext3) checks that the journal length
is valid before performing recovery; similarly, a patch to
Ext4 checks that a directory entry is valid before travers-
ing that directory. In general, many corruption patches
are found at the I/O boundary, when reading from disk.

Error enhancement patches improve error handling in a
variety of ways, such as more detail in error codes, remov-
ing unnecessary error messages, and improving availabil-
ity, for example by remounting read-only instead of crash-
ing. This last class is common in all file systems, which
each slowly replaced unnecessary BUG() and assertion
statements with more graceful error handling.

Annotation patches label variables with additional type
information (e.g., endianness) and locking rules to en-
able better static checking. ReiserFS uses lock annota-
tions to help prevent deadlock, whereas XFS uses en-
dianness annotations for numerous variable types. De-
bug patches simply add more diagnostic information at
failure-handling points within the file system.

Interestingly, reliability patches appear more ad hoc
than bug patches. For bug patches, most file systems have
similar pattern breakdowns. In contrast, file systems make
different choices for reliability, and do so in a generally
non-uniform manner. For example, Btrfs focuses more on
Robust patches, while Ext3 and Ext4 prefer to add more
Corruption defense patches.

Summary: We find that reliability patches are added to
file systems over time as part of hardening; most add sim-
ple checks, defend against corruption upon reading from
disk, or improve availability by returning errors instead
of crashing; annotations help find problems at compile
time; debug patches add diagnostic information; reliabil-
ity patch usage, across all file systems, seems ad hoc.

0%

20%

40%

60%

80%

100%

XF
S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

13
5

80 12
6

41 24 9 41
5

Sync

Scale

Access

Locality

Sched

Other

(a) Performance

0%

20%

40%

60%

80%

100%

XF
S

Ex
t4

Bt
rfs

Ex
t3

R
ei

se
r

JF
S Al
l

14
2

80 49 43 22 18 35
4

Robust

Annotation

Corrupt

Debug

Error

(b) Reliability

Figure 8: Performance and Reliability Patches. This
figure shows the performance and reliability patterns. The total number
of patches is shown on top of each bar.

6 Case Study Using PatchDB
The patch dataset constructed from our analysis of 5079
patches contains fine-grained information, including char-
acterization of bug patterns (e.g., which semantic bugs
forget to synchronize data), detailed bug consequences
(e.g., crashes caused by assertion failures or null-pointer
dereferences), incorrect bug fixes (e.g., patches that are
reverted after being accepted), performance techniques
(e.g., how many performance patches remove unneces-
sary locks), and reliability enhancements (e.g., the loca-
tion of metadata integrity checks). These details enable
further study to improve file-system designs, propose new
system language constructs, build custom bug-detection
tools, and perform realistic fault injection.

In this section, we show the utility of PatchDB by ex-
amining which patches are common across all file sys-
tems. Due to space concerns, we only highlight a few
interesting cases. A summary is found in Table 9.

We first discuss specific common bugs. Within seman-
tic bugs is forget sync, in which a file system forgets to
force data or metadata to disk. Most forget sync bugs re-
late to fsync. Even for stable file systems, there are a no-
ticeable number of these bugs, leading to data loss or cor-
ruption under power failures. Another common mistake
is forget config, in which mount options, feature sets, or
hardware support are overlooked. File systems also return
the ENOSPC error code despite the presence of free blocks
(early enospc); Btrfs has the largest number of these bugs,
and even refers to the Ext3 fix strategy in its patches.
Even though semantic bugs are dominant in file systems,
few tools can detect semantic bugs due to the difficulty of
specifying correct behavior [15, 25, 27]. Fortunately, we
find that many semantic bugs appear across file systems,
which can be leveraged to improve bug detection.

For concurrency bugs, forgetting to lock an inode when
updating it is common; perhaps a form of monitors [20]

11

42 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Patch Type Typical Cases X
FS

Ex
t4

Bt
rf
s

Ex
t3

R
ei

se
r

JF
S

Semantic

forget sync 17 11 6 11 5 1
forget config 43 43 23 16 8 1
early enospc 5 9 14 7

wrong log credit 6 8 1 1 1

Concurrency

lock inode update 6 5 2 4 4 2
lock sleep 8 8 1 1 8

wrong kmalloc flag 20 3 3 2 1
miss unlock 10 7 4 2 2 4

Memory leak on failure 14 21 16 11 1 3
leak on exit 1 1 4 1

Error Code
miss I/O error 10 11 8 15 4 1

miss mem error 4 2 13 1 1
bad error access 3 8 2

Performance

remove lock 17 14 14 8 5 1
avoid redun write 6 4 5 4 2

check before work 8 5 15 2 1
save struct mem 3 9 1 3

Reliability metadata validation 12 9 1 7 2 1
graceful handle 8 6 5 5 1 4

Table 9: Common File System Patches. This table shows
the classification and count of common patches across all file systems.

would help. Calling a blocking function when hold-
ing a spin lock (lock sleep) occurs frequently (also in
drivers [14, 36]). As we saw earlier (§4.5.2), using the
wrong kernel memory allocation flag is a major source of
deadlock (particularly XFS). All file systems miss unlocks
frequently, in contrast to user applications [28].

For memory bugs, leaks happen on failure or exit paths
frequently. For error code bugs, there are a large number
of missed I/O error bugs. For example, Ext3, JFS, Reis-
erFS and XFS all ignore write I/O errors on fsync before
Linux 2.6.9 [37]; as a result, data could be lost even when
fsync returned successfully. Memory allocation errors are
also often ignored (especially in Btrfs). Three file systems
mistakenly dereference error codes.

For performance patches, removing locks (without sac-
rificing correctness) is common. File systems also tend to
write redundant data (e.g., fdatasync unnecessarily flushes
metadata). Another common performance improvement
case is check before work, in which missing specific con-
dition checking costs unnecessary I/O or CPU overhead.

Finally, for reliability patches, metadata validation (i.e.,
inode, super block, directory and journal) is popular. Most
of these patches occur in similar places (e.g., when mount-
ing the file system, recovering from the journal, or read-
ing an inode). Also common is replacing BUG() and
Assert() calls with more graceful error handling.

Summary: Despite their diversity, file-system patches
share many similarities across implementations; some ex-
amples occur quite frequently; PatchDB affords new op-
portunities to study such phenomena in great detail.

7 Related Work
Operating-SystemBugs: Faults in Linux have been stud-
ied [14, 36]. Static analysis tools are used to find poten-

tial bugs in Linux 1.0 to 2.4.1 [14] and Linux 2.6.0 to
2.6.33 [36]. Most detected faults are generic memory and
concurrency bugs. Both studies find that device drivers
contain the most faults, while Palix et al. [36] also show
that file-system errors are rising. Yin et al. [53] analyze in-
correct bug-fixes in several operating systems. Our work
embellishes these studies, focusing on all file-system bugs
found and fixed over eight years and providing more detail
on which bugs plague file systems.
User-Level Bugs: Various aspects of modern user-level
open source software bugs have also been studied, in-
cluding patterns, impacts, reproducibility, and fixes [16,
26, 28, 42, 50]. As our findings show, file-systems bugs
display different characteristics compared with user-level
software bugs, both in their patterns and consequences
(e.g., file-system bugs have more serious consequences
than user-level bugs; concurrency bugs are much more
common). One other major difference is scale; the num-
ber of bugs (about 1800) we study is larger than previous
efforts [16, 26, 28, 42, 50]
File-System Bugs: Several research projects have been
proposed to detect and analyze file-system bugs. For ex-
ample, Yang et al. [51, 52] use model checking to detect
file-system errors; Gunawi et al. [19] use static analysis
techniques to determine how error codes are propagated in
file systems; Rubio-Gonzalez et al. [40] utilize static anal-
ysis to detect similar problems; Prabhakaran et al. [37]
study how file systems handle injected failures and cor-
ruptions. Our work complements this work with insights
on bug patterns and root causes. Further, our public bug
dataset provides useful hints and patterns to aid in the de-
velopment of new file-system bug-detection tools.

8 Conclusions
We performed a comprehensive study of 5079 patches
across six Linux file systems; our analysis includes one
of the largest studies of bugs to date (nearly 1800 bugs).
Our observations, summarized in the introduction and
throughout, should be of utility to file-system developers,
systems-language designers, and tool makers; the careful
study of these results should result in a new generation of
more robust, reliable, and performant file systems.

Acknowledgments
We thank Ric Wheeler (our shepherd) and the anonymous re-
viewers for their excellent feedback and suggestions. We also
thank the members of the ADSL research group for their in-
sightful comments. This material is based upon work supported
by the National Science Foundation under the following grants:
CNS-1218405, CCF-0937959, CSR-1017518, CCF-1016924,
as well as generous support from NetApp, EMC, and Google.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

12

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 43

References
[1] Coverity Scan: 2011 Open Source Integrity Re-

port. http://www.coverity.com/library/pdf/coverity-scan-
2011-open-source-integrity-report.pdf.

[2] First Galaxy Nexus Rom Available, Features Ext4
Support. http://androidspin.com/2011/12/06/first-galaxy-
nexus-rom-available-features-ext4-support/.

[3] Kernel Bug Tracker. http://bugzilla.kernel.org/.
[4] Linux Filesystem Development List.

http://marc.info/?l=linux-fsdevel.
[5] Linux Kernel Mailing List. http://lkml.org/.
[6] IBM Journaled File System. http://en.wikipedia.org/wiki/

JFS (file system), September 2012.
[7] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar

Pasupathy, and Jiri Schindler. An Analysis of Latent Sec-
tor Errors in Disk Drives. In Proceedings of the 2007 ACM
SIGMETRICS Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’07), San Diego, Cal-
ifornia, June 2007.

[8] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca
Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. An Analysis of Data Corruption in the
Storage Stack. In Proceedings of the 6th USENIX Sympo-
sium on File and Storage Technologies (FAST ’08), pages
223–238, San Jose, California, February 2008.

[9] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan
Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky,
Scott McPeak, and Dawson Engler. A Few Billion Lines
of Code Later: Using Static Analysis to Find Bugs in the
Real World. Communications of the ACM, February 2010.

[10] Steve Best. JFS Overview. http://jfs.
sourceforge.net/project/pub/jfs.pdf,
2000.

[11] Simona Boboila and Peter Desnoyers. Write Endurance in
Flash Drives: Measurements and Analysis. In Proceedings
of the 8th USENIX Symposium on File and Storage Tech-
nologies (FAST ’10), San Jose, California, February 2010.

[12] Jeff Bonwick and Bill Moore. ZFS: The Last Word
in File Systems. http://opensolaris.org/os/
community/zfs/docs/zfs_last.pdf, 2007.

[13] Florian Buchholz. The structure of the Reiser file
system. http://homes.cerias.purdue.edu/
˜florian/reiser/reiserfs.php, January 2006.

[14] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating Sys-
tem Errors. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), pages 73–
88, Banff, Canada, October 2001.

[15] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,
and Benjamin Chelf. Bugs as Deviant Behavior: A Gen-
eral Approach to Inferring Errors in Systems Code. In Pro-
ceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP ’01), pages 57–72, Banff, Canada,
October 2001.

[16] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Ro-
drigues. A Study of the Internal and External Effects of
Concurrency Bugs. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN
’10), Chicago, USA, June 2010.

[17] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03),
pages 29–43, Bolton Landing, New York, October 2003.

[18] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf. Characterizing
Flash Memory: Anomalies, Observations, and Applica-
tions. In Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO’09),
New York, New York, December 2009.

[19] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Ben Li-
blit. EIO: Error Handling is Occasionally Correct. In Pro-
ceedings of the 6th USENIX Symposium on File and Stor-
age Technologies (FAST ’08), pages 207–222, San Jose,
California, February 2008.

[20] C.A.R. Hoare. Monitors: An Operating System Structur-
ing Construct. Communications of the ACM, 17(10), Oc-
tober 1974.

[21] Steve Jobs, Bertrand Serlet, and Scott Forstall. Keynote
Address. Apple World-wide Developers Conference,
2006.

[22] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and
George Candea. Deadlock Immunity: Enabling Systems
to Defend Against Deadlocks. In Proceedings of the 8th
Symposium on Operating Systems Design and Implemen-
tation (OSDI ’08), San Diego, California, December 2008.

[23] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Re-
visiting Storage for Smartphones. In Proceedings of the
10th USENIX Symposium on File and Storage Technolo-
gies (FAST ’12), San Jose, California, February 2012.

[24] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Michael Norrish, Rafal Kolanski, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
Verification of an OS Kernel. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles (SOSP
’09), Big Sky, Montana, October 2009.

[25] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. CP-Miner: A Tool for Finding Copy-paste and Re-
lated Bugs in Operating System Code. In Proceedings of
the 6th Symposium on Operating Systems Design and Im-
plementation (OSDI ’04), San Francisco, California, De-
cember 2004.

[26] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan
Zhou, and Chengxiang Zhai. Have Things Changed Now?
– An Empirical Study of Bug Characteristics in Modern
Open Source Software. In Workshop on Architectural
and System Support for Improving Software Dependabil-
ity (ASID ’06), San Jose, California, October 2006.

[27] Zhenmin Li and Yuanyuan Zhou. PR-Miner: Automati-
cally Extracting Implicit Programming Rules and Detect-
ing Violations in Large Software Code. In Proceedings
of the 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE ’05), Lisbon,
Portugal, September 2005.

[28] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from Mistakes — A Comprehensive Study on
Real World Concurrency Bug Characteristics. In Proceed-
ings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS XIII), Seattle, Washington, March 2008.

[29] Cathy Marshall. ”It’s like a fire. You just have to move on”:
Rethinking Personal Digital Archiving. Keynote at FAST
2008, February 2008.

[30] Chris Mason. The Btrfs Filesystem. oss.oracle.
com/projects/btrfs/dist/documentation/
btrfs-ukuug.pdf, September 2007.

[31] Avantika Mathur, Mingming Cao, Suparna Bhattacharya,
Alex Tomas Andreas Dilge and, and Laurent Vivier. The
New Ext4 filesystem: Current Status and Future Plans. In
Ottawa Linux Symposium (OLS ’07), Ottawa, Canada, July
2007.

[32] Marshall K. McKusick, William N. Joy, Sam J. Leffler, and
Robert S. Fabry. A Fast File System for UNIX. ACM
Transactions on Computer Systems, 2(3):181–197, August
1984.

[33] Marshall Kirk McKusick, Willian N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. Fsck - The UNIX File System

13

44 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Check Program. Unix System Manager’s Manual - 4.3
BSD Virtual VAX-11 Version, April 1986.

[34] Sean Morrissey. iOS Forensic Analysis: for iPhone, iPad,
and iPod Touch. Apress, 2010.

[35] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and
Gilles Muller. Documenting and Automating Collateral
Evolutions in Linux Device Drivers. In Proceedings of
the EuroSys Conference (EuroSys ’08), Glasgow, Scotland
UK, March 2008.

[36] Nicolas Palix, Gael Thomas, Suman Saha, Christophe
Calves, Julia Lawall, and Gilles Muller. Faults in Linux:
Ten Years Later. In Proceedings of the 15th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XV),
Newport Beach, California, March 2011.

[37] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. IRON File Systems. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 206–220, Brighton,
United Kingdom, October 2005.

[38] Eric S. Raymond. The Cathedral & the Bazaar: Musings
on Linux and Open Source by an Accidental Revolution-
ary. O’Reilly, October 1999.

[39] Mendel Rosenblum and John Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems, 10(1):26–52, Febru-
ary 1992.

[40] Cindy Rubio-Gonzalez, Haryadi S. Gunawi, Ben Lib-
lit, Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-
Dusseau. Error Propagation Analysis for File Systems.
In Proceedings of the ACM SIGPLAN 2009 Conference
on Programming Language Design and Implementation
(PLDI ’09), Dublin, Ireland, June 2009.

[41] Suman Saha, Julia Lawall, and Gilles Muller. Finding
Resource-Release Omission Faults in Linux. In Work-
shop on Programming Languages and Operating Systems
(PLOS ’11), Cascais, Portugal, October 2011.

[42] Swarup Kumar Sahoo, John Criswell, and Vikram Adve.
An Empirical Study of Reported Bugs in Server Software
with Implications for Automated Bug Diagnosis. In Pro-
ceedings of the 32nd ACM/IEEE International Conference
on Software Engineering (ICSE ’10), Cape Town, South
Africa, May 2010.

[43] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop Distributed File System. In
Proceedings of the 26th IEEE Symposium on Mass Stor-
age Systems and Technologies (MSST ’10), Incline Village,
Nevada, May 2010.

[44] Mark Sullivan and Ram Chillarege. Software Defects and
their Impact on System Availability – A Study of Field
Failures in Operating Systems. In Proceedings of the
21st International Symposium on Fault-Tolerant Comput-
ing (FTCS-21), Montreal, Canada, June 1991.

[45] Mark Sullivan and Ram Chillarege. A Comparison of
Software Defects in Database Management Systems and
Operating Systems. In Proceedings of the 22st Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-
22), pages 475–484, Boston, USA, July 1992.

[46] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson,
Mike Nishimoto, and Geoff Peck. Scalability in the XFS
File System. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’96), San Diego, California,
January 1996.

[47] Stephen C. Tweedie. Journaling the Linux ext2fs File Sys-
tem. In The Fourth Annual Linux Expo, Durham, North
Carolina, May 1998.

[48] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich,
and M. Frans Kaashoek. Improving Integer Security for

Systems. In Proceedings of the 10th Symposium on Op-
erating Systems Design and Implementation (OSDI ’12),
Hollywood, California, October 2012.

[49] Yin Wang, Terence Kelly, Manjunath Kudlur, Stphane
Lafortune, and Scott Mahlke. Gadara: Dynamic Deadlock
Avoidance for Multithreaded Programs. In Proceedings of
the 8th Symposium on Operating Systems Design and Im-
plementation (OSDI ’08), San Diego, California, Decem-
ber 2008.

[50] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou,
and Zhiqiang Ma. Ad Hoc Synchronization Considered
Harmful. In Proceedings of the 9th Symposium on Op-
erating Systems Design and Implementation (OSDI ’10),
Vancouver, Canada, December 2010.

[51] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE:
A Lightweight, General System for Finding Serious Stor-
age System Errors. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI
’06), Seattle, Washington, November 2006.

[52] Junfeng Yang, Paul Twohey, Dawson Engler, and Madan-
lal Musuvathi. Using Model Checking to Find Serious
File System Errors. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI
’04), San Francisco, California, December 2004.

[53] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasu-
pathy, and Lakshmi Bairavasundaram. How Do Fixes Be-
come Bugs? – A Comprehensive Characteristic Study on
Incorrect Fixes in Commercial and Open Source Operat-
ing Systems. In Proceedings of the Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’11), Szeged, Hungary, September
2011.

14

