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Abstract
Crash failures, hardware errors, and file system bugs can
corrupt file systems and cause data loss, despite the pres-
ence of journals and similar preventive techniques. While
consistency checkers such as fsck can detect this corrup-
tion and restore a damaged image to a usable state, they
are generally created as an afterthought, to be run only
at rare intervals. Thus, checkers operate slowly, causing
significant downtime for large scale storage systems when
they are needed.

We address this dilemma by treating the checker as a
key component of the overall file system (and not merely
a peripheral add-on). To this end, we present a modified
ext3 file system, rext3, to directly support the fast file sys-
tem checker, ffsck. The rext3 file system co-locates and
self-identifies its metadata blocks, removing the need for
costly seeks and tree traversals during checking. These
modifications to the file system allow ffsck to scan and
repair the file system at rates approaching the full sequen-
tial bandwidth of the underlying device. In addition, we
demonstrate that rext3 performs competitively with ext3
in most cases and exceeds it in handling random reads
and large writes.

1 Introduction
Data integrity is critically important for personal users and
companies. Once data becomes lost or corrupted, it is ex-
pensive and challenging to restore [22]. As the file system
plays a central role in storing and organizing data, system
developers must carefully consider how to keep the file
system robust and reliable.

Unfortunately, there are a variety of factors that can
corrupt a file system. Unclean shutdowns and bugs in
the file system or device drivers can easily corrupt meta-
data [13, 45]. Hardware failures such as memory corrup-
tion [24, 36, 52] and disk corruption [1, 4, 5, 7, 42, 46]
can render the file system inconsistent. Since metadata
corruption and file-system inconsistency can easily prop-
agate to different parts of the file system, these errors can
ultimately lead to significant data loss.

In the past several decades, file and storage systems
have devised a variety of different techniques to han-
dle corruption. Journaling [8, 33, 44, 47], copy-on-
write [21, 34, 41, 48], and soft updates [17] can handle
inconsistency in the event of a system crash. Bug finding
tools [14, 49, 50] can identify and remove errors in file-

system source code and prevent them from corrupting the
file system. Checksums [6, 9, 40, 42] and scrubbing [37]
can detect hardware failures and repair corrupted blocks
with copies [29].

Unfortunately, while these tools and techniques can re-
duce the probability of system corruption and repair in-
consistent file systems in some cases, they cannot protect
against all faults. Even when combined with mechanisms
to improve reliability, as seen in ZFS [9] and XFS [44],
certain errors can still evade these measures and damage
the file system [16, 51].

As a result, the offline file-system checker remains a
last resort to protect the file system. A file-system checker
restores a file-system image back to a consistent and us-
able state by scanning all the file-system metadata and
using redundancy information to detect and repair incon-
sistencies [27]. Unlike the mechanisms previously de-
scribed, file-system checkers are robust to nearly all types
of failure (except those within the checker itself [11, 18]).

Despite the importance of file-system checkers, users
and administrators are reluctant to run them, frequently
complaining about bad experiences when doing so [2, 43].
Complaints such as “It’s been almost 24 hours now and
e2fsck -f -y -v /dev/sda1 is still running” are not uncom-
mon [3]. Generally, most file-system checkers run ex-
tremely slowly, without providing a reliable indication of
their progress or anticipated completion time. Because of
this, system administrators often have to endure signifi-
cant, unpredictable downtime when running a checker.

Addressing this dilemma and building an efficient
checker for large scale storage systems requires a new ap-
proach that treats the file-system checker as more than an
afterthought. Thus, we propose the rext3 file system, a
modified version of ext3 which sets fast handling of in-
consistency as a principle design goal, providing direct
support for the file-system checker in its implementation.
To accompany this new file system, we develop a new fast
file-system checker, ffsck.

While rext3 and ffsck are based on the widely-used
Linux ext3 file system [47] and its default checker, e2fsck,
respectively, they include several novel components that
can be easily applied to other file systems and corre-
sponding checkers. Specifically, rext3 enhances meta-
data density by co-locating all the file indirect blocks for
each block group [10] and better supports ffsck by us-
ing backpointer-based data structures for these indirect
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blocks [12]. To fully utilize disk bandwidth, ffsck per-
forms a disk-order scan of system metadata instead of
a traditional inode-order scan. To reduce memory pres-
sure, ffsck compresses in-memory metadata on the fly, in
a fashion arising naturally from a disk order scan. Fi-
nally, ffsck employs a bitmap snapshot to avoid costly
double scans that would otherwise occur when it encoun-
ters doubly-allocated data blocks.

Our measurements show that ffsck scans the file sys-
tem significantly faster than e2fsck, nearing the sequential
peak of disk bandwidth. Moreover, its speed is robust to
file system aging, making it possible to estimate its run-
ning time beforehand and thus helping the system admin-
istrator make better decisions about running the checker.

We also find that, surprisingly, rext3 improves ordinary
I/O performance in some cases. Specifically, rext3 per-
forms up to 20% better in large sequential writes due to
improvements in journaling performance and up to 43%
faster in random reads due to better utilization of the seg-
mented disk track buffer. In other cases, it remains com-
petitive with ext3, with a worst-case degradation of 10%
due to additional seeks caused by metadata co-location.

The rest of this paper is organized as follows. We first
introduce related work (§2), and then provide an overview
of the file-system checking policy and analyze traditional
checker bottlenecks (§3). We next describe the design and
implementation of rext3 and ffsck (§4), evaluate their per-
formance (§5), discuss ffsck’s and rext3’s limitations (§6),
and summarize our conclusions (§7).

2 Related Work
We introduce research closely related to our work in this
section. In general, all of this research seeks to improve
file system reliability and protect the user from potential
data loss in the face of system crashes, file-system bugs,
and hardware failures.

Mechanisms such as journaling [8, 19, 33, 44, 47],
copy-on-write [21, 34, 41, 48], soft updates [17],
and backpointer-based consistency [12] can handle file-
system inconsistency caused by system crashes, but can-
not rectify errors arising from file-system bugs and hard-
ware failures [4, 7, 24, 52].

File-system bugs can be detected and fixed by bug-
finding tools [14, 49, 50], which can significantly reduce
the probability of file-system inconsistency resulting from
coding errors. Despite their success, these tools have so
far been unable to remove all bugs. For example, bugs
that can cause metadata corruption are still being found in
the widely-deployed ext3 file system, which has been in
use for more than 10 years.

Hardware errors can be identified with checksums [6, 9,
40, 42] and corrected with redundant copies [29]. Though
these mechanisms protect the file system from a wide
range of disk faults [1, 4, 7, 46], they cannot handle er-

rors coming from the file-system source code or hardware
failures that happen before applying a checksum or creat-
ing a copy [51].

In general, these aforementioned mechanisms can only
protect against a subset of the factors which corrupt
file systems; none of them provide universal protection.
Therefore, the checker remains an indispensable tool,
serving as the last line of defense.

However, traditional checkers require a full scan of
the entire file system, causing significant downtime. To
make matters worse, while disk bandwidth and seek time
have changed little in recent years, file systems have
only grown larger, lengthening the time required for these
scans [20]. Thus, a number of file systems have been de-
veloped with the intent of reducing this requirement.

Extent-based file systems, such as ext4 [23] and
XFS [44] offer a straightforward improvement over the di-
rect mapping of block pointers employed by file systems
such as FFS and ext3. Extents can significantly compress
metadata, reducing the amount that the checker has to
scan if the average file size is large and most blocks are al-
located contiguously. However, if the file system contains
a large percentage of small and sparsely allocated files or
the disk image is highly fragmented, checking (without
costly defragmentation [35]) will suffer. In Section 3.2,
we use ext4 as a case study to explore how these factors
affect the file-system checker’s performance.

In addition to using extents, ext4 further optimizes the
file system checker by indicating which inodes in the in-
ode table are currently in use, allowing e2fsck to skip un-
used inode blocks during its scan [23]. Unfortunately, this
approach will grow less effective over time, as the file sys-
tem’s utilization increases. Furthermore, in the event that
either the inode table or the checksum that protects the
uninitialized inode table high-water mark becomes cor-
rupted, the checker will still have to perform a full inode
scan, rendering this heuristic ineffective.

Both Chunkfs and Solaris UFS provide an alter-
nate method for addressing checking time, attempting
to reduce it by dividing the file system into isolated
chunks [20, 30]. Though the idea of fault isolation is ap-
pealing, it is difficult to create entirely separate chunks
that can be checked independently. Moreover, it can be
difficult to reliably determine that a partial check has
found all errors in the system, especially since most fail-
ure modes give little indication of where an error may lie.

Finally, Abishek Rai’s metaclustering patch [32] re-
duces the amount of time that fsck spends seeking be-
tween metadata and data by grouping indirect blocks to-
gether on disk. This closely resembles our approach in
rext3; however, Rai focuses solely on the file system, pre-
senting only a partial solution. By designing a file system
checker in tandem with a new layout, we are able to real-
ize larger improvements.
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In contrast to the previous solutions, other work seeks
to improve the repair process itself, rather than the under-
lying file system. Again, though, these works generally
fail to provide a fully integrated solution.

Recon protects file system metadata from buggy file
system operations by verifying metadata consistency at
run-time [15]. Doing so allows Recon to detect meta-
data corruption before committing it to disk, preventing its
propagation. However, Recon does not perform a global
scan and thus cannot protect against errors resulting from
hardware failures. The current implementation of Recon
also relies on the proper functioning of the ext3 JBD, mak-
ing the strong assumption that it is free of bugs.

McKusick proposes avoiding downtime during file
checking by running the checker as a background process
on a file-system snapshot [25]. While this does allow the
primary system to continue running, assuming that file-
system corruption is not catastrophic, it does not improve
the overall time required to run the checker, and thus,
some data may remain offline for long periods of time.
It also requires the underlying file system to support soft
updates, which may not be available.

Similarly, both WAFL [28], NetApp’s file system, and
ReFS [38], Microsoft’s server-side successor for NTFS,
provide mechanisms for the online removal of corrupt
data. These are designed to remove the need for an of-
fline checking tool; however, given the limited availabil-
ity of technical details on these systems, it is difficult to
evaluate their effectiveness.

Finally, SQCK takes a different approach to improving
file-system checkers, focusing on reliability and correct-
ness instead of execution time. To do so, it transforms the
complicated rules used by most checkers into SQL, bene-
fiting from the simplicity and compactness of a query lan-
guage [18]. However, its simplicity comes at some cost;
it executes more slowly than traditional checkers.

In summary, the file system checker provides the last
chance to recover a damaged file system image, but the
significant downtime it causes when scanning makes it
costly. Though the mechanisms introduced above can ac-
celerate the checking process, many of them sacrifice the
checker’s primary goal: thoroughly scanning the whole
file system and guaranteeing complete freedom from in-
consistency. Those that do avoid this pitfall only focus
on part of the solution—either the checker or the file
system—and fail to improve both.

3 Extended Motivation
Before developing a better file-system checker, one needs
to thoroughly understand the approach current checkers
use and clearly define their bottlenecks. In this section,
we first introduce the overall file-system check and repair
policy, focusing on the widely-used open-source checker
e2fsck. We examine how well the checker performs under

Phase Scan and checking task
1 Scan and check all inodes and indirect

blocks. If blocks are multiply claimed,
rescan all previously checked metadata
to choose an owner.

2 Individually check each directory.
3 Check the directory connectivity.
4 Check the inode reference count and remove

orphan inodes.
5 Update block and inode bitmaps if necessary.

Table 1: Phases of e2fsck Operation. This table lists the
main scanning and checking phases in e2fsck.

varying conditions, including file size and age, comparing
both ext3 and ext4. Finally, we discuss the design trade-
offs that account for poor checking performance.

3.1 Fsck Background
Though its reliability has improved over the past decade,
file systems are still fragile and vulnerable to a variety of
errors. When McKusick et al. designed and implemented
the Fast File System [26], they also developed the fsck
utility to restore a corrupt file-system image to a consistent
and usable state [27]. At a high level, fsck scans all of the
file system’s metadata and uses redundant structural infor-
mation to perform consistency checks. If an inconsistency
is detected during the scanning process, the checker will
repair it with best effort.

Below, we briefly describe how e2fsck uses these fields
to verify the consistency of each type of metadata. E2fsck
primarily executes its checking rules in five phases, de-
scribed in Table 1. Once these phases are complete, the
following rules will have been validated:

Superblock: e2fsck checks the values stored in the
superblock, including the file-system size, number of in-
odes, free block count, and the free inode count. Although
there is no way to accurately verify the first two numbers,
because they are statically determined upon creation of
the file-system disk image, fsck can still check whether
these sizes are within a reasonable range.

Group Descriptor: e2fsck checks that blocks marked
free in the data bitmap are not claimed by any files and
that inodes marked free in the inode bitmap are not in use.

Directory: e2fsck applies several checking rules to
each directory data block, including whether the direc-
tory inode numbers point to unallocated inodes, whether
the directory inode numbers lie in a reasonable range, and
whether the inode numbers of “.” and “..” reference unal-
located inodes.

Inode: on the most basic level, e2fsck verifies the con-
sistency of the internal state of the inode, including its
type and allocation status. In addition, it verifies the in-
ode’s link count and the number of blocks claimed by the
inode. Finally, it ensures that all the blocks pointed to
by the inode have valid numbers and are not held by any
other inode.
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Indirect Block: as with inodes, fsck checks that each
block claimed by the indirect block has not been claimed
by another and that each block number is valid. In addi-
tion, it records the number of data blocks that the indirect
block references for later comparison with the total size
claimed by the parent inode.

3.2 E2fsck Performance Analysis
In this section, we analyze the factors that affect fsck’s
performance, allowing us to accurately locate its bottle-
necks and obtain hints for further optimization. We per-
form all of our experiments on a 2.2 Ghz AMD Opteron
machine with 1 GB of memory and a 750 GB Seagate
Barracuda 7200.12 testing disk with Linux 2.6.28 and
e2fsprog 1.41.12. We create all file system images with
their default settings, except where otherwise specified,
and enable all features.

We first examine how e2fsck performs as the file sys-
tem size grows. We initialize the file system image by
creating one directory per block group, each of which con-
tains a number of files with sizes chosen uniformly from
a one to 512 block (4 KB-2 MB) range; we create files in
this directory until it contains 25.6 MB (20% of the block
group size). To increase the size of the file system to the
desired amount, we then randomly create new files (4 KB-
2 MB) or append one to 256 blocks (4 KB-1 MB) of data
to existing files, choosing between the two operations uni-
formly. We display our results in Figure 1. The total run
time of e2fsck grows quickly as the size of file system
increases, indicating that e2fsck’s performance does not
scale to large file system images.

To determine which portion of the check dominates the
scan time, Figure 1 also breaks down the total time by the
amount spent in each phase. We find that phase 1 occu-
pies more than 95% of the total checking time. During
this phase, e2fsck scans all inodes and their correspond-
ing indirect blocks, which comprise the largest portion of
the file-system’s metadata. Furthermore, since e2fsck has
to execute this scan again if it detects multiply-claimed
blocks, the actual total time may be even longer in the
presence of errors.

To better understand the I/O behavior during this phase,
we measure the time e2fsck spends reading each individ-
ual block during the 150 GB experiment. We show our
results in Figure 2, which displays the cumulative time
spent reading indirect and inode blocks, represented by
Xs and circles, respectively. Accesses of indirect blocks
overwhelmingly dominate I/O time. This behavior results
from ext3’s disk layout: inode blocks are stored contigu-
ously, while indirect blocks are dynamically allocated and
thereby scattered throughout the disk, requiring a separate
seek for each block access.

Given this time spent reading indirect blocks, one might
assume that an extent-based file system would reduce the

time required to check the file system. However, ex-
tents are also likely to suffer under fragmentation resulting
from regular use. To examine this effect, we measure the
speed of e2fsck on a series of ext3 and ext4 file system
images in increasing stages of aging [39].

We construct each image by initializing the file system
as described previously and then performing a series of
file creations, appends, truncations, and deletions, choos-
ing uniformly between them. File creation and append-
ing use the approaches described in our first experiment.
Truncation chooses a random offset into the file and trun-
cates it to that length. Finally, deletion chooses a file to
delete at random from the current directory. As these op-
erations can change the size of the final file system image
dramatically, we discard any image with a capacity under
90% and generate a new one.

Figure 3 shows our results for this experiment. The
x-axis shows the number of aging operations performed
per directory and the y-axis depicts the throughput ob-
tained by e2fsck, measured by bytes accessed (not by the
total data in the file system). The results demonstrate
that, while ext4 initially performs much better than ext3, it
rapidly degrades due to increased fragmentation, perform-
ing only marginally better than ext3 under even moderate
aging. Neither system ultimately performs well, achiev-
ing less than 10% of the underlying 100 MB/s disk band-
width (calculated accounting for bandwidth differences
between zones).

From these three experiments, we conclude that e2fsck
does not scale well as the file system grows, that check-
ing inodes and indirect blocks occupies the most time, and
that e2fsck’s performance degrades significantly as the file
system ages. In addition, because ext4 shows little differ-
ence from ext3 in the presence of file-system aging, we
focus the remainder of our discussion entirely on ext3.

3.3 File System Design Trade-offs
Based on our previous analysis, we observe two file-
system design decisions that lead to e2fsck’s poor perfor-
mance. First, ext3 uses the same allocation strategies for
data blocks and indirect blocks, storing them in a contigu-
ous fashion to facilitate sequential access. However, this
design causes indirect blocks to be scattered throughout
the disk, growing increasingly further apart as the file sys-
tem ages. Given the low density of these blocks, e2fsck
has to pay a significant penalty to access them.

Second, ext3 relies on a tree structure to locate all of
the indirect blocks, imposing a strict ordering of accesses
when checking a file. For example, e2fsck can only locate
a double indirect block by first traversing its inode and
then its parent indirect block. This limitation prevents the
checker from optimizing its accesses using disk locality.

Though batching several adjacent inodes and fetching
all of their indirect blocks in an order sorted by their dou-
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ble indirect blocks could ameliorate the I/O penalty to
some extent, the dependency on a tree structure still limits
the overall optimization across file boundaries. For exam-
ple, if the checker knew the locations of all of the indirect
blocks, it could access them with a sequential scan. Be-
cause it lacks this information, the checker is forced to
seek frequently to look up the indirect blocks of a file.

From our analysis, we infer that fsck’s poor perfor-
mance results from a long-term focus on preventing er-
rors, instead of fixing them. The checker is usually re-
garded as a peripheral addition to the file system to be
used only as a matter of last resort, rather than an integral
component. Despite this, factors in practical deployment
that cause the file system to become corrupted and incon-
sistent may significantly exceed designers’ expectations.
For example, soon after SGI deployed XFS with “no need
for fsck, ever,” they added a checker for it [16].

4 Design and Implementation
In this section, we describe the design and implementa-
tion of both the rext3 file system and ffsck, the fast file
system checker. While these systems are based on ext3
and e2fsck, respectively, they each contain a number of
modifications designed to reduce the time required to fully
check the file system. Rext3 improves metadata density
by co-locating all the indirect blocks in a block group and
uses a backpointer-based structure for indirect blocks to
better support a fast checker. Ffsck then uses this modi-
fied layout to perform a disk-order scan that accesses all
of the file-system metadata at once, significantly reduc-
ing the number of seek operations from that incurred by
a traditional inode-order scan. To mitigate the memory
pressure that storing all this data could incur, ffsck com-
presses the metadata that it caches on the fly. Finally, ffsck
employs a bitmap snapshot to reduce the number of in-
ode and indirect blocks it has to rescan when it encounters
multiply claimed data blocks.

4.1 Goals
We expect rext3 and ffsck to meet the following criteria:
Fast scan speed: unlike e2fsck, which is limited to
roughly 10% of the underlying disk bandwidth, we expect
ffsck to scan the file system with the greatest possible effi-
ciency. The ability to scan and repair quickly should be of
paramount concern for file-system designers, as nobody
wants to wait hours to bring a file system back online.
Robust performance despite file-system aging:
e2fsck’s speed drops quickly as the file system ages,
which not only significantly increases its running time
but also makes it impractical to estimate its completion
time. We expect our new checker to scan the system at a
constant speed, regardless of the aging that has occurred
in the file system, allowing the system administrator to
better decide when to execute the checker.
Competitive file-system performance: repairability can-
not come at the expense of responsiveness and through-
put, as these are critical in production environments.
Therefore, we focus on ensuring that our repair-driven file
system performs competitively with ext3.

4.2 Rext3 File System
Rext3 is developed atop ext3, the default file system for
many popular Linux distributions. Rext3 inherits most of
the mechanisms used in ext3, except two: the disk layout
and the indirect block structure. This section details these
new features and gives a basic overview of our implemen-
tation.

4.2.1 Rext3 Disk Layout
To reduce the time spent in phase one of file check-
ing, rext3 decouples the allocation of indirect blocks and
data blocks by reserving a block region immediately af-
ter the inode table in each block group, called the indi-
rect region. This region stores all dynamically allocated
metadata: specifically, indirect blocks and directory data
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blocks. When allocating metadata blocks for a file, rext3
first attempts to allocate from the indirect region in the
same block group of the file’s inode. If the current region
is full, rext3 will iterate over the subsequent indirect re-
gions until a free block is found. Ordinary data blocks are
restricted to the free blocks outside the indirect region, but
otherwise use the same allocation algorithm as ext3. The
disk layout is shown in Figure 4.

By co-locating dynamically allocated metadata, we im-
prove the I/O density during the checker’s scan phase, be-
cause this metadata will no longer be scattered through-
out the disk. Instead of having to perform a separate seek
for each of these blocks, the indirect region of rext3 al-
lows the fast checker to perform one sequential read of
all metadata blocks for a given block group, including the
block and inode bitmaps, the inode table, indirect blocks,
and directory data blocks.

Initially, the indirect region seems to work against our
goal of competitive file-system performance. Because we
separate the allocation of indirect blocks and their cor-
responding data blocks, sequential access requires addi-
tional seek operations, apparently slowing ordinary use to
accelerate the repair process. However, modern disks gen-
erally buffer entire tracks when reading individual blocks;
thus, the disk will fetch several indirect blocks with a sin-
gle I/O. Subsequent reads of these blocks will then return
from the disk cache, which is usually an order of magni-
tude faster than the disk platter. This allows rext3 to per-
form as efficiently as ext3 in most cases, without the ex-
tensive manual prefetching used in other systems that al-
locate metadata and data separately, such as DualFS [31]
and the ext3 metaclustering patch [32]. We verify this
claim in Section 5.

4.2.2 Backpointer-based indirect structure
To allow ffsck to link related indirect blocks and perform
some verification without referring to the indirect tree,
rext3 uses a backpointer-based data structure. Specifi-

cally, the beginning of each indirect block will contain its
inode number and level in the indirect tree structure. We
discuss how ffsck uses these pointers in Section 4.3.2.

Because this global information is added when allo-
cating a new indirect block for the file, it does not de-
grade performance. However, it does reduce the number
of block pointers that each indirect block can store.

4.2.3 Rext3 Implementation
Rext3 is implemented in Linux 2.6.28. Our implemen-
tation removes the preallocation mechanism for indirect
blocks [10], as all indirect blocks are written to designated
indirect regions. In total, our modifications add 1357 lines
to the ext3 codebase, most of which reside in inode.c and
balloc.c.

The default size of each indirect region is 2 MB, which,
given the default 4 KB block size, allows for 512 blocks;
however, users can adjust this parameter based on the ex-
pected average file size. Tuning this parameter properly is
of key importance: too large a value will lead to wasted
disk space, while too small a value may cause the file sys-
tem to run out of indirect blocks.

4.3 Fast File System Checker
As rext3 is based on ext3, ffsck is based on e2fsck, the de-
fault file system checker for ext2 and ext3. Ffsck inherits
the same checking policy and phase structure employed
by e2fsck; however, it features three new components.
First, it performs a disk-order scan to fetch all file-system
metadata into memory. Second, it compresses metadata
on the fly to alleviate the memory pressure caused by the
aforementioned scan. Third, it employs a bitmap snapshot
that allows it to avoid a costly double inode scan when it
encounters a doubly-allocated block. The following sub-
sections detail each of these features individually.

4.3.1 Disk-order Scan
Ffsck loads all the file-system metadata into memory in a
single sequential scan, referred to as a disk-order scan.
Each metadata block is fetched in an order sorted by
its disk address. To perform this disk-order scan, ffsck
needs to know the location of each metadata item ahead
of time. Statically-allocated metadata, such as the su-
perblock, block descriptors, inodes, data bitmap, and in-
ode bitmap, have a fixed location on disk, allowing ffsck
to obtain their addresses with a simple calculation. Ffsck
locates dynamically allocated metadata, such as the indi-
rect and directory data blocks, using the portion of the
data bitmap corresponding to the indirect region. Because
the indirect region immediately follows the fixed-length
inode table, ffsck can obtain its block range and fetch
every block within it marked in-use in the data bitmap,
removing nearly all seeks except those between block
groups. Thus, ffsck is capable of scanning the file sys-
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tem with close to maximum efficiency under normal op-
eration.

Moreover, the combination of the indirect region and
the disk-order scan removes the negative influence of file-
system aging on the check speed. Regardless of the file
system’s age, indirect and directory data blocks will still
reside in the indirect region, ensuring that the scan speed
remains nearly constant as the file system ages. Ffsck’s
execution time varies only with the total number of block
groups, which is proportional to the size of the file system
image. Thus, system administrators can accurately and
easily evaluate the total checking time beforehand and in-
fer how long downtime will last.

4.3.2 Self-check, Cross-check, and Compression
The disk-order scan is an efficient approach to maximiz-
ing the utilization of disk bandwidth. However, it leads to
a new challenge: because ffsck accesses all of the file sys-
tem metadata in a physical, rather than logical sequence,
it cannot apply checking rules until all related metadata
are cached in memory. Since the metadata size is directly
proportional to the file-system data size, a disk-order scan
can easily lead to memory saturation in large-scale stor-
age systems. To prevent this, it will suffice to reduce the
in-memory footprint of inodes and indirect blocks, since
these comprise the majority of the file-system metadata.

All of the checking rules for inode and indirect blocks
can be categorized into two groups. The first of these,
self-check, only relies on the internal structure of the in-
ode or indirect block; this group includes checks on inode
types and on indirect block data pointer ranges, among
others. The second, cross-check, requires data structures
from multiple metadata items; this group includes more
complicated checks, such as verifying the total number of
blocks claimed by an inode and its file size.

Cross-check rules do not need all the information in
each object; thus, we can save memory by removing un-
used fields of each metadata object. Ffsck self-checks
each metadata block as soon as it is loaded into memory;
ffsck then frees the memory it no longer needs, retaining
only the data used for cross-check rules. Once all related
metadata for a file are in memory and processed with the
self-check rules, ffsck then executes the cross-check rules,
removing the metadata entirely once the cross-check is
complete for all files. With this method, we convert the
memory saturation problem into a compression problem.

Self-check and Cross-check rules: The self-check of
an inode includes checking the inode type, link count, and
allocation state, and the self-check of an indirect block in-
cludes verifying its data block pointer range and its allo-
cation state. These checks are performed when the block
is fetched into memory.

The cross-check between each inode and its indirect










































Figure 5: File Size Verification. This figure shows the log-
ical tree structure used to verify a file’s size. The bold arrows
indicate the path followed to retrieve and construct the final off-
set.

blocks has two stages. First, it verifies that the number
of blocks claimed by the inode agrees with the number of
the actual blocks owned by the inode, which is the sum
of the total number of indirect blocks owned by the in-
ode and the number of non-zero block pointers in each of
them. Second, it calculates the actual file size based on
the last block’s offset and compares that with the file size
field of the inode.

For the first cross-check, ffsck links together blocks
from the same file using the backpointers to the parent
inode provided by rext3, allowing it to avoid the indi-
rect tree structure. When self-checking an indirect block,
ffsck also records the number of non-zero block pointers it
contains, associating this with the inode number stored in
its backpointer. Using this backpointer information, ffsck
can then sum the block pointer counts to obtain the actual
number of blocks associated with the inode.

The second cross-check verifies file size, requiring the
file offset of the last data block pointer. To determine
this, ffsck records the disk location of each indirect block,
along with the address and offset of its last non-zero block
pointer. This information allows ffsck to partially rebuild
the indirect tree, find the last block offset, and calculate
the actual file size. We provide an example of this proce-
dure in Figure 5.

Because ffsck finds indirect blocks by using the portion
of the data bitmap corresponding to the indirect region
rather than by following pointers in metadata blocks, bit-
flips or similar types of corruption in the data bitmap may
cause ffsck to process obsolete indirect blocks or ignore
current ones. Traditional checkers are not susceptible to
this problem, since they directly traverse the indirect tree
for each file; thus, we provide a mechanism to prevent this
occurrence.

7
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Figure 6: Checksum of Each Indirect Layer. This figure
shows how ffsck calculates and verifies the checksum of each
layer in the tree of indirect blocks.

For each file, ffsck calculates a series of checksums,
two for each layer in the indirect tree. It calculates the first
of these using the pointers in the inode (for the top level)
or the indirect block (for the subsequent levels). It calcu-
lates the second of these using the logical block addresses
of the blocks in the lower layer, which it identifies using
the backpointer and layer data stored with each indirect
block. If the two checksums are equal, ffsck assumes that
the indirect blocks are up-to-date; otherwise, it manually
traverses the file’s indirect tree to obtain the correct meta-
data blocks. Currently, our checksum consists of a sum,
though this could easily be upgraded to a more advanced
function, such as a collision resistant hash, albeit at the
cost of additional computation and memory. We provide
an example of this procedure in Figure 6.

Compression: Thanks to our careful grouping of
checking rules, we no longer need to retain all fields of
a metadata item in memory after self-checking it. For
inodes, we only store the inode number, file size, block
number, last non-zero block pointer address, checksum of
each layer, and data structures needed to link the inode
with its corresponding indirect blocks. Similarly, indirect
blocks only require their own address, the number of non-
zero block pointers they contain, and the address and off-
set of their last block pointer.

Discarding data that will no longer be used signifi-
cantly reduces ffsck’s in-memory footprint. Specifically,
the compression ratio of inodes is nearly 2:1 and the com-
pression ratio of indirect blocks is nearly 250:1, substan-
tially lowering the probability of memory saturation.

Figure 7 provides a quantitative comparison of the
memory cost of storing the metadata for one gigabyte of
data before and after compression. The x-axis represents
the average file size, and the y-axis shows the memory

cost of storing the inode and indirect blocks. Memory
utilization peaks at 86 MB when the average file size is
49KB, at which size the average file has one indirect block
and several data blocks; this ratio of metadata to data will
not scale to large storage systems. However, by com-
pressing the metadata, we lower memory consumption to
1 MB, alleviating much of the memory pressure.

4.3.3 Bitmap Snapshot
When a file-system checker detects a data block claimed
by more than one inode, it must determine which inodes
claim the data block and assign the data block to the cor-
rect one. Traditional checkers, such as e2fsck, have to
rescan all of the inodes and indirect blocks encountered
by that point to do so. Since scanning the inodes and indi-
rect blocks comprises more than 95% of the total checking
time, these double scans are very costly.

To accelerate this process, ffsck uses a list of bitmap
snapshots, each of which shows which data blocks were
allocated by a specific group of inodes. Each group has
a predetermined size, allowing ffsck to easily determine
which inodes correspond to which snapshot. These snap-
shots are created cumulatively; when a block is marked
in the corresponding snapshot for its inode group, it is
marked in all subsequent snapshots. Thus, ffsck can de-
tect a doubly-allocated block if the bit in the current snap-
shot is already set. It can then find the inode group that
first allocated the block by iterating through the snapshots
until it finds the one in which the bit was first set. Once
it has done so, it only needs to rescan that group to find
the inode that first claimed the block, instead of rescan-
ning all of the previous inodes and indirect blocks. This
bitmap mechanism can be further optimized by batching
multiple doubly-allocated blocks before rescanning.

An example is given in Figure 8. Bitmap snapshot 1
marks blocks 0, 3, and 4 in use, and bitmap snapshot 2
marks blocks 1 and 5 in use. When bitmap snapshot 3
marks blocks 2 and 5, it detects that block 5 has its use bit
set, indicating that it has already been allocated. Iterating
over its list of snapshots, ffsck will discover that snapshot
2 contains the inode that first pointed to the block. Ffsck
can then find the inode that first claimed ownership by
rescanning the block groups corresponding to snapshot 2.

Ffsck can configure the number of snapshots it takes
dynamically based on the system’s available memory; the
more memory available, the more snapshots that ffsck can
create, reducing the number of blocks ffsck has to rescan.
Even two snapshots, however, can halve the time spent
rescanning, time that will be further reduced by the use of
a disk-order scan.

4.3.4 Ffsck Summary
The previous sections provided a detailed overview of
ffsck’s individual components; we now provide a step-by-
step summary of its operation.

8
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Figure 7: Memory Cost Analysis. This figure compares
memory cost of inodes and indirect blocks for 1 GB of data as
average file size increases, before and after compression.

Disk-order scan: First, ffsck scans the disk in ascending-
address order. During the scan, ffsck:

1. Reads the inodes in each block group and self checks
them, discarding fields unnecessary for the cross-
check.

2. Reads the portion of the data bitmap corresponding
to the indirect region; for each set bit, read the corre-
sponding indirect block and self check it, again dis-
carding unnecessary metadata.

3. For both inodes and indirect blocks, mark the appro-
priate bitmap snapshot for each data block allocated.
If a data block is allocated twice, record it, its inode,
and the conflicting inode group.

Cross-check: Next, ffsck performs a cross check using
the data saved in memory. For each file, ffsck:

1. Verifies the total number of blocks.
2. Verifies the file size.
3. Verifies that the checksums in each layer agree.

Correct doubly-allocated blocks: Then, for each dou-
bly allocated data block, ffsck scans the conflicting inode
group and chooses to which inode to assign the block, us-
ing the same procedure as e2fsck.

Once these steps are completed, corresponding to phase
1 of e2fsck’s operation, we then continue with the rest of
e2fsck’s phases. As these phases do not require much time
to execute, we do not change their behavior.

4.3.5 Ffsck Implementation
We base ffsck on e2fsprog1.41.12, adding 2448 lines
of source code to it. Most of these modifications oc-
cur in pass1.c, which implements the phase one scan
and pass1b.c, which rescans all of the inodes and their
corresponding indirect blocks to find which inodes have
claimed doubly-allocated blocks.

1 0 0 1 1 0Snapshot 1

1 1 0 1 1 1Snapshot 2

1 1 1 1 1 1Snapshot 3

Block Number
0 1 2 3 4 5

Figure 8: Bitmap Snapshot Illustration. This figure
shows an example of three bitmap snapshots taken during a file-
system scan. A shaded bit indicates that the corresponding block
was allocated in the scan of the inode group for that snapshot.
The bold outline around block five in snapshot three indicates
that that block has been allocated twice—once in snapshot two
and once in snapshot three—and needs to be repaired.

5 Evaluation
In this section we evaluate our prototype in three aspects:
we compare the performance of e2fsck in the ext3 file sys-
tem with that of ffsck in the rext3 file system, we compare
the correctness of ffsck to that of e2fsck, and we mea-
sure the two file systems’ relative performance. We exe-
cute our experiments in the environment described in Sec-
tion 3.2 and employ the same techniques for creating and
initializing file system images described there. In general,
we demonstrate that rext3 provides comparable perfor-
mance to ext3 during ordinary use, while allowing ffsck
to operate significantly faster than e2fsck during recovery.

5.1 Checker Performance
To measure the relative performance of e2fsck and ffsck,
we evaluate the time it takes to run them on different file
system images of varying size and age. We create all of
the images using the techniques described in Section 3.2.
We generated none of these images with errors; thus, these
results represent the best-case scenario.

We first compare e2fsck and ffsck by executing them
on a series of increasingly large file-system images. Be-
cause the number of inodes and indirect blocks has the
greatest impact on the checker’s performance, we focus
on file system images with large numbers of files, rather
than those with complex directory trees. Figure 9 displays
our results for file systems with 150-600 GB of data; the
x-axis indicates the amount of data in the file system, and
the y-axis indicates the checker’s execution time. While
e2fsck’s total execution time grows with the size of the
file system, ffsck’s time remains roughly constant.

Next, we compare e2fsck’s performance with that of
ffsck on a series of aged, 750 GB file-system images,
showing our results in Figure 10. The x-axis represents
how many aging operations are performed on each block

9
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Metadata type Corrupted fields
Superblock magicNum

inodeSize
inodeNum
blockNum

Group Descriptor inodeBitmapAdd
blockBitmapAdd
inodeBitmapAdd

Inode type
linkCount
blockNumber
fileSize
State

Indirect blocks pointerRange
blockNumber
multiply-allocated block

Table 2: Robustness Test. This table lists the types of
corrupted metadata we use to test both checkers.

group, and the y-axis depicts the rate at which the two
programs process data (i.e., the total data read divided by
total checking time). While e2fsck’s throughput achieves
roughly 5-6% of the disk bandwidth, our new checker
uses roughly 61% of the hard disk bandwidth, nearly 10
times faster than e2fsck.

Moreover, ffsck scans the file system at a consistent
speed regardless of the age of the file system. This occurs
because rext3 co-locates its dynamically allocated meta-
data, allowing it to scan its metadata in disk-order and
thus minimize both the number of disk head movements
and the average seek distance.

5.2 Checker Correctness
We also test ffsck’s robustness by injecting the 15 meta-
data corruptions listed in Table 2. We use one case
for each superblock and group descriptor error, as our
changes do not affect the validation of these objects. For
each inode and indirect block error, we use three cases,
injecting between one and three errors. In every circum-
stance, both e2fsck and ffsck detect and repair all errors,
showing that ffsck provides the same basic correctness
guarantees as e2fsck.

To see how ffsck performs in the most expensive error
case, we test the performance of both checkers when they
encounter doubly-allocated blocks, using a full 50 GB file
system. We configure ffsck to create a bitmap snapshot
for every ten block groups; since the file-system image
is 50 GB, one snapshot occupies less than 2 MB. In our
experiment, we create a single doubly-allocated block by
randomly setting two block pointers in different files to
point to the same data block. Figure 11 shows our results.
When the doubly-allocated block is detected, ffsck only
has to recheck the inode tables and indirect regions of 10
block groups, whereas e2fsck has to rescan the entire sys-
tem. Thus, ffsck repairs the error much more quickly.

5.3 File System Performance
The main difference between ext3 and rext3 is that rext3
co-locates all the indirect blocks in each block group on
disk, rather than placing them near their data. Despite
this, rext3 achieves similar results to ext3’s continuous al-
location mechanism through better utilization of the disk
track buffer. This section compares the performance of
rext3 and ext3 and analyzes their differences.

Figure 12 compares the performance of ext3 and rext3
when reading files sequentially. The x-axis represents the
target file size, ranging from 10 KB to 1 GB, and the y-
axis depicts the average read throughput over a minimum
of five runs. The difference between the two file systems
is less than 3% in all cases except when the target file size
is 100 KB. In this case, rext3 is 8.4% slower than ext3.

This discrepancy occurs because ext3 stores indirect
blocks and data blocks contiguously on disk. Thus, there
is no seek operation between an indirect block and its cor-
responding data blocks during sequential reads. In con-
trast, since rext3 places these blocks in different areas, an
additional seek has to be performed between references to
an indirect block and its data blocks.

While this seems like it could cause significant over-
head, modern disks generally buffer entire tracks, as de-
scribed in Section 4.2.1, causing most indirect blocks for
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Figure 16: Cumulative rext3
Strided Read Time. Cumulative
time spent reading different block types
in rext3 for the strided read benchmark.

a file to be buffered in the disk cache after the first is read.
Since the subsequent accesses to the indirect region will
be then returned from the disk cache, the seek penalty be-
comes negligible for larger files, allowing rext3 to perform
virtually identically to ext3. However, ext3 performs bet-
ter when the target file is 100 KB, as the file has only one
indirect block and a few data blocks, causing the extra
seek time to materialize.

Figure 13 compares the sequential write performance
of rext3 and ext3. The x-axis indicates the file size and
the y-axis depicts the average access speed. Both systems
perform almost identically for small files ranging between
12 KB and 10 MB. However, when the file size increases
to 100 MB and 1 GB, rext3 demonstrates a 9.3% and 19%
improvement, respectively.

This occurs because the indirect region aids ext3’s or-
dered journaling mechanism. By default, ext3 check-
points its journal every five seconds, causing a large write
to be checkpointed several times before it completes. Dur-
ing these long writes, the file system performs interleaving
I/Os from data blocks that are being flushed to disk and

metadata blocks that are being checkpointed. Because it
has to seek to write each indirect block, ext3 performs pri-
marily random I/O when checkpointing; in contrast, rext3
can write the indirect blocks sequentially, improving over-
all write performance.

The benefits of the indirect region appear more readily
when analyzing random read performance. To do so, we
randomly read one 4 KB block from a 2 GB file multi-
ple times and record the observed throughput. We show
our results in Figure 14. The x-axis indicates the number
of times we read from the file, and the y-axis shows the
average read throughput over a minimum of five runs of
the experiment in MB/s. The rext3 file system sees 43%,
39%, and 27% higher throughput for 128, 256, and 512
reads, respectively, a significant difference.

Since the main difference between rext3 and ext3 is the
disk layout, we examine the performance of rext3 without
the influence of the file system cache. To do so, we design
a test using strided reads, which iterate over all the indirect
blocks and periodically read a random data block to which
the current indirect block points.
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Figures 15 and 16 display the cumulative time spent
reading indirect blocks and data blocks during the strided
read test, showing that rext3 outperforms ext3 by 68% in
this experiment. This occurs because the first access to the
indirect region caches it in the disk buffer, which is signif-
icantly faster than the disk platter. The rext3 file system
will thus spend much less time fetching indirect blocks,
doubling its read speed.

Finally, we use Postmark and Filebench as mac-
robenchmarks to compare rext3 and ext3. We use the
default settings for Filebench and invoke Postmark with
5000 files between 4 KB and 4 MB in size, placed in 50
subdirectories, with 50/50 read/append and create/delete
biases. Figures 17 and 18 show our results. In most
cases, rext3 performs nearly identically to ext3, except
when large numbers of small files are involved. In this
case, rext3 performs 5% worse than ext3.

Given these performance measurements, we can con-
clude that rext3 performs competitively with ext3 in most
cases, exceeding ext3 in its ability to handle random reads
and large writes, and performing slightly worse when han-
dling small reads.

6 Limitations
While rext3 and ffsck provide a number of substantial im-
provements over ext3 and fsck, they are not without some
drawbacks that may make them unsuited for certain de-
ployments. This section briefly discusses some of the ar-
eas where problems may occur or performance may suffer
and some potential solutions for these problems.

As mentioned earlier, ffsck relies on the data bitmap
to determine which indirect blocks are in use when per-
forming its scan. Thus, corruption in the data bitmap can
potentially cause ffsck to miss indirect blocks. While we
construct checksums to guard against this kind of error,
a mismatch in checksums will cause ffsck to revert to the

behavior of traditional fsck, causing performance to suffer
(though this will still benefit from metadata co-location,
as demonstrated in the ext3 metaclustering patch [32]).

More significantly, our current checksum is simple and
may, in some cases, miss certain errors due to collisions.
In future work, this can likely be addressed by using a
more sophisticated checksum for each file; many crypto-
graphic hash functions provide strong enough guarantees
to make the possibility of collision negligible. Doing so
will consume additional memory during the scan, as the
checksum will be larger, and may require backpointers
to point to their immediate parent, rather than the inode;
these changes should, however, be feasible.

Memory consumption comprises the other potential
drawback of our checker. In the worst case, discussed in
Section 4.3.2, metadata compression will not scale to very
large file systems with tens or hundreds of terabytes of
data, as this will require tens or hundreds of gigabytes of
memory. This worst case behavior is, however, somewhat
unusual, relying on large numbers of files with sizes near
49 KB, which is unlikely to arise in practice. In addition,
this memory pressure could be partially alleviated by per-
forming the cross-check on a file-by-file basis (rather than
upon completion of the scan) and discarding the metadata
for each file once all checks are complete for it; we have
yet to evaluate this approach, however.

Metadata seek times comprise the largest barrier to
rext3’s efficient operation. While the disk track buffer
mitigates nearly all of this, its effectiveness can be
thwarted by fragmentation in the indirect region, causing
seeks to distant block groups to fetch metadata for local
files, or simply by disks that do not possess this technol-
ogy. Fortunately, however, we have yet to observe the
former in practice and the latter are likely to be rare.

The other potential concern with rext3 is the need to
choose the size of the indirect region correctly, as de-
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scribed in Section 4.2.3; such misconfiguration could lead
either to wasted space or premature exhaustion of indirect
blocks for the file system. Future implementations of our
file system may be able to allocate new indirect regions
from unused groups of data blocks. This approach may
warrant investigation if configuration proves difficult.

Finally, our techniques are most directly applicable to
block-based file systems, such as ext3 and FFS. While it
may be possible to apply them to extent based file sys-
tems, like ext4 and XFS, we have yet to analyze this in de-
tail. Furthermore, they may be challenging to implement
in copy-on-write file-systems, like btrfs, without adopting
split partitions for data and metadata, as in DualFS [31].

7 Conclusion
While the file-system checker is ultimately the only mech-
anism that can repair all types of file-system damage, its
design has been neglected since its first iteration. In some
ways, this makes sense: in order to provide correctness,
checkers have to examine all of the metadata in the file
system, a process that will necessarily be slow. However,
the layout of current file systems frequently makes this
process excruciating due to the numerous random seeks
needed to logically traverse the metadata tree. Further-
more, the erratic growth of this tree, which scatters indi-
rect blocks throughout the disk, makes it virtually impos-
sible to accurately estimate the run time of a given file
system check after the file system has aged. Simply put,
if your scan is tree-ordered, it will run slowly, and worse,
unpredictably slowly.

To solve this problem, we place the correct, fast han-
dling of file-system inconsistencies at the heart of the de-
sign of a new file system, rext3, a slight variant of the
Linux ext3 file system. We design rext3 to explicitly sup-
port a fast file-system checker by co-locating all the indi-
rect blocks in each block group into a single location per
block group and by using backpointers to inodes in indi-
rect and data blocks to eliminate the need to logically tra-
verse the metadata tree during ordinary operation. In ad-
dition to this new file system, we build ffsck, a file-system
checker capable of providing near optimal performance
by scanning metadata in disk-order, rather than logically.
While doing so could potentially exert substantial pres-
sure on memory, as ffsck has to hold the entire contents of
metadata in memory, it mitigates this by using a two-stage
checking process that allows it to discard metadata it no
longer needs, providing substantial compression. Finally,
ffsck provides further optimizations over current check-
ers by using bitmap snapshots to track which data blocks
have already been allocated, removing the need for a full
rescan when it encounters already allocated blocks.

These innovations result in major improvements to
checking behavior without sacrificing ordinary case file-
system performance. During execution, ffsck manages

to read metadata at rates nearing the sequential peak of
disk bandwidth, operating 10 times faster than e2fsck in
the optimal case, and scaling with sequential disk perfor-
mance; further, it no longer suffers from file-system aging,
allowing better prediction of time to completion.

The underlying file system, rext3, maintains perfor-
mance competitive with ext3 in most cases, incurring only
a small penalty of less than ten percent when dealing with
files around 100 KB in size. However, rext3 actually out-
performs ext3 by up to 20% for large sequential writes and
up to 43% for random reads by facilitating journal check-
pointing through metadata locality and by using the disk
track buffer more efficiently.

While there are powerful reasons for a checker to be
developed independently from the mainline file system it
checks (i.e., in order to avoid making the same mistakes
in each), some cooperation can be worthwhile. Such co-
design may thus be worth considering in other domains.
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