
USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 243

LDPC-in-SSD: Making Advanced Error Correction Codes
Work Effectively in Solid State Drives

Kai Zhao∗, Wenzhe Zhao†, Hongbin Sun†, Tong Zhang∗, Xiaodong Zhang‡, and Nanning Zheng†

∗ECSE Department, Rensselaer Polytechnic Institute, USA
† Xi’an Jiaotong University, P.R.China

‡ Department of Computer Science and Engineering, The Ohio State University, USA

Abstract
Conventional error correction codes (ECCs), such as the
commonly used BCH code, have become increasingly i-
nadequate for solid state drives (SSDs) as the capacity
of NAND flash memory continues to increase and its re-
liability continues to degrade. It is highly desirable to
deploy a much more powerful ECC, such as low-density
parity-check (LDPC) code, to significantly improve the
reliability of SSDs. Although LDPC code has had its
success in commercial hard disk drives, to fully exploit
its error correction capability in SSDs demands uncon-
ventional fine-grained flash memory sensing, leading to
an increased memory read latency. To address this im-
portant but largely unexplored issue, this paper presents
three techniques to mitigate the LDPC-induced response
time delay so that SSDs can benefit its strong error cor-
rection capability to the full extent. We quantitatively e-
valuate these techniques by carrying out trace-based SS-
D simulations with runtime characterization of NAND
flash memory reliability and LDPC code decoding. Our
study based on intensive experiments shows that these
techniques used in an integrated way in SSDs can reduce
the worst-case system read response time delay from
over 100% down to below 20%. With our proposed tech-
niques, a strong ECC alternative can be used in NAND
flash memory to retain its reliability to respond the con-
tinuous cost reduction, and its relatively small increase
of response time delay is acceptable to mainstream ap-
plication users, considering a huge gain in SSD capacity,
its reliability, and the price reduction.

1 Introduction

It is well known that technology scaling makes flash
memory cells subject to increasingly severe noise and
distortion, which can largely degrade the NAND flash

∗This material is based upon work supported by the National Sci-
ence Foundation under Grants No. 1162152 and 1162165

memory storage reliability and performance [1]. There-
fore, increasingly powerful and sophisticated error cor-
rection and signal processing capabilities become indis-
pensable for future solid-state drive (SSD) [2, 3]. In
particular, it has been well recognized that convention-
al BCH codes [4, 5], which are being used in all the
commercial SSDs today, become inadequate to handle
continued technology scaling and must be replaced by a
stronger alternative error correction code (ECC). Due to
their superior error correction capability and recent suc-
cess in commercial hard disk drives, low-density parity-
check (LDPC) codes [6, 7] have attracted much atten-
tion [8–12] and are seriously considered as the choice
of ECC for future SSDs.

LDPC code decoding is essentially an iterative belief-
propagation process [13] and the decoding input are cer-
tain probability information associated with each bit in
the codeword. As a result, LDPC code error correction
strength heavily depends on the accuracy of the input
probability information that is directly determined by the
high precision NAND flash memory and read operations.
Nonvolatile data storage of n-bit-per-cell NAND flash
memory is realized by configuring the threshold voltage
of each memory cell (i.e., floating-gate transistor) into 2n

non-overlapping storage states. Flash memory read op-
erations aim to sense and digitally quantize the threshold
voltage of each memory cell. If memory sensing uses
only one quantization level between two adjacent stor-
age states, it is called hard-decision memory sensing; if
more than one quantization levels are used between two
adjacent storage states, it is called soft-decision memory
sensing. As to be presented in the paper, although LD-
PC code decoding with hard-decision memory sensing
can achieve a noticeable coding gain over conventional
BCH code∗, soft-decision memory sensing can signifi-
cantly improve the LDPC code decoding error correc-
tion strength and hence increase the coding gain over

∗BCH code decoding only demands hard-decision memory sensing.

1

244 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

the BCH code. Latest commercial NAND flash mem-
ory chips already support soft-decision memory sens-
ing, e.g., Samsung 21nm 2bits/cell NAND flash memory
chips can support seven quantization levels between two
adjacent storage states [14]. Unfortunately, since NAND
flash memory read latency is proportional to the memory
sensing precision, soft-decision memory sensing direct-
ly causes an increased NAND flash memory read laten-
cy, leading to storage system read response time degra-
dation. To the best of our knowledge based on open
research and technical literature, the impact of the in-
creased latency on overall SSD performance and tech-
niques to minimize it have not been systematically stud-
ied. We believe the above mentioned issue is a major
roadblock for us to continue increasing the capacity and
decreasing the price of SSDs subject to a high reliability.

This paper presents the first study on quantitatively
investigating how the use of LDPC codes may impact
the storage system response time performance and, more
importantly, developing techniques to minimize the sys-
tem response time latency. Since flash memory cell s-
torage reliability gradually degrades with program/erase
(P/E) cycling, a hard-decision LDPC code decoding is
sufficient to ensure a very low decoding failure prob-
ability (e.g., 10−15 and below) at the early lifetime of
flash memory and can even have a reasonable decod-
ing failure probability (e.g., 10−2) at the late lifetime of
flash memory. Therefore, our basic structure for LDPC-
based SSDs is formed by a two-step trial-and-error pro-
cedure: upon a read request, SSDs always first execute
hard-decision memory sensing and decoding, and on-
ly when hard-decision LDPC code decoding fails, exe-
cute soft-decision memory sensing and decoding. There-
fore, the LDPC-induced system response time delay be-
comes noticeable only after a certain number of P/E cy-
cles. We carry out extensive characterization of 25nm
MLC NAND flash memory reliability and LDPC code
decoding, based on which we accordingly configure an
SSD simulation software tool (i.e., the SSD model [15]
in DiskSim [16]) to evaluate the LDPC-induced system
response time delay. Results show that, once NAND
flash memory chips are heavily cycled (10,000 P/E cy-
cling in this study), soft-decision memory sensing and
LDPC code decoding will be frequently invoked and the
system read response time degradation can be even over
100% for read-intensive workloads.

The results motivate us to investigate possible so-
lutions to minimize such a significant system latency,
and accordingly we propose three techniques in this pa-
per. The first technique, called look-ahead soft-decision
memory sensing, aims to execute soft-decision memory
sensing immediately after hard-decision memory sens-
ing, instead of waiting for the finish of hard-decision LD-
PC code decoding. By concurrently carrying out hard-

decision LDPC code decoding and soft-decision memo-
ry sensing, this can reduce the latency overhead in case
of a hard-decision LDPC code decoding failure. Second,
motivated by the fact that LDPC code error correction
strength gradually improves as we progressively increase
the memory sensing precision, we propose a progressive
memory sensing and LDPC code decoding design strate-
gy. The basic idea is as follows: in case of hard-decision
LDPC code decoding failure, instead of immediately in-
voking full-precision soft-decision memory sensing, we
only progressively increase the memory sensing preci-
sion level-by-level and accordingly re-try LDPC decod-
ing. Such a fine-grained progressive sensing and decod-
ing strategy can track the just-enough sensing precision
at runtime and hence obviate unnecessary extra sensing
latency. Motivated by the noticeable chip-to-chip reli-
ability variation observed in our experiments with 25nm
flash memory chips, we further propose a data placemen-
t interleaving technique that can reduce hard-decision
LDPC code decoding failure probability and hence re-
duce the overall sensing and decoding latency overhead.
Using representative workload traces and the SSD mod-
el [15] in DiskSim [16] and based upon extensive char-
acterization of NAND flash memory chip reliability and
LDPC code decoding, we quantitatively evaluate the ef-
fectiveness of these techniques, and results show that
they can reduce the latency overhead from over 100%
down to below 20%. With our proposed techniques, a
strong ECC alternative can be used in NAND flash mem-
ory to retain its reliability under continuous cost deduc-
tion, and its relatively small increase of response time is
acceptable to mainstream application users, considering
a huge gain in SSD capacity, reliability and price.

The remainder of this paper is organized as follows.
Section 2 reviews the basics of NAND flash memory
and LDPC code, and presents a simple study to demon-
strate the impact of LDPC codes on SSD response time.
Section 3 describes the proposed three techniques for re-
ducing LDPC-induced system response time delay. Sec-
tion 4 presents SSD simulation setup and characteriza-
tion results of 25nm NAND flash memory reliability and
LDPC code decoding, based upon which simulations are
carried out to evaluate the proposed techniques in Sec-
tion 5. Section6 surveys related work and Section 7
draws the conclusions and discusses the future research
directions.

2 Background and Motivations

This section first presents the basics of NAND flash
memory and LDPC code, and demonstrates the signifi-
cant coding benefits gained by using soft-decision LDPC
code decoding. By trace-driven simulations supported
by a widely used SSD simulator, we show that a straight-

2

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 245

forward use of LDPC code with soft-decision decoding
could cause a significant and unacceptable response time
increase of SSD. This preliminary work motivates us to
minimize this running time delay in order to truly gain
the merits of LDPC in SSDs.

2.1 Basics of NAND Flash Memory

Each NAND flash memory cell is a floating gate transis-
tor whose threshold voltage can be programmed by in-
jecting certain amount of charges into the floating gate.
Before a flash memory cell can be programmed, it must
be erased (i.e., remove all the charges from the floating
gate, which sets its threshold voltage to the lowest volt-
age window). The flash memory program/erase (P/E)
cycling causes damage to the tunnel oxide of floating
gate transistors in the form of charge trapping in the ox-
ide and interface states [17–19], which directly results in
threshold voltage shift and fluctuation and hence grad-
ually degrades memory device noise margin. Since the
significance of these noises grows with the trap densi-
ty and trap density grows with P/E cycling, NAND flash
memory cell noise margin monotonically degrades with
P/E cycling. In practice, this sets a NAND flash memory
P/E cycling endurance limit, beyond which memory cel-
l noise margin degradation can no longer be accommo-
dated by the memory system fault tolerance capability.
As technology continues to scale, floating gate transistor
becomes smaller and hence can only hold less amoun-
t of electrons for nonvolatile data storage. As a result,
NAND flash memory cells are more sensitive to P/E cy-
cling and other distortion sources [20], leading to contin-
uous degradation of almost all the important reliability
and performance metrics [1].

NAND flash memory accesses are performed in the u-
nit of page, and all the memory cells within one page
are driven by a single word-line. Aiming to digitally
quantize the threshold voltage of all the memory cells in
one page, memory sensing is carried out recursively in a
level-by-level manner. It can be illustrated in Fig. 1: As-
sume we want to carry out a 3-level soft-decision sens-
ing at the quantization voltage levels of V1, V2, and V3
(i.e., to determine the threshold voltage of each memory
cell fall into which region out of the four regions I, II,
III, and IV). The word-line voltage is first raised to V1
and check whether the threshold voltage of each mem-
ory cell is above or below V1 through a bit-line charge-
discharge cycle. If the threshold voltage of one memory
cell is below V1, then we know that it falls into the region
I, otherwise further sensing is needed to determine its re-
gion. Then the word-line voltage is further raised to V2
and check whether the threshold voltage of each memory
cell is above or below V2 through another bit-line charge-
discharge cycle. If the threshold voltage of a memory

cell is above V1 but below V2, we know it falls into the
region II. Finally the word-line voltage is raised to V3 and
we can distinguish between the region III and IV through
the 3rd bit-line charging-discharging cycle. Clearly, this
process shows that NAND flash memory sensing latency
is linearly proportional to the number of sensing quanti-
zation levels.

I II III IV

Threshold voltage V1 V2 V3

Figure 1: Illustration of 3-level soft-decision sensing:
three bit-line charge-discharge cycles at word-line volt-
ages of V1, V2, and V3.

2.2 Basics of LDPC Codes

Invented by Gallager [6] in 1962, LDPC codes have been
largely neglected by the scientific community for several
decades until the remarkable success of Turbo codes in
3G wireless communication that led to the re-discovery
of LDPC codes in 1996 by MacKay and Neal [21] and
Wiberg [22]. LDPC codes have attracted tremendous re-
search attention in both academia and industry over the
past 15 years, and have been widely adopted in vari-
ous data communication and storage systems, e.g., DVB
(digital video broadcasting), WiFi, WiMAX, 10G Ether-
net, and more recently hard disk drives.

An LDPC code is defined as the null space of an M×N
sparse parity check matrix. Its sparse parity check ma-
trix can be represented by a bipartite graph, between M
check (or constraint) nodes in one set and N variable (or
message) nodes in the other set. An LDPC code can
be decoded by iterative belief-propagation (or message-
passing) decoding algorithms [7,23] that directly match-
es the code bipartite graph as illustrated in Fig. 2: After
each variable node is initialized with the the input chan-
nel message (i.e., the probability information associat-
ed with each bit), the decoding messages are iteratively
computed by all the variable nodes and check nodes and
exchanged through the edges between the neighboring
nodes.

Error correction strength of LDPC code decoding
strongly depends on the accuracy of the input probabil-
ity information of each bit, which further depends on
memory sensing precision in the context of NAND flash
memory. Let us use the following example to illustrate
the impact of sensing precision on the error correction

3

246 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

check nodes

variable nodes

channel messages

variable-to-check messages

check-to-variable messages

Figure 2: Iterative belief-propagation decoding process
based on LDPC code bipartite graph.

strength. Assume each chunk of 4KB user data is pro-
tected by a rate-8/9 LDPC code (i.e., the coding redun-
dancy is 512B per 4KB user data). Based upon [14],
we set that the NAND flash memory chips can support
seven-level soft-decision sensing (i.e., between two adja-
cent threshold voltage states there are one hard-decision
sensing level and six extra soft-decision sensing levels).
Fig. 3 shows the simulated LDPC code decoding failure
probability vs. NAND flash memory raw bit error rate
when using either hard-decision or soft-decision LDPC
code decoding. For the purpose of comparison, we also
show the case of BCH code being used in today’s com-
mercial SSDs. Assuming the storage system target de-
coding failure probability is 10−15, the results show that,
although the hard-decision LDPC code decoding can on-
ly tolerate slightly higher raw bit error rate than BCH
code, soft-decision decoding with six extra sensing levels
can tolerate about 3× worse raw bit error rate. This di-
rectly translates into higher P/E cycling endurance and/or
longer data retention time.

0.0040.0060.0080.010.0120.0140.0160.0180.02
10-15

10-10

10-5

100

Raw Bit Error Rate

D
ec

od
in

g
Fa

ilu
re

 P
ro

ba
bi

lit
y

BCH code
LDPC code (hard-decision sensing)
LDPC code (six extra sensing levels)

Figure 3: Simulated decoding failure probability
vs. NAND flash memory raw bit error rate performance
of hard-decision and soft-decision LDPC decoding and
BCH code decoding. Both LDPC code and BCH code
protect each 4KB user data with 512B coding redundan-
cy.

2.3 Using LDPC Codes in SSDs

Although soft-decision LDPC code decoding can gain
a strong benefit for SSDs as shown in Fig. 3, soft-
decision memory sensing can increase the read latency.
Based upon our measurements with 25nm MLC NAND
flash memory chips, it could take about 125µs to car-
ry out seven-level soft-decision memory sensing in order
to maximize the LDPC code error correction strength.
Meanwhile, with 200MB/s NAND flash chip I/O band-
width as specified in ONFI 2.1, it takes about 80µs to
transfer the seven-level soft-decision sensing results of
4KB data to the controller. Assuming the LDPC code de-
coder can operate at only 4Gbps (it could achieve much
higher decoding throughput, e.g., beyond 10Gbps [24]),
it only takes 8µs to decode one 4KB LDPC codeword.
The above example shows that soft-decision memory
sensing and corresponding data transfer completely dom-
inate the overall read latency.

Fig. 4 illustrates the two-step read strategy to reduce
the latency overhead induced by soft-decision memo-
ry sensing. Upon a read request, the SSD controller
always starts with hard-decision memory sensing and
hard-decision LDPC code decoding, only if the hard-
decision LDPC code decoding fails, it invokes the soft-
decision memory sensing and executes soft-decision LD-
PC code decoding. This two-step read strategy can be
justified in two aspects: (i) NAND flash memory raw
storage reliability gradually degrades with the P/E cy-
cling, hence high-precision soft-decision sensing may
only be necessary as flash memory chips have been heav-
ily cycled, and fast hard-decision sensing could be suffi-
cient during the early lifetime of NAND flash memory.
(ii) Since LDPC code must ensure an extremely low page
error rate (e.g., 10−12 and below), hard-decision LDPC
code decoding may still achieve a reasonably low failure
rate (e.g., 10−1 or 10−2) even when flash memory chips
have been heavily cycled, which can largely reduce the
occurrence of soft-decision sensing.

However, even with this two-step read strategy,
LDPC-based SSDs may still be subject to unacceptably
increased latency. To quantitatively evaluate the degra-
dation, we carried out trace-driven simulations using
the SSD module [15] in DiskSim [16]. Besides wide-
ly used traces including Finance1, Finance2, Postmark,
and WebSearch, we also use two synthetic workloads in
which 66% and 99% of requests are read requests. We
set the hard-decision memory sensing latency as 55µs
(upper page) and 41µs (lower page), data transfer laten-
cy as 20µs, and LDPC code decoding latency as 8µs.
The SSD has 8 channels and each contains 8 flash chips.
Each flash chip contains 2 dies that share an 8-bit I/O bus
and a number of common control signals, and each die
contains 4 planes and each plane contains 2048 block-

4

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 247

Hard-decision memory sensing

Hard-decision LDPC decoding

Decoding
succeeds?

Read fails

Yes

No

Yes

No

Flash-to-controller data transfer

Read
finishes

Soft-decision memory sensing

Flash-to-controller data transfer

Soft-decision LDPC decoding

Decoding
succeeds?

Read
finishes

Figure 4: Illustration of operational flow of a straightfor-
ward two-step read strategy.

s. Each block contains 64 4KB pages. In our evalua-
tion, we increase the hard-decision LDPC code decoding
failure probability from 1% to 10%, and to 30% (i.e.,
1%, 10% and 30% of all the read operations invoke the
2nd-step six-extra-level soft-decision memory sensing).
Fig. 5 shows the read response time with the scenario
without any hard-decision decoding failure, which pro-
portionally increases as the failure rate increases.

Financial1 Financial2 Postmark WebSearch Synthetic1 Synthetic2
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

R
ea

d
R

es
po

ns
e

Ti
m

e Hard-Decision Decoding Failure Probability 1%
Hard-Decision Decoding Failure Probability 10%
Hard-Decision Decoding Failure Probability 30%

Figure 5: Simulated SSD read response time normal-
ized with the scenario without any hard-decision decod-
ing failure.

Besides read response time, the use of LDPC code will
also increase write response time. We collected the write
response time results of the above trace-driven simula-
tions. Under the 30% of hard-decision decoding failure
probability, the average write response time of all the
traces increases no more than 2%. Since read response
time has a much higher priority than write response time,
the results suggest that LDPC-induced write response
time is a much less concern. Therefore, we focus our
efforts on reducing LDPC-induced read response time.

3 Proposed Techniques

Further reducing the LDPC-induced SSD read response
time delay can be pursued from two orthogonal aspects:
(i) reduce the latency overhead of soft-decision memory
sensing and data transfer, and (ii) reduce the probability
of low-precision LDPC code decoding failure and hence
reduce the probability of high-precision soft-decision
memory sensing being invoked. This section presents
three techniques to explore the design space from these
two orthogonal aspects.

3.1 Look-Ahead Memory Sensing

In the basic two-step sensing and decoding strategy de-
scribed in Section 2.3, soft-decision sensing is only ini-
tiated after the LDPC code decoder on the controller re-
ports a decoding failure. As a result, let Phd-fail denote
the hard-decision LDPC code decoding failure probabil-
ity, the average total sensing and decoding latency expe-
rienced by the SSD controller can be expressed as

τtotal = τhd-sen + τhd-xfer + τdec

+Phd-fail · (τsd-sen + τsd-xfer + τdec), (1)

where τhd-sen and τhd-xfer are the latency of hard-decision
memory sensing and data transfer, τsd-sen and τsd-xfer are
the latency of soft-decision memory sensing and data
transfer, and τdec is the LDPC code decoding latency.

Exploiting overlapping opportunities between hard-
and software-decisions, we propose a method called
look-ahead soft-decision memory sensing to reduce the
overall latency overhead. The key is to initiate soft-
decision memory sensing before the hard-decision LD-
PC code decoding finishes. As illustrated in Fig. 6, right
after the memory chip finishes the hard-decision mem-
ory sensing and starts to transfer the sensing result to
the controller, if there is no outstanding data access re-
quest for this memory plane, the memory chip immedi-
ately starts the soft-decision memory sensing. Since the
soft-decision memory sensing and data transfer operation
can be immediately terminated once the hard-decision
decoding succeeds, this look-ahead design does not in-
crease the latency in case of a hard-decision decoding
success. Hence, we can estimate the average sensing and
decoding latency experienced by the SSD controller as

τ look-ahead
total = τhd-sen +(1−Phd-fail) · (τhd-xfer + τdec)

+Phd-fail · (τsd-sen + τsd-xfer + τdec). (2)

As P/E cycling continues to wear out NAND flash mem-
ory cells, the hard-decision LDPC code decoding fail-
ure probability Phd-fail continues to increase. Comparing
the average latency estimation in (1) and (2), we show

5

248 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Hard-decision
memory sensing

Data
transfer

LDPC
decoding

Soft-decision memory sensing & data
transfer

LDPC
decoding

Decoding fails

Hard-decision
memory sensing

Data
transfer

LDPC
decoding

LDPC
decoding

Soft-decision memory sensing & data
transfer

Figure 6: Illustration of the proposed look-ahead memo-
ry sensing. Note: the soft-decision memory sensing and
data transfer can be immediately terminated in case of a
hard-decision decoding success.

that the look-ahead memory sensing becomes more ef-
fective as the hard-decision decoding failure probabili-
ty Phd-fail increases. As a cost of average latency reduc-
tion, this look-ahead memory sensing technique incurs a
large number of memory sensing operations, which di-
rectly results in a higher on-chip memory sensing power
consumption. Nevertheless, since latency is generally a
much more important metric than power consumption in
SSDs, we expect that such a trade-off is practically jus-
tifiable. We will show quantitative power consumption
results in Section 5.5.

3.2 Fine-Grained Progressive Sensing and
Decoding

Motivated by the fact that the error correction strength
of LDPC code may gracefully improve as the accuracy
of decoding input information gradually increases, we
propose to adopt a fine-grained progressive sensing and
decoding design strategy as illustrated in Fig. 7. In the
basic two-step sensing and decoding approach, once the
hard-decision LDPC code decoding fails, the controller
invokes the full-strength memory sensing (e.g., six extra
sensing levels between adjacent storage states) provided
by the NAND flash memory chip and hence full-strength
LDPC code decoding. As illustrated in Fig. 3, it may
leave a large latency vs. error correction capability trade-
off space unexplored. Our simulations reveal that, even
when we only increase the number of memory sensing
quantization levels by one, it could noticeably improve
LDPC code decoding strength. Meanwhile, as we dis-
cussed in Section 2.1, soft-decision memory sensing la-
tency is proportional to the number of memory sensing
quantization levels, the fine-grained progressive sensing
and decoding strategy shown in Fig. 7 may effectively
reduce the overall latency overhead.

Let τ(1)sen and τ(1)xfer denote the latency of sensing and

transferring one extra level, and P(j)
sd-fail denote the proba-

Hard-decision memory sensing

LDPC code decoding

Decoding
succeeds?

Memory sensing with only one
extra sensing quantization level

Reach the highest
sensing precision?

Read fails

Yes

No

Yes

No

Flash-to-controller data transfer

Read finishes

Flash-to-controller
data transfer

Figure 7: Illustration of operational flow of the proposed
progressive sensing and decoding design strategy.

bility that LDPC code decoding fails with j extra sensing
levels between two adjacent storage states. Let m denote
the maximum number of extra sensing levels, we can es-
timate the average sensing and decoding latency experi-
enced by the controller as

τprog
total = τhd-sen + τhd-xfer + τdec

+Pave · (τ(1)sen + τ(1)xfer + τdec), (3)

where

Pave = Phd-fail ·
(

1+
m

∑
i=2

(i−1

∏
j=1

P(j)
sd-fail

))
. (4)

As to be presented later in the paper, the progressive
sensing and decoding scheme can be directly combined
with look-ahead memory sensing to further reduce the
average latency overhead. We note that one major over-
head of this progressive sensing and decoding technique
is the LDPC code decoding power consumption. As il-
lustrated in Fig. 7, SSD controller has to repeatedly ex-
ecute LDPC decoding as it progressively increases flash
memory on-chip sensing precision. This directly leads
to a higher power consumption of LDPC code decoding.
Section 5.5 will present quantitative power consumption
results in this regard.

3.3 Data Placement Interleaving
The above two techniques aim to reduce the LDPC-
induced SSD read response time delay by directly reduc-
ing the soft-decision memory sensing and data transfer
latency. As discussed above, if we can reduce the LD-
PC code decoding failure probability with low-precision

6

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 249

memory sensing, we can reduce the occurrence of costly
high-precision soft-decision memory sensing, which can
further reduce the SSD read response time delay. For this
purpose, we propose a technique called data placemen-
t interleaving to reduce the LDPC code decoding fail-
ure probability with low-precision memory sensing. It is
directly motivated by the noticeable reliability variation
among different NAND flash memory chips. As quan-
titatively demonstrated later in Section 4.1, memory cell
reliability exhibits a noticeable variability across differ-
ent chips due to die-to-die and wafer-to-wafer fabrication
process variation. As a result, pages on one chip could
suffer from relatively worse raw storage reliability and
hence a high LDPC code decoding failure probability,
which leads to a large SSD response time delay. Mean-
while, pages on another chip could be only subject to
very low LDPC code decoding failure probability with
little effect to system read response time.

Ideally, if we could place the hot data that are fre-
quently accessed onto these flash chips with relatively
high reliability, the LDPC-induced system read response
time delay can be directly reduced. Nevertheless, this
requires sufficiently accurate estimation and prediction
on the user data hotness. Although how to identify data
hotness in flash memory storage systems has been stud-
ied (e.g., see [25–27]), all the on-line data characteristics
estimation and prediction methods are subject to imple-
mentation overhead in different ways and may not work
well for all the possible real-life workloads. As a sim-
ple and orthogonal alternative, we propose a workload-
independent data placement interleaving strategy to ex-
ploit the chip-to-chip reliability for reducing read re-
sponse time delay. In current design practice, each ECC
codeword is entirely stored within one physical page in
flash memory. Since modern NAND flash memory chip-
s have large physical page size (e.g., 8KB and 16KB)
and ECC codeword size is typically 2KB or 4KB, each
physical page contains several logic sub-pages and each
logic sub-page is a ECC codeword. When using data
placement interleaving, we group and re-organize n EC-
C codewords to generate n interleaved logic sub-pages,
where each logic sub-page contains data from all the n
ECC codewords. This is referred to as n-way data place-
ment interleaving. All the n new logic sub-pages are s-
tored on different flash memory chips in SSD. Since d-
ifferent chips have different memory cell storage relia-
bility, different portions in each ECC codeword will ex-
perience different bit error rate statistics, and the worst-
case bit error rate statistics within each ECC codeword
can improve. In case of the two-step sensing and decod-
ing, this can lead to a lower probability of hard-decision
LDPC code decoding failure, and in case of fine-grained
progressive sensing and decoding, this can lead to lower
overall average decoding failure probability Pave as in (3),

both of which could reduce system response time delay.
When using n-way data placement interleaving, we

should group the ECC codewords that associate with the
same write request so that they may be read and updated
together. If only one ECC codeword is being read at run-
time, all the n memory chips need to carry out sensing
and transfer the corresponding data portion. Hence, in
practice we should keep n relatively small such as 2 or
4, and may even selectively enable/disable interleaving
(e.g., we enable interleaving only when some memory
chips show significantly severe reliability issues). In ad-
dition, we should mention that this method would need
an additional effort in on-chip buffer implementation in
the SSD controller.

Since the proposed technique distributes one ECC
codeword among several different physical pages, each
physical page will contain more logic sub-pages. As a
result, changes with any user data will affect more phys-
ical pages, leading to a more significant write amplifica-
tion effect. Moreover, we note that such an interleaving
strategy may have different formats for different purpos-
es (e.g., increasing operational concurrency or improving
flash memory endurance [28]). The proposed interleav-
ing method in this paper is specifically designed for re-
ducing LDPC-induced latency overhead in SSDs.

4 Experiment Setup and Preparation

To quantitatively evaluate the three techniques through
trace-driven simulations, we use the SSD module [15]
in DiskSim [16] with different workload traces. Simi-
lar to the study presented in Section 2.3, besides wide-
ly used traces including Finance1, Finance2, Postmark,
and WebSearch, we also use two synthetic workload-
s in which 66% and 99% of requests are read request-
s. The simulator can support the use of several parallel
packages that can work in parallel. The system work-
s in the synchronous-share-control ganging mode as p-
resented in [15], and has 8 channels and each channel
contains 8 flash chips. Each flash chip contains 2 dies
that share an 8-bit I/O bus and a number of common
control signals, and each die contains 4 planes and each
plane contains 2048 blocks. Following the version 2.1
of the Open NAND Flash Interface (ONFI) [29], we set
the NAND flash chip interface bus frequency as 200M-
B/s. Based upon our measurement results on 25nm MLC
NAND flash memory chips, we set the block erase la-
tency as 3.24ms, programming latency as 1.45ms (upper
page) and 121µs (lower page), and hard-decision read
latency as 55µs (upper page) and 41µs (lower page).
Since upper-page read involves one extra sensing level
than lower-page read, we estimate that sensing one extra
level in soft-decision sensing takes 14µs.

7

250 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Moreover, a quantitative evaluation needs the estima-
tion of various LDPC code decoding failure probabilities
(e.g., Phd-fail and Psd-fail) as described in Section 3. This
further demands the availability of NAND flash memory
bit error rate statistics and LDPC code decoding failure
probabilities under different bit error rates. The remain-
der of this section discusses how we collect these neces-
sary data points in this study.

4.1 Measurement of Flash Memory Bit Er-
ror Rate Statistics

Using commercial 25nm MLC NAND flash memory
chips, we carry out memory bit error rate statistics mea-
surements, based on which the proposed techniques can
be quantitatively evaluated. As discussed earlier, memo-
ry bit error rate gradually increases with P/E cycling. In
addition, memory bit error also heavily depends on the
data retention time (i.e., how long the data have resided
in the flash memory). Based upon prior work in semicon-
ductor device research community [19, 30–32], we use
the experiment flow as shown in Fig. 8 to measure mem-
ory chip bit error rate patterns under target P/E cycling
of Ncyc and data retention time of trt.

Continuous P/E cycling over a short time

Baking to emulate wear-out recovery

Program once

Baking to emulate data retention

Bit error rate statistics

Figure 8: Experiment flow to measure bit error rate s-
tatistics of NAND flash memory considering wear-out
recovery and data retention in realistic usage scenario.

For each randomly chosen block in each memory chip,
as the first step shown in Fig. 8, we continuously car-
ry out Ncyc P/E cycles during a short period (e.g., few
hours). Nevertheless, in practical SSDs these Ncyc P/E
cycles on each block are distributed over a much longer
period (e.g., several weeks or months). Since the mem-
ory cell wear-out caused by P/E cycling can partially re-
cover over the time [31,32], reliability of memory blocks
cycled during a short time in the lab cannot faithfully rep-
resent the reliability characteristics experienced by real-
life SSDs. Therefore, as suggested in [30], we should
bake the cycled memory chip to emulate the wear-out re-
covery over a long period (i.e., the second step in Fig. 8).

Then, we write new data into the chosen blocks once and
bake the memory chip to emulate the data retention time
(i.e., the last step in Fig. 8), after which more realistic
reliability characteristics can be measured.

Given target backing temperature, the Arrhenius
law [33] can be used to determine the baking time for
both wear-out recovery emulation and data retention em-
ulation. Let Tcyc denote the temperature under which
the flash memory chips are continuously cycled by Ncyc
times in the lab, tcyc denote the period over which the
total Ncyc P/E cycles occur in realistic SSD operations,
trt denote the target data retention time in real-life opera-
tions, Topt denote normal operating temperature of SSDs,
T B

rc and T B
rt denote the baking temperature for emulat-

ing wear-out recovery and data retention, and tB
rc and tB

rt
denote the baking time for emulating wear-out recovery
and data retention, we have

tB
rc = A · tcyc · e

EA(
1

k·T B
rc
− 1

k·Tcyc
)
, (5)

tB
rt = trt · e

EA(
1

k·T B
rt
− 1

k·Topt
)
, (6)

where k is the Boltzmann constant, the activation energy
EA is 1.1eV, the parameter A is a constant that depends
on fabrication technologies and is set as 0.022 according
to [30].

In our experiments, we randomly chose 128 blocks
from 4 different 25nm MLC NAND flash memory chip-
s, and continuously cycled these blocks by 10,000 times
under room temperature of 25◦C. We set the SSD normal
operating temperature Topt as 40◦C, target data retention
time trt as one month, baking temperature T B

rc and T B
rt

as 105◦C, and tcyc as 400 days (i.e., each block experi-
ences 25 P/E cycles per day in real-life SSD operations).
Accordingly, the baking time for emulating wear-out re-
covery and data retention is 11 minutes and 39 minutes,
respectively. Fig. 9 shows the bit error rate statistics from
all the blocks of the four different chips. The results
clearly show noticeable chip-to-chip reliability variation,
which essentially motivates the proposed data placement
interleaving technique.

4.2 Decoding Failure Probability

In the experiments, we use the same rate-8/9 length-4KB
LDPC code in Section 2.2. Following the specification
in Samsung MLC NAND flash memory chips [14], we
set that soft-decision sensing can support up to six ex-
tra sensing levels between two adjacent storage states.
The proposed progressive memory sensing and decod-
ing strategy aims to reduce the latency overhead by sens-
ing only one extra level between two adjacent storage
states at a time. Hence, we should simulate LDPC code
decoding performance under various sensing configura-

8

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 251

0.002 0.004 0.006 0.008 0.010 0.012 0.014
0.00

0.05

0.10

0.15

0.20

Pa
ge

C
ou

nt
Pe

rc
en

ta
ge

Page Raw BER

Chip 1

(a)

0.002 0.004 0.006 0.008 0.010 0.012 0.014
0.00

0.05

0.10

0.15

0.20

Pa
ge

C
ou

nt
Pe

rc
en

ta
ge

Page Raw BER

Chip 2

(b)

0.002 0.004 0.006 0.008 0.010 0.012 0.014
0.00

0.05

0.10

0.15

0.20

Pa
ge

C
ou

nt
Pe

rc
en

ta
ge

Page Raw BER

Chip 3

(c)

0.002 0.004 0.006 0.008 0.010 0.012 0.014
0.00

0.05

0.10

0.15

0.20

Pa
ge

C
ou

nt
Pe

rc
en

ta
ge

Page Raw BER

Chip 4

(d)

Figure 9: Measured memory bit error rate histogram of four 25nm MLC NAND flash memory chips following the
experiment flow described above.

tion. Fig. 10 shows the simulation results, which clear-
ly demonstrates the graceful trade-off between decoding
failure probability and sensing precision. The results fur-
ther justifies the underlying rationale of the progressive
sensing and decoding strategy.

0.0040.0060.0080.010.0120.0140.0160.0180.02
10-15

10-10

10-5

100

Raw Bit Error Rate

D
ec

od
in

g
Fa

ilu
re

 P
ro

ba
bi

lit
y

BCH code
LDPC code (hard-decision sensing)
LDPC code (one extra sensing level)
LDPC code (two extra sensing levels)
LDPC code (four extra sensing levels)
LDPC code (six extra sensing levels)

Figure 10: Simulated decoding failure probability
vs. NAND flash memory raw bit error rate of BCH code
decoding and LDPC code decoding with various sensing
precision.

5 Experiment Results

This section presents experiment results to demonstrate
the effectiveness of the proposed three techniques for
reducing LDPC-induced SSD read response time delay.

For the purpose of comparison, we set the baseline sce-
nario as the basic two-step sensing and decoding strategy
presented in Section 2.3, where the 2nd-step full-strength
soft-decision memory sensing has six extra sensing lev-
els between two adjacent storage states [14]. Based up-
on the measured 25nm MLC NAND flash raw bit error
rate statistics at 10,000 P/E cycling presented in Sec-
tion 4.1 and the LDPC code decoding failure probability
vs. raw bit error rate curves presented in Fig. 10, we esti-
mate that the hard-decision LDPC code decoding failure
probability is 28.8%. These results are further fed in-
to the SSD simulator and the corresponding simulation
results are shown in Fig. 11. For each trace, the read
response time is normalized to the scenario without any
soft-decision memory sensing. The response time delay
increases range from 25% (for Postmark) to 120% (for
Synthtic2).

5.1 Look-Ahead Sensing

We first study the effectiveness of look-ahead memo-
ry sensing. We modify the SSD simulator so that six-
level soft-decision sensing immediately starts once hard-
decision memory sensing finishes if there is no out-
standing read request for the memory plane. In case
of a hard-decision LDPC code decoding failure, the
six-level soft-decision sensing starts about 28µs earli-
er (including 20µs of hard-decision sensing result data
transfer and 8µs LDPC code decoding). In case of a
hard-decision LDPC code decoding success, the look-

9

252 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Financial1 Financial2 Postmark WebSearch Synthetic1 Synthetic2
0.0

0.5

1.0

1.5

2.0
N

or
m

al
iz

ed
R

ea
d

R
es

po
ns

e
Ti

m
e

Figure 11: Simulated system read response time when
using the two-step sensing and decoding strategy at
10,000 P/E cycling, which will be used as the baseline
for the study in this work.

ahead soft-decision sensing will be immediately termi-
nated through the RESET command supported by com-
mercial NAND flash memory chips. Fig. 12 shows the
simulated SSD read response time that is normalized a-
gainst the baseline scenario. Results show that the look-
ahead sensing can modestly reduce the system read re-
sponse time delay.

Financial1 Financial2 Postmark WebSearch Synthetic1 Synthetic2
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

R
ea

d
R

es
po

ns
e

Ti
m

e

Baseline
Look-ahead Sensing

Figure 12: Simulated SSD read response time when us-
ing look-ahead memory sensing in comparison with the
baseline scenario.

5.2 Progressive Sensing and Decoding

Next, we evaluate the fine-grained progressive sens-
ing and decoding design strategy. As described in
Section3.2, throughout the progressive sensing and de-
coding procedure, in case of LDPC code decoding fail-
ure, we only introduce one more extra sensing level be-
tween two adjacent storage states. Based upon the mea-
sured flash raw bit error rate statistics and LDPC code
decoding performance characteristics as shown in Sec-
tion 4, we accordingly configure the SSD simulator and
carry out simulations over various traces. Fig. 13 shows

the simulated read response time normalized to the base-
line scenario. Results show that such a design strategy
can very effectively reduce the response time, and its ef-
fectiveness is more significant for those read-intensive
traces such as WebSearch.

Financial1 Financial2 Postmark WebSearch Synthetic1 Synthetic2
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

R
ea

d
R

es
po

ns
e

Ti
m

e

Baseline
Progressive Sensing

Figure 13: Simulated SSD read response time when us-
ing fine-grained progressive memory sensing and decod-
ing in comparison with the baseline scenario.

This progressive sensing and decoding strategy and
the above look-ahead memory sensing are orthogonal
and can be directly combined to further improve the effi-
ciency, as shown in Fig. 14.

Financial1 Financial2 Postmark WebSearch Synthetic1 Synthetic2
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

R
ea

d
R

es
po

ns
e

Ti
m

e

Baseline
Look-ahead + Progressive Sensing

Figure 14: Simulated SSD read response time when
combining look-ahead memory sensing and fine-grained
progressive memory sensing and decoding in compari-
son with the baseline scenario.

5.3 Data Placement Interleaving
We further study the data placement interleaving scheme.
As described in Section 3.3, by exploiting the chip-
to-chip reliability variation, data placement interleaving
aims to average out the memory raw bit errors experi-
enced by each ECC codewrod and hence reduce the oc-
currence of high-precision soft-decision memory sens-
ing. In this study, we collected memory raw bit error
rate patterns of four different chips as shown in Fig. 9.
Hence, we consider both 2-way interleaving and 4-way

10

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 253

interleaving. In 2-way interleaving, we assume the da-
ta placement interleaving occurs between chip 1 and 3,
and between chip 2 and 4, respectively. In 4-way inter-
leaving, we assume the data placement interleaving oc-
curs among all the four chips. Intuitively, as we increase
from 2-way to 4-way interleaving, we can better aver-
age out the bit error rate and hence improve the latency
reduction, but meanwhile the implementation could be-
come more complicated. Fig. 15 shows the simulated
read response time when using 2-way and 4-way data
placement interleaving.

Financial1 Financial2 Postmark WebSearch Synthetic1 Synthetic2
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

R
ea

d
R

es
po

ns
e

Ti
m

e

Baseline
2-way Interleaving
4-way Interleaving

Figure 15: Simulated SSD read response time when
using 2-way and 4-way data placement interleaving in
comparison with the baseline scenario.

Fig. 16 further shows the aggregated effectiveness
when we combine all the three techniques together. The
results show that the proposed techniques working in an
integrated way can can significantly reduce the LDPC-
induced SSD read response time degradation.

Financial1 Financial2 Postmark WebSearch Synthetic1 Synthetic2
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

R
ea

d
R

es
po

ns
e

Ti
m

e

Baseline
Look-ahead + Progressive Sensing + 2-way Interleaving
Look-ahead + Progressive Sensing + 4-way Interleaving

Figure 16: Simulated SSD read response time when
combining all the three techniques together in compar-
ison with the baseline scenario.

5.4 Impact of SSD Parallelism
All our simulations are carried out under a highly parallel
SSD with 8 channels. To study the impact of SSD par-

allelism on the effectiveness of the proposed techniques,
we reduce the SSD architectural parallelism to 2 (i.e., the
SSD only contains 2 channels) while keeping all the oth-
er configurations the same. Accordingly, we carry out
simulations and the results are shown in Fig. 17. Result-
s suggest that the proposed techniques are insensitive to
the SSD parallelism.

Financial1 Financial2 Postmark WebSearch Synthetic1 Synthetic2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

R
ea

d
R

es
po

ns
e

Ti
m

e

Baseline
Look-ahead + Progressive Sensing + 2-way Interleaving
Look-ahead + Progressive Sensing + 4-way Interleaving

Figure 17: Simulated SSD read response time when re-
ducing the SSD channel parallelism to 2. All the three
techniques are used.

5.5 Quantitative Evaluations of Overheads

As pointed out earlier, as the cost of reducing read re-
sponse time delay, the techniques come with their own
overheads. The look-ahead memory sensing can cause
higher flash memory on-chip sensing power consump-
tion. The progressive sensing and decoding can result in
more frequent execution of LDPC code decoding, lead-
ing to a higher LDPC code decoding power consump-
tion. The data placement interleaving could cause a more
significant write amplification. In this work, we quanti-
tatively studied the power consumption overhead of the
first two techniques. The study is based upon power mea-
surement of 25nm NAND flash memory chips. Each
page in the flash memory chips stores 4KB user data,
and our measurement results show that on average pro-
gramming one page consumes about 52µJ, hard-decision
memory sensing per page consumes about 2.4µJ, and
transferring one page of hard-decision sensing result-
s consumes about 3.7µJ, based upon which we further
estimate sensing one extra level consumes about 0.7µJ.
Based upon the trace-driven simulation results present-
ed above, we estimate that the use of look-ahead mem-
ory sensing increases flash memory access power con-
sumption by 102.9% on average. Regarding energy con-
sumption overhead of LDPC code decoding, we set that
decoding one 4KB-length LDPC codeword consumes
0.8µJ according to the results shown in [34]. Again,
based upon the trace-driven simulation results present-

11

254 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

ed above, we estimate that the use of progressive sensing
and decoding increases LDPC code decoding power con-
sumption by 35.2% on average, compared with the ide-
al scenario where LDPC code decoding is only execut-
ed once for each read operation. When considering the
memory sensing and LDPC code decoding energy con-
sumption together, the total energy consumption over-
head caused by the use of look-ahead memory sensing
and progressive sensing/decoding is 42.3%. Because of
the higher priority of response time than power consump-
tion in SSDs, we expect that such power consumption
overhead are justifiable in most practical applications.

6 Related Work

Many prior work has been done on improving flash mem-
ory storage system speed performance. Most prior work
focused on how to exploit internal parallelism in SSD
to improve system speed performance. Chen et al. [35]
carried out comprehensive study on the importance and
potential by exploiting various internal parallelism for
speed performance optimization. Agrawal et al. [15] an-
alyzed the effect of page size, striping and interleaving
policy on the memory system performance, and proposed
a concept of gang as a higher-level “superblock” to facil-
itate SSD system-level parallelism configurations. Min
and Nam [36] developed several NAND flash memory
performance enhancement techniques such as write re-
quest interleaving. Seong et al. [37] applied bus-level
and chip-level interleaving to exploit the inherent par-
allelism in multiple flash memory chips to improve the
SSD speed performance. In [38, 39], the impact of page
allocation on system speed performance has been thor-
oughly analyzed. The trace-driven simulation approach
for SSD designs have also be conducted in multiple stud-
ies, e.g. [40]. All these existing solutions are completely
orthogonal to this work, and can be used concurrently
with the proposed techniques to optimize LDPC-based
SSD system speed performance.

ECC for flash memory storage systems has been
widely studied as well. As the most promising next-
generation ECC, LDPC receives the most attentions from
the industry (e.g., see several industrial presentations at
Flash Summit this year [8–10]). LDPC decoding strategy
optimized for flash memory was proposed in [11]. Opti-
mization of soft-decision memory sensing was analyzed
from information theoretical perspective to facilitate the
use of LDPC codes in flash memory [41]. Tanakamaru et
al. [12] have shown that LDPC codes can improve SSD
lifetime by 10×. Nevertheless, to the best of our knowl-
edge, no prior work has been carried out to address the
system-level response time issue.

7 Conclusion

Making efforts to replace the existing BCH code by pow-
erful LDPC codes in future flash-based storage system-
s, we have studied the performance implication of the
advanced error advanced codes to the system response
time. Since unconventional long-latency soft-decision
memory sensing will be used in order to fully materialize
the error correction capability of LDPC codes, LDPC-
based SSDs are inevitably subject to read response time
degradation. This paper presents three techniques that
aim to reduce the LDPC-induced system speed degra-
dation from different aspects. The key is to appropri-
ately exploit the characteristics of NAND flash memory
chips and LDPC code decoding at the SSD system lev-
el. In order to quantitatively demonstrate LDPC-induced
system read response time degradation and the effective-
ness of the proposed techniques, we carried out extensive
experimental characterization of NAND flash memory
reliability and LDPC code decoding. Accordingly we
carried out trace-based SSD simulations and the results
show that using these techniques in an integrated way can
reduce the worst-case system read response time delay
from over 100% down to below 20%. Finally, we note
that this work by no means exploits all the possible di-
rections for reducing LDPC-induced speed degradation
and much more research from a variety of aspects are
necessary to fully address this challenge. One promis-
ing future research direction is to investigate how one
can exploit data read access locality/intensity variations
of different application workloads to reduce overhead of
soft-decision memory sensing and LDPC code decoding.
Another possible research direction is to study whether
or how we should revisit flash translation layer functions
in the presence of LDPC codes in future SSDs.

Acknowledgments
We thank the anonymous reviewers and our shepherd
Cheng Huang for their feedback and comments that help
us to improve the quality and presentation of this paper.

References

[1] L. M. Grupp, J. D. Davis, and S. Swanson, “The
bleak future of NAND flash memory,” in Proc. of
USENIX conference on file and storage technolo-
gies (FAST), 2012.

[2] B. Pierce, “Five key steps to high-speed NAND
flash performance and reliability,” in Proc. of Flash
Memory Summit, Aug. 2010.

[3] V. Agrawal, R. Ravasio, and G. Wong, “ECC
and signal processing technology for solid state

12

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 255

drives and multi-bit per cell NAND flash memo-
ries,” Tech. Rep. FI-NFL-FSP-0110, FORWARD
INSIGHTS, Jan 2010.

[4] R. C. Bose and D. K. Ray-Chaudhuri, “On a class
of error correcting binary group codes,” Journal of
Information and Control, vol. 3, no. 1, pp. 68–79,
March 1960.

[5] S. Lin and D. J. Costello, Error Control Coding:
Fundamentals and Applications (2nd Ed.), Prentice
Hall, 2004.

[6] R. G. Gallager, “Low-density parity-check codes,”
IRE Transactions on Information Theory, vol. IT-8,
pp. 21–28, Jan. 1962.

[7] D. J. C. MacKay, “Good error-correcting codes
based on very sparse matrices,” IEEE Transactions
on Information Theory, vol. 45, pp. 399–431, Mar.
1999.

[8] J. Yang, “Novel ECC architecture enhances stor-
age system reliability,” in Proc. of Flash Memory
Summit, Aug. 2012.

[9] X. Hu, “LDPC codes for flash channel,” in Proc.
of Flash Memory Summit, Aug. 2012.

[10] E. Yeo, “An LDPC-enabled flash controller in 40n-
m CMOS,” in Proc. of Flash Memory Summit, Aug.
2012.

[11] R. Motwani and C. Ong, “Robust decoder architec-
ture for multi-level flash memory storage channel-
s,” in International Conference on Computing, Net-
working and Communications (ICNC), Feb. 2012,
pp. 492–496.

[12] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi,
“Over-10x-extended-lifetime 76%-reduced-error
solid-state drives (SSDs) with error-prediction
LDPC architecture and error-recovery scheme,” in
IEEE International Solid-State Circuits Conference
(ISSCC), Feb. 2012, pp. 424–426.

[13] J. Chen and M. P. C. Fossorier, “Near optimum u-
niversal belief propagation based decoding of low-
density parity-check codes,” IEEE Transactions
on Communications, vol. 50, pp. 406–414, March
2002.

[14] C. Kim, J. Ryu, T. Lee, H. Kim, J. Lim, J. Jeong,
S. Seo, H. Jeon, B. Kim, I. Lee, D. Lee, P. Kwak,
S. Cho, Y. Yim, C. Cho, W. Jeong, K. Park, J.-M.
Han, D. Song, K. Kyung, Y.-H. Lim, and Y.-H. Jun,
“A 21 nm high performance 64 Gb MLC NAND
flash memory with 400 MB/s asynchronous Toggle

DDR interface,” IEEE Journal of Solid-State Cir-
cuits, vol. 47, no. 4, pp. 981–989, April 2012.

[15] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. Manasse, and R. Panigrahy, “De-
sign tradeoffs for SSD performance,” in Proc. of
USENIX Annual Technical Conference, 2008, pp.
57–70.

[16] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R.
Ganger, “The DiskSim Simulation Environment
Version 4.0 Reference Manual,” Tech. Rep. CMU-
PDL-08-101, Carnegie Mellon University Parallel
Data Lab, May 2008.

[17] P. Olivo, B. Ricco, and E. Sangiorgi, “High Field
Induced Voltage Dependent Oxide Charge,” Ap-
plied Physics Letter, vol. 48, pp. 1135–1137, 1986.

[18] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin,
“Failure Mechanisms of Flash Cell in Pro-
gram/erase Cycling,” in Proc. of International
Electron Devices Meeting (IEDM), 1994, pp. 291–
294.

[19] N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade,
A. Kurtz, Q. Meng, N. Righos, and J. Wu, “Flash
EEPROM Threshold Instabilities Due to Charge
Trapping During Program/erase Cycling,” IEEE
Transactions on Device and Materials Reliability,
vol. 4, no. 3, pp. 335–344, 2004.

[20] K. Prall, “Scaling Non-Volatile Memory Below
30nm,” in Proc. of IEEE Non-Volatile Semiconduc-
tor Memory Workshop, Aug. 2007, pp. 5–10.

[21] D. J. C. MacKay and R. M. Neal, “Near Shan-
non limit performance of low density parity check
codes,” Electronics Letters, vol. 32, pp. 1645–1646,
Aug. 1996.

[22] N. Wiberg, “Codes and decoding on gen-
eral graphs,” Ph.D. Dissertation, Linkop-
ing University, Sweden, 1996. available at
http://www.essrl.wustl.edu/˜jao/itrg2000/.

[23] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger,
“Factor graphs and the sum-product algorithm,”
IEEE Transactions on Information Theory, vol. 47,
pp. 498–519, Feb. 2001.

[24] C.-L. Chen, K.-S. Lin, H.-C. Chang, W.-C. Fang,
and C.-Y. Lee, “A 11.5-Gbps LDPC decoder based
on CP-PEG code construction,” in Proceedings
of European Solid-State Circuits Conference (ES-
SCIRC), Sept. 2009, pp. 412–415.

13

256 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

[25] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient
identification of hot data for flash memory storage
systems,” ACM Transactions on Storage, vol. 2, no.
1, pp. 22–40, Feb. 2006.

[26] D. Park and D. Du, “Hot and cold data identifi-
cation for flash memory using multiple Bloom fil-
ters,” in USENIX Conference on File and Storage
Technologies (FAST), 2011.

[27] T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang,
“hStorage-DB: heterogeneity-aware data manage-
ment to exploit full capacity of hybrid storage sys-
tems,” in Proc. of International Conference on Very
Large Databases (VLDB), 2012.

[28] J. Peterson, J. Strasser, and J. Hyun, “Bit error re-
duction through varied data positioning,” United S-
tates Patent Application 20120304039, Nov. 2012.

[29] “Open NAND Flash Interface Specification,” Tech.
Rep., Hynix Semiconductor and Intel Corporation
and Micron Technology, Inc. and Numonyx and
Phison Electronics Corp. and Sony Corporation and
Spansion, Jan. 2009.

[30] C.M. Compagnoni, C. Miccoli, R. Mottadelli,
S. Beltrami, M. Ghidotti, A.L. Lacaita, A.S. Spinel-
li, and A. Visconti, “Investigation of the thresh-
old voltage instability after distributed cycling in
nanoscale NAND Flash memory arrays,” in Proc.
of IEEE International Reliability Physics Sympo-
sium (IRPS), May 2010, pp. 604–610.

[31] N. Mielke, H.P. Belgal, A. Fazio, Q. Meng, and
N. Righos, “Recovery Effects in the Distributed
Cycling of Flash Memories,” in Proc. of IEEE In-
ternational Reliability Physics Symposium, 2006,
pp. 29–35.

[32] H. Yang, H. Kim, S.-I. Park, J. Kim, S.-H. Lee, J.-
K. Choi, D. Hwang, C. Kim, M. Park, K.-H. Lee,
Y.-K. Park, J. K. Shin, and J.-T. Kong, “Reliabil-
ity Issues and Models of sub-90nm NAND Flash
Memory Cells,” in Proc. of International Confer-
ence on Solid-State and Integrated Circuit Technol-
ogy, 2006, pp. 760–762.

[33] K. J. Laidler, Chemical Kinetics (3rd Ed.), Prentice
Hall, 1987.

[34] T. Mohsenin, H. Shirani-mehr, and B. Baas,
“Low power LDPC decoder with efficient stopping
scheme for undecodable blocks,” in Proc. of IEEE
International Symposium on Circuits and Systems,
2011, pp. 1780–1783.

[35] F. Chen, R. Lee, and X. Zhang, “Essential roles
of exploiting internal parallelism of flash memo-
ry based solid state drives in high-speed data pro-
cessing,” in Proc. of International Symposium on
High Performance Computer Architecture (HPCA),
2011.

[36] S. L. Min and E. H. Nam, “Current Trends in Flash
Memory Technology,” Proc. of Asia and South Pa-
cific Conference on Design Automation., p. 2., Jan.
2006.

[37] Y. J. Seong, E. H. Nam, J. H. Yoon, H. Kim, J. Choi,
S. Lee, Y. H. Bae, J. Lee, Y. Cho, and S. L. Min,
“Hydra: A Block-Mapped Parallel Flash Memory
Solid-State Disk Architecture,” IEEE Transactions
on Computers, vol. 59, no. 7, pp. 905 –921, Jul.
2010.

[38] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and
S. Zhang, “Performance impact and interplay of
ssd parallelism through advanced commands, allo-
cation strategy and data granularity,” in Proceed-
ings of the International Conference on Supercom-
puting, 2011, pp. 96–107.

[39] M. Jung and M. Kandemir, “An evaluation of dif-
ferent page allocation strategies on high-speed SS-
Ds,” in Proc. of HotStorage, 2012.

[40] F. Chen, T. Luo, and X. Zhang, “CAFTL: a content-
aware flash translation layer enhancing the lifespan
of flash memory based solid state devices,” in Proc.
of USENIX conference on file and storage technolo-
gies (FAST), 2011.

[41] J. Wang, T. Courtade, H. Shankar, and R.D. We-
sel, “Soft information for LDPC decoding in flash:
Mutual-information optimized quantization,” in
Proc. of IEEE Global Telecommunications Confer-
ence (GLOBECOM), Dec. 2011, pp. 1–6.

14

