
USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  81

Memory Efficient Sanitization of a Deduplicated Storage System

Fabiano C. Botelho Philip Shilane Nitin Garg Windsor Hsu

Backup Recovery Systems Division

EMC Corporation

{fabiano.botelho, philip.shilane}@emc.com
{nitin.garg, windsor.hsu}@emc.com

Abstract

Sanitization is the process of securely erasing sensitive

data from a storage system, effectively restoring the sys-

tem to a state as if the sensitive data had never been

stored. Depending on the threat model, sanitization could

require erasing all unreferenced blocks. This is partic-

ularly challenging in deduplicated storage systems be-

cause each piece of data on the physical media could be

referred to by multiple namespace objects. For large stor-

age systems, where available memory is a small fraction

of storage capacity, standard techniques for tracking data

references will not fit in memory, and we discuss multi-

ple sanitization techniques that trade-off I/O and memory

requirements. We have three key contributions. First, we

provide an understanding of the threat model and what

is required to sanitize a deduplicated storage system as

compared to a device. Second, we have designed a mem-

ory efficient algorithm using perfect hashing that only re-

quires from 2.54 to 2.87 bits per reference (98% savings)

while minimizing the amount of I/O. Third, we present a

complete sanitization design for EMC Data Domain.

1 Introduction

Deleting data from a storage system is a routine opera-

tion. A regular file delete operation makes the file inac-

cessible via the namespace and frees the underlying data

blocks for later reuse, but does not typically erase those

blocks. This leaves behind a residual representation of

the file that could be recovered. In many systems, merely

over-writing the contents of the file first before deleting

it will suffice. However, in systems that maintain old his-

tories of objects (via snapshots or log-structured design

for example), such a secure delete operation must be im-

plemented with the involvement of the storage system.

When disks are repurposed, residual data can often be

accessed despite the intentions of the owners [22, 23, 45].

There are several commonly discussed examples of sen-

sitive data being stored on an inappropriate system. A

Classified Message Incident (CMI) happens when data

at a particular classification level is written to storage not

approved for that level of classification. A CMI might oc-

cur when a user inadvertently sends an email with “top

secret” information to an email system approved for a

lower clearance. Another CMI example is that informa-

tion may be reclassified after it has been stored on a sys-

tem with a low clearance. When a CMI occurs, the sys-

tem administrator must take action to restore the system

to a state as if the selected data had never been stored,

which is how we define sanitization. If a backup takes

place before the CMI is rectified, then the backup server

must also be sanitized.

Implementing a sanitization process must consider ex-

pected threats. Briefly, threats may be as simple as an

attacker reading data with root access permissions or

as complex as an attacker using laboratory equipment

to read the storage media directly. Sanitizing for more

complex threats will likely require greater costs either in

terms of memory, I/O, or even hardware costs. Guide-

lines for threats and appropriate sanitization levels have

been published by several government agencies [28, 44],

which require sanitization when purchasing storage. We

discuss threat models in more detail in Section 2.

Sanitizing a storage system has different problems to ad-

dress than sanitizing a single device such as a hard drive

that might be erased with a pattern of overwrites [25].

For an in-place storage system, sanitizing an object (file,

record, etc.) consists of following meta data references to

the physical location within the storage system, overwrit-

ing the values one or more times, and erasing the meta

data as well as other locations that have become unrefer-

enced [41, 49]. Our storage system (and many others) is a

log-structured file system [37] with large units of writes,

which does not support in-place erasure of sub-units. In-

82  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

stead, we have to copy forward live data and then erase

an earlier region.

A new complexity for sanitization is the growing popu-

larity of deduplication. Deduplication reduces storage re-

quirements by replacing redundant data with references

to a unique copy. Data may be referenced by multiple

objects, including live and dead (to be sanitized) objects.

For these reasons, sanitization should be implemented

within the storage system and not solely at a lower level

such as the device. After all of the improperly stored

data are deleted, our sanitization algorithm is manually

started by a storage administrator. Sanitizing individual

files is as challenging as sanitizing the entire file system

because of the need to track blocks that uniquely belong

to the files affected by the CMI. The tracking of refer-

ences is the main problem to solve to efficiently sanitize

a deduplicated storage system.

In the following sections, we present threat models and

sanitization requirements (Section 2) and then review

deduplicated storage (Section 3). We discuss several al-

ternative techniques to track live data regions for saniti-

zation that make trade-offs in terms of memory require-

ments, disk I/O, and completeness in Section 4.

For large storage systems, there are multiple orders of

magnitude less memory than storage because of cost dif-

ferences. Also, it is common for deduplicated storage to

work with relatively small chunks of data so that du-

plicates can be identified, such as 4-8KiB average-sized

chunks [12, 29, 50]. These chunks tend to be identified

with secure hash values such as SHA1, which is 160

bits in size, though other hash sizes are possible. For

an 80TiB storage system with 8KiB chunks and 160-

bit hashes, 200GiB of memory is required just for ref-

erences, which is impractical.

Our approach is based on the observation that we know

the set of live references that must be tracked while san-

itization runs on a snapshot of the entire file system. In-

stead of needing a dynamic data structure that can handle

insertions, we can optimize with a static data structure for

our reference set. Our technique is to analyze the set of

references and create a perfect hash that uniquely maps

keys to values. Our technique for creating a perfect hash

data structure requires from 2.54 to 2.87 bits per refer-

ence, a 98% savings relative to the original 160-bit SHA1

hashes we use as reference. We briefly review perfect

hashing (Section 4.5) and demonstrate how to incorpo-

rate this technique into a complete sanitization algorithm

(Section 5). To handle the problem of chunk revival from

on-going I/Os, we present a technique for check point-

ing storage, running sanitization while writes happen in

parallel, and updating reference status.

We then present performance measurements for our

implementation (Section 6), review related work (Sec-

tion 7), and present our conclusions (Section 8).

Our research has several major contributions: 1) We dis-

cuss sanitization requirements in the context of dedupli-

cated storage. 2) We implemented a memory efficient

technique for managing data references using perfect

hashes. 3) We present a design for efficiently sanitizing

deduplicated storage, while writes happen concurrently,

which has been commercially available since 2009 as

part of the EMC Data Domain product.

2 Sanitization Requirements

In this section, we discuss general properties neces-

sary for a sanitization process, threat models, and spe-

cific complexities for deduplicated storage. A production

quality sanitization process for a storage system should

satisfy the following properties:

P1: All deleted data are erased.

P2: All live data are available.

P3: Sanitization is efficient.

P4: The storage system is usable while sanitization runs.

Properties 1 and 2 are about correctness and complete-

ness. Users should expect that confidential data have

been properly erased and that remaining data in the stor-

age system are valid. Property 3 has several meanings.

Sanitization should run as quickly as possible, but it also

should use system resources responsibly. Property 3 and

4 also interact because sanitization should not require a

storage system to be offline or dramatically slow reads

and writes due to I/O or memory overheads.

Ideally, sanitization would surgically remove contami-

nated regions of storage by overwriting the specified file

(shredding a file). Unfortunately, this may not be pos-

sible in many cases. If a file has already been deleted,

then determining which now-unallocated blocks are af-

fected may be difficult. Log-structured storage systems

append writes to a log as compared to in-place and use

large write units for efficiency, so overwriting small sub-

units requires valid data to be relocated. Since sanitiza-

tion must thoroughly erase all potentially contaminated

storage, we advise customers to delete all improperly

stored data and then initiate sanitization, instead of run-

ning sanitization after each individual file is deleted.

In designing our sanitization technique, we also consid-

ered which threat models we can practically address, and

we reuse some of the categories presented by Wei et

al. [49] and government guidelines [28, 44].

2

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  83

Casual attack: One attempts to gain access to data

through interfaces typically exposed by the system

such as trying to read a file through NFS. Such at-

tacks may find a version of the contaminated file in

an older snapshot even hours or days after the file

has been deleted.

Robust keyboard attack: One attempts to gain access

through non-typical interfaces such as using root ac-

cess to read otherwise-hidden data or reading blocks

directly from disk when a file system is the ex-

pected interface. Deleted files may still be accessi-

ble through swap areas or unallocated blocks.

Laboratory attack: One tries to access data using ex-

otic laboratory techniques requiring specific disk

format knowledge and specialized hardware such as

magnetic force microscopy [14]. Even when storage

is overwritten, it may retain magnetic values indi-

cating a previous state.

Most of the techniques available to address these threat

models are destructive, and the key challenge is how to

preserve clean data. It is especially challenging for dedu-

plicated storage because logical data can be much larger

than the post-deduplication data, which we call the dedu-

plication factor. Hence copying the clean data elsewhere

is more expensive than processing the post-deduplication

data. Alternatively, techniques have been presented that

encrypt data and destroy the key to effectively sanitize

improperly stored data, but key management becomes a

new complexity [2, 36, 40, 43].

We can think of the sanitization problem as the one of

sanitizing all “free blocks” of the storage system. For

sanitization levels that require a certain number of over-

writes be done with different patterns, the in-use blocks

also need to be moved and over-written as required. This

is because the block may have previously held sensitive

data. For a storage system that uses fixed sized blocks

and does in place updates, locating all free blocks is rela-

tively straightforward. The main challenge for such sys-

tems is that of coordinating the sanitization process with

the incoming I/O load. For a storage system that does

deduplication, because blocks can be shared by multiple

files, determining all free blocks is in itself non-trivial.

Ongoing I/Os during sanitization that “revive” a dead

block complicate the coordination required. If the system

uses variable sized blocks (often called chunks) as units

of storage and a log-structured design, the problem is fur-

ther complicated. The more sophisticated deduplicating

storage systems feature all of the above. We present our

algorithm for sanitizing a deduplicating storage system

that is practical for even the largest systems.

Afp Bfp Cfp Dfp EfpFile 0

Afp Bfp Cfp Yfp ZfpFile m

Files represented with fingerprints

A B C DContainer 0

E … … …Container 1

…

…
… … Y ZContainer n

Containers holding data chunks

Afp 0
Bfp 0
Cfp 0
Dfp 0
Efp 1

…
Yfp n
Zfp n

Fingerprint to
container index

NFS CIFS VTL …

Figure 1: The simplified architecture of a deduplicated

storage system includes application visible files that are

internally represented by a list of fingerprints, contain-

ers holding chunks of data, and an index mapping from

fingerprint to container.

3 Deduplicated Storage

Deduplication has become a widespread technique to re-

duce storage requirements by replacing repeated patterns

of data with references to a unique instance [39, 47].

While this paper focuses on sanitization, we briefly re-

view the elements of deduplicated storage that affect our

design. Our main implementation is a file system, and we

use that terminology throughout the paper, though our

sanitization technique can be applied to other dedupli-

cated storage systems.

As shown in Figure 1, when a file is written to the stor-

age system, it is partitioned into chunks that are the unit

of deduplication. Chunks may be created with a fixed or

variable size, and our system uses variable-sized chunks

with an average of 8KB. A secure hash value is calcu-

lated over each chunk (SHA1), which we refer to as its

fingerprint or chunk reference. A file is represented as a

list of fingerprints (file recipe) that can be used to recon-

struct the file as shown for files 0 and m.

To perform deduplication, a fingerprint is compared

against a fingerprint index to determine whether it is du-

plicate or unique. If a fingerprint is a duplicate, then the

current chunk does not need to be stored. If a fingerprint

is unique, then the chunk is stored. Identifying duplicates

leads to overall space savings for files. Unique chunks are

further compressed by using GZ-like schemes, grouped

together into 4.5MiB containers, and written out as a

unit for efficient I/O. The containers in our system are

immutable and form the basis of the log-structured lay-

out. The space savings obtained by eliminating dupli-

cates is called deduplication, and we refer to the dedupli-

3

84  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

cation factor of this system as D defined as input bytes

/ post deduplication bytes. Deduplication factors larger

than 1 indicate space savings. Savings from GZ com-

pression of chunks is called “local compression”1. The

combined effect of the deduplication and local compres-

sion is variously called total or overall compression or

simply, compression.

In this example, File 0 was written to an empty sys-

tem, so all of its chunks were unique and were written

sequentially to containers 0 and 1. File m was written

later, and chunks A through C (represented by finger-

prints Afp through Cfp) were duplicates. Chunks Y and

Z correspond to modified regions of the file, and those

chunks were written to container n. Now suppose File

0 is deleted so that chunks D and E are unreferenced.

For sanitization, it is necessary to erase D and E from

storage. Since containers are immutable, we copy for-

ward live chunks A, B, and C to a new container n+1

(not shown) and overwrite containers 0 and 1 with ze-

ros, random data, or a specified pattern. This takes care

of the need to move live chunks and over-write their old,

now free, locations.

4 Managing Chunk References

Before running sanitization, a user deletes unwanted

files, if any, from the storage system. Remaining files and

their referenced chunks are referred to as live, and any

unreferenced chunks are referred to as dead. The main

challenge for implementing sanitization within a dedu-

plicated storage system is managing chunk references

so that live chunks can be preserved and dead chunks

erased while minimizing memory and I/O requirements.

In this section, we discuss several alternatives for manag-

ing chunk references and end with our memory efficient

approach using perfect hash functions. While there may

be simple solutions that can handle a small set of dead (or

live) chunks, which can be managed in memory, we are

focused on techniques that can scale with the capacity of

our storage systems.

4.1 Copy to a Clean System

The first technique to consider is to copy all of the live

files from the system being sanitized (call it S0) to an

empty storage system S1, erase S0, and potentially copy

back the files. This technique has the advantage that it is

simple to implement, but the cost of a second storage sys-

tem is substantial. Copying the live files involves walk-

ing the namespace and reading all necessary containers,

1local compression factor = uncompressed size/compressed size,

larger values indicate greater compression.

which could involve an average of D reads of each con-

tainer if the system has a deduplication factor of D.

A second complete storage system needs to be available

and preferable co-located to minimize network replica-

tion overhead. This technique is not without its merits: It

requires minimal support for sanitization from the stor-

age system, and it is the only viable solution when the

level of security needed requires that the original system

S0 be Degaussed [1, 34] or physically destroyed.

Instead, we focus on techniques that involve erasing data

by overwriting [28, 44] and that can be implemented

within stand-alone storage system S0.

4.2 Reference Index

A standard deletion technique is to keep track of refer-

ence counts for every chunk. When a unique chunk is

written, a record is allocated with a count of 1. For ev-

ery duplicate written, the count is increased, and for ev-

ery deletion, the count is decremented. Such a reference

count requires a unique reference for every chunk such

as a fingerprint along with a counter value. Maintaining

correct reference counts is challenging due to complex

storage failure cases, and live reference counts are not

preferred [24].

A simpler approach is to enumerate the live files dur-

ing sanitization and record the chunk references at that

time. A count is not necessary, since even a single refer-

ence to a chunk indicates it should remain alive. Assum-

ing a 160-bit fingerprint for each chunk, the index size

is shown in Figure 2 as the number of chunks increases

on the horizontal axis. Both the horizontal and vertical

axes are log scale. When there are 1 billion chunks, the

index is 20 GiB, and a full reference count would require

somewhat more space. Our storage systems have tens of

billions of chunks and continue to increase in size, so the

memory requirements for counts or a fingerprint index

are impractical.

Since a full index will not fit in memory, it has to be

written to storage. This might be acceptable if the index

could be processed sequentially, but fingerprints are in-

herently random. Inserting index entries requires random

I/O and would become the bottleneck of sanitization, so

we did not pursue this solution.

Partitioned Reference Index

When an index is too large to fit in memory, a common

solution is to partition the index into units that do fit and

process each unit. For our system, we would divide con-

tainers into units and load the references for a unit of con-

tainers into memory. We would then walk the namespace

4

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  85

1MiB

32MiB

1GiB

32GiB

1TiB

32TiB

2
20

2
25

2
30

2
35

2
40

M
e
m

o
ry

 R
e
q
u
ir
e
m

e
n
ts

Number of Chunks

Reference Counts
Bloom Filter

Perfect Hash
Bit Vector

Figure 2: Memory requirements grow linearly with the

number of chunks. Perfect hashes uses almost two or-

ders of magnitude less memory than reference counts and

only slightly more than a bit vector alternative that has

higher I/O overheads.

and determine which references are still alive in the cur-

rently processed unit. For containers with a dead chunk,

the live chunks are copied forward, and the container is

erased.

While this technique allows us to size units to fit our

memory requirements, the downside is the amount of I/O

involved. Each container is scanned only once but the

namespace has to be enumerated once for each partition

unit. Depending on the ratio of available memory to stor-

age capacity, this could require dozens of enumerations

through the namespace of live files.

4.3 Bloom Filter

While creating a full index of live references requires

too much memory, there is a well established index-

approximation technique using a Bloom filter [6]. We

provide a brief summary of Bloom filters here, but di-

rect the reader to more thorough descriptions [6, 10]. A

Bloom filter uses multiple hash functions to map from a

key (e.g. our fingerprint) to multiple bit positions within

a bit vector. When a key is inserted, all of the mapped bits

are set to 1. To check whether a key is contained within

a Bloom filter, the corresponding bits are checked, and

the response is based on whether all of those bits have

value 1. Alternatives to traditional Bloom filters have op-

timized for memory accesses and flash memory charac-

teristics [4].

Unfortunately, multiple keys can map to the same bit po-

sitions, which can lead to false positives when checking

the existence of a key. Based on the size of the Bloom

filter, number of hash functions, and number of keys to

insert, the false positive rate can be set at any arbitrary

value, but false positives cannot be eliminated. Figure 2

shows how much memory would be required for a Bloom

filter with a false positive rate of 1 : 1, 000, 000 for the

given number of chunks, which is an order of magnitude

memory savings relative to reference counts.

For sanitization with a Bloom filter, we would start by

enumerating the live files and inserting the fingerprints

into the Bloom filter. Then, while processing contain-

ers, only those chunks that have their fingerprints in the

Bloom filter are considered to be alive. Because of false

positives, though, a small number of dead chunks may

incorrectly be considered alive and hence, a Bloom filter

does not guarantee sanitization.

4.4 Bit Vector

While the false positive rate of a Bloom filter makes it

an impractical solution, it does suggest an alternative.

We could allocate a bit vector that is indexed by con-

tainer number and offset within a container. This only

requires a single bit per reference (Figure 2) and is likely

the most memory efficient solution. Although not incor-

porated into the figure, there are small, extra memory

overheads to track the number of chunks in a container

to enable indexing from container ID to offset in the bit

vector.

Unfortunately, the bottleneck has now moved to the con-

struction of the bit-vector. While other solutions only re-

quired enumerating references in live files shown in Fig-

ure 1, for a bit vector, it is also necessary to check the

fingerprint-to-container index, load a container’s meta

data region, and determine the offset for each reference.

Also, since there could be gaps in the container ID range,

additional temporary memory is required to quickly map

container id to starting offset in the bit-vector. We may

achieve some locality in a cache since containers were

generated in the order of writes, as noted in previous

deduplication papers [5, 24, 29, 50]. Even with poten-

tial container reuse, though, we will likely have to load

each container D times on average, where D is the dedu-

plication factor. If the system allows concurrent writes

during sanitization, then a cache will undergo churn and

potentially evict needed container meta data that has to

be reloaded. We have not pursued this solution because

of I/O overheads.

4.5 Perfect Hash Vector

To motivate our solution, we note that the preceding dis-

cussion raises two important problems that we would like

to solve. First, we need a compact representation of a set

of fingerprints that provides an exact answer for whether

a given fingerprint exists in the set or not. Second, this

5

86  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

data structure must be constructed efficiently. This is an

instance of the membership problem[8, 15]. More specif-

ically, the instance we are going to focus on is a static

version of the membership problem where the key space

is known beforehand. There will be no dynamic insertion

or deletion of keys. Hence the corresponding key for a

membership query will always return a value, which usu-

ally has a few bits in it. In our context fingerprints identi-

fying the chunks are the keys. This is the perfect scenario

to leverage perfect hashing for a static key set [7, 8].

Briefly, perfect hashing is a known technique for mini-

mizing the number of bits needed to represent a mapping

from a fixed set of keys to a value.

We are going to use a Perfect Hash Vector Data Struc-

ture, or simply PH vec, to compactly represent a static

set of fingerprints. We denote [m] = {0, 1, . . . ,m − 1}.

The data structure has two components: (i) a Perfect

Hash Function (PHF) or collision free hash function

ph : S → [m] that is specifically computed for an input

fingerprint set S of size n and maps S into m buckets,

where m = cn for c > 1; (ii) a bit vector indexed by the

perfect hash function. We denote |PH vec| as the size in

bits of the data structure and |ph| as the number of bits

to represent the perfect hash function. Hence

|PH vec| = |ph|+m bits. (1)

We have tailored a previous algorithm [3] to create a

PH vec structure with a payload that ranges from 2.54 to

2.87 bits per fingerprint. Besides the compact represen-

tation, one also has to consider two other metrics while

choosing a perfect hashing algorithm: (i) lookup cost;

and (ii) generation cost. The lookup cost is usually domi-

nated by the number of random memory accesses needed

for each lookup and the generation cost should be a lin-

ear function on the number of fingerprints. Hereafter we

present an experimental evaluation of those metrics.

Figure 2 illustrates the benefit of using the PH vec struc-

ture. By bringing the payload per fingerprint down to less

than 3 bits we can actually afford putting memory aside

to fit all the fingerprints in our systems. The amount of

memory will depend on the capacity of the system since

the total number of fingerprints also depends on that.

While perfect hashing requires more memory than a bit

vector solution, we have reduced I/O to a small number

of sequential scans, which is discussed in Section 5.

Perfect Hash Algorithm

The algorithm is based on the hash, displace and com-

press approach [3]. The perfect hash function data struc-

ture consists of two levels. A “first level hash function”

g maps S into [r], and thus splits S into r “buckets”:

Bi = {x ∈ S|g(x) = i}, 0 ≤ i < r.

We let r = n/λ where λ ≥ 1.

For each bucket i there is a second level hash function

mapping to bins within a range of size m, i.e., hi : S →
[m]:

hi(x) = (f1(x) + d0f2(x) + d1) mod m,

where f1 : S → [m] and f2 : S → [m] as well as func-

tion g are assumed to be fully random hash functions.

The resulting PHF ph : S → [m] has the following form:

ph(x) = hg(x)(x).

Function g will map each key to one of the r buck-

ets. Then, for each bucket Bi, we will assign a pair

of displacements (d0, d1) so that each key x ∈ Bi

is placed in an empty bin given by hi(x). For each

bucket Bi we will try different pairs (d0, d1) until one of

them successfully places all keys in Bi. In each trial we

use a pair from the sequence {(0, 0), (0, 1), ..., (0,m −
1), (1, 0), (1, 1), ..., (1,m − 1), ..., (m− 1,m− 1)}. In-

stead of storing a pair (d0, d1) for each bucket Bi, we

store the index of the first pair in that sequence that suc-

cessfully places all keys in Bi, i.e., d(i). The data struc-

ture only has to store the sequence {d(i)|0 ≤ i < r}, and

make sure that d(i) can be retrieved in O(1) time. Here

is the algorithm to generate the PHFs.

Algorithm 1 Hash, displace, and compress[3]

(1) Split S into buckets Bi = {x ∈ S|g(x) = i}, 0 ≤ i < r ;

(2) Sort buckets Bi in falling order according to size |Bi|;
(3) Initialize array T[0 . . .m− 1] with 0’s;

(4) for all i ∈ [r], in the order from (2), do

(5) for ℓ = 0, 1, . . . repeat forming Ki = {hi(x) | x ∈ Bi}
(6) until |Ki| = |Bi| and Ki ∩ {j | T[j] = 1} = ∅;

(7) let d(i) = the successful ℓ;

(8) for all j ∈ Ki let T[j] = 1;

(9) Compress (d(i))0≤i<r and retain O(1) access.

We have used two approaches to compress the sequence

(d(i))0≤i<r. In the first one, we use the algorithm from

Fredriksson et al. [21] to compress the sequence. Then

an update or lookup on the PH vec structure requires 4.5
random memory accesses, on average. If one is willing to

give up some compression the algorithm from Vigna [46]

can be used to generate PHFs that would require less

random memory accesses on average. The resulting data

structure is referred to as “Compressed PH vec”. In the

second approach we just tune the parameters r and m so

that each d(i) is upper bounded by 210 with high prob-

ability [3]. Hence we represent each d(i) using 10 bits

6

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  87

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 3 4 5 6 7 8 9 10 11 12G
e
n
e
ra

ti
o
n
 t

im
e

(u
s
e
c
 p

e
r

k
e
y
)

Space (bits per key)

Tradeoff: Space vs Generation Time

PHvec
Compressed PHvec

Figure 3: Trade-off between storage space and genera-

tion time for the PH vec data structure.

and 2 random memory accesses are required to update or

lookup the resulting PH vec structure. The tuning process

is discussed later in this section.

We want to minimize Eq. (1) conditioned on being able

to efficiently generate the PHFs. There are two parame-

ters to tune: r and m. Belazzougui et al. [3] discussed and

analyzed an existent trade-off between the space required

for a PHF and the time it takes to generate a PHF. How-

ever, there it was not considered that the size of the PHF

range also plays a role when the function is being used to

index a table storing the values. As the ratio c = m/n in-

creases, the table becomes more sparse and hence more

entries are wasted. Conversely, it is easier and faster to

generate a PHF. The same thing holds for the number of

buckets r = n/λ.

Figure 3 illustrates the trade-off for both approaches. The

experiments were carried out on a 16-core machine run-

ning Linux 2.6.23, each Intel Xeon core runs at 2.53GHz

and has 8MiB of L2 cache. Here is how we have varied

λ and c:

λ = {1, 2, 3, 4, 5, 6, 7, 8} (2)

c = {1.37, 1.39, 1.41, 1.43, 1.54, 1.67}. (3)

The set of parameters that has provided a good compro-

mise for the cost to generate a PHF, the space to store it,

and the cost to compute it at retrieval time were:

m = ⌈1.43n⌉ (4)

r = ⌈n/7⌉ (5)

Actually there is a slightly better point for the “Com-

pressed PH vec” but we accept the above values to

achieve more compact data structures. Table 1 shows the

data structure size for each approach and Table 2 shows

the cost to generate the data structure as well as the cost

to update it.

Approach
Space (bits/fingerprint)

|ph| c Total

Compressed PH vec 1.11 1.43 2.54

PH vec 1.44 1.43 2.87

Table 1: PH vec size in bits per fingerprint.

Approach
Time (microseconds/fingerprint)

Generation Lookup/Update

Compressed PH vec 0.80 0.44

PH vec 0.78 0.26

Table 2: Cost in microseconds per fingerprint to carry out

updates or lookups on the PH vec data structure.

5 Sanitization Process

The sanitization process needs to handle the different

threat models discussed in Section 2. The National In-

stitute of Standards and Technology [28] and U.S. De-

partment of Defense [44] have both published guidelines

that define two levels of security for a sanitization pro-

cess: (i) the clearing level; (ii) the sanitization or purg-

ing level. The clearing level states that a single overwrite

of the affected areas is enough to protect against casual

attacks and robust keyboard attacks. The purging level

states that the devices have to be either Degaussed or de-

stroyed to protect against laboratory attacks.

There are some customers (or data) that only require the

clearing level and some that require the purging level.

The sanitization process we came up with complies with

both levels with one common mechanism. The basic idea

is to overwrite data to handle the clearing level. The pat-

tern used for the overwrites can be zeros, random pattern

or any user-specified pattern. We have chosen to use ze-

ros. If the purging level is required, we first perform the

clearing level which compacts the clean data and allows

the clean data to be efficiently migrated to another box

by replicating clean post-deduplication data rather than

pre-deduplication data.

We first present a version of the sanitization process

that requires the file system to be read-only. It is easier

to reason about the read-only case because of the static

nature of the PH vec data structure described in Section

4.5. All of the fingerprints in the system can be obtained

from the on-disk index, and the sanitization process has

five phases discussed below and shown in Figure 4.

Algorithm 2 Sanitization for a read-only file system

(1) Merge phase

Setup a marker for the last container to be processed;

Create a consistency point, say CP0, of the file system.

A consistency point is an in-memory snapshot;

Flush the in-memory fingerprint index buffer and merge it

with the on-disk index;

7

88  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

Afp Bfp Cfp Dfp EfpFile 0
Files represented with fingerprints

…

Afp 0
Bfp 0
Cfp 0
Dfp 0
Efp 1

…

Fingerprint to
container index

Container 0
Containers

Container 1

Container n
…

CP0

Memory
Perfect Hash

Vector
1
2
3
4
5
6
…

#fps

Container n+1 Mark live fingerprints

Copy live data forward

1

2

3

4

2

3

5 Zero free blocks

Disk

Figure 4: An overview of our five phase sanitization algo-

rithm is shown: 1) Merge, 2) Analysis, 3) Enumeration,

4) Copy, and 5) Zero.

(2) Analysis phase

Traverse the on-disk index for all fingerprints;

Build PH vec for all fingerprints found;

Record the range of containers covered by PH vec;

(3) Enumeration phase

Traverse all the files in CP0 (i.e., entire file system);

Mark all fingerprints found as live in PH vec;

(4) Copy phase

Select containers with at least one dead chunk;

Copy all live chunks from the selected containers

into new containers;

Delete the selected containers;

(5) Zero phase

Zero out the free blocks;

Zero out contaminated areas (NVRAM, Swap, etc.);

Figure 4 illustrates which parts of the system are in-

volved in each phase. The file system keeps a small por-

tion of the fingerprint-to-container index in memory to

amortize the I/O cost. The merge phase will then setup

a marker that is used as one of the stopping criteria for

the copy phase, check point the file system, and flush the

in-memory index so it can be merged with the on-disk

one. Because the in-memory index has a fixed size, and

the merges are done asynchronously, its runtime can be

considered a constant.

The analysis phase builds the PH vec structure by scan-

ning the check-pointed on-disk index. Note that the san-

itization process operates on a frozen image of the index

at a point in time. Hence its runtime depends on the size

of the on-disk index, which is no more than 5% of the

physical capacity of each system by design.

Building the PH vec structure is complicated because the

fingerprint set stored in the index may not fit in internal

memory. Hence we need to partition it into smaller buck-

ets and then create a PH vec structure for each bucket. We

re-map the fingerprints into variable-sized buckets based

on the fingerprint prefix so that buckets will have 16, 384
fingerprints on average. Note that we need to have an

offset table that marks the beginning of each bucket in

memory so we can have direct access to its PH vec struc-

ture. We have chosen 16, 384 as the average size because

experiments have shown that it delivers the best trade-off

between space overhead for the offset table and build-

ing performance for each PH vec structure. We have tried

8K, 32K, and 64K as well and found either larger mem-

ory usage or longer processing time.

The enumeration phase traverses all the files and marks

their fingerprints as alive in the PH vec structure. Hence

its runtime depends on the logical size of the system.

The copy phase reads the meta data section of each con-

tainer and, for each fingerprint found, it lookups up the

PH vec structure to check its liveness. If a container has

at least one dead chunk, it is selected to be copied, live

chunks are copied to a new container, and the previous

container is marked for deletion. Hence the copy phase

runtime is dominated by the I/Os to read the meta data

section of all containers and copy the selected ones.

The zero phase is also I/O intensive since it zeroes out

(overwrites with the zero pattern) all the free blocks (con-

tainers) as well as other potentially contaminated areas:

NVRAM, swap partition, core dumps and etc. The zero-

ing phase could be overlapped with the copy phase, but

we implemented separate phases for clarity.

Enabling Read-Write Mode

Removing the read-only restriction breaks the perfect

knowledge we had for the key space. In order to lever-

age the compactness of perfect hashing we need a tech-

nique to freeze the key space. Not only that, due to dedu-

plication, an incoming chunk may revive a dead but not

yet erased copy of that chunk after enumeration is done.

Hence, we need to capture the resurrected chunk in the

PH vec structure so as to not corrupt the file system.

We need to change the enumeration phase in order to

achieve read-write mode. There are two problems to be

addressed: (i) How do we update the PH vec structure

for the incoming fingerprints after the analysis phase is

done? (ii) How do we update the PH vec structure for fin-

gerprints that came in after CP0 has been taken but be-

fore the PH vec structure was constructed in the analysis

phase?

To address the first problem, in the beginning of the enu-

meration phase, we set up a “notify mechanism”. For ev-

ery incoming chunk that is deduplicated, we notify san-

8

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  89

itization with the pair (fingerprint, containerID). The

sanitization process is not affected by new fingerprints,

because at the beginning of the merge phase, the head of

the log-structured container set is snapshoted so the cur-

rent cycle of the sanitization process will not touch any

container after that marker: any new data written during

current sanitization that itself becomes eligible for sani-

tization has to be dealt with by the next sanitization op-

eration. By using the notified containerID we are able

to check whether the notified fingerprint belongs to the

key space used to build the PH vec structure for each

bucket. If it does, we can safely record that the notified

fingerprint is alive.

To address the second problem, we take a second con-

sistency point, namely CP1, of the file system after the

PH vec is constructed and the notify mechanism is set up.

Note that the sanitization process is operating on two in-

memory snapshots (CP0 and CP1) and the new writes

will not modify them. We have the ability of “diffing”

CP0 and CP1 to find the modified files in CP1 relative

to CP0. The main issue here is that there is no guarantee

that all the fingerprints coming from the modified files

belong to the key space used to build the PH vec, whereas

that is guaranteed for all the fingerprints coming from

files in CP0. Let F0 and F1 be the set of fingerprints

coming from files in CP0 and from the modified files in

CP1, respectively. Hence, for each fingerprint f ∈ F1

we need to find out the container storing f before we

can update the PH vec that f maps to. That is an expen-

sive operation that requires on-disk index lookups. That

is why it is crucial to make F1 as small as possible. Note

that this problem does not exist for the fingerprints in F0.

Then, our enumeration is actually done in two steps. The

first one will traverse all the modified files in CP1 and

carry out on-disk index lookups for all the fingerprints in

F1 before updating the corresponding PH vec structure.

The second step will traverse all the files in CP0 and

update the corresponding PH vec structure for all finger-

prints in F0. We will show how data ingestion affects the

sanitization process in Section 6.3.

Too Many Fingerprints

The memory sizing for the sanitization process depends

on the capacity of the system as well as on the local com-

pression factor we get on the stored data. Our basic algo-

rithm is sized to support a local compression factor up to

4X . We have never seen a customer case with a higher

local compression factor. However, it is possible, and our

product must handle that case. We do so by modifying

our sanitization process to run from merge phase to copy

phase in a loop. Each iteration processes a partition of

fingerprints in the index. The fingerprint-to-container in-

dex can be thought of as a hash table with a fixed number

of buckets. The partition is made on the bucket bound-

aries. The process eventually finishes because there is

a fixed number of buckets and each iteration process a

subset of the index buckets (usually, no more than 2 it-

erations are required). While copying the containers, if a

fingerprint maps outside the range of index buckets cov-

ered by the current iteration, it is considered alive in that

iteration. If the fingerprint identifies a dead chunk, it will

be deleted on the following iterations.

6 Performance

In this section we discuss sanitization performance as

well as the factors that affect each phase. Our experi-

ments have been performed on a system with six RAID

6 groups attached to it, each using 2 TiB drives for a total

of 129.4 TiB of physical usable capacity. Our system has

72 GiB of memory and a 16-core Intel Xeon processor

where each runs at 2.53 GHz and has an 8MiB cache.

The results are reported with a confidence level of 95%.

For all of our experiments, we use a synthetic backup

data set to fill our storage systems. Our tool for gen-

erating synthetic data creates random data for the first

generation and then modifies each successive genera-

tion with deletions, additions, and modifications con-

trolled by parameters. This allows us to control the first

backup size, number of generations created, local com-

pression factor and deduplication factor. Unfortunately

customers that use the sanitization feature do not provide

any real data for us to experiment with and do not reveal

statistics about their use of sanitization, due to privacy

concerns. However, the synthetic tool has been built to

mimic backup workload by leveraging our prior knowl-

edge of such workloads [47].

We have considered three scenarios: (i) non-redundant

data is stored; (ii) redundant data is stored; (iii) impact

of sanitization on data ingest. The next three sections will

give further details on them as well as present the results.

6.1 Without Deduplication

In this section we present experimental results when the

data has no deduplication but gets a local compression

factor of 2.1X. The goal here is to exclude the dedupli-

cation impact on the sanitization process since that is in-

vestigated separately so we can use the results presented

in this section as a baseline.

We have created file systems with the following logical

sizes: 4.5 TiB, 9TiB, 18TiB, 36 TiB and 72 TiB. Then

9

90  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50 60 70 80

T
im

e

(s
e
c
o
n
d
s
)

Space (TiB)

Deleted Space vs Sanitization Time

Merge
Analysis

Enumeration
Copy
Zero

Sanitization

Figure 5: Sanitization time when everything is deleted.

We have varied the file system size and the data stored

gets a local compression factor of 2.1X. The sanitization

throughput is 731 MiB/second.

we have deleted the entire file system, run sanitization

and measured its performance. We note that it is possible

to implement optimizations for the case when the entire

file system is deleted but we have not done that because

it is not a common use case of a file system.

Figure 5 illustrates the performance for each of the

phases as well as for the summation, which corresponds

to the total sanitization time (labeled Sanitization). The

merge phase always takes about 110 seconds indepen-

dent of the file system size. The analysis phase run-

time grows linearly with the file system size simply be-

cause the index also grows linearly, which corresponds

to 1.48% of the total Sanitization time. The enumeration

phase is always about 6 seconds because there is no logi-

cal space to traverse since the entire file system has been

deleted. We will show in the next section how the enu-

meration runtime grows with the logical size of the file

system. The runtimes of copy and zero phases grow lin-

early with the amount of data that has been deleted, and

they are the most time-consuming phases. Note that ev-

ery container that gets copied forward has to be deleted

and hence zeroed out. The overall sanitization through-

put which is measured by the amount of data we can

obliterate per second was 731 MiB/second.

6.2 With Deduplication

In this section we present experimental results when the

data gets a deduplication factor of 7.38X and a local com-

pression factor of 2.1X. Ideally the sanitization through-

put should have a boost as close to the deduplication fac-

tor as possible.

For this experiment we have created a file system with

144 TiB worth of logical data and varied the amount of

data deleted. For each experiment, we recreate the entire

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 20 40 60 80 100 120 140 160

T
im

e

(s
e
c
o
n
d
s
)

Deleted logical bytes (TiB)

Deleted Space vs Sanitization Time

Merge
Analysis

Enumeration
Copy
Zero

Sanitization

Figure 6: Sanitization time when a portion of the file sys-

tem is deleted. We have varied how much data is deleted

where the data stored gets an overall compression factor

of 15.5X (i.e., 7.38X deduplication factor and 2.1X local

compression factor). The sanitization throughput is 5.06

GiB/second.

file system and then delete one of the following values:

{0, 36, 72, 108, 144} TiB.

Figure 6 illustrates the performance for each of the

phases as well as the total sanitization time. The merge

phase runtime is again constant at about 230 seconds.

In the prior section the merge was faster because the

entire file system had been deleted. The analysis phase

also remains constant at 320 seconds since the file sys-

tem size is not varying. We have seen in the prior sec-

tion that its runtime grows linearly with the size of the

file system. The enumeration phase runs at a pace of

122 GiB/second for all the data points. It means that

its runtime grows linearly with the logical size of the

file system. The copy and zero phase are again the most

time-consuming ones but scale linearly with the amount

of data that has been deleted. The overall sanitization

throughput is 5.06 GiB/second. Note that it went from

731 MiB/second when there is no deduplication to 5.06

GiB/second when the deduplication factor is 7.38X. San-

itization has achieved a throughput boost of 7.1X which

is very close to the expected deduplication factor.

6.3 Impact on Ingest

In this section we present experimental results when both

sanitization and data ingestion run concurrently. We have

throttled the sanitization process at 50%. This means that

the CPU cycles and the I/O operations are evenly shared

between sanitization and data ingestion, though each task

can take more that 50% of a resource if it is available.

We have run two sets of experiments related to ingest.

In the first experiment, we repeated the experiment de-

scribed in Section 6.2, but we continue to ingest data

10

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  91

while sanitization runs. The tool generating data was

configured to produce a deduplication factor of 7.38X.

Figure 7 illustrates the performance for each of the

phases as well as the total sanitization time. The merge

phase runtime is again constant but now at about 640 sec-

onds because there is contention with ingest traffic. The

analysis phase also remains constant at 570 seconds be-

cause of the contention with the data ingest. We note that

although the file system size is changing, to sanitization

it remains unchanged since it works on a check-pointed

file system and that is why the analysis phase runtime

stays constant. Both merge and analysis phases are tak-

ing more time due to concurrency with the data ingestion.

The enumeration phase is the most affected due to its two

steps when data is being ingested. The first step where

it needs to validate the fingerprints in the set F1 (see

Section 5) can take up to 82% of the total enumeration

time in this experiment. However, that time is bounded

by how much data can be ingested from the time where

CP0 is taken to the time where CP1 is taken considering

the maximum throughput of our system. For a fully pop-

ulated system that is a small fraction of the logical space

the system can store, and hence, it does not have much

impact on sanitization duration. Note that enumeration

time decreases because the logical size shrinks through-

out the experiment.

The copy and zero phase are again the most time-

consuming ones but their runtimes grow linearly with the

amount of data that has been deleted. There is an interest-

ing observation though. The zero phase runs faster than

the copy phase, which is exactly opposite of what we

saw in Figure 6. This happens because the copy phase

contends for both CPU cycles (to uncompress data and

recompress the copied data) and I/Os (to write out the

copied data) whereas the zero phase only contends for

I/Os since it is just zeroing out the free blocks. If we

compare Figure 7 with Figure 6, the copy phase runs at

about 70% of its maximum pace, the zero phase runs

at about 90% of its maximum pace, and data ingestion

runs at about 70% of its maximum throughput. The over-

all sanitization throughput ranges from 2.97 GiB/second

to 4.01 GiB/second in this experiment. This means that

at 50% throttle, sanitization reaches 59% to 79% of its

maximum throughput of 5.06 GiB/second. This is possi-

ble because data ingestion is CPU intensive whereas the

sanitization process is I/O intensive, and that is why both

data ingestion and sanitization can reach more than 50%
of their maximum throughput.

The second set of experiments was to investigate how

the sanitization process performs when there is no dedu-

plication so both data ingestion and sanitization are I/O

intensive. For that we have created a file system with 72

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120 140 160

T
im

e

(s
e
c
o
n
d
s
)

Deleted logical bytes (TiB)

Deleted Space vs Sanitization Time With Data Ingestion

Merge
Analysis

Enumeration
Copy
Zero

Sanitization

Figure 7: Sanitization time when a portion of the file sys-

tem is deleted and there is redundant data being ingested

by the system. We have varied how much data is deleted

where the data stored gets an overall compression factor

of 15.5X (i.e., 7.38X deduplication factor and 2.1X local

compression factor). The sanitization throughput varied

from 2.97 GiB/second to 4.01 GiB/second.

TiB of logical data, then we have deleted the entire file

system, started to ingest non-deduplicatable data that can

be locally compressed with a factor of 2.1X (the same

used in Section 6.1). In contrast to our previous experi-

ment, data ingestion is now both CPU and I/O intensive.

In this scenario, sanitization runs at 45% of its maximum

throughput, and data can be ingested at 70% of its max-

imum throughput. Data ingestion is higher than the ex-

pected rate of 50% of its peak throughput because the

sanitization process does not require much CPU as com-

pared to data ingestion.

7 Related Work

In this section, we briefly review related work that falls

into three categories: 1) sanitization of non-deduplicated

storage systems, 2) properties of deduplicated storage

that affect sanitization, and 3) perfect hashing as a tech-

nique to compactly represent a set of references.

The need to sanitize storage to permanently erase user

data is a well known problem [27] discussed in multi-

ple governmental guidelines [16, 28, 44]. Investigations

of refurbished hard drives show that many contain data

a previous owner failed to erase [22, 23, 45]. Several pa-

pers [25, 41, 49] and products [19, 30, 34] provide tech-

niques for overwriting storage so that recovering user

data is nearly impossible.

Most previous sanitization research discusses erasing the

entire storage system, while our customers wish to san-

itize individual files. Wei et al. [49] addressed the issue

of finding regions of solid state drives that hold previ-

ous versions of a file by implementing a full scan of the

pages to find physical-to-logical mappings. In our work,

determining which storage regions should be erased is

11

92  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

complicated because of the indirect references inherent

to deduplicated storage.

Deduplicated storage has become a widespread mecha-

nism to lower storage requirements and costs by replac-

ing repeated data regions with references. Fully survey-

ing deduplication papers [5, 12, 29, 31, 32, 50] and prod-

ucts [18, 35, 42] is beyond the scope of our work, but a

selection is provided for reference. All deduplicated stor-

age systems have two features in common that are rele-

vant to sanitization: first is a file recipe that represents a

file with a set of references, and second is a set of dedu-

plicated chunks.

Efficiently sanitizing erased files in deduplicated storage

requires determining which chunks are currently unrefer-

enced, while minimizing memory and I/O requirements.

Previous work for deletion (not sanitization) used ref-

erence counts [17, 48], which we believe suffers from

large I/O requirements and correctness concerns. Al-

ternatively, Guo et al. [24] proposed a grouped mark-

and-sweep, which divided files and containers into sets

and tracked which containers were affected by dele-

tions. Since their file recipes had direct storage loca-

tions instead of fingerprints, they were unable to copy

live chunks forward and erase previous containers unless

all chunks in a container were unreferenced. Our tech-

nique could be applied to their system to minimize mem-

ory requirements for references in each group, though a

technique for updating recipes is needed. In general, we

believe our sanitization technique using perfect hashes is

compatible with other deduplicated storage systems.

An alternative is to encrypt data before it is transmitted to

the storage system and then destroy the keys of improp-

erly stored data [2, 36, 43]. There are new complexities

for managing the encryption keys, and standard encryp-

tion techniques are incompatible with deduplication be-

cause encryption effectively randomizes the data to be

stored. Storer et al. [40] encrypted each chunk with a

key based on its data called convergent encryption, which

supports deduplication, while our storage system is com-

patible with standard storage interfaces.

Studies on perfect hashing started in the early 1980s

[20, 33]. For three decades many strong theoretical re-

sults have been published [26, 38]. A comprehensive sur-

vey till 1997 can be found in [13] and more recent results

are surveyed in [8]. However, the gap between theory

and practice has been recently bridged [3, 7, 8, 9, 11]. In

our products we have tailored the algorithms presented

in [3, 8] since each of them trades off lookup cost, gen-

eration cost and compactness of the resulting data struc-

ture differently. The algorithm in [8] provides the fastest

generation (0.45 microseconds/fingerprint), at the cost of

three random accesses for the lookup and 3.5 bits per fin-

gerprint of payload for the PH vec structure. The other

two algorithms in [3] are discussed in great detail in Sec-

tion 4.5. The analysis phase of our sanitization process

will pick the perfect hashing algorithm dynamically ac-

cording to number of fingerprints in the system, and the

technique that takes 2.87 bits/fingerprint is the default.

8 Conclusions

Sanitization is a critical feature for customers concerned

about security, and while sanitizing a device may be rel-

atively straightforward, adding sanitization to a storage

system, though complex, is necessary. It is impractical

to fully erase a large, expensive storage system when

contamination may only affect a small fraction of stor-

age, depending on the threat model. The storage system,

not the underlying devices, are able to track which data

should be preserved versus erased. Deduplicating storage

and log-structured file systems, though, increase the dif-

ficulty of determining what data to preserve. We describe

these issues and a complete sanitization process that has

been commercially available since 2009.

Besides describing our sanitization process, we also ex-

plore several technique to manage references for dedupli-

cated storage. We found the best trade-offs using perfect

hashes, which minimize memory and I/O requirements.

Perfect hashes allow us to represent billions of chunks in

memory because only a few bits are required per refer-

ence. Using perfect hashes requires a static fingerprint

space, which conflicts with our desire to support host

writes during sanitization, so we developed a checkpoint-

and-update technique that satisfies both requirements.

Our analysis of our sanitization implementation shows

nearly linear performance as storage grows, with effec-

tive throughput multiplying with the deduplication fac-

tor. Most of the processing is devoted to copying live data

forward from contaminated containers and zeroing un-

used regions. We also found the impact on write perfor-

mance to be acceptable for concurrent host writes during

sanitization.

Lastly we want to remark that our sanitization process

without the zero phase is also a process to reclaim dead

space in the file system. However a process that is meant

to reclaim dead space may optimize for performance

rather than reclaiming every dead chunk in the file sys-

tem.

Acknowledgements

We would like to thank our shepherd Pin Zhou and our

reviewers for their feedback, Grant Wallace for suggest-

ing the bit vector alternative technique, and the many

EMC engineers who continue to improve and support

sanitization.

12

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  93

References

[1] A guide to understanding data rema-

nence in automated information systems.

http://www.cerberussystems.com/

INFOSEC/stds/ncsctg25.htm, May 2012.

[2] A. Adya, W. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. Douceur, J. Howell, J. Lorch,

M. Theimer, and R. Wattenhofer. Farsite: Feder-

ated, available, and reliable storage for an incom-

pletely trusted environment. ACM SIGOPS Oper-

ating Systems Review, 36(SI):1–14, 2002.

[3] D. Belazzougui, F. C. Botelho, and M. Dietzfel-

binger. Hash, displace, and compress. In Proceed-

ings of the 17th Annual European Symposium on

Algorithms, ESA’09, pages 682–693, 2009.

[4] M. A. Bender, M. Farach-Colton, R. Johnson,

R. Kraner, B. C. Kuszmaul, D. Medjedovic,

P. Montes, P. Shetty, R. P. Spillane, and E. Zadok.

Don’t thrash: How to cache your hash on flash. In

Proceedings of the 38th International Conference

on Very Large Data Bases, 2012.

[5] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillib-

ridge. Extreme binning: scalable, parallel dedupli-

cation for chunk-based file backup. In Proceedings

of the 17th IEEE International Symposium on Mod-

eling, Analysis, and Simulation of Computer and

Telecommunication Systems, Sept. 2009.

[6] B. Bloom. Space/time trade-offs in hash cod-

ing with allowable errors. Communications of the

ACM, 13(7):422–426, July 1970.

[7] F. C. Botelho, A. Lacerda, G. V. Menezes, and

N. Ziviani. Minimal perfect hashing: A competitive

method for indexing internal memory. Information

Sciences, 181(13):2608–2625, 2011.

[8] F. C. Botelho, R. Pagh, and N. Ziviani.

Practical perfect hashing in nearly opti-

mal space. Information Systems, June 2012.

http://dx.doi.org/10.1016/j.is.2012.06.002.

[9] F. C. Botelho, N. C. Wormald, and N. Ziviani.

Cores of random r-partite hypergraphs. Informa-

tion Processing Letters, 112(8-9):314–319, 2012.

[10] A. Broder and M. Mitzenmacher. Network appli-

cations of Bloom filters: A survey. Internet Mathe-

matics, 1(4):485–509, 2005.

[11] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal.

The bloomier filter: an efficient data structure for

static support lookup tables. In Proceedings of the

15th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA’04), pages 30–39, 2004.

[12] A. Clements, I. Ahmad, M. Vilayannur, and J. Li.

Decentralized deduplication in SAN cluster file

systems. In Proceedings of the USENIX Annual

Technical Conference, 2009.

[13] Z. Czech, G. Havas, and B. Majewski. Fundamental

study perfect hashing. Theoretical Computer Sci-

ence, 182:1–143, 1997.

[14] Z. Deng, E. Yenilmez, J. Leu, J. Hoffman,

E. Straver, H. Dai, and K. Moler. Metal-coated car-

bon nanotube tips for magnetic force microscopy.

85(25), 2004.

[15] M. Dietzfelbinger and R. Pagh. Succinct data struc-

tures for retrieval and approximate membership. In

Proceedings of the 35th international colloquium

on Automata, Languages and Programming, Part I,

ICALP ’08, pages 385–396. Springer-Verlag, 2008.

[16] D. S. Directorate. Australian government informa-

tion and communications technology security man-

ual. 2006.

[17] C. Dubnicki, L. G. L. Heldt, M. Kaczmarczyk, P. S.

Wojciech Kilian, J. Szczepkowski, C. Ungureanu,

and M. Welnicki. Hydrastor: A scalable secondary

storage. In Proceedings of the 7th USENIX Confer-

ence on File and Storage Technologies, 2009.

[18] EMC Corporation. Data Domain. http://

www.emc.com/backup-and-recovery/

data-domain/data-domain.htm/, 2012.

[19] Eraser. http://eraser.heidi.ie/.

[20] M. L. Fredman and J. Komlós. On the size of sepa-

rating systems and families of perfect hashing func-

tions. SIAM Journal on Algebraic and Discrete

Methods, 5:61–68, 1984.

[21] K. Fredriksson and F. Nikitin. Simple compres-

sion code supporting random access and fast string

matching. In Proceedings of the 6th international

conference on Experimental algorithms, WEA’07,

pages 203–216. Springer-Verlag, 2007.

[22] S. Garfinkel. Security and Usability: Designing

Secure Systems That People Can Use, chapter 15:

Sanitization and Usability, pages 293–318. 2005.

[23] S. Garfinkel and A. Shelat. Remembrance of data

passed: a study of disk sanitization practices. IEEE

Security & Privacy, 1(1):17–27.

[24] F. Guo and P. Efstathopoulos. Building a high-

performance deduplication system. In Proceedings

of the USENIX Annual Technical Conference, 2011.

[25] P. Gutmann. Secure deletion of data from magnetic

and solid-state memory. In Proceedings of the 6th

conference on USENIX Security Symposium, Fo-

13

94  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

cusing on Cryptography, July 1996.

[26] T. Hagerup and T. Tholey. Efficient minimal per-

fect hashing in nearly minimal space. In Proceed-

ings of the 18th Symposium on Theoretical Aspects

of Computer Science (STACS’01), pages 317–326.

Springer LNCS vol. 2010, 2001.

[27] G. Hughes and T. Coughlin. Tuto-

rial on disk drive sanitization. https:

//cmrr.ucsd.edu/people/Hughes/

DataSanitizationTutorial.pdf.

[28] R. Kissel, M. Scholl, S. Skolochenko, and X. Li.

Guidelines for Media Sanitization: Special Publi-

cation 800-88, Recommendations of the National

Institute of Standards and Technology, Computer

Security Division, September 2006.

[29] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-

likar, G. Trezise, and P. Camble. Sparse indexing:

large scale, inline deduplication using sampling and

locality. In Proceedings of the 7th USENIX Confer-

ence on File and Storage Technologies, pages 111–

123, 2009.

[30] LSoft Technologies Inc. Active@KillDisk. http:

//www.killdisk.com/.

[31] U. Manber. Finding similar files in a large file sys-

tem. In Proceedings of the USENIX Winter Techni-

cal Conference, pages 1–10, 1994.

[32] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttam-

chandani. Demystifying data deduplication. In Pro-

ceedings of ACM/IFIP/USENIX Middleware Con-

ference, 2008.

[33] K. Mehlhorn. Data Structures and Algorithms 1:

Sorting and Searching. Springer-Verlag, 1984.

[34] National Security Agency Central Security Service.

Evaluated Products List - Degausser, 2012.

[35] NetApp. NetApp ONTAP. http:

//www.netapp.com/us/products/

platform-os/dedupe.html, 2012.

[36] R. Perlman. File system design with assured delete.

In Network and Distributed System Security Sym-

posium, 2007.

[37] M. Rosenblum and J. K. Ousterhout. The design

and implementation of a log-structed file system. In

Proceedings of the 13th Symposium on Operating

Systems Principles, 1991. Published as Operating

Systems Review.

[38] J. P. Schmidt and A. Siegel. The spatial complexity

of oblivious k-probe hash functions. SIAM Journal

on Computing, 19(5):775–786, October 1990.

[39] K. Srinivasan, T. Bisson, and G. G. K. Voruganti.

iDedup: Latency-aware, inline data deduplication

for primary storage. In Proceedings of the 10th

USENIX Conference on File and Storage Technolo-

gies, 2012.

[40] M. Storer, K. Greenan, D. Long, and E. Miller. Se-

cure data deduplication. In Proceedings of the 4th

ACM international workshop on Storage security

and survivability, pages 1–10. ACM, 2008.

[41] S. Swanson and M. Wei. Safe: Fast, verifiable san-

itization for ssds. http://nvsl.ucsd.edu/

sanitize/, 2010.

[42] Symantec. Symantec NetBackup Pure-

Disk. http://www.symantec.com/

netbackup-puredisk, 2012.

[43] Y. Tang, P. Lee, J. Lui, and R. Perlman. Fade: Se-

cure overlay cloud storage with file assured dele-

tion. Security and Privacy in Communication Net-

works, pages 380–397, 2010.

[44] US Department of Defense National Industrial Se-

curity Program. U.S. National Industrial Secu-

rity Program Operating Manual (DoD 5220.22-M),

2006.

[45] C. Valli and A. Jones. A UK and Australian Study

of Hard Disk Disposal. In 3rd Australian Com-

puter, Information and Network Forensics Confer-

ence, 2005.

[46] S. Vigna. Broadword implementation of rank/se-

lect queries. In Proceedings of the 7th international

conference on Experimental algorithms, WEA’08,

pages 154–168. Springer-Verlag, 2008.

[47] G. Wallace, F. Douglis, H. Qian, P. Shilane,

S. Smaldone, M. Chamness, and W. Hsu. Char-

acteristics of backup workloads in production sys-

tems. In Proceedings of the 10th USENIX Confer-

ence on File and Storage Technologies, 2012.

[48] J. Wei, H. Jiang, K. Zhou, and D. Feng. MAD2:

A scalable high-throughput exact deduplication ap-

proach for network backup services. In Proceed-

ings of the IEEE 26th Symposium on Mass Storage

Systems and Technologies, 2010.

[49] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson.

Reliably erasing data from flash-based solid state

drives. In Proceedings of the 9th USENIX Confer-

ence on File and Storage Technologies, Feb 2011.

[50] B. Zhu, K. Li, and H. Patterson. Avoiding the disk

bottleneck in the Data Domain deduplication file

system. In Proceedings of the 6th USENIX Confer-

ence on File and Storage Technologies, pages 269–

282, February 2008.

14

