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Abstract

Current testbed experiments are often ad-hoc, manual,
complex and hard to repeat and reuse. This is due
mostly to our current inability to capture, standardize
and encode experiment behavior. We propose DEW—
distributed experiment workflows. Unlike current ex-
periment representations, which focus mostly on topol-
ogy, DEW encodes experiment behavior and topologi-
cal constraints, which help with realization on testbeds.
We show how DEW enables easier experiment design,
management, sharing and reuse, and how it can facilitate
automated generation of topologies and runnable scripts.

1 Introduction

Progress in systems, networking and security fields to-
day occurs at lightning speed, and is driven by indus-
try and academic research. This produces a myriad of
research solutions, which must be validated and eval-
vated for their performance in realistic working condi-
tions. Network testbeds are often used in this process,
offering free, distributed resources, which can be config-
ured and organized into complex experiments.

In spite of the growing sophistication, number and di-
versity of testbed infrastructures, the way we use them
remains largely ad-hoc and manual. Testbed experiments
are often built from scratch, by painfully stacking and
restacking pieces into a coherent whole. Experiments
are run, reconfigured, and re-run hundreds of times over
long time periods, using scripts that continuously evolve.
Much of the knowledge needed to create an appropriate
experiment for a given experimentation goal remains in
the minds of the researchers. This makes testbed exper-
iments hard to repeat, reproduce or reuse, and it limits
the progress in the scientific fields that need testbeds for
evaluation.

We contend that much of the current situation stems
from the failure of experiment representations to capture

an experiment’s behavior. Current testbeds represent ex-
periments mostly as a collection of resource demands,
ak.a. ropology. The topology describes what types of
resources are needed from the testbed, and how to con-
nect and configure these resources. Once the resources
are successfully allocated to the experiment, what the re-
searcher does with them is not recorded nor structured
into any meaningful representation. This leaves defining
and orchestrating the behavior of allocated testbed nodes
as a separate step, often done with a separate set of tools
and custom written scripts, from the ground up and over
the course of a long time.

Separating the experiment’s topology from its behav-
ior has two main drawbacks. First, this two-step pro-
cess is not aligned with how researchers design exper-
iments. A researcher starts from an experimental goal
and iteratively designs a scenario, or a set of behaviors,
to meet this goal. Like a screenwriter, the researcher
envisions what will happen in the experiment, and how
these actions will be interrelated. Our failure to encode
this process means the screenplay remains buried in the
researcher’s mind, reduced to a set of actors (testbed
nodes) with their features and locations on the set, but
without the reasoning for their presence and without the
lines, which they have in the play. This misalignment
burdens the experiment design process, where topology
is encoded by the testbed, but behavior must be man-
ually encoded by the researcher in the form of scripts,
which are then manually invoked on the topology. As
experimentation progresses and the goals change, new
topologies may be created, and scripts may be adjusted
or reused, without any record of their interdependencies.
Porting to a new testbed, scaling an experiment up or
down, or repeating an existing experiment on new hard-
ware, all require the researcher to recall these missing
links, and manually address minute details of the experi-
ment to make it valid and consistent with prior runs. This
is a high cognitive burden placed on imperfect human
memory, and it often leads to a lack of sharing of exper-



iments, reuse difficulties with important pieces missing,
and overly simplistic experiments, which do not suffi-
ciently advance our science.

Second, the disconnect between topology and behav-
ior means running experiments is a very manual and
error-prone process. Even when most of the experiment’s
behavior is scripted, the researcher may run sequences of
scripts manually, reformatting data in between, or chang-
ing portions of the scripts, to meet some immediate goal.
This manual process is quickly forgotten and makes it
hard to reproduce experimental results, even by their
own creators. Some basic services, which are necessary
for repeatability and reproducibility, are very challeng-
ing to accomplish if we do not encode the desired exper-
iment behavior. Failure detection and failure diagnosis
are difficult, because there is no record of what an exper-
iment should do and how to measure success of these ac-
tions. Repeatability and reproducibility are hard, because
scripts, created by researchers, capture only some actions
taken in the experiment. Saving versions of scripts and
topology, so we could refer back to them later, is prob-
lematic because we do not understand how these artifacts
fit together, nor which pieces are important enough to
be saved. Building community libraries of common ex-
perimental actions, or of representative experiments, is
challenging, because we do not understand the high-level
purpose of low-level actions (e.g., OS commands), nor
how to detect if two experiments are similar.

It is, however, not enough to represent experiment be-
havior as merely a flat record of everything that tran-
spired. This would create an avalanche of data, which
would be very hard for humans to interpret or make use
of. We must also impose some structure on the data,
to make sense of the underlying actions and enable re-
searchers to manipulate them at a high cognitive level
and to drill down to details when necessary.

In this paper we propose a new representation for
testbed experiments, called a Distributed Experiment
Workflow, or DEW. DEW enables the researcher to ab-
stract the definition of an experiment from its realization.
It encodes the desired behavior of an experiment at a
high-level as a scenario (e.g. “generate attack from A
to B, wait 10 seconds, turn on defense at C”), and pro-
vides sufficient details as to how each action in a sce-
nario can be realized on the testbed, via bindings (e.g.
use script attack.py with specific parameters for the
attack action). DEW further encodes only those features
of testbed topology, which matter for the experiment, via
constraints (e.g. “use Ubuntu OS on C”).

When an experiment is to be realized on the testbed,
the constraints section of DEW is used to generate a
resource request for the testbed. Once the experiment
is allocated—physical nodes are reserved and loaded
with the operating system—the scenario and bindings are

scenario
(what)

bindings
(how)
constraints
(where)

i‘)@ scripts

topology

translators
siojessush

Figure 1: New experiment representation—DEW.

used, along with allocation details, to produce scripts,
which run on the nodes.

When the researcher runs the experiment on the
testbed they parameterize and run these scripts, possibly
interspersed with manual actions, which produces a run
history. Together, the DEW representation, node alloca-
tions and the run history represent a complete record of
an experiment, which can be shared and reused by others.

We first present the structure of DEW and our design
decisions (Section 2). We next discuss lessons we can
learn from past related work in representing experimen-
tal behavior (Section 3) and describe a plan forward for
adoption of DEW (Section 4). We discuss the benefits of
DEW in Section 5, and how it can help simplify experi-
ment design, running, sharing and reuse, making experi-
ments more robust and scientific. Our Ul and preliminary
companion tools are available publicly at [2].

2 DEW

In this section we describe DEW—our proposed experi-
ment representation. DEW unifies behavior and topology
of an experiment, but captures only relevant topological
details. We had several design goals for DEW:

High-level representation. DEW should be a human-
readable, short description of what the experiment is sup-
posed to do. Such a description facilitates reuse, because
researchers could, at a glance, understand the experi-
ment’s actions and judge if this experiment is useful to
them. Moreover, expressing what an experiment does, in
broad strokes, captures the design process, which so far
has existed only in the researcher’s mind.

Generic language. DEW should support many di-
verse experiments, and thus its language must be expres-
sive enough to be broadly applicable, regardless of the
experiment’s goal or testbed infrastructure.

Self-contained representation. We wanted DEW
to contain sufficient details to facilitate automated gen-
eration of experimental topologies and scripts, which
would run on these topologies. If we could achieve



this, then researchers could work with experiments at
a high level, delegating detail-oriented and error-prone
tasks to machines. This would further facilitate gen-
eration of topologies and scripts in many different lan-
guages, and for many different testbed infrastructures,
enabling portability.

Decouple behavior from topology. We wanted to de-
couple the intended behavior from the topology where it
will be realized, thus enabling the same experiment to be
scaled up and down easily, by changing a few lines of
DEW. Our goal was to capture only the necessary topol-
ogy details in the form of constraints.

Structured representation. We wanted to impose
some natural structure on DEW, enabling researchers to
easily locate and focus on the important pieces for their
goal. This structure should facilitate experiment reuse.

We illustrate DEW in Figure 1. DEW consists of three
parts: (1) The scenario, which encodes at the high-level
what the experiment is supposed to do. (2) The bindings,
which encode how each action in the scenario is realized,
i.e., which software is used, and how it is parameterized.
Together, scenario and bindings create a self-contained
representation of the experiment’s behavior. (3) The con-
straints, which decouple behavior from topology, and to-
gether with scenario enable automated topology genera-
tion. DEW’s structure enables a researcher to focus only
on relevant, small portions of the experiment. For exam-
ple, adding a new behavior would require modifications
to the scenario and bindings. Changing software, which
produces a certain action, would only require changing
one line in the bindings. Scaling up or down would lead
to changes in just the constraint section.

Figure 2 depicts our preliminary design of DEW’s syn-
tax in Extended Backus-Naur form. DEW primarily ex-
presses what the researcher wants to accomplish in the
experiment, and secondly how and where this will be ac-
complished. The main sections of DEW are “scenario”,
“bindings” and “constraints”, with each section using its
own language to describe the experiment.

The scenario consists of statements, optionally orga-
nized into sections preceded by a label. Figure 2(b) illus-
trates a scenario with five labels: configure, monitor, run,
analyze and store. Labels could be used by the user or an
experiment orchestration system to run only a subset of
statements, for example several run cycles with different
parameters. Each statement starts with an optional trig-
ger, where it can wait for some time period to elapse, or
for a given event(s) to occur, or both. The statement then
includes an actor (usually, this would be a node in an ex-
periment) and the action to take. The statement could end
with an optional emission of one or more events, which
could be used to trigger later statements.

Triggers and events enable us to specify both serial
and parallel sequences of statements, as well as condi-

tional sequences. In a parallel sequence (e.g., “config-
ure” section in Figure 2(b)) , the statements all start with-
out triggers, or on the same trigger. A serial sequence
(e.g., “run” section in Figure 2(b)) contains statements
where earlier ones emit events, which trigger later ones.

The bindings part consists of statements, which link
each action and event to the tools/scripts and their inputs,
which will realize this action or event on the testbed.
Each statement specifies the action or event, the exe-
cutable which realizes it, and the input parameters for
this executable. Some parameters may be fixed at the
experiment design time, and could be specified as con-
stants (see line 26 in Figure 2(b)). Other parameters may
be variables, whose values will be specified at runtime.
We use large font size for them in Figure 2(b). The exam-
ple also includes some built-in functions, such as ETH,
IP, etc., which need to be evaluated at runtime, but are
commonly needed by experiments, and thus should be
provided by the testbed.

Current testbeds require users to fully specify their
topologies, when running an experiment. This approach
leads to over-specification, for example by requesting
specific hardware that is known to have a fast CPU, rather
than specifying CPU speed as a desired feature of a given
actor. Over-specification limits the size of the candidate
pool for allocation and increases probability of alloca-
tion failures [12]. It also requires user action to adapt
the experiment to new resources as testbeds evolve, or
to use the experiment in a different testbed environment.
For these reasons DEW does not include a full topology
specification, but rather specifies the constraints on the
allocation, which talk about desired features of actors
and their connections. The constraints section consists
of a sequence of statements. Each statement specifies the
constraint type, and the actor or several actors, to which
this constraint applies. Our current design provides con-
structs to specify the number of nodes in a given actor
role (num), the OS, hardware type and number of in-
terfaces for a given actor (os,type and interfaces),
and nodes that are connected by a link (1ink) or a LAN
(1an). We expect that we will need to extend this set of
constructs in the future.

If a constraint is not specified for a given actor, de-
fault settings are assumed. By default an actor is a single
node in the topology (no num constraint) on any hardware
(no os,type or interfaces constraints) and it would
be connected to other nodes via a LAN (no 1ink or lan
constraints). In our example in Figure 2(b), the server
runs the latest version of Ubuntu, but other nodes run any
OS. We have also requested two attacker nodes, while
there will be only one server and one client node. Fur-
ther, there is an additional router node, which appears
only in the constraints. This node has a link to the server
and is on the same LAN as the attackers and the client.



scenario:

configure:
dew = scenario, bindings, constraints
scenario = ‘scenario:’, {statement}

EENFEECIEN

label ‘configure’ | ‘run’ | ‘monitor’ | ‘analyze’ | ‘store’ | string
statement = [label,”>’] , [trigger] actor, {actor}, action, [ ‘emit’, event ]

server install_iperf
client install_iperf
client install_flooder
server install_tcpdump

19 bindings:
20 install_iperf apt-get install iperf -y

21 install_tcpdump apt-get install tepdump -y

22 install_flooder /scripts/common/install_flooder.sh

23 start_measure tcpdump -i ETH(IP(server)) -w DUMP_OUTPUT
24 start_server iperf -s

25 start_traffic iperf -c IP(server)

‘e"'lgegn?' = [S;\rfivnhgen’, event, {event} ], [ ‘wait’, time ] ¢ OO, easure amit metarted 26 start_atack flooder -dst IPferver) ~proto 6 —rate RATE
= ! 27 stop_attack pkill -9 flooder
time = string 8 server start_server emit sstarted 28 stop_traffic pkil -9 iperf
actor = string run: 29 stop_measure pkill -9 _tcpdump
action = string 18 Whe.n mstarted, sstarted client start_traffic emit cstarted bl ca\cula(e,entéopy /ssgp(;/se(n(ropy,calcu\ator,sh ANALYSIS_OUTPUT
- LS . - ! 31 mstarted EXIST_PROCESS(tcpdump)
bindings = ‘bindings’,’s’, {statement} 11 when cstarted wait t1 attacker start_attack emit astarted 35 gstarted EXIST_PROCESS|iperf)
bstatement = action | event ', command, {command} 12 when astarted wait t2 attacker stop_attack emit astopped 33 cstarted EXIST_PROCESS(iper)
command ~ string 13 when astopped wait t3 client stop_traffic emit cstopped 34 astarted EXIST_PROGESS(flooder)
i . e 10 35 astopped NOT EXIST_PROCESS(flooder)

constraints = ‘constraints’,’?’, {cstatement} . 14 analyze: 36 cstopped NOT EXIST_PROCESS(iperf)
cstatement = ‘num’, actor, number | ‘lan’, actor, {actor} | ‘link’, actor, actor | 15 when cstopped server stop_measure emit mstopped 37 NOT EXIST_PROC imp)

‘08, actor, osname | ‘type’, actor, typename | 16 when mstopped server calculate_entropy ]

‘interfaces’, actor, number 17 store: 39 constraints:
osname = string 18 server COPY_TO_GITHUB 40 server os Ubuntu-latest

h -TO 41 attacker num 2

typename = string 42 Ian client attacker router

(a) DEW in EBNF. For readability, we do not define strings
and numbers.

43 link router server

(b) Example entropy-measurement experiment in DEW.

Figure 2: DEW’s syntax in EBNF and an example experiment represented as DEW

3 Related Work

There are several related works on new experiment rep-
resentations to improve sharing and reuse. Experimen-
tation Workbench by Eide et al. [9] proposed new con-
structs in the NS file (Emulab testbed’s topology descrip-
tion file) to describe experiment behavior in addition to
topology. The authors also proposed keeping track of ex-
periment resource allocations and the behavior in an “ex-
periment record” (similar to our experiment history), and
allowing users to tag manual commands that should be
included in the record. This work was an inspiration for
our work, but it lacks sophistication and user-friendliness
that we hope to achieve. First, its experiment representa-
tion combines topology and behavior, while DEW keeps
these separate by using actor roles as an abstraction for
resources, and constraints to tie actor roles to topology
based only on important features. This makes DEW
more broadly useful, as the same scenario can be used
with many different topologies. Second, Eide et al’s rep-
resentation of behavior includes the actual commands to
be run during the experiment, while ours keeps the high-
level description of behavior (scenario) separate from the
commands that realize it (bindings). This makes DEW
more structured and more user-friendly.

GPLMT [15] proposes a new experiment-description
language. GPLMT produces experiment representations,
which are much less readable by humans, more ver-
bose and less structured than those written in DEW.
For instance, their example experiment from Listing
1.1. includes 46 lines in XML. In DEW these would
become six lines, with human-readable format with-
out XML mark-up. A similar critique holds for works
by Buchert et al. [5], Hussain et al. [3], Baxley et
al. [4], Vrijders et al. [14], Seidel et al. [13], and Cher-
rueau et al. [6]. In general, we view other experiment
representations—many of which are also coupled with

a workflow engine—not as competitors but as potential
partners in our development of DEW. First, we can eas-
ily envision building translators and generators (see Sec-
tion 4.1 and 4.2) that translate their experiment represen-
tations into DEW and vice versa. Second, these works
are good examples of community-specific tools, which
can be built on top of our proposed experiment represen-
tation, to make it more useful for specific communities
of experimenters.

Labwiki [17] and GENI desktop [11] provide an IDE-
like environment for experiment design and running. The
main goal of these approaches is integrating design, run-
ning and data analysis of experiments into a single envi-
ronment and thus easing lifecycle management and shar-
ing/reuse. Our GUI provides more assistance to users
during experiment design, as illustrated in Section 4.3,
but it otherwise shares the design goals with these prior
works. One major drawback of these prior works, which
design a new way to build and run experiments, is that
they are slow to be adopted by existing testbed users. We
discuss this problem in the next section, and how we plan
to overcome it for DEW.

While experiment lifecycle support shares many
goals with scientific workflows (e.g., Pegasus [7], Vis-
Trails [10]), such as portability, repeatability, prove-
nance, etc., there are some notable differences, which
necessitate new solutions for representation and later or-
chestration of testbed experiments. First, scientific com-
putation consist mostly of computation and data move-
ment/transformation, while testbed experiments include
many other tasks such as traffic generation, node and
switch configuration, etc. Second, scientific experiments
usually involve many nodes performing the same com-
putation tasks, while testbed experiments involve many
nodes playing different roles (e.g., server vs client vs at-
tacker). Third, testbed experiments may require specific
node features, such as connectivity, NICs, hardware, etc.



4 Easing Adoption

The main challenge when proposing a new experiment
representation or a new experimentation process (e.g.,
via a new IDE) is how to motivate wide adoption. Novice
testbed users are likely to adopt any framework easily,
because they are new to experimentation and expect to
have to put in time to learn new tools. But existing users,
which are accustomed to specifying topologies and ex-
perimentation process manually, are very reluctant to in-
vest time into learning new tools. Fundamentally, users
prefer to continue to use what they have already built—
their existing scripts and topologies.

As we discuss in the following sections, we plan to
address this adoption problem by building translators,
which can ingest existing scripts, and automatically pro-
duce DEW representation. We also plan to build gener-
ators, which can ingest DEW and automatically produce
topologies and scripts, runnable on today’s testbeds.

Another related issue, which can hinder adoption, is
that different users prefer different modes of experiment
design. Some like to produce textual representations of
experiments, while others may want to draw them, or as-
semble an experiment out of smaller building blocks, or
start with an existing experiment and extend it. To be
successful, we must support many different experiment
design approaches, as we discuss in Section 4.3.

4.1 Translators

Translators are tools that can produce DEW from the
currently used scripts for testbed experimentation. Such
scripts are usually over-specified with regard to param-
eters and the topology, associated with the script. This
makes it hard for researchers to reuse scripts in a dif-
ferent setting. Translating scripts into DEW brakes this
tendency and allows for more flexible and portable ex-
periment representation.

We illustrate this using one of our scripts, which was
used for running a flash-crowd DDoS experiment to test
one of our research solutions, called FRADE. Figure
3(a) shows our original script, minus some variable def-
initions. There are 26 lines, many of them hard to
read and interpret quickly by a human user. Further,
the script is coupled with a topology—notice that it as-
sumes existence of N nodes, N-1 of which are called
“attacker;”, with i=0..N-1, and one whose name is spe-
cific to the experiment. All these nodes are in the specific
project on the testbed. The script thus must be manually
changed when we want different node names, or if we are
reusing the experiment in a different project. Our script
is more loosely coupled with a topology than a usual
testbed script—notice that it has variable experiment
name $EXP and a flexible number of attacker nodes,

controlled by command line parameter $3. This is be-
cause we had to run this experiment on multiple topolo-
gies, which required multiple experiments, and we had to
manually evolve our script from a simple one, runnable
on one topology, to a more complex one, runnable on
multiple topologies. Using DEW and our generators a
researcher would get multiple instances of scripts auto-
matically, by simply adjusting constraints in DEW.

Figure 3(b) shows the DEW corresponding to the
script in Figure 3(a). We built a simple translator to gen-
erate DEW from our bash script. While translating arbi-
trary scripts in any language to another language is chal-
lenging, testbed scripts usually use just a subset of bash
functionalities. This gives us hope that we can process
them with a moderately complex translator. We were
able to generate all but line 14 in Figure 3(b) automat-
ically. We have color coded actors orange, actions green,
triggers blue and purple, and events red. Bindings are
shown as black. Our translator identified lines starting
with ssh, extracted the location and the command be-
ing executed, turned the location into an actor, and the
command into an action, and inferred which actions oc-
cur serially by looking if their commands were executed
from the main script without spawning a new process.
Such serial actions had to wait for a trigger event, gen-
erated by the preceding action. The translator also iden-
tified sleep commands in the original script and con-
verted them into wait triggers.

In our generated DEW, there are three distinct actors
with generic names “actor;”. By default, since no con-
straints are specified, each actor will have only one in-
stance. If we wanted to create three attackers, we could
specify this as a constraint: num actor2 3. Translat-
ing our script into DEW had an immediate benefit! We
noticed a flaw in our original script’s design. Actions in
lines 1-4 of DEW all occur in parallel (in separate pro-
cesses, spawned off of the main script), but starting a
detector (line 4 of DEW) should not happen in parallel
with restarting a server. We should have waited for the
server to start instead. Conversely, actions 8—12 do not
depend on each other, and could occur in parallel.

In our future work, we plan to develop translators
from other scripting languages, such as MAGI [3],
GPLMT [15], Baxley et al. [4], XPFlow [5], etc.

4.2 Generators

We have yet to implement generators, which produce
scripts from DEW. We expect that, by reversing the pro-
cess for translators, we will be able to produce relatively
complete scripts, which the user will then be able to im-
prove further manually. We plan to produce generators
for many languages, such as bash, MAGI [3], GPLMT
[15], Baxley et al. [4], XPFlow [5], etc.



1 ssh -o StrictHostKeyChecking=no $1.$EXPfrade "cd ~/frade/experiments/run/;
sudo bash start_log.sh flood.$1.$2.$3.$ms" &

2 ssh -o StrictHostKeyChecking=no attacker0.$EXP.frade "cd ~/frade/experiments/run/;
sudo bash start_log.sh legitimate.$1.$2.$3.$ms" &

3 ssh -o StrictHostKeyChecking=no $1.$EXPfrade "cd ~/frade/experiments/run/;
sudo bash restart_server.sh" &

4 ssh -o StrictHostKeyChecking=no $1.$EXPfrade "cd ~/frade/experiments/run;

sudo bash start_detector.sh \"'$modules $m4\"" &

sleep 15

ssh -o StrictHostKeyChecking=no attacker0.$EXP.frade "sudo python3.4

~/fradef/traffic/smart_attacker/legitimate.py -s $1 --sessions 100 --logs

/proj/FRADE/MTurk/Normalized-logs/$1-new.log 2>&1> output &" &

sleep $INT

oo

7
8 j=1
9 while [$j-le $3]; do
0 ssh -o StrictHostKeyChecking=no attacker$j.$EXP.frade "cd ~/frade/traffic/flood_attacker/;
sudo python3 attack.py -s $1 -n $2 -u ../urls/urls-$1.txt & " &
" =8(8i+1)
d

one

13 sleep $DURATION

14 j=1

15 while [ $j-le $3]; do

16 ssh -o StrictHostKeyChecking=no attacker$j.$EXP.frade "sudo pkill -9 python3"

17 =8((®j+1)

18 done

19 sleep $INT

20 ssh -o StrictHostKeyChecking=no attacker0.$EXP.frade "sudo killall python3.4"

21 ssh -o StrictHostKeyChecking=no $1.$EXPfrade "sudo pkill -9 python"

22 ssh -o StrictHostKeyChecking=no $1.$EXPfrade "sudo ipset list blacklist > /zfs/FRADE/blacklist.
$1.$2.$3.$ms"

23 ssh -o StrictHostKeyChecking=no $1.$EXP.frade "sudo pkill -9 tcpdump"

24 ssh -o StrictHostKeyChecking=no attacker0.$EXP.frade "sudo pkill -9 tcpdump"

(a) Example bash script for our FRADE experiment

scenario:
1 start_log
2 start_log
3 restart_server
4 start_detector
5 wait t0 legitimate
6 wait t1 attack
7 wait t2 stop_attack emit stop_attack_done

8 when stop_attack_done wait t3
9 when stop_legitimate_done

10 when stop_python_done
11 when ipset_done

12 when stop_tcpdump_done

stop_legitimate emit stop_legitimate_done
stop_python emit stop_python_done
ipset emit ipset_done
stop_tcpdump emit stop_tcpdump_done
stop_tcpdump emit stop_tcpdump_done

bindings:

1 stop_python sudo pkill -9 python

2 stop_tcpdump sudo pkill -9 tepdump

3 ipset sudo ipset list blacklist > /zfs/FRADE/blacklist.$1.$2.$3.$ms

4 attack cd ~/frade/traffic/flood_attacker/; sudo python3 attack.py -s $1 -n $2 -u ../urls/urls-$1.txt &
5 start_detector cd ~/frade/experiments/run; sudo bash start_detector.sh \"$modules $m4\"
6 stop_attack sudo pkill -9 python3

7 restart_server cd ~/frade/experiments/run/; sudo bash restart_server.sh

8 stop_legitimate sudo killall python3.4

9 legitimate sudo python3.4 ¥ i py -s $1

--sessions 100 --logs /proj/FRADE/MTurk/Normalized-logs/$1-new.log 2>&1> output &

10 start log cd ~/frade/experiments/run/; sudo bash start_log.sh legitimate.$1.$2.$3.$ms
11 stop_attack_done NOT EXIST_PROGCESS|attack.py)

12 stop_legitimate_done NOT EXIST_PROCESS(legitimate.py)

13 stop_python_done NOT EXIST_PROCESS(python)

14 ipset_done ipset list blacklist | we = 4

15 tcpdump_done NOT EXIST_PROCESS|(tcpdump)

(b) FRADE experiment translated into DEW.

Figure 3: Our example FRADE experiment in bash and its translation into DEW. We have color coded actors orange,
actions green, triggers blue and purple, and events red. Bindings are shown as black.

Part of the power of DEW is that one experiment
representation can be used to generate many topology
descriptions. Currently, starting from actors and con-
straints, we can automatically produce NS topologies for
networking testbeds like Emulab [16] and Deterlab [8].

4.3 User Interface

Users have different preferences for the way they inter-
act with tools, and we expect this is especially true for
experiment design tools. We expect we will need a range
of user interfaces (UI) to achieve wide adoption of DEW.

We have started with three input Uls for DEW which
help guide users through designing an experiment and
producing its DEW representation using: (1) text-based
and (2) NLP-based input, and (3) DAG-based input.

Our assisted text Ul is an augmented text editor which
performs text prediction and suggests complete and par-
tial statements a user can select to construct their DEW.
It consists of four panes, as shown in Figure 4, with the
left panes showing actors, behavior and constraints, and
the right pane showing suggested elements to complete
the current statement that the user is working on. The
panes are synchronized in real time. As the user types in
scenario statements, the UI code automatically mines ac-
tors, actions and events, and populates the actor pane and
the suggestion panes. This way users, which are not very
familiar with DEW syntax, can easily create scenarios
from scratch. In the Figure, the user has typed two state-
ments into the scenario pane, and is now being suggested
the constructs they can use for the third statement.

Our Natural Language Processing (NLP) UL en-
ables users to write free form English sentences. These

are then processed to extract actors, actions and depen-
dencies. For example, a user can type

After the server starts the listener and the measure script,
the client will start its traffic.

and the UI would produce three lines of DEW:

server runlListener emit sListenerSig

server runMeasure emit sMeasureSig

when sListenerSig, sMeasureSig client
start_traffic emit sTrafficSig

We do not expect the NLP UI to be able to fully parse
abstract descriptions, such as descriptions in the evalua-
tion section of a technical paper, but we expect this Ul
can be helpful to users learning the DEW syntax.

Our Directed Acyclic Graph (DAG)-based method
is under development and enables users to drag and drop
graph nodes and connect these nodes with directed arcs
in a drawing area. This is illustrated in Figure 5(a), for
our original FRADE experiment. Each graph node rep-
resents an action and is annotated via color or text, with
the actor that performs this action. In the figure, we use
color-based indication of the actor. An arc between two
nodes A and B, where A — B, indicates that action A will
emit an event, which will be used as a trigger for action B.
If B should start after a time-based trigger, this is noted
via a label on the arc between nodes. In situations where
an action should start after some delay, but there is no
event-based trigger, this node is connected to the special
“start node” with an arc, which is labeled with the delay.
Figure 5(a) illustrates this for action “legitimate”.

As we discussed, converting our original FRADE ex-
periment script into DEW helped us realize that its work-
flow did not properly capture dependencies between ac-



o0 e Experiment

A
1 HLB ,F Behavior Dependency Graph | Topology

Actors Suggestions
server client
dlent
server
when sListenerSig

when cMeasureSig

waitt

server runListener emit sListenerSig
|| |ctent unieasure emit civeasuresig

Constraints

Figure 4: Screen shot of Assisted Text-Based Ul

tions. This is also clearly visible from its DAG in Fig-
ure 5(a), where the legitimate action starts after an ar-
bitrary time #0, and does not depend on the preparatory
stages of setting up logging, server, and attack detection.
We display the corrected DAG in Figure 5(b): the setup
stages on the blue actor depend on each other, the start
of the legitimate action depends on the completion of the
setup stages, and the wrap-up stages occur in parallel.

Once the researcher is satisfied with their scenario
and constraints, they click the “save” icon and our UI
prompts them for the binding for each action and event.
Scenario and constraint panes, along with the bindings,
are saved as this experiment’s DEW representation.

5 Benefits of DEW

Expressing experiments as DEW representations has
multiple benefits for managing the overall experiment
lifecycle, as we discuss below.

More robust design. Using DEW representation en-
ables researchers to reason about experiments at a high
level. This enables them to focus on action ordering and
dependencies first, and then consider how these will be
realized on the testbed, and specify the bindings and con-
straints. By thinking explicitly about ordering and de-
pendencies, researchers can arrive at more robust scenar-
ios, where actions wait for explicit triggers, and do not
rely on timing and luck during execution.

Run histories. When the researcher runs the experi-
ment on the testbed they would allocate a given topology,
and then parameterize and run their scripts. These scripts
are produced from a DEW or they are manually created
by researchers, and passed through a translator to pro-
duce a DEW. Testbeds can build accompanying services
to record run histories, and interpret their segments as
sections of scenarios in DEW. For example, a run his-
tory for FRADE experiment may look like this: config-
ure(wiki), run(wiki, 3), analyze(wiki).

Experiment orchestration. Experiments are often or-
chestrated by researchers themselves, by invoking cer-
tain scripts on certain nodes, via SSH. Testbeds can use a
scenario and bindings from DEW to build robust orches-
tration mechanisms. These mechanisms can detect when
events occur and use them to trigger subsequent actions.
Rather than build a custom orchestration, or select a sin-
gle orchestration platform, we plan to build translators
from DEW into inputs for multiple orchestrations plat-
forms (e.g. MAGI [3] or Ansible [1]) and allow users to
pick the output, which best suits their needs.

Easier failure detection. The scenario and bindings
from DEW serve as input to a testbed, communicating
what should happen in an experiment. This could be
leveraged to detect failures during experiment runs in a
timely manner. For example, an excessively long wait
before a specific event could trigger a failure alert. We
leave this for future work.

Hypothesis testing. Testbeds can build languages and
services on top of DEW that help researchers express
hypotheses. Testbeds can then orchestrate runs for hy-
pothesis testing. For example, a researcher may request
to execute the “run” stage of the scenario 100 times or
until the average result of the “analyze” stage stabilizes.
The testbed could then engage our generators to produce
the appropriate scripts, and execute the run and analyze
stages repeatedly, saving the results in separate files and
evaluating stop conditions.

Flexible and explicit constraints. Expressing topol-
ogy constraints explicitly enables negotiation between
user and testbed, and possible constraint relaxation. We
expect that users may under- or over-constrain their ex-
periment, and so we can engage constraint solvers to pro-
vide real-time feedback to researchers as to how their
constraints can be realized on the currently available
testbed nodes. Using this feedback the researcher may
decide to relax their constraints to increase their chances
of experiment allocation success.

Sharing and reuse. Run histories would enable easy
sharing of experiments. Testbeds could help bundle the
experiment’s DEW, resulting scripts and topologies, the
executables used in bindings, as well as the record of the
actual physical resource allocations, run history and any
resulting data files, into a single archive for sharing. Re-
searchers that attempt to reuse elements of this bundle
could leverage DEW and run history to quickly under-
stand how useful the bundle’s elements are for their pur-
pose. For example, the researcher may decide to reuse
DEW and change the order of actions or add new ones.
Or the researcher may decide to repeat the experiment
on a new testbed, and change the constraints regarding a
node feature, if the new testbed has too few nodes with a
given feature (e.g., fast CPU).



start_log

start_detector

start_log @
start_detector

start_log

start_log
legitimate
t

t2

stop_attack
3

stop_legitimate

t2
stop_attack
stop_legitimate
stop_python

il

stop_python
top_tcpdump
stop_tepdump
ipset

stop_tcpdump

stop_tcpdump

(b) Corrected

(a) Original

Figure 5: Our example FRADE experiment in DAG, both
in its original and corrected form. The color of each
node represents which actor role carries out each action:
red for DDoS attacker(s), blue for the victim server and
green for the legitimate client(s).

6 Conclusions and Future Work

Testbed experiments today are often ad-hoc, manual and
hard to repeat and reuse. We have argued that this occurs
mostly because testbeds fail to capture experiment be-
havior and leverage behavior to support the experiment
lifecycle. We have proposed DEW—Distributed Exper-
iment Workflow representation. DEW encodes experi-
ment behavior and constraints, and uses them to auto-
matically generate topologies and scripts. DEW enables
researchers to create and manipulate their experiments at
a high cognitive level, and enables creation of other ser-
vices for experiment lifecycle management, such as fail-
ure detection, hypothesis testing, constraint negotiation,
sharing and reuse.

We have much future work. First, we anticipate we
can improve DEW’s syntax and look forward to feed-
back as we move forward with testing DEW’s expres-
siveness. We expect to greatly expand the expressive-
ness and handling of constraints to allow users to be
detailed and explicit about their resource needs. Sec-
ond, we plan to improve our bash-to-DEW translator and
add new translators for other scripting languages. As
we move forward, we will build generators to provide a
scripting framework for users designing experiments di-
rectly with DEW. Last, we will continue improving our
Uls and explore additional mechanisms to help users de-
sign experiments using DEW.
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