
Lessons Learned from Using an Online Platform to Conduct Large-Scale,
Online Controlled Security Experiments with Software Developers

Christian Stransky∗, Yasemin Acar†, Duc Cuong Nguyen∗, Dominik Wermke†,
Elissa M. Redmiles‡, Doowon Kim‡, Michael Backes∗, Simson Garfinkel×+,

Michelle L. Mazurek‡, Sascha Fahl†
∗CISPA, Saarland University; †Leibniz University Hannover; ‡University of Maryland

×U.S. Census Bureau; +National Institute of Standards and Technology

Abstract

Security and privacy researchers are increasingly con-
ducting controlled experiments focusing on IT profes-
sionals, such as software developers and system admin-
istrators. These professionals are typically more diffi-
cult to recruit than general end-users. In order to al-
low for distributed recruitment of IT professionals for
security user studies, we designed Developer Observa-
tory, a browser-based virtual laboratory platform that en-
ables controlled programming experiments while retain-
ing most of the observational power of lab studies. The
Developer Observatory can be used to conduct large-
scale, reliable online programming studies with reason-
able external validity. We report on our experiences and
lessons learned from two controlled programming exper-
iments (n>200) conducted using Developer Observatory.

1 Introduction

While software developers have specialized technical
skills, they are rarely security experts [2, 1]. Indeed, de-
velopers frequently make errors for many of the same
reasons that end users do: because they are uninformed,
because they prioritize other requirements over security,
and because tools for achieving security are difficult to
use correctly. Consequently, identifying and solving se-
curity problems faced by software developers and other
professionals promises to have a high impact on the over-
all security of software ecosystems [3].

Prior work observing or surveying software develop-
ers and other IT professionals is often limited by small
sample sizes, as dictated by the high effort and cost
necessary to recruit these professionals. To remedy the
cost and difficulty of recruiting developers for security
studies, we developed a browser-based virtual laboratory
platform, Developer Observatory, to allow for controlled,
geographically distributed experiments. In doing so, we
wanted to retain as many as possible of the benefits of

a lab study: controlling the programming environment,
collecting in-depth data about when developers struggle
and the strategies they use to solve problems, and admin-
istering exit questionnaires.

In this paper, we describe a framework that allows re-
searchers to conduct online secure-programming studies
with remote developer participants. This framework in-
cludes mechanisms for randomly assigning participants
to conditions, as well as the ability to administer surveys
during and after study tasks. Our design also takes into
account security (from misbehaving participants), partic-
ipant privacy, and adaptability for a broad range of sim-
ilar studies. Here, we report on our experiences instan-
tiating and conducting experiments using our implemen-
tation of this framework: Developer Observatory.

Developer Observatory is instantiated using Jupyter
Notebooks (for in-browser Python interpretation), Ama-
zon EC2 (to isolate participants from each other and
scale with demand), and the Qualtrics online survey plat-
form. Developer Observatory allows for in-browser code
editing so that participants can write and test code with-
out installing anything, while also enabling researchers
to collect detailed information about participant’s activ-
ities. We successfully deployed Developer Observatory
as part of two large-scale controlled experiments [1, 4],
in which 2 396 developers interacted with our system and
563 completed an entire study run.

We make the following concrete contributions:

• We describe requirements for a scalable online
secure-programming research tool.

• We develop a framework to meet these requirements
and implement this framework in a complete study
infrastructure (Developer Observatory), which we
publicly release to the research community.

• We report on the benefits, challenges, and lessons
learned when we used Developer Observatory for
two large-scale studies of software developers.



2 Related work

In order to make empirical studies in security easier to
conduct and reproduce, a number of researchers have de-
veloped measurement systems and environments. The
DETER project, for example, was created to support test-
ing cybersecurity technology at scale, mimicking real-
world deployments [5]. Other network-security testbeds
support distributed networking research; Siaterlis and
Masera provide a survey [11].

Relatively few such measurement environments, how-
ever, exist for human subjects research. A number
of researchers have proposed guidelines for conducting
empirical human-subjects experiments in computer sci-
ence generally [12, 6], including an emphasis on choos-
ing representative samples. Phonelab supports mobile-
computing field studies, including collection of end-user
data [9]. The University of Maryland’s Build It, Break It,
Fix It competition platform allows researchers to observe
how participants develop and attack security-relevant
systems [10]. The Security Behavior Observatory, re-
cent work by Wash et al. examining the security behavior
of undergraduates, and Levecque and Lalonde’s work on
cybersecurity clinical trials all apply client-side infras-
tructure to collect field data on security behavior, but do
not enable direct, controlled experimentation [7, 8, 13].

Our work is thus distinctively different, offering a
scalable tool for conducting online programming exper-
iments with software developers. While we developed
Developer Observatory for the purpose of conducting se-
curity experiments, its use could extend beyond security
into software development and other computer science
fields, enabling evaluation of Application Programmer
Interfaces (APIs) and/or observation of the learning pro-
cess of software developers.

3 Requirements

We distill requirements for online secure-programming
experiments targeting software developers.

3.1 Validity requirements
Validity requirements are designed to ensure that a study
successfully meets its scientific goals for measuring use-
ful information about participant behavior.

Internal validity The framework should prevent du-
plicate participation to the extent possible. The frame-
work should support randomly assigning participants to
conditions (with or without weighting or blocking). The
framework should also support showing tasks to partici-
pants one at a time, and should allow researchers to spec-
ify a randomized or rotated order for tasks. We also want
the framework to promote a study environment that is as

similar as possible across all participants: e.g. using the
same software versions and pre-installed libraries.

Ecological validity. In any laboratory study, it is im-
portant to maximize ecological validity, or the ways in
which the study resembles real-life situations, to the ex-
tent possible. The framework should promote ecological
validity by allowing participants to use their own equip-
ment and software setup whenever possible, and to par-
ticipate from their own home or work environments.

Data collection. The framework should support au-
tomated collection of as much data as possible. This
starts with, but is not limited to, collecting the code par-
ticipants write and self-reported survey questions about
their demographics and their experience with the study.
For example, we would also like to capture when code
is copy-and-pasted (and potentially ask the participant
where it came from), how many times the participant
tests their code, and whether it produces execution er-
rors. We would also like to capture timestamps for all
relevant events. The data collection mechanism should
be extensible to support varying needs across studies.

3.2 Interaction requirements

We want the framework to be easy to use for both partic-
ipants and researchers.

Participants. We do not want interaction difficul-
ties to drive away otherwise-willing participants. Par-
ticipants should be able to participate with the equip-
ment and software they have, without having to in-
stall libraries, virtual environments, or programming lan-
guages. We want each participant’s experience to be
seamless, from clicking a link in a recruitment advertise-
ment through completing all programming and survey
tasks, without having to take explicit actions like entering
an identification (ID) value, creating an account, or stop-
ping to download or install. Participants who give up on
a task should (where reasonable within the study design)
be able to skip it, provide information about why, and
continue to the next task, rather than quitting the study
entirely.

Researchers. The framework should make it easy for
researchers to develop a new study; this means it should
be modular and extensible, and in particular that items
that are expected to change from study to study should
be isolated from longer-term infrastructure components.
It should be easy for researchers to monitor an ongoing
study, in order to manage the rate of participation and
to quickly identify and correct any problems that occur.
The collected study data should be easy to export, and
data collected in different parts of the study should be
easily linkable via a consistent participant pseudonym.
Finally, the infrastructure should be deployable within
most researchers’ budgets.



3.3 Technical requirements
We define five technical requirements, as follows.

Reliability. Participants, who are recruited by email
or web advertisement, may follow the provided link and
begin participation at any time. As such, it is critical
that the study infrastructure is robust and reliable, with-
out requiring researchers to constantly monitor that it is
operating properly while the study is running.

Scalability. The scale of desired participation will
vary based on requirements of individual studies, but par-
ticipant counts in the order of hundreds of participants
seem likely to be needed. While it may not be neces-
sary for all participants to run at one time, the infrastruc-
ture must expand to allow sufficient simultaneous partic-
ipants, and data storage and retrieval must be designed
for the total participant load.

Participant Isolation. Participants must not be able
to see or alter others’ code or survey responses. Fur-
ther, participants should not be able to access information
about conditions to which they have not been assigned
(to protect the integrity of the experimental design).

Security. More generally, participants should not be
able to break or exploit the study infrastructure. Specifi-
cally, participants should not be able to access the under-
lying operating system to perform operations outside the
scope of the study, should not be able to disrupt the study
infrastructure, and should not be able to, e.g., use the
study infrastructure as a platform to send spam or cause
other harm. If a participant does disrupt the infrastruc-
ture (for example by writing code that creates an infinite
loop), this disruption should affect only that participant
and not extend to other participants. This requirement
is complicated by the fact that participants will by def-
inition be writing and executing code (possibly under a
privileged user account).

Participant privacy. Participant privacy is crucial,
both as an ethical matter and as a practical reassurance
to participants that their cooperation is low-risk. The
framework should allow either anonymous or pseudony-
mous participation. In the pseudonymous case, partici-
pants should be identified by a coded ID which is stored
separately from the email address (or other contact data)
used for invitations. When desired, researchers can map
secondary information (such as the channel via which a
participant was recruited) to the coded ID.

4 Developer Observatory design

To meet these requirements, we designed a framework
(cf. Figure 1) with five main logical components (many
of which can be co-located): a landing page, a VM man-
ager, a task server with an online code editor, a database,
and a survey tool.

Landing Page+ VM Manager
with Pool

Database*

(append only)
next server

Startup Script+ Online Editor
forwards

sends events
sends heartbeatassigns condition

External
Survey Tool*+

opens survey when required

M
ai

n
Se

rv
er

Ta
sk

Se
rv

er

+ Requires customization by
researcher.

* Results are collected here.
Procedural flow

Figure 1: The different components of the Developer Ob-
servatory. The black boxes and arrows illustrate the nav-
igation path of a participant (note that the grey compo-
nents do not).

A link in an invitation email or advertisement directs
participant to the study’s landing page. Here, informa-
tion about the study is offered: The researchers and their
institutions are identified so that participants can contact
them in case of questions, the purpose of the study is
explained in as much detail as possible without priming
the participants and introducing bias, and a download-
able consent form is presented that details how informa-
tion obtained in the study is obtained, processed, stored
and published in an ethical and privacy-preserving way.

After consenting to the study, participants are assigned
a condition and a VM instance. Conditions can be as-
signed round-robin, or with weighted probabilities (e.g.,
to account for conditions with higher dropout rates). The
task order can be randomized when appropriate.

The VM manager creates instances of the task server
and provides the next available instance for the correct
condition to the participant. It is also responsible for
maintaining a small queue of ready VMs, so that partic-
ipants do not have to wait for a new instance to boot up,
and for shutting down VMs that are no longer considered
active according to the study policy.

Participants are then forwarded to the task server,
which hosts an online code editor. The editor supports
writing and executing source code, as well as showing
results and errors to the participant. Task instructions are
provided inline, so that participants can read the instruc-
tions and work on their code in the same interface. Par-
ticipants are also able to test their code and view output,
as well as recover from infinite loops and kernel crashes.
Once participants are ready to move on, they can indi-
cate whether they are completing or skipping the task.
We expected that offering the option to skip a task would
decrease the number of participants who quit the study in
frustration because they could not solve a particular task.

The task server has several important features that ad-



dress the requirements described in Section 3. These in-
clude data collection features, such as detection of copy-
paste events, test runs, task completions, and the collec-
tion of snapshots of the code at each important event.
The task server also enables popover messages and/or
short pop-up surveys triggered by particular events; for
example, a copy-and-paste event can trigger a reminder
to document the source of any pasted code.

Once a participant has completed all programming
tasks, they can be forwarded to an exit survey. This
exit survey might include questions about the tasks they
worked on, their demographics and background, and any
other relevant information. Information from the pro-
gramming tasks and the exit survey is linked via a partic-
ipant’s unique pseudonym ID so that participant’s code
can be imported to help the participant remember their
work while answering.

5 Implementation

In this section, we discuss our implementation of the
Developer Observatory. Our implementation relies on
Amazon EC2, which provides reliability and scalability.
We use one EC2 instance to host the landing page, VM
manager, and database. The VM manager creates and
assigns participants to EC2 micro instances: these are
cheap instances with limited resources, but they are suffi-
cient to run the online code editor. The database is stored
on a separate PostgreSQL server.

The VM manager keeps a small pool of already-
prepared instances for assignment to new participants. A
VM instance requires about one minute to boot, so with-
out this pool, participants would be forced to wait un-
acceptably before beginning the study. As one instance
in the pool is assigned to a participant, a new instance
is started in order to maintain the pool size. For exam-
ple, in our first study using Developer Observatory [2],
we found we needed a pool of 10 instances to keep up
with demand. For a subsequent, smaller study, we used
an initial pool size of five, which we reduced to three as
participation slowed. This generally proved sufficient to
prevent potential participants from waiting. [4]

To manage outstanding instances, we use a heartbeat
signal. An assigned instance will send a heartbeat to the
VM manager every 60 seconds, starting when that in-
stance is assigned to a participant, as long as the browser
window is open and the online editor is operational. An
assigned instance automatically shuts itself down after a
participant finishes all tasks; the VM manager can also
apply a shutdown policy to kill the instance if it has been
open too long. In our cryptographic API study, we ex-
perimented with a few shutdown policies before finding
that killing an instance after four hours with no heart-
beat provided a good tradeoff between wasting instances

and allowing participants to complete tasks in their own
time. We applied this policy for our recruitment study as
well. We note that Amazon limited us to a maximum of
50 concurrent instances, so managing shutdown became
important during times of high demand.

As our online code editor, we used Jupyter Note-
book 1.0, an in-browser editor for writing and execut-
ing Python code.1 Each programming task consists of
two Jupyter cells: one markdown cell that provides in-
structions for the task, and one code cell that provides
skeleton code for the task itself or to test it. Participants
then add and edit code directly in the code cell and run
their code with the run button. A screenshot from the
cryptographic API study is shown in Figure 2, left.

When a participant is assigned to an instance, the
VM manager provides the assigned condition to the in-
stance as a parameter. The appropriate task file(s) for
the assigned condition are then copied into place, with a
generic name, so that the filename does not provide extra
information about the study goals and conditions.

After all tasks have been completed or skipped, the
participant is redirected to the exit questionnaire. Thus
far, we have used Qualtrics and LimeSurvey to host exit
questions. To help the participant remember their work,
Developer Observatory can show participants’ code for a
given task next to questions about that task (cf. Figure 2,
right). To achieve this, we used the Qualtrics Web Ser-
vice module and a JavaScript solution for LimeSurvey.

Data collection. We configured Developer Observa-
tory to capture the current state of the participant’s code
at each click of the run button. This reflects the fact that
many developers add functionality incrementally, test,
and add and remove debugging output as they work. By
capturing snapshots of this process, we can examine how
the code was developed and how many test runs were as-
sociated with different tasks. We store the result of each
run, including return codes, error codes, exception mes-
sages, and stack traces.

We also gather copy-and-paste events to measure the
fraction of code our participants write themselves versus
copy-and-paste from information sources such as official
API documentation, StackOverflow, and blog posts. Ad-
ditionally, participants are encouraged to report the URL
code was copied from. The text associated with copy-
and-paste events is available for later analysis in order to
distinguish code copied from information resources from
code being moved around within the participant’s work.

All events that we capture are logged with correspond-
ing timestamps; in addition, we track timestamps when
each task begins and when the participant chooses to end
the task (by indicating success or by skipping the task).

1Jupyter supports kernels for most major program-
ming languages: github.com/ipython/ipython/wiki/

IPython-kernels-for-other-languages



Figure 2: Screenshots from one study conducted using Developer Observatory. Left: Participants completed tasks
using a Jupyter Notebook as an online code editor. Task instructions and skeleton code were provided. Right: We used
the Qualtrics web service feature to show each participant their code for the task being asked about.

Developer Observatory is designed to be easily ex-
tensible for features that may be important to other re-
searchers. For example, any event detected by JavaScript
can be recorded and/or used to trigger a code snapshot.
For example, a researcher interested in how developers
scroll up and down within their code could add a listener
for scroll events that triggers an AJAX request.

Security. Allowing unknown users to execute arbi-
trary code poses a severe security risk: Malicious users
could try to overallocate resources, crashing the infras-
tructure; try to read other participants’ data from the
database or delete existing study data; use the infrastruc-
ture as a platform to send spam; or other problems.

We manage these risks in several ways. We use EC2
to ensure that damage caused by an attacker to the server
hosting the online code editor is limited only to that
participant’s instance, rather than affecting other par-
ticipants or the infrastructure more broadly. Addition-
ally, we strictly limit the software installed on the task
server instance, minimizing the harm that an attacker
who breaks out of the Jupyter notebook can achieve. The
only common resource for all instances is the interface to
the database, which limits the data it accepts.

We implement public-key pinning for certificate vali-
dation for the communication between instances and the
database server. Using EC2 security groups, we ensure
that the task servers can only create outgoing connections
to our database server, nowhere else. Unfortunately, the
Jupyter notebook on the task servers is only reachable
for participants via HTTP because the hostnames are as-
signed by Amazon’s EC2 and we cannot retrieve a valid
certificate for Amazon’s EC2 subdomains.

Data transfer from the task to the database server is
size-limited and sanitized at both ends.

Finally, we use Google’s reCAPTCHA service 2 at the

2cf. https://www.google.com/recaptcha

landing page to make it harder for an attacker to create
many instances and exhaust the EC2 allocation.

Configuration. All configuration options for our tool
are maintained in a single configuration file on the land-
ing page server. The configuration file controls the VM
pool size and identifies the type of instances that should
be created for the pool (in our case, micro instances).
The configuration file also provides an upper bound for
total number of participants, so the experiment will stop
if a maximum limit (such as one specified by an ethics
committee) is reached.

The configuration file also manages several security
items, including Amazon EC2 keys and security-group
ID, a registration key for reCAPTCHA, and database lo-
gin credentials. It also supports the use of a one-time to-
ken system to limit each invited participant to only start-
ing the study once.

Meeting our requirements. In Table 1, we summa-
rize how Developer Observatory achieves the require-
ments described in Section 3. We will release Developer
Observatory publicly by the time of the workshop.

6 Using Developer Observatory

We successfully used Developer Observatory to run con-
trolled experiments for two studies of Python developers.
Below, we provide an overview of these studies, an eval-
uation of the efficacy of our tool for running them, and
a discussion of our lessons learned. Both studies were
approved by all our institutions’ review boards.

Overview of studies. We first used Developer Obser-
vatory for an online, between-subjects study comparing
how effectively Python developers could write correct,
secure code using different cryptographic libraries (the
API study) [1]. We recruited developers from GitHub and
assigned them programming tasks using one of five con-



Table 1: The requirements we specified, and how they are met by Developer Observatory.

Validity

Internal Our framework serves all participants the same VM image, which comes with the prescribed development
environment (i.e., pre-installed Python version and libraries) and the same online editor based on Jupyter.
We allow for the random assignment of participants to conditions, the prevention of duplicate participation
via a token system and reCAPTCHA, and we enable the consecutive display of randomized tasks.

Ecological Our framework allows participants to solve programming tasks from home, their place of work, or their
favorite coffee shop, using their own computer.

Data collection Each code execution triggered by a participant is stored on the database server, along with the execution
result and a time stamp. Additionally, copy-and-paste events are stored. Qualtrics stores questionnaire
data.

Interaction

Participants Participation in a study using our framework does not require participants to download programming tasks
or install any software such as an editor or libraries. Instead, they can participate using their web browser.
Participants are directed through study tasks without needing to follow complicated directions.

Researchers Setting up a new study is straightforward. Once the main server (hosting the landing page, VM manager,
and database) has been installed and configured, very little must change to run a new study. Only the
consent form, tasks and associated condition assignment plan, and exit questionnaire must be specified,
and some configuration options (such as VM pool size) can be updated. Data can be retrieved from the
database and Qualtrics in CSV or SQL format; the two sets of data are easily linked via participant ID.

Technical

Reliability We use Amazon’s EC2 infrastructure to ensure a high level of reliability for virtual machines.
Scalability Amazon’s EC2 infrastructure can scale up well beyond our requirements.
Participant Isola-
tion

Participants are each assigned their own virtual machine, guaranteeing strong isolation and preventing
interference between participants.

Security VMs that serve tasks are firewalled and only allow incoming network traffic via HTTP. Outgoing traffic is
limited to the HTTPS port of the database server. Data storage requires strong authentication using a token
system, and the database account is limited to only inserting new results.

Privacy Participants are assigned a random ID after agreeing to the consent form. The mapping between participant
email addresses and their random ID is stored on a different server that is not accessible from the tool.

ditions and one of two sets of encryption tasks. Assign-
ment to conditions and task sets was initially random,
with counterbalancing to ensure roughly equal numbers
of participants started in each condition. However, when
it became clear that dropout rates (starting but not com-
pleting the study) varied widely among conditions, we
used Developer Observatory to weight the assignment to
favor underpopulated conditions. Within each condition,
task order varied using Latin-Square assignment. After
finishing the programming tasks, participants completed
a brief exit questionnaire with questions about the code
they had just written, the assigned library, their prior pro-
gramming and security experience, and demographics.

Later, we used Developer Observatory to compare cor-
rectness and security results for professional and student
developers (the recruitment study), again recruiting par-
ticipants from GitHub [4]. Here, no conditions were as-
signed (other than self-reported student/professional sta-
tus post-hoc). Participants completed three randomly or-
dered security-relevant tasks and a brief exit question-
naire similar to the questionnaire from the API study.

Overall, 2396 participants accepted the consent form
and started one of the studies (API: 1571, recruitment:
825). Of these, 563 (API: 256, recruitment: 307) com-
pleted all tasks. We note that the dropout rate was sig-
nificantly higher for the crypto API study (84%) than
the recruitment study (43.6%) (X2 = 130.5, p < 0.0001).
We believe this difference is primarily attributable to the
tasks in the API study being harder: in the API study,
participants achieved functional solutions for only 64%
of all tasks, compared to 88% in the recruitment study.

Participants who did not drop out spent median 56
minutes (Q1 = 35, Q3 = 106) on the programming tasks
in the API study and 53 minutes (Q1 = 30, Q3 = 85) on
the programming tasks in the recruitment study.

Participant experience. In both studies, participants
provided feedback in free-text questions within the exit
questionnaire, by leaving their opinions commented into
their task code, and by emailing us. Overall, most feed-
back was positive. A few participants wrote us when they
were denied access to the study during an overload inci-
dent (described below) or an AWS outage. Nine partic-



ipants complained about using the online editor; most
reported falling back to a local editor, then pasting their
code into the Notebook. Seven API-study participants re-
ported annoyance with a popover message that appeared
after each copy-and-paste event reminding the partici-
pant to document the source of any reused code; we re-
worked the popover to not show after copy-and-pasting
within the editor field and received no further complaints.
A few participants mentioned that Python libraries we in-
cluded in the Notebook were insufficient or out of date
(easily fixable for the next study), and two had trouble
with LimeSurvey. A few potential participants were dis-
appointed the platform didn’t work in a mobile browser.

Researcher experience. From our perspective as re-
searchers, the studies ran (mostly) smoothly. We easily
retrieved and analyzed the code our participants wrote,
their copy-paste events, and data about how frequently
they pushed the “run” button. We were also able to
quickly link participants’ code to their exit questionnaire
responses and analyze all facets of their results: whether
their code was functional, whether it met our security
criteria, and how their self-reported responses correlated
with their coding results.

Compared to running a developer study in the lab [2],
using Developer Observatory we found recruiting and
running study participants to be easier and faster. Be-
cause we couldn’t ask participants to think aloud, we
missed out on some qualitative data. However, partici-
pants left many detailed and passionate responses both
in the comments to the code they wrote and in free-text
portions of the exit questionnaire, so we did collect in-
teresting qualitative nuggets. Our measurements of par-
ticipants’ code were as good as in a lab study, but tim-
ing data was less precise, because participants stepped
away from and then resumed tasks. However, we found
that online participants were willing to commit as much
or more total time as lab participants, despite not being
compensated, perhaps because they could work on their
own schedules from the comfort of their preferred en-
vironment. Overall, we successfully collected and ana-
lyzed detailed data about participants’ behaviors.

Our biggest challenges using Developer Observatory
were managing the pool of VM instances and calibrating
how many recruitment emails to send to avoid overload-
ing the system (see below). After the first week, however,
we became proficient, and managing these resources re-
quired little additional effort.

Managing participants and resources. Initially, in-
stead of the heartbeat feature, we expired an instance
four hours after it was assigned to a participant. Many
potential participants opened the online code editor be-
fore deciding not to participate; these instances remained
idle for four hours. Given our initial (default for EC2)
limit of 20 instances running simultaneously, our avail-

able instances were quickly exhausted, and some poten-
tial participants were rejected due to lack of resources.
We solved this problem by implementing heartbeats, by
requesting an increase from Amazon to 50 concurrent in-
stances, and by manually emailing participants who were
rejected to re-invite them. The original four-hour timeout
also inconvenienced a small number of participants who
were cut off while still working on their code. We man-
ually restored these participants’ sessions and emailed
them a link to continue. Adding the heartbeat feature
solved this issue.

We also made interesting observations about timing.
For the most part, we periodically sent invitation emails
and potential participants arrived at the landing page in a
fairly even stream. However, we once sent emails peri-
odically over a weekend. We saw almost no traffic during
the weekend, but then received a huge influx of partici-
pants on Monday morning, presumably because invited
participants had arrived back at work and were all check-
ing their email at a similar time. This rush nearly over-
loaded our infrastructure: A few participants were un-
able to start the study. We recognized the issue, freed
up unused instances, re-invited the participants who had
experienced issues and paused invites until the rush had
evened out. For future studies, we recommend not send-
ing large numbers of invitations immediately before or
during a weekend or holiday.

Future work. In future work, we plan to expand and
improve Developer Observatory. For researchers, we
plan to add a web-based configuration and management
tool that makes it easy to set up study parameters, and
then monitor participants in progress, from one graphical
interface. This interface should also allow researchers to
retrieve data from both programming tasks and the exit
questionnaire in one step. We would also like to add fur-
ther instrumentation for collecting participants’ behav-
ioral patterns while writing code, and perhaps to allow a
study design that switches back and forth between coding
tasks and survey questions as many times as necessary.
We would also like to add an explicit feature allowing
participants to pause and resume sessions at their conve-
nience, without worrying about closing their browser or
having their instance killed by the VM manager as inac-
tive. Furthermore, we plan to add an automatic invitation
system, which invites new participants depending on the
current workload as well as sending re-invites to partici-
pants who were rejected because no resources were avail-
able. We also plan to support other researchers who wish
to extend Developer Observatory, and will open-source
Developer Observatory as well as provide our contact in-
formation for support.3 While we did not use debugging
during the study, it is possible to extend Jupyter with de-

3https://developer-observatory.com



bugging functionality using ipdb4 to give developers an
additional tool that they might normally use.

Takeaways. Security experiments in which develop-
ers are asked to write code are increasingly common. We
developed Developer Observatory, a distributed, online
platform for administering security programming stud-
ies to developers remotely. We found that Developer Ob-
servatory allowed us to recruit professional and hobbyist
developers, from all over the world, faster and more eas-
ily than for a lab study. This allowed us to increase the
power and generalizability of our experiments, with little
to no loss of internal validity.

We designed Developer Observatory both to meet our
immediate needs and to be extensible to other security
experiments. Our experience suggests that interaction
with Developer Observatory was satisfactory both for us
as researchers and for most of our participants. We hope
that by providing Developer Observatory as an open-
source tool for the security community, we can help in-
crease researchers’ access to developers, lessen the in-
convenience of study participation for developers, and
increase the scale and validity of future research.

7 Acknowledgements and disclaimer

The authors wish to thank Mary Theofanos, the anony-
mous reviewers, and all our study participants. This work
was supported in part by the German Ministry for Educa-
tion and Research (BMBF) through funding for the Cen-
ter for IT-Security, Privacy and Accountability (CISPA),
and by the U.S. Department of Commerce, National In-
stitute for Standards and Technology, under Cooperative
Agreement 70NANB15H330.

Any mention of commercial products is for informa-
tion only; such identification is not intended to imply rec-
ommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply
that these entities, materials, or equipment are necessar-
ily the best for the purpose. This paper is presented with
the hope that its content may be of interest to the general
scientific community. The views in this paper are those
of the authors, and do not necessarily represent those of
the Census Bureau, the Department of Commerce, or the
U.S. Government.

4https://pypi.python.org/pypi/ipdb

References
[1] ACAR, Y., BACKES, M., FAHL, S., GARFINKEL, S., KIM, D.,

MAZUREK, M. L., AND STRANSKY, C. Comparing the Usabil-
ity of Cryptographic APIs. In Proc. 38th IEEE Symposium on
Security and Privacy (SP’17) (2017), IEEE.

[2] ACAR, Y., BACKES, M., FAHL, S., KIM, D., MAZUREK,
M. L., AND STRANSKY, C. You Get Where You’re Looking For:
The Impact of Information Sources on Code Security. In Proc.
37th IEEE Symposium on Security and Privacy (SP’16) (2016),
IEEE.

[3] ACAR, Y., FAHL, S., AND MAZUREK, M. L. You are Not Your
Developer, Either: A Research Agenda for Usable Security and
Privacy Research Beyond End Users. In Proc. IEEE Secure De-
velopment Conference (SecDev’16) (2016), IEEE.

[4] ACAR, Y., STRANSKY, C., WERMKE, D., MAZUREK, M. L.,
AND FAHL, S. Security Developer Studies with GitHub Users:
Exploring a Convenience Sample. In Proc. 13th Symposium on
Usable Privacy and Security (SOUPS’17) (2017), USENIX As-
sociation.

[5] BENZEL, T. The science of cyber security experimentation: the
DETER project. In Proc. 27th Annual Computer Security Appli-
cations Conference (ACSAC’11) (2011), ACM.

[6] DI PENTA, M., STIREWAL, R., AND KRAEMER, E. Designing
your Next Empirical Study on Program Comprehension. In Proc.
15th IEEE International Conference on Program Comprehension
(ICPC’07) (2007), IEEE.

[7] FORGET, A., KOMANDURI, S., ACQUISTI, A., CHRISTIN, N.,
CRANOR, L. F., AND TELANG, R. Security behavior observa-
tory: Infrastructure for long-term monitoring of client machines.
Tech. rep., Carnegie Mellon University, CyLab, 2014.

[8] LVESQUE, F. L., AND FERNANDEZ, J. M. Computer security
clinical trials: Lessons learned from a 4-month pilot study. In
Proc. 7th USENIX Workshop on Cyber Security Experimentation
and Test (CSET’14) (2014), USENIX Association.

[9] NANDUGUDI, A., MAITI, A., KI, T., BULUT, F., DEMIR-
BAS, M., KOSAR, T., QIAO, C., KO, S. Y., AND CHALLEN,
G. PhoneLab: A Large Programmable Smartphone Testbed. In
Proc. 1st International Workshop on Sensing and Big Data Min-
ing (SENSEMINE’13) (2013), ACM.

[10] RUEF, A., HICKS, M., PARKER, J., LEVIN, D., MAZUREK,
M. L., AND MARDZIEL, P. Build It, Break It, Fix It: Contesting
Secure Development. In Proc. 23nd ACM Conference on Com-
puter and Communication Security (CCS’16) (2016), ACM.

[11] SIATERLIS, C., AND MASERA, M. A Review of Available Soft-
ware for the Creation of Testbeds for Internet Security Research.
In Proc. 1st International Conference on Advances in System
Simulation (SIMUL’09) (2009), IEEE.

[12] SIEGMUND, J., SIEGMUND, N., AND APEL, S. Views on Inter-
nal and External Validity in Empirical Software Engineering. In
Proc. 37th IEEE International Conference on Software Engineer-
ing (ICSE’15) (2015), IEEE.

[13] WASH, R., RADER, E., AND FENNELL, C. Can People Self-
Report Security Accurately?: Agreement Between Self-Report
and Behavioral Measures. In Proc. SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI’17) (2017), ACM.


