
Open access to the Proceedings of the 
2018 USENIX Annual Technical Conference 

is sponsored by USENIX.

DeepCPU: Serving RNN-based  
Deep Learning Models 10x Faster

Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, 
and Yuxiong He, Microsoft AI and Research

https://www.usenix.org/conference/atc18/presentation/zhang-minjia

This paper is included in the Proceedings of the 
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

https://www.usenix.org/conference/atc18/presentation/zhang-minjia


DeepCPU: Serving RNN-based Deep Learning Models 10x Faster

Minjia Zhang∗ Samyam Rajbhandari∗ Wenhan Wang Yuxiong He
Microsoft Business AI and Research

{minjiaz,samyamr,wenhanw,yuxhe}@microsoft.com

Abstract
Recurrent neural networks (RNNs) are an important
class of deep learning (DL) models. Existing DL frame-
works have unsatisfying performance for online serving:
many RNN models suffer from long serving latency and
high cost, preventing their deployment in production.

This work characterizes RNN performance and identi-
fies low data reuse as a root cause. We develop novel
techniques and an efficient search strategy to squeeze
more data reuse out of this intrinsically challenging
workload. We build DeepCPU, a fast serving library on
CPUs, to integrate these optimizations for efficient RNN
computation. Our evaluation on various RNN models
shows that DeepCPU improves latency and efficiency
by an order of magnitude on CPUs compared with exist-
ing DL frameworks such as TensorFlow. It also empow-
ers CPUs to beat GPUs on RNN serving. In production
services of Microsoft, DeepCPU transforms many mod-
els from non-shippable (due to latency SLA violation) to
shippable (well-fitting latency requirements) and saves
millions of dollars of infrastructure costs.

1. Introduction
Deep learning (DL) is a fast-growing field pervasively in-
fluencing many applications on image, speech, and text
processing. Traditional feed forward neural networks
assume that all inputs (and outputs) are independent of
each other. This could be a bad idea for many tasks. For
example, to predict the next word in a sentence, we had
better know which words come before that. To classify
what kind of event is happening to the next point of a
movie, we had better reason from the previous events.
Recurrent neural networks (RNNs) are an important and
popular class of DL models that address this issue by
making use of sequential information [22,35,51]. RNNs
perform the same task for every element in the sequence,
with the output being dependent on the previous compu-
tation. This is somewhat similar to the human learning,
e.g., to understand a document, we read word by word,
sentence by sentence, and carry the information along
in our memory while reading. RNNs have shown great
promise in many natural language processing tasks, e.g.,
language model [16,44], machine translation [15,21,58],
machine reading comprehension [18, 25, 39, 53], speech
∗Both authors contributed equally. Order of appearance is random.

recognition [31, 34, 66], and conversational bots [62].
Like other DL models, using RNNs requires two steps:

(1) learning model weights through training, and (2) ap-
plying the model to predict the results of new requests,
which is referred to as serving, or equivalently, infer-
encing or scoring. Training is a throughput-oriented
task: existing systems batch the computation of multiple
training inputs to obtain massive parallelism, leveraging
GPUs to obtain high throughput. Users can often tolerate
fairly long training time of hours and days because it is
offline. Serving, on the other hand, makes online predic-
tion of incoming requests, imposing different goals and
unique challenges, which is the focus of this paper.

Latency and efficiency are the two most important
metrics for serving. Interactive services often require re-
sponses to be returned within a few or tens of millisec-
onds because delayed responses could degrade user sat-
isfaction and affect revenue [27]. Moreover, large-scale
services handle massive request volumes and could re-
quire thousands of machines to serve a single model.
Many RNN models from production services such as
web search, advertisement, and conversational bots re-
quire intensive computation and could not be shipped be-
cause of serving latency violation and cost constraints.

Detailed investigation shows that popular DL frame-
works, e.g., TensorFlow and CNTK, exhibit poor perfor-
mance when serving RNNs. Consider the performance
metric of floating point operations per second (flops),
which is a standard measure for computations like DL
that are dominated by floating-point calculations. Our
test results show that on a modern Intel CPU with peak
performance of 1.69Tflops, using TensorFlow/CNTK for
RNN serving only gets less than 2% of hardware peak.
This naturally raises many questions: Why is there such
a big performance gap between hardware peak and the
existing implementations? Are we dealing with an intrin-
sically challenging workload or less optimized systems?
Would different hardware, such as GPU, help?

We carefully characterize RNN performance and an-
swer the above questions.

First, RNN serving is an intrinsically challenging
workload. Due to stringent latency SLA, online serv-
ing systems often process each request upon its arrival,
or at best, batch a few requests whenever possible. With
a batch size of 1 (or a few), the computation is dominated
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by several vector-matrix multiplications (or matrix multi-
plications), that have poor data reuse and thus are bottle-
necked on cache/memory bandwidth. Since the speed of
data transfer is far slower than the computational speed
of CPUs, this leaves cores waiting for data instead of
conducting useful computation, leading to poor perfor-
mance and latency.

Second, existing DL frameworks rely on parallel-
GEMM (GEneral Matrix to Matrix Multiplication), im-
plementations which are not targeted to optimize the type
of matrix multiplications (MMs) in RNN computations.
parallel-GEMM is designed to optimize large MMs with
high data reuse by hiding the data movement cost with
ample computation [29]. MMs in RNNs are usually
much smaller, fitting entirely in shared L3 cache, but
with minimal data reuse: data movement from shared L3
cache to private L2 cache is the main bottleneck. Due to
limited data reuse, parallel-GEMM can no longer hide
the data movement, requiring different considerations
and new techniques. Furthermore, as weights are repeat-
edly used at MMs of each step along the sequence, it
presents a potential reuse opportunity from RNN domain
knowledge, which parallel-GEMM does not exploit.

Lastly, would GPU help? RNN serving is computa-
tionally intensive but with limited parallelism. In par-
ticular, the amount of computation grows linearly with
the sequence length: the longer the sequence, the more
steps the computation carries. However, the sequential
dependencies make it hard to parallelize across steps. As
the batch size is also small in serving scenario, there is
rather limited parallelism for RNN serving. As GPUs use
a large number of relatively slow cores, they are not good
candidates because most of the cores would be idle under
limited parallelism; CPUs are a better fit with a smaller
number but faster cores.

With the challenges and opportunities in mind, we de-
velop novel techniques to optimize data reuse. We build
DeepCPU, an efficient RNN serving library on CPUs,
incorporating the optimization techniques. Our key tech-
niques include (1) private-cache-aware partitioning, that
provides a principled method to optimize the data move-
ment between the shared L3 cache to private L2 cache
with formal analysis; (2) weight-centric streamlining,
that moves computation to where weights are stored to
maximize data reuse across multiple steps of RNN exe-
cution. Both help overcome the limitation of directly ap-
plying parallel-GEMM and optimize data reuse on multi-
core systems. We also leverage existing techniques, such
as MM fusion and reuse-aware parallelism decision, in
the new context of RNN optimization.

Effectively integrating these techniques together is
non-trivial, requiring to search a large space to find op-
timized schedules. We model RNN computation using a
Directed Acyclic Graph of Matrix Multiplication nodes

(MM-DAG), supporting a rich set of optimization knobs
such as partitioning (splitting a node) and fusion (merg-
ing nodes). It is well known that the traditional DAG
scheduling problem of minimizing execution time by de-
ciding the execution order of the nodes is NP-hard even
in the absence of additional knobs [28]. The optimization
knobs further enlarge the search space exponentially, and
it is infeasible to exhaustively enumerate all schedules.
We develop an efficient search strategy that requires far
fewer calibration runs.

We compare DeepCPU with popular state-of-the-art
DL frameworks, including TensorFlow and CNTK, for
a wide range of RNN models and settings. The results
show DeepCPU consistently outperforms them on CPUs,
improving latency by an order of magnitude. DeepCPU
also empowers CPUs to beat highly optimized imple-
mentations on GPUs. We further demonstrate its impact
on three real-world applications. DeepCPU reduces their
latency by 10–20 times in comparison to TensorFlow. To
meet latency SLA, DeepCPU improves the throughput of
the text similarity model by more than 60 times, serving
the same load using less than 2% of machines needed by
the existing frameworks.

The key contributions of the work include: 1) Char-
acterizing performance limitations of the existing meth-
ods (Section 3). 2) Developing novel techniques and a
search strategy to optimize data reuse (Section 4 and 5).
3) Building DeepCPU, a fast and efficient serving library
on CPUs (Section 4 and 5). 4) Evaluating DeepCPU and
showing order of magnitude latency and efficiency im-
provement against the existing systems (Section 6).

DeepCPU has been extensively used in the production
of Microsoft to reduce serving latency and cost. It trans-
forms the status of many DL models from impossible
to ship due to violation of latency SLA to well-fitting
SLA requirements. It empowers bigger and more ad-
vanced models, improving accuracy and relevance of ap-
plications. DeepCPU also greatly improves serving ef-
ficiency, saving thousands of machines and millions of
dollars per year for our large-scale model deployments.

2. Background
An RNN models the relationships along a sequence by
tracking states between its steps. At each step t (Fig. 1a),
it takes one unit of input xt (e.g., a token in a text, or
a phoneme in a speech stream) and makes a prediction
yt based on both the current input xt and the previous
hidden (or cell) state ht−1. The hidden states {ht} form a
loop, allowing information to be passed from one step to
the next. The block of computation per step is called an
RNN cell, and the same cell computation is used for all
inputs of the sequence. An RNN (sequence) computation
can be viewed as an unrolled chain of cells (Fig. 1b).
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Figure 1: a) RNN with a recurrent structure. b) Unrolled
RNN. c) LSTM structure.

LSTM/GRU. There are many variations of RNNs, in-
heriting the recurrent structure as above but using differ-
ent cell computations. The two most popular ones are
Long Short Term Memory (LSTM) and Gated Recurrent
Unit (GRU) network, best known for effectively catching
long-term dependencies along sequences. We use LSTM
as an example and illustrate its cell computation:

it = σ(Wi · xt +Ui ·ht−1 +bi)

ft = σ(W f · xt +U f ·ht−1 +b f )

ot = σ(Wo · xt +Uo ·ht−1 +bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wc · xt +Uc ·ht−1 +bc)

ht = ot ◦ tanh(ct) .

Here σ(·) denotes the sigmoid function. Online tutori-
als [7, 12] describe good insights of the formulation on
how it facilitates learning. Here we focus on describ-
ing the main computations. We denote E as the input
dimension of the input vector xt , and H as the hidden
dimension of the hidden vector ht . LSTM includes 4 in-
put MMs, which multiply input vector xt with four input
weight matrices W{i, f ,o,c} of size E ×H each (marked
as blue in Fig. 1c). It has 4 hidden MMs, which multi-
ply hidden vector ht−1 with four hidden weight matrices
U{i, f ,o,c} of size H ×H each (red in Fig. 1c). Within
each cell, there is no dependency among the 8 MMs, and
across cells, the hidden state of step t depends on step
t−1 (as shown by Fig. 1c). LSTM also consists of a few
element-wise additions (+) and products (◦), as well as
activation functions such as σ and tanh.

Similar to the LSTM cell, GRU cell has 6 instead of 8
MMs but with additional dependencies within them [22].
Single vs. batch mode. To make real-time predictions,
online requests are often processed one by one as they
arrive, or occasionally, under a small batch. Given a

batch size of B, the batched input xt can be represented
as a matrix of size B× E, which transforms the un-
derlying computation from a vector-matrix to a matrix-
matrix multiplication, exposing more opportunities for
data reuse. However, because of tight latency require-
ments and spontaneous request arrivals, the batch size at
serving is usually much smaller (e.g., 1 to 10) than the
large mini-batch size (often hundreds) during training.

3. Performance Characterization
Existing DL frameworks such as TensorFlow/CNTK im-
plement RNNs as a loop of cell computation: as shown
in Lis. 1, 8 MMs in the LSTM cell are fused into a sin-
gle MM, executed using parallel BLAS libraries such as
Intel-MKL [3], OpenBLAS [6] or Eigen [1]. We measure
their performance in serving scenarios with small batch
size from 1 to 10. On a dual-socket Xeon E5-2650 CPU
machine, we often observe performance of < 30Gflops:
less than 2% of the machine peak of 1.69Tflops. What is
the cause of such a big gap?
Listing 1: LSTM Implementation in TensorFlow/CNTK
1 for t in input_sequence:

2 [ f ′t i′t o′t c′t ] = [xt ht−1]

[
W f Wi Wo Wc
U f Ui Uo Uc

]
3 ct = σ( f ′t ) ◦ ct−1 + σ(i′t ) ◦ tanh(c′t )
4 ht = σ(o′t ) ◦ tanh(ct )

The first step of performance analysis is to identify
the dominating computation. In RNNs, the total amount
of computation is dominated by MMs. The total ops in
MMs per RNN cell are O (B× (E +H)×H), and the to-
tal ops in element-wise operations and activations func-
tions are O (B×H). Typically the total number of ops
in MMs is two to three orders of magnitude larger than
the rest combined. As such, RNN performance primarily
depends on the MMs, which is the focus of this study.

We analyzed MMs in the RNNs, and identified three
key factors causing poor performance.
i) Poor data reuse. Data reuse at a particular level of
memory hierarchy is a measure of the number of com-
putational ops that can be executed per data load/store
at that level of memory hierarchy. Assuming a complete
overlap between computation and data movement (best
case scenario), the execution time of a computation can
be estimated as a function of the data reuse using the
roofline model [65] as

Time ≥ Max(DataMoveTime,CompTime) (1)

= Max( DataMoved
DataBandwidth ,

TotalComp
Peak )

= Max(TotalComp/Reuse
DataBandwidth , TotalComp

Peak )

Based on this execution time, note that poor data reuse
results in poor performance because on modern archi-
tectures, the computational throughput is significantly
higher than the data movement throughput. Let us look at
an example of L3 to L2 bandwidth since all RNN models
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we have seen fit in L3 cache of modern CPUs: the peak
computational performance of a Xeon E5-2650 machine
is 1.69Tflops while the observable DataBandwidth be-
tween L3 and L2 cache on it is 62.5 GigaFloats/s (250
GB/s), measured using the stream benchmark [8]. If the
reuse is low, the total execution time is dominated by the
data movement, resulting in poor performance.

This is indeed the case for RNN in serving scenario
where the batch size tends to be very small. To see this,
consider an MM:C[i, j] = ∑k A[i,k]×B[k, j]. If we as-
sume that both the inputs and the outputs reside in L3
cache at the beginning of the computation, then both the
inputs and the outputs must be read from L3 cache to L2
cache at least once, and the outputs must be stored from
L2 cache to L3 cache at least once during the MM. There-
fore, the maximum possible data reuse during this MM
from L2 cache is given by 2×I×J×K

|A|+|B|+2|C| , where I,J and K
are the size of indices i, j and k. Similarly, the fused MM
of LSTM has the shape [B,E +H]× [E +H,4H], and its
data reuse is:

MaxDataReuse = 8×B×H×(E+H)
|Input|+|Weights|+2|Out put| (2)

= 8×B×H×(E+H)
B×(E+H)+4×(E+H)×H+8×B×H (3)

When batch size B� min(H,E), the maximum data
reuse in Eqn. 2 reduces to 2B. Take B = 1 as an exam-
ple: the best achievable performance of LSTM on the
Xeon E5-2650 machine is at most 125Gflops based on
the measured L3 bandwidth of 250 GB/s. This is less
than 8% percent of the machine’s peak of 1.69Tflops.
ii) Sub-optimal MM partitioning. Parallel-GEMM li-
braries are designed to optimize performance of large
MMs that have significant data reuse (> 1000). They
exploit this reuse from L2 cache level using loop-tiling
to hide the data movement cost from both memory and
L3 cache [29]. In contrast, the amount of reuse in RNNs
is in the order of B, which is often a small value between
1 and 10 for most serving cases. This is not enough to
hide the data movement cost even though MMs in RNN
are small enough to fit in L3 cache. In the absence of
large reuse, the performance of parallel-GEMM is lim-
ited by the data movement cost between shared L3 cache
and private L2 caches. Parallel-GEMM is sub-optimal at
minimizing this data movement.

More specifically, L3 cache on a modern CPU feeds to
multiple L2 caches that are private to each core. During
RNN computations, some data might be required by mul-
tiple cores, causing multiple transfers of the same piece
of data from L3 cache. Thus, the total data movement
between L3 and L2 caches depends on the partitioning of
the MM computation space and its mapping to the cores.
For example, if we split an MM computation among two
cores, such that the first core computes the upper half of
the output matrix C, while the second core computes the

lower half, then input matrix B must be replicated on L2
cache of both cores, as the entire matrix B is required to
compute both halves of matrix C. Alternatively, if the
computation is split horizontally, then the input matrix
A must be replicated on L2 cache of both cores. Differ-
ent partitionings clearly result in different amount of data
reuse. Parallel-GEMM does not always produce a parti-
tioning that maximizes this data reuse. Libraries special-
ized for small matrices are not sufficient either, as some
focus only on sequential execution [56] while others fo-
cus on MM small enough to fit in L1 cache [43].
iii) No data reuse across the sequence. During serv-
ing, weight matrices of RNNs remain the same across the
sequence, but existing solutions do not take advantage
of that to optimize data reuse. More precisely, parallel-
GEMM used to execute the MMs is not aware of this
reuse across the sequence. During each step of the se-
quence, the weight matrix could be loaded from L3 cache
to L2 cache. However, it is possible to improve perfor-
mance of RNNs by exploiting this data reuse.

Beyond MM: Beyond limited data reuse at MMs,
existing RNN implementations in DL frameworks such
as TensorFlow have other performance limiting factors,
e.g., data transfer overheads among operators, buffer
management overheads, unoptimized activation func-
tions, which we address in DeepCPU. For example, we
develop efficient SIMD implementations of tanh and
sigmoid activation functions using continued fraction ex-
pansion, supporting any desired degree of precision by
adjusting the number of terms to terminate the expan-
sion [60]. Since these improvements mostly require good
engineering practice than novel methods, we did not dis-
cuss them in detail for the interest of space.

4. Challenges and Strategies
Challenges. Finding an optimized implementation for
RNN execution that maximizes data reuse while also
efficiently using low-level hardware resources (such as
SIMD hardware) is challenging due to the explosive
space of optimization knobs and execution schedules.
Practically infinite number of valid choices can be ob-
tained through loop permutations, loop fusions, loop un-
rolling, unroll factor selection, loop tiling, tile-size selec-
tion, MM reordering, vectorization, register tiling, regis-
ter tile size selection, parallel loop selection, paralleliza-
tion granularity selection, thread-to-core mapping etc.,
and their combinations. Furthermore, enabling those op-
timization knobs and creating a schedule generator for
all choices is a non-trivial engineering task. Addition-
ally, the optimal choice is dependent on both hardware
architecture and RNN parameters: a single solution will
not work for all cases and an optimized schedule needs
to be tuned case by case in an efficient manner. All of the
above make the problem challenging in practice.
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Figure 2: DeepCPU optimization overview.
Strategies: DeepCPU overview. To overcome these
challenges, we judiciously define the search space and
identify the most important techniques to boost data lo-
cality. This empowers efficient search within a selective
set of optimization knobs and schedules for obtaining the
best RNN performance. We build the entire optimization
pipeline into a library, which we call DeepCPU. Fig. 2
highlights its key features and workflow.

An important start of the optimization is to define a
concise search space, which we develop upon two in-
sights. (1) We identify the most performance critical
operators, MMs, and model the computation graph con-
necting them to capture the first-order impact. We can
do this by constructing a Matrix Multiplication Directed
Acyclic Graph (MM-DAG) to represent the RNN com-
putation, where each node represents an MM and edges
represent dependencies among them. This model allows
us to build schedules using MMs as the basic build-
ing blocks, capturing key computations while abstract-
ing away other low-level details. (2) Instead of examin-
ing all valid schedules for the MM-DAG, which is not
trackable, we can leverage the iterative nature and other
properties of RNNs, prune search space to deduplicate
the performance-equivalent schedules, and remove those
that cannot be optimal. These two insights are imple-
mented as 1 and 2 in Fig. 2.

We then identify and develop four techniques to ef-
fectively boost data locality for RNNs, applying them on
each schedule (shown as 3 , 4 , 5 , 6 in Fig. 2):

• MM-fusion: fuses smaller MMs into larger ones,
improving data reuse;

• Reuse-aware parallelism generator: identifies
best parallelism degree within and across MMs
through auto-tuning, jointly considering locality;

• Private-cache-aware-partitioning (PCP): opti-
mizes data movement between shared L3 cache and
private L2 cache with a novel and principled parti-

tioning method;
• Weight centric streamlining (WCS): maps the

partitions produced by PCP to cores in a way that
enables reuse of weights across the sequence.

The parallelism generator 4 iterates over different
choices on parallelism degrees. For a parallelism choice,
we use PCP 5 to obtain locality optimized parallel par-
titions. The partitions are then mapped to cores using
WCS 6 . Individual partitions are implemented using
highly optimized single-threaded BLAS library which
optimizes for low-level hardware resources such as L1
cache and SIMD instruction set. DeepCPU applies this
schedule to obtain the execution time, and loop over to
find the best parallelism choice. Once this process is
completed for all schedules generated by 2 , DeepCPU
simply chooses the schedule that is the fastest. This cal-
ibration process is often called once during model con-
struction, and then the optimized schedule is repeatedly
used for serving user requests of the model.

In the design of DeepCPU, we deliberately combine
analytical performance analysis (at search space prun-
ing and PCP) with empirical calibration (to measure the
combined impact of locality and parallelism). The for-
mer effectively reduces the search space, saving tuning
time to run many suboptimal/redundant schedules. The
latter reliably measures the actual execution time to cap-
ture complex software and hardware interaction, which
can hardly be accurately estimated. This combination
empowers both effectiveness and efficiency.

5. DeepCPU Optimizations
This section dives into DeepCPU optimizations from re-
fining search space to locality optimizations. We con-
clude it by demonstrating the performance breakdown
and impact of these optimizations.
5.1. MM-DAG Scheduling
DeepCPU models RNN computations as MM-DAGs and
optimizes the schedules to execute them. Given an MM-
DAG, a valid schedule determines an execution order-
ing of its nodes that satisfies all the dependencies. We
consider only those valid schedules that are composed
of phases: A phased schedule executes an MM-DAG
in a sequence of phases S1,S2,S3, ...,Si, ..., where each
phase Si represents a non-overlapping subset of nodes
and S = ∑i Si consists of all nodes. There is a total or-
dering between phases such that if i < j, then all nodes
in Si must be executed before S j. However, nodes within
a phase can be executed in parallel. Lst. 2 shows two ex-
amples of valid phased schedules for LSTM. In Schedule
1, all MMs at a timestep t are in Phase t.

The phases can be divided into two categories: i) If a
phase consists of an MM that has dependency across the
timesteps, we call it a time-dependent phase, e.g., those
MMs taking hidden state ht as inputs, ii) Otherwise, if
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a phase does not contain any MM that has dependency
across the sequence, we call it a time-independent phase.
For example, in Schedule 2 of Lst. 2, Phase 1 is time-
independent, and consists of all the MMs computing in-
put transformation (with weights Wi,Wf,Wc and Wo)
across all timesteps; all other phases are time-dependent,
requiring the value of ht−1 to compute ht .

Listing 2: Phased LSTM Schedule-1 and 2
1 // Phased LSTM Schedule 1
2 for t:
3 Phase t: //time - dependent
4 Wi · xt ,W f · xt ,Wc · xt ,Wo · xt
5 Ui ·ht−1,U f ·ht−1,Uc ·ht−1,Uo ·ht−1
6
7 // Phased LSTM Schedule 2
8 Phase 1: //time - independent
9 Wi · x0, ..,Wi · xt ,W f · x0, ..,W f · xt ,

10 Wc · x0, ..,Wc · xt ,Wo · x0, ..,Wo · xt
11 for t:
12 Phase (t+1): //time - dependent
13 Ui ·ht−1,U f ·ht−1,Uc ·ht−1,Uo ·ht−1

Reducing search space. We propose three rules to
prune the search space, removing sub-optimal and re-
dundant schedules: i) Time-dependent phases must have
symmetry across timesteps. As RNN computation is
identical across timesteps, the fastest schedule for exe-
cuting each timestep should also be identical. ii) If two
consecutive phases are of the same type, then there must
be a dependency between the two phases. If no depen-
dency exists then this schedule is equivalent to another
schedule where a single phase consists all MMs in both
phases. iii) We compute time-independent phases before
all dependent ones, as shown in Schedule 2 of Lst. 2.
Having phases of the same type in consecutive order in-
creases reuse of weights.
5.2. Data Locality Optimizations
DeepCPU improves data reuse within each phase and
across phases through four techniques.
5.2.1 Fusion of MMs
DeepCPU fuses all possible MMs within each phase —
Two MMs can be fused into a single MM if they share a
common input matrix.
How to fuse? Consider two MMs, MM1 : C1[i1, j1] =
∑k1 A1[i1,k1] × B1[k1, j1] and MM2 : C2[i2, j2] =

∑k2 A2[i2,k2]×B2[k2, j2]. W.l.o.g., assume A1[i1,k1] =
A2[i1,k1], as shared input matrix. The two MMs
can be fused into a single one MM12 by concate-
nating B1 and B2, and C1 and C2 along the col-
umn, i.e., C12[i1, j12] = ∑k1 A1[i1,k1]× B12[k1, j12]
where B12[k1, j1] = B1[k1, j1], B12[k2,J1 + j2] =
B2[k2, j2], and C12[i1, j1] = C1[i1, j1], C12[i2,J1 +
j2] = C2[i2, j2] (J1 is the size of index j1).
Why fuse? Fusion improves data reuse. Consider using
any GEMM implementation to execute MM1 and MM2
without fusion. While both MM1 and MM2 share a com-
mon input, GEMM is not aware of this reuse and could

not take advantage of it. However, if we fuse them, this
reuse is explicit in the MM and GEMM can exploit it to
improve both performance and scalability.
5.2.2 Reuse-aware Parallelism Generator
Parallelism boosts compute capacity but may also in-
crease data movement. This part discusses the relation
of locality and parallelism, and our parallelism strategy.
How to parallelize a single MM? Executing an MM
with the maximum available parallelism is not always
the best option for performance. As the parallelism in-
creases, either the input or output must be replicated
across multiple L2 private caches, thus increasing the to-
tal data movement. Once the level of parallelism reaches
a certain threshold, the performance is limited by the data
movement instead of the computational throughput. As
shown in Fig. 3a, the MM performance degrades after
certain parallelism. It is crucial to find the optimal level
of parallelism instead of applying the common wisdom
of using all available cores.
How to parallelize concurrent MMs? Multiple MMs
within a phase do not have any dependencies. DeepCPU
executes them as Parallel-GEMMs-in-Parallel, where
multiple MMs are executed concurrently with each MM
executing in parallel. For example, to compute two inde-
pendent MMs, M1 and M2, on P cores, we run M1 and
M2 in parallel, each using P/2 cores. This is in contrast
with Parallel-GEMMs-in-Sequence, where we run M1
first using P cores followed by M2. Parallelizing an MM
across multiple cores increases the data movement from
L3 to L2 cache. In contrast, executing multiple MMs in
parallel across multiple divided groups of cores allows
each group to work on a unique MM without requiring
data replication across them, improving data reuse while
maintaining the same parallelism level. Fig. 3b shows
empirical results. We run two independent and identi-
cal MMs with increased parallelism and report the best
performance achieved. Parallel-GEMMs-in-Parallel sig-
nificantly outperforms Parallel-GEMMs-in-Sequence.
How to optimize parallelism degree? Finding the op-
timal parallelism degree analytically is non-trivial as
it depends on many architectural parameters. How-
ever, it is also not necessary in practice. DeepCPU ap-
plies Parallel-GEMMs-in-Parallel if a phase has multiple
fused MMs. It then uses auto-tuning to identify the op-
timal parallelism for the phase quickly, as the number of
cores on a modern multi-core CPU is less than two or-
ders of magnitude and well-known RNN operators such
as LSTMs/GRUs have at most two fused MMs per phase.
5.2.3 Private-Cache-Aware Partitioning (PCP)
We develop PCP, a novel private-cache-aware partition-
ing strategy for executing MMs across multicores to op-
timize L2 reuse within and across phases. PCP provides
a principled method to optimize data movement with for-
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Figure 3: For MMs of different sizes, (a) shows performance results by increasing the parallelism degree. (b) om-
pares Parallel-GEMMs-in-Parallel vs Parallel-GEMMs-in-Sequence, plus Sequential-GEMM as baseline. C) com-
pares parallel-GEMM, PCP with and without weight-centric streamlining for running MMs.

mal analysis: For a given MM with parallelism degree P,
we show PCP produces a P-partitioning of the compu-
tation space such that the total data movement between
L3 and L2 cache is minimized. DeepCPU employs PCP
to generate a locality-optimized schedule for each paral-
lelism configuration without requiring to empirically cal-
ibrate different partitions and measure their performance.
Reuse within phases. Suppose an MM C[i, j] =

∑k A[i,k]×B[k, j] has P partitions, where Xi,X j and Xk
are the number of partitions along each of the i, j, k di-
mensions and Xi×X j×Xk = P. We first derive the total
data movement between L3 and L2 cache as a function
of the partitions. This data movement depends on the re-
lation between the size of the input and output matrices
of the MM and the sizes of the L3 and L2 caches. For
all RNNs of interest in serving scenario, we observe that
the input matrix is much smaller than L2 cache, and the
sum of all matrices fit in L3 cache. Under such condi-
tions, we prove in Lemma 5.1 and Theorem 5.2 that the
total data movement between L3 and L2 cache is equal to
X j|A|+Xi|B|+2Xk|C|. By choosing Xi, X j, and Xk that
minimizes this quantity, PCP obtains a parallel partition-
ing that maximizes data reuse from L2 cache.
Lemma 5.1. The tight bound on data movement between
a slow memory and a fast memory of size S for an MM
C[i, j]+= ∑k A[i,k]×B[k, j] is given by |A|+ |B|+2|C|,
when S ≥ min(|A|, |B|, |C|) + H + 1. Here we assume
that the inputs and output matrices initially reside in
the slow memory, and the final output must also reside
in the slow memory. H is a constant not greater than
max(I,J,K), where I, J and K are the sizes of indices i,
j and k respectively.

Proof. Lower bound: As both inputs and outputs orig-
inally reside in slow memory they must be read to fast
memory at least once to compute the MM. After com-
putation, the output must be written to slow memory at
least once. That gives |A|+ |B|+2|C| as a lower bound.

Upper bound: W.l.o.g., assume A fits in S. Lst. 3

shows a schedule where the total data movement between
slow and fast memory is given by |A|+ |B|+2|C|, when
S≥ |A|+K+1. Note H (=K) is a (small) buffer space to
hold a single column of B during the computation.

Listing 3: MM Schedule that achieves data movement of
|A|+ |B|+2|C| when S≥ |A|+K +1
1 //C[i,j] = ∑k A[i,k] × B[k,j]
2 Load A[*,*] in A_buf // MemReq = |A|
3 for j
4 Load B[*,j] in B_buf // MemReq = K
5 for i
6 Load C[i,j] in c // MemReq = 1
7 for k
8 c += A_buf[i,k] × B_buf[k]
9 Store c in C[i,j]

Theorem 5.2. Consider P cores on a CPU, and an MM
C[i, j]+ = ∑k A[i,k]×B[k, j], where |A|+ |B|+ |C| ≤
|L3Cache| and min(|A|, |B|, |C|) + H + 1 ≤ |L2Cache|.
H is a constant not greater than max(I,J,K), where I, J
and K are the sizes of indices i, j and k. For a P-way
partitioning 〈Xi,X j,Xk〉 where Xi×X j×Xk = P, a tight
bound on the data movement between L3 and L2 cache
is given by X j|A|+Xi|B|+2Xk|C|.
Proof. Each of the partitions given by 〈Xi,X j,Xk〉 is an
MM of size I

Xi
× J

X j
× K

Xk
. From Lemma. 5.1 we see that a

tight bound on the data movement between L3 cache and
L2 cache for each of these sub-MMs is given by I×K

Xi×Xk
+

K×J
Xk×X j

+ 2 I×J
Xi×X j

. Thus the total data movement for all

partitions is given by Xi × X j × Xk × ( I×K
Xi×Xk

+ K×J
Xk×X j

+

2 I×J
Xi×X j

) = X j|A|+Xi|B|+2Xk|C|.
Reuse across phases. PCP so far maximizes the data
reuse by considering each phase independently. How-
ever, identical time-dependent phases (TDPs) across a
sequence have data reuse between them. For each MM in
these phases, weight matrices stay the same. We extend
PCP to exploit the reuse in weights across phases.

For a given P-partitioning strategy 〈Xi,X j,Xk〉, the
weight matrix B is divided into blocks of size |B|

X j×Xk
. If

this block fits in L2 cache of an individual core, then it
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will not be evicted from L2 cache for the entire com-
putation sequence as long as the mapping between the
MM partitions and the compute cores does not change.
In such cases, denoting the sequence length of RNN as
seq len, the total data movement is given by

seq len× (X j|A|+2Xk|C|)+Xi|B|
as the weight matrix B needs to be read only once from
L3 cache at the first time step. In general, total data-
movement between L3 and L2 caches is calculated as{

seq len× (X j|A|+2Xk|C|)+Xi|B| if |B|
X j∗Xk

≤ |L2|
seq len× (X j|A|+Xi|B|+2Xk|C|) if |B|

X j∗Xk
> |L2|

By minimizing this piecewise function, we maximize
the data reuse across a sequence. In practice, it is not
necessary for a block of the weight matrices to fit entirely
in L2 cache. As long as the block is not much larger than
L2 cache, we can still get partial reuse.
5.2.4 Weight-Centric Streamlining (WCS)
WCS is our implementation to enable full-fledged PCP,
supporting reuse of weight matrices across TDPs. For
a given parallelism degree, PCP produces a partitioning
such that the weights required to compute the partition
fit in L2 cache of a single core (when possible), allow-
ing the weights to be reused from L2 cache across TDPs,
without being evicted. However, to ensure this reuse,
the computation must be conducted at where the weights
are, i.e., the mapping between parallel partitions and the
cores that execute them must not change across TDPs.

To this end, we use OpenMP [24] to create a parallel
region that spans the entire RNN sequence of computa-
tion. The parallelism degree is equal to the max paral-
lelism degree among all phases in the schedule. Each
thread in the parallel region is responsible for execut-
ing at most a single parallel partition during each phase.
Some threads may remain idle during phases where the
parallelism degree is less than the number of threads.
Each thread ID is mapped to a unique partition ID, and
this mapping is identical across TDPs. In essence, we
alternate the order of the sequence loop and the parallel
region such that the sequence loop is inside the parallel
region, shown as ParallelOuterRNN in Lst. 4.

Listing 4: Parallel Outer vs Parallel Inner RNN
1 ParallelOuterRNN(intput_sequence , output)
2 #pragma omp parallel
3 int id = omp_get_thread_num ()
4 for t in intput_sequence:
5 ComputeRNNOuterParallel(id, t, output)
6
7 ParallelInnerRNN(intput_sequence ,output)
8 for t in intput_sequence:
9 #pragma omp parallel

10 int id = omp_get_thread_num ()
11 ComputeRNNInnerParallel(id, t, output)

This has two major advantages over creating parallel
regions inside the sequence loop as ParallelInnerRNN, i)
it allows easy pinning of each MM parititon to a partic-

ular core across RNN steps. In OpenMP, threads in each
parallel region have their local thread IDs starting from 0.
A unique mapping between this local thread ID and the
global thread ID is not guaranteed across multiple par-
allel regions separated in time. Thread affinity settings
allow binding global thread IDs to cores or hyperthreads,
but not local thread IDs. By creating a single parallel re-
gion, we create a unique mapping between a local thread
ID and the global thread ID throughout the computation,
which ensures that an MM partition is always executed
on the same core across the entire sequence. ii) It re-
duces the overhead of creating parallel regions. Instead
of opening and closing parallel regions during each step
of the RNN sequence, we only create a parallel region
once for the entire computation.

Fig. 3c compares performance of running a sequence
of parallel-GEMM and PCP with/without WCS for var-
ied sizes of MMs. The latter two consistently outperform
the former, but the full benefit of PCP (across phases) is
realized only when used together with WCS.
5.3. Performance Impact of Optimization Techniques
We compare four implementations using different LSTM
configurations: i) Parallel-GEMM(baseline): Runs each
step of LSTM as 8 MMs in sequence, and each MM
is executed with Intel-MKL parallel-GEMM. ii) Ten-
sorFlow/CNTK Fusion: the fused MM (as Lst. 1) is
executed using Intel-MKL parallel-GEMM. iii) MM-
DAG+Fusion+PCP: All optimizations in DeepCPU ex-
cept WCS. iv) DeepCPU Kernel: All aforementioned op-
timizations.
Results. TensorFlow/CNTK Fusion has roughly the
same performance as baseline. MM-DAG+Fusion+PCP
is as good as or better than both of them. It searches
for the fused phased schedules including TensorFlow/C-
NTK fusion, as well as those that increase reuse by fus-
ing across time steps. It also applies PCP for better par-
titioning. However, it does not ensure that MMs shar-
ing same weights are mapped to the same core. In con-
trast, DeepCPU kernel is often much faster, particularly
for small batch sizes where the reuse is small within a
single phase and reuse across TDPs must be exploited
for better performance. Even for larger batch size with
the input/hidden dimension 256 and 1024, where the to-
tal size of the weight matrices is larger than the L2 cache
but individual weight blocks fit in L2 cache, DeepCPU
kernel offers good speedup by enabling reuse of weights
across TDPs.
Performance counters. We measure the amount of data
movement from L2 to L3 through L2 cache misses us-
ing L2 RQSTS.ALL DEMAND MISS counter in Intel®

VTune™ Amplifier [2]. Fig.4b shows DeepCPU signif-
icantly reduces L2 cache misses (by 8 times), verifying
its effectiveness on locality optimization.
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(a) (b)
Figure 4: (a) Performance of LSTMs (in the form of [batch size, input/hidden dimension]) with different optimization
techniques. (b) L2 cache misses for config [20, 256]. Measured at sequence length = 100 with 2000 iterations.

Search space size. DeepCPU finds the optimal execu-
tion schedule with just a few hundred calibration runs.
In the example of LSTM, we search approximately P×
Q configurations by generating P = #cores parallelism
choices, and Q phased schedules that satisfies all three
pruning criteria described in Sec. 5.1. For LSTMs,
Q < 20, which can be verified by enumerating all such
valid schedules. Per parallelism choice, PCP identi-
fies optimized partitioning analytically (e.g., integer pro-
gramming) without requiring additional empirical explo-
ration, greatly saving search space. This search/calibra-
tion process is often called once during model construc-
tion, and then the optimized schedule is repeatedly used
for serving upcoming user requests.

6. Evaluation
We compare DeepCPU with RNN implementations from
state-of-the-art DL frameworks: DeepCPU is an order
of magnitude faster than TensorFlow and CNTK for a
wide range of RNN models and configurations on CPUs.
DeepCPU also outperforms GPU implementations sig-
nificantly for most of the cases. Furthermore, we test
DeepCPU on real-world applications used in production:
it transforms these models from impossible to ship due
to latency violation to well-fitting SLA while also saving
millions of dollars in infrastructure cost.
Hardware. Our evaluation is conducted on a server with
two 2.20 GHz Intel Xeon E5-2650 V4 processors, each
of which has 12-core (24 cores in total) with 128GB
RAM, running 64-bit Linux Ubuntu 16.04. The peak
Gflops of the CPU is around 1.69Tflops. The server has
one Nvidia GeForce GTX TITAN X which is used for
measuring RNN performance on GPU.
6.1. RNN Performance Comparison
Workload. We evaluate LSTM/GRU by varying input
dimension, hidden dimension, batch size, and input se-
quence length to cover a wide range of configurations.
Comparison frameworks. There are many DL frame-
works such as TensorFlow [13], CNTK [52], Caffe2 [37],
Torch [41], Theano [17], and MXNet [19] that support
RNNs on CPUs and GPUs. We compare DeepCPU with
TensorFlow and CNTK. We choose TensorFlow because
it is adopted widely. We use TensorFlow version 1.1.0
with Accelerated Linear Algebra (XLA) compiler, opti-

mizing pointwise kernels, and with Intel Math Kernel Li-
brary (MKL) for efficient matrix operations. We let Ten-
sorFlow pick appropriate degrees for inter-op and intra-
op parallelism. We choose CNTK since a recent study
showed that it achieves good performance on RNNs [55].
CNTK also uses MKL and sets the number of threads
equal to the number of cores for MMs by default. On
GPUs, we evaluate TensorFlow, CNTK and a highly op-
timized cuDNN implementation [14, 20].
Speedup on CPUs. Table 1 presents the execution time
and speedup results of DeepCPU, in comparison to Ten-
soFlow and CNTK on CPUs, covering a wide range of
RNN model sizes. The first four columns describe the
specification of RNNs: input dimension, hidden dimen-
sion, batch size, and sequence length. Both absolute ex-
ecution time and speedup are reported. Speedup is mea-
sured as the ratio between the execution times of Ten-
sorFlow (or CNTK) versus DeepCPU, e.g., a value of 2
indicates that DeepCPU is 2 times faster. To make re-
liable measurement, we run each config 2000 times and
report the average. The results show that DeepCPU sig-
nificantly and consistently outperforms TensorFlow and
CNTK, with speedup in the range of 3.7 to 93 times, and
average speedup of 18X among all tested configurations.

Next, we conduct an in-depth performance compari-
son, showing how model parameters affect the results,
on both CPU and GPU, across 6 implementations.
Varying input/hidden dimension. Fig. 5a reports the
execution time and Gflops of LSTMs with varying in-
put/hidden dimension from 32 to 1024. This is the range
of dimension size commonly observed from RNN mod-
els in practice. Here we choose batch size of 1 to rep-
resent a common case in serving. As expected, the ex-
ecution time for all implementations increases with the
increase in dimension size. However, compared to all
implementations, DeepCPU always has the shortest ex-
ecution time and the highest Gflops on both CPUs and
GPUs for all sizes. Note that the y-axis of the execu-
tion time is in log-scale, so the actual gap is larger than
it appears. DeepCPU is more than an order of magnitude
faster than both TensorFlow and CNTK on CPUs. On
GPUs, DeepCPU has significantly higher performance
when the dimension size is small or medium (e.g., less
than 256). As the dimension size gets larger, this perfor-
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Model parameters LSTM exec. time (ms) GRU exec. time (ms) LSTM speedup GRU speedup
input hidden batch seq. len. TF CNTK DeepCPU TF CNTK DeepCPU TF CNTK TF CNTK

64 64 1 100 7.3 25 0.31 8 25 0.7 26 81 11 36
256 64 1 100 10 27 0.29 9.6 26 0.58 34 93 17 45

1024 64 1 100 19 25 0.42 16 27 0.69 45 60 23 39
64 256 1 100 21 23 0.62 17 30 0.79 34 37 22 38
64 1024 1 100 180 30 6.5 110 37 6.4 28 4.6 17 5.8

1024 1024 1 100 460 33 11 190 40 8.4 42 3 23 4.8
256 256 1 1 0.96 1.1 0.069 0.89 1 0.053 14 16 17 19
256 256 1 10 3.4 2.9 0.16 2.9 3.4 0.14 21 18 21 24
256 256 1 100 28 21 0.74 22 25 0.9 38 28 24 28

64 64 10 100 20 47 1.1 18 43 1.1 18 43 16 39
64 64 20 100 27 74 1.5 25 88 1.5 18 49 17 59

256 256 10 100 51 62 4.4 34 66 3.7 12 14 9.2 18
256 256 20 100 58 91 6.4 51 100 5.4 9.1 14 9.4 19

1024 1024 10 100 400 180 42 280 170 36 9.5 4.3 7.8 4.7
1024 1024 20 100 540 250 68 380 230 60 7.9 3.7 6.3 3.8

Table 1: Execution times and speedups of LSTMs and GRUs, comparing DeepCPU, TensorFlow and CNTK on CPU.

mance gap decreases due to increase in parallelism that
allows for an increasing number of GPU cores to kick in.
On the other hand, the CPU Gflops plateaus after dimen-
sion size of 512.
Varying sequence length. Fig. 5b shows the perfor-
mance impact of varying input sequence lengths from 1
to 100. As the sequence length increases, the execution
time of all implementations except DeepCPU increases
almost linearly, or equivalently, their Gflops stays con-
stant. DeepCPU, however, has a sharp jump in perfor-
mance when sequence length increases from 1 to 10. It
demonstrates that DeepCPU exploits data reuse across
steps: when sequence length > 1, later steps reuse the
weights from the first step, increasing Gflops. Once the
sequence length becomes larger than 10, the increase in
reuse per flop is marginal. Thus, the Gflops curve is rel-
atively flat when sequence length grows from 20 to 100.
Varying batch size. As shown in Fig. 5c, among all
CPU implementations, DeepCPU performs and scales
the best with increasing batch size. Among GPU
implementations, cuDNN performs significantly better
than TensorFlow and CNTK. Comparing DeepCPU with
cuDNN, the best CPU versus GPU implementation,
DeepCPU is better with small and moderate batch size
(< 15) and cuDNN is better with large batch sizes. This
crossover is expected. However, as discussed earlier,
batch size is often rather small for serving scenarios due
to the stringent latency SLA.

The GPU implementation in existing framework such
as TF-GPU has worse performance than cuDNN. This is
because TF-GPU and cuDNN do not use the same un-
derlying implementation. In the case of LSTMs, Tensor-
Flow constructs the LSTM operator as a composition of
matrix multiplications and activation functions. A single
LSTM operator produces hundreds of nodes in the Ten-
sorFlow computation graph. While some of these nodes

(a) Batch size=1, sequence length=100

(b) Input/hidden dimension size = 256, batch size= 1

(c) Input/hidden dimension size = 256, sequence length= 100

Figure 5: LSTM execution time and Gflops with varying
input/hidden dimension, sequence length and batch size.

are computed on the GPUs (for example matrix multipli-
cation using cuBLAS), transferring tensors among nodes
incurs quite significant overhead. In contrast, cuDNN
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implementation is a single highly optimized kernel invo-
cation for the entire sequence of the LSTM computation.
6.2. Serving Real-World RNN-Based Models
We evaluate DeepCPU on serving three real-world mod-
els. Table 2 provides their RNN specifications.
What’s inside DeepCPU? DeepCPU focuses on RNN
families and supports LSTM/GRU cell, LSTM/GRU se-
quence, bidirectional RNN, and stacked RNN networks.
It includes fundamental building blocks such as effi-
cient matrix multiplication kernels, activation functions,
as well as common deep learning layers such as high-
way network [57], max-pooling layer [40], multilayer
perceptron [50], variety of attention layers [39, 53], and
sequence-to-sequence decoding with beam search [59].
Converting trained models into DeepCPU. DeepCPU
focuses on serving, and we take a two-step approach to
convert trained models (e.g., from TensorFlow/CNTK) to
use it. 1) Replace the RNN part(s) of the original model
using DeepCPU APIs. In this paper, we implement all
three models using DeepCPU C++ APIs. The engineer-
ing work is manageable as our library contains many
reusable and common components for building neural
networks. A more automated way is to integrate our li-
brary with an existing framework, which we consider as
future work. 2) Port the weights of the trained model to
initialize the DeepCPU model instances.
Text similarity (TS). TS measures semantic similar-
ity between texts [45]. It is widely used for grading
machine translation results, detecting paraphrase, and
ranking query document relevance. It uses bidirectional
GRUs to encode text inputs (e.g., sentences) into seman-
tic vectors and measures their relevance with cosine simi-
larity. The GRU computation dominates the performance
of the model. The first row in Fig. 6 shows that with
DeepCPU, TS runs 12X faster than TensorFlow on CPUs
and 15X faster than TensorFlow on GPUs.
Attention sum reader (ASR). ASR extracts single to-
ken answer from a given context and can be used for on-
line question and answering [39]. The model uses bidi-
rectional GRU to encode both query and context into se-
mantic vectors and performs reasoning steps to figure out
which token in the context is the answer. Fig. 6 shows
that DeepCPU reduces ASR serving latency from more
than 100ms to less than 10ms, a more than 10X speedup
over TensorFlow on CPUs and GPUs.
Bidirectional attention flow model (BiDAF). BiDAF is
a high-ranked model on SQuAD reading comprehension
competition list [11] for question and answering [53]. It
has a hierarchical structure composed of five neural net-
work layers. Among them, three are LSTM-based (Ta-
ble 3). Fig. 6 shows that DeepCPU reduces the execu-
tion time of BiDAF from more than 100ms to less than
5ms, achieving more than 20x speedup against Tensor-

Flow. Table 3 lists the execution time breakdown across
layers after the optimization: DeepCPU significantly de-
creases the execution time of LSTM-based layers.1

Correctness. We use TensorFlow for correctness veri-
fication: DeepCPU always produces prediction results
matching those generated by TensorFlow.
Hardware choice. While not reported in the paper, we
have tried DeepCPU on a few different SKUs and proces-
sor generations. We have found significant performance
improvements even on Haswell and Ivy Bridge genera-
tions. The techniques are effective as long as the model
is not significantly larger than L3 cache of the hardware.
DeepCPU also provides additional performance boost
from weight-centric streamlining when the weight ma-
trices fit in L2 caches of multiple cores.

Figure 6: Execution time of TS, ASR, and BiDAF.
Meeting latency SLA with significant cost savings.
Besides greatly reducing latency to meet SLA, Deep-
CPU significantly improves efficiency and reduces serv-
ing cost. Take TS model as an example, which is used for
ranking query and document pair at our search services.
The latency SLA is 6ms and 33 selected documents are
ranked for each query. The original TensorFlow model
takes 12ms to serve a single 〈query, document〉 pair on
one CPU machine, violating latency SLA and unable to
ship. DeepCPU not only reduces the latency to meet
SLA, but more importantly, as shown in Table 4, it only
takes 5.6ms to serve a query and all of its 33 document
on the same machine. DeepCPU achieves more than
60x throughput gain (i.e., 12× 33/5.6). Our large-scale
search service answers tens of thousands of requests per
second, and would originally require more than 10K ma-
chines for hosting this model. DeepCPU reduces it to a
couple hundred, saving millions of dollars of infrastruc-
ture cost just for this model alone.

7. Related Work
DL acceleration library. The closest work to DeepCPU
are cuDNN [14, 20] and MKL-DNN [4], which are li-
braries for accelerating DL frameworks. CuDNN is a
GPU library mainly designed for maximizing training
throughput, and its performance can be limited by in-
sufficient parallelism when the model size and batch size
are small. Other work on optimizing RNNs also target

1We also optimized embedding and attention layer to improve end-
to-end latency, where the details are beyond the scope of the paper.
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Model RNN parameters
Text similarity [45] –input 200 –hidden 512 –source length 20 –target length 20 –batch size 1
ASR [39] –input 200 –hidden 256 –question length 20 –context length 100 –context batch size 10

BiDAF [53]
Phrase embedding: –input 50 –hidden 100 –question length 15 –context length 100 –context batch size 1
Modeling layer (stackd LSTM): –input 800 –hidden 100 –context length 100 –context batch size 1
Output layer: –input 1400 –hidden 100 –context length 100 –context batch size 1

Table 2: The description of model parameters of RNNs used in real-world models. Sequence lengths refer to maximum
sequence length, and both TensorFlow and DeepCPU support variable sequence lengths.

TF on CPUs DeepCPU
Embedding + highway 0.69 0.84
Phrase embedding (LSTMs) 13 0.23
Attention layer 13 1.30
Modeling layer (LSTMs) 31 0.90
Output layer (LSTMs) 49 1.50
Total 107 4.77

Table 3: BiDAF execution time (millisecond) per layer.

T@10 T@15 T@20 T@33
Embedding 0.28 0.24 0.24 0.36
RNN 2.20 2.60 3.40 5.20
Cosine similarity 0.04 0.04 0.04 0.04
Total 2.50 2.90 3.60 5.60

Table 4: Text similarity model execution time where
T@K reports execution time of 〈query, K documents〉.
GPUs [26, 30, 64]. On CPUs, MKL-DNN is a C/C++
library from Intel to boost DL model performance on In-
tel architecture, but it only supports convolutional neural
networks and has no support for RNNs yet. Other work
on multi-core CPUs is similar, targeted more towards
CNNs, fully connected neural networks, etc [43, 49, 61].
Some DeepCPU optimizations (e.g., parallelization, fu-
sion) can be generalized to these other networks, whereas
optimizations like WCS are more specialized to RNNs.
Compiler and runtime optimizations. There has been
work on optimizing DL model performance through
compile-time and runtime strategies. Many of them
use static analysis to find pipelined operations that can
be fused together for improved performance, such as
XLA [10], Weld [47], and TensorRT [5]. The compile-
time and runtime strategies of these systems are not de-
signed for global optimization of complex structures like
RNN sequences. Halide is a domain specific language
and compiler to optimize image processing pipeline [48],
conveniently separating algorithms with schedules. It is
not specially designed for RNN type of recurrent com-
putation, and optimizations such as the weight-centric
streamlining cannot be supported easily. It is also hard
for its autotuner to search the space efficiently without
domain-specific pruning and partitioning methods.
Model deployment. TensorFlow Serving [9] and Clip-
per [23] are two serving platforms for deploying and
serving machine learning models on production systems.
Both support caching inference results and batching indi-

vidual inference requests for better performance. Clipper
selects from multiple models to balance latency with ac-
curacy. Our work and these model deployment platforms
complement each other: while they focus on the deploy-
ment process for serving requests, our library focus on
optimizing the inference time of a model itself.
Hardware accelerators. Apart from CPU and GPU, re-
searchers and practitioners are also looking into special-
ized hardware such as FPGA [42, 46, 54] and ASIC
[32, 38], which often require expert hardware designers
and long development cycles to obtain high performance.
They are not yet widely available commercially.
Model simplification and compression. Existing work
shows many model simplification techniques [33,36,63]
such as sparsifying and quantization that could reduce
computation time and space with a small accuracy trade-
off. Co-designing these model optimizations together
with system optimizations like those in DeepCPU could
present new opportunities to boost performance further.

8. Conclusion
The paper unravels the mystery of poor RNN perfor-
mance on existing DL frameworks — low data reuse —
and develops optimization schemes to reduce latency and
improve efficiency of RNN serving. Powered by the new
techniques and search strategy, DeepCPU, our serving
library on CPUs, improves performance by an order of
magnitude, compared with existing work. It transforms
many RNN models from non-shippable to shippable with
great latency and cost improvement in production.
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