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Abstract

We present the design and evaluation of Rapid, a
distributed membership service. At Rapid’s core is a
scheme for multi-process cut detection (CD) that re-
volves around two key insights: (i) it suspects a fail-
ure of a process only after alerts arrive from multiple
sources, and (ii) when a group of processes experience
problems, it detects failures of the entire group, rather
than conclude about each process individually. Imple-
menting these insights translates into a simple member-
ship algorithm with low communication overhead.

We present evidence that our strategy suffices to drive
unanimous detection almost-everywhere, even when
complex network conditions arise, such as one-way
reachability problems, firewall misconfigurations, and
high packet loss. Furthermore, we present both empir-
ical evidence and analyses that proves that the almost-
everywhere detection happens with high probability. To
complete the design, Rapid contains a leaderless consen-
sus protocol that converts multi-process cut detections
into a view-change decision. The resulting membership
service works both in fully decentralized as well as logi-
cally centralized modes.

We present an evaluation of Rapid in moderately scal-
able cloud settings. Rapid bootstraps 2000 node clusters
2-5.8x faster than prevailing tools such as Memberlist
and ZooKeeper, remains stable in face of complex failure
scenarios, and provides strong consistency guarantees. It
is easy to integrate Rapid into existing distributed appli-
cations, of which we demonstrate two.

1 Introduction

Large-scale distributed systems today need to be pro-
visioned and resized quickly according to changing de-
mand. Furthermore, at scale, failures are not the excep-
tion but the norm [21, 30]. This makes membership man-
agement and failure detection a critical component of any
distributed system.

Our organization ships standalone products that we
do not operate ourselves. These products run in a wide
range of enterprise data center environments. In our ex-
perience, many failure scenarios are not always crash
failures, but commonly involve misconfigured firewalls,
one-way connectivity loss, flip-flops in reachability, and

some-but-not-all packets being dropped (in line with ob-
servations by [49, 19, 37, 67, 41]). We find that existing
membership solutions struggle with these common fail-
ure scenarios, despite being able to cleanly detect crash
faults. In particular, existing tools take long to, or never
converge to, a stable state where the faulty processes are
removed (§2.1).

We posit that despite several decades of research and
production systems, stability and consistency of existing
membership maintenance technologies remains a chal-
lenge. In this paper, we present the design and imple-
mentation of Rapid, a scalable, distributed membership
system that provides both these properties. We discuss
the need for these properties below, and present a formal
treatment of the service guarantees we require in §3.

Need for stability. Membership changes in distributed
systems trigger expensive recovery operations such as
failovers and data migrations. Unstable and flap-
ping membership views therefore cause applications to
repeatedly trigger these recovery workflows, thereby
severely degrading performance and affecting service
availability. This was the case in several production
incidents reported in the Cassandra [10, 9] and Con-
sul [26, 25, 27] projects. In an end-to-end experiment,
we also observed a 32% increase in throughput when re-
placing a native system’s failure detector with our solu-
tion that improved stability (see §7 for details).

Furthermore, failure recovery mechanisms may be
faulty themselves and can cause catastrophic failures
when they run amok [42, 40]. Failure recovery work-
flows being triggered ad infinitum have led to Amazon
EC2 outages [5, 6, 4], Microsoft Azure outages [7, 48],
and “killer bugs” in Cassandra and HBase [39].

Given these reasons, we seek to avoid frequent oscilla-
tions of the membership view, which we achieve through
stable failure detection.

Need for consistent membership views. Many sys-
tems require coordinated failure recovery, for example,
to correctly handle data re-balancing in storage systems
[3, 28]. Consistent changes to the membership view sim-
plify reasoning about system behavior and the develop-
ment of dynamic reconfiguration mechanisms [65].

Conversely, it is challenging to build reliable clustered
services on top of a weakly consistent membership ser-
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vice [11]. Inconsistent view-changes may have detri-
mental effects. For example, in sharded systems that rely
on consistent hashing, an inconsistent view of the clus-
ter leads to clients directing requests to servers that do
not host the relevant keys [12, 3]. In Cassandra, the lack
of consistent membership causes nodes to duplicate data
re-balancing efforts when concurrently adding nodes to
a cluster [11] and also affects correctness [12]. To work
around the lack of consistent membership, Cassandra en-
sures that only a single node is joining the cluster at any
given point in time, and operators are advised to wait
at least two minutes between adding each new node to a
cluster [11]. As a consequence, bootstrapping a 100 node
Cassandra cluster takes three hours and twenty minutes,
thereby significantly slowing down provisioning [11].

For these reasons, we seek to provide strict consis-
tency, where membership changes are driven by agree-
ment among processes. Consistency adds a layer of
safety above the failure detection layer and guarantees
the same membership view to all non-faulty processes.

Our approach

Rapid is based on the following fundamental insights
that bring stability and consistency to both decentralized
and logically centralized membership services:

Expander-based monitoring edge overlay. To scale
monitoring load, Rapid organizes a set of processes (a
configuration) into a stable failure detection topology
comprising observers that monitor and disseminate re-
ports about their communication edges to their subjects.
The monitoring relationships between processes forms a
directed expander graph with strong connectivity prop-
erties, which ensures with a high probability that healthy
processes detect failures. We interpret multiple reports
about a subject’s edges as a high-fidelity signal that the
subject is faulty.

Multi-process cut detection. For stability, processes
in Rapid (i) suspect a faulty process p only upon re-
ceiving alerts from multiple observers of p, and (ii) de-
lay acting on alerts about different processes until the
churn stabilizes, thereby converging to detect a global,
possibly multi-node cut of processes to add or remove
from the membership. This filter is remarkably simple
to implement, yet it suffices by itself to achieve almost-

everywhere agreement – unanimity among a large frac-
tion of processes about the detected cut.

Practical consensus. For consistency, we show that
converting almost-everywhere agreement into full agree-
ment is practical even in large-scale settings. Rapid’s
consensus protocol drives configuration changes by a
low-overhead, leaderless protocol in the common case:
every process simply validates consensus by counting the
number of identical cut detections. If there is a quorum
containing three-quarters of the membership set with the

same cut, then without a leader or further communica-
tion, this is a safe consensus decision.

Rapid thereby ensures all participating processes see a
strongly consistent sequence of membership changes to
the cluster, while ensuring that the system is stable in the
face of a diverse range of failure scenarios.

In summary, we make the following key contributions:
• Through measurements, we demonstrate that pre-

vailing membership solutions guarantee neither stability
nor consistency in the face of complex failure scenarios.

• We present the design of Rapid, a scalable member-
ship service that is robust in the presence of diverse fail-
ure scenarios while providing strong consistency. Rapid
runs both as a decentralized as well as a logically cen-
tralized membership service.

• In system evaluations, we demonstrate how Rapid,
despite offering much stronger guarantees, brings up
2000 node clusters 2-5.8x faster than mature alternatives
such as Memberlist and ZooKeeper. We demonstrate
Rapid’s robustness in the face of different failure scenar-
ios such as simultaneous node crashes, asymmetric net-
work partitions and heavy packet loss. Rapid achieves
these goals at a similar cost to existing solutions.

• Lastly, we report on our experience running Rapid to
power two applications; a distributed transactional data
platform and a service discovery use case.

2 Motivation and Related work

Membership solutions today fall into two categories.
They are either managed for a cluster through an auxil-
iary service [15, 43], or they are gossip-based and fully
decentralized [45, 44, 8, 69, 62, 59, 70, 64].

We studied how three widely adopted systems behave
in the presence of network failure scenarios: (i) of the
first category, ZooKeeper [15], and of the second, (ii)

Memberlist [47], the membership library used by Con-
sul [45] and Serf [44] and (iii) Akka Cluster [69] (see
§7 for the detailed setup). For ZooKeeper and Mem-
berlist, we bootstrap a 1000 process cluster with stand-
alone agents that join and maintain membership using
these solutions (for Akka Cluster, we use 400 processes
because it began failing for cluster sizes beyond 500).
We then drop 80% of packets for 1% of processes, sim-
ulating high packet loss scenarios described in the litera-
ture [19, 49] that we have also observed in practice.

Figure 1 shows a timeseries of membership sizes, as
viewed by each non-faulty process in the cluster (every
dot indicates a single measurement by a process). Akka
Cluster is unstable as conflicting rumors about processes
propagate in the cluster concurrently, even resulting in
benign processes being removed from the membership.
Memberlist and ZooKeeper resist removal of the faulty
processes from the membership set but are unstable over
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Figure 1: Akka Cluster, ZooKeeper and Memberlist ex-
hibit instabilities and inconsistencies when 1% of pro-
cesses experience 80% packet loss (similar to scenarios
described in [19, 49]). Every process logs its own view
of the cluster size every second, shown as one dot along
the time (X) axis. Note, the y-axis range does not start at
0. X-axis points (or intervals) with different cluster size
values represent inconsistent views among processes at
that point (or during the interval).

a longer period of time. We also note extended periods
of inconsistencies in the membership view.

Having found existing membership solutions to be un-
stable in the presence of typical network faults, we now
proceed to discuss the broader design space.

2.1 Comparison of existing solutions

There are three membership service designs in use
today, each of which provides different degrees of re-
siliency and consistency.

Logically centralized configuration service. A com-
mon approach to membership management in the indus-
try is to store the membership list in an auxiliary service
such as ZooKeeper [15], etcd [33], or Chubby [23].

The main advantage of this approach is simplicity: a
few processes maintain the ground truth of the member-
ship list with strong consistency semantics, and the re-
maining processes query this list periodically.

The key shortcoming here is that relying on a small
cluster reduces the overall resiliency of the system: con-
nectivity issues to the cluster, or failures among the small
set of cluster members themselves, may render the ser-
vice unavailable (this led Netflix to build solutions like
Eureka [58, 61]). As the ZooKeeper developers warn,
this also opens up new failure modes for applications that
depend on an auxiliary service for membership [17].

Gossip-based membership. van Renesse et al. [72,
71] proposed managing membership by using gossip
to spread positive notifications (keepalives) between all
processes. If a process p fails, other processes eventu-
ally remove p after a timeout. SWIM [29] was proposed

as a variant of that approach that reduces the communica-
tion overhead; it uses gossip to spread “negative” alerts,
rather than regular positive notifications.

Gossip-based membership schemes are widely
adopted in deployed systems today, such as Cassan-
dra [8], Akka [69], ScyllaDB [64], Serf [44], Redis
Cluster [62], Orleans [59], Uber’s Ringpop [70], Net-
flix’s Dynomite [56], and some systems at Twitter [55].

The main advantage of gossip-based membership is
resiliency and graceful degradation (they tolerate N − 1
failures). The key disadvantages include their weak con-
sistency guarantees and the complex emergent behavior
that leads to stability problems.

Stability is a key challenge in gossip-based member-
ship: When communication fails between two processes
which are otherwise live and correct, there are repeated
accusations and refutations that may cause oscillations
in the membership views. As our investigation of lead-
ing gossip-based solutions showed (Figure 1), these con-
flicting alerts lead to complex emergent behavior, mak-
ing it challenging to build reliable clustered services
on top of. Indeed, stability related issues with gossip
are also observed in production settings (see, e.g., Con-
sul [26, 25, 27] and Cassandra [11, 12, 10]).

Lastly, FireFlies [50] is a decentralized membership
service that tolerates Byzantine members. FireFlies orga-
nizes monitoring responsibilities via a randomized k-ring
topology to provide a robust overlay against Byzantine
processes. While the motivation in FireFlies was differ-
ent, we believe it offers a solution for stability; accusa-
tions about a process by a potentially Byzantine moni-
tor are not acted upon until a conservative, fixed delay
elapses. If a process does not refute an accusation about
it within this delay, it is removed from the membership.
However, the FireFlies scheme is based on a gossip-
style protocol involving accusations, refutations, rank-
ings, and disabling (where a process p announces that
a monitor should not complain about it). Furthermore,
FireFlies’ refutations resist process removals as much as
possible, which is undesirable in non-Byzantine settings.
For example, in the 80% packet loss scenario described
in Figure 1, a faulty process p may still succeed in dis-
seminating refutations, thereby resisting removal from
the membership. As we show in upcoming sections, our
scheme is simple in comparison and requires little book-
keeping per process. Unlike FireFlies, we aggregate re-
ports about a process p from multiple sources to decide
whether to remove p, enabling timely and coordinated
membership changes with low overhead.

Group membership. By themselves, gossip-based
membership schemes do not address consistency, and al-
low the membership views of processes to diverge. In
this sense, they may be considered more of failure detec-
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tors, than membership services.
Maintaining membership with strict consistency guar-

antees has been a focus in the field of fault tolerant state-
machine replication (SMR), starting with early founda-
tions of SMR [52, 60, 63], and continuing with a va-
riety of group communication systems (see [24] for a
survey of GC works). In SMR systems, membership is
typically needed for selecting a unique primary and for
enabling dynamic service deployment. Recent work on
Census [28] scales dynamic membership maintenance to
a locality-aware hierarchy of domains. It provides fault
tolerance by running the view-change consensus proto-
col only among a sampled subset of the membership set.

These methods may be harnessed on top of a stable
failure detection facility, stability being orthogonal to the
consistency they provide. As we show, our solution uses
an SMR technique that benefits from stable failure detec-
tion to form fast, leaderless consensus.

3 The Rapid Service

Our goal is to create a membership service based on
techniques that apply equally well to both decentralized
as well as logically centralized designs. For ease of pre-
sentation, we first describe the fully decentralized Rapid
service and its properties in this section, followed by its
design in §4. We then relax the resiliency properties in
§5 for the logically centralized design.

API Processes use the membership service by using
the Rapid library and invoking a call JOIN(HOST:PORT,
SEEDS, VIEW-CHANGE-CALLBACK). Here, HOST:PORT

is the process’ TCP/IP listen address. Internally, the join
call assigns a unique logical identifier for the process
(ID). If a process departs from the cluster either due to a
failure or by voluntarily leaving, it rejoins with a new ID.
This ID is internal to Rapid and is not an identifier of the
application that is using Rapid. SEEDS is an initial set of
process addresses known to everyone and used to contact
for bootstrapping. VIEW-CHANGE-CALLBACK is used to
notify applications about membership change events.

Configurations A configuration in Rapid comprises a
configuration identifier and a membership-set (a list of
processes). Each process has a local view of the con-
figuration. All processes use the initial seed-list as a
bootstrap configuration C0. Every configuration change
decision triggers an invocation of the VIEW-CHANGE-
CALLBACK at all processes, that informs processes about
a new configuration and membership set.

At time t, if C is the configuration view of a majority of
its members, we say that C is the current configuration.
Initially, once a majority of C0 start, it becomes current.

Failure model We assume that every pair of correct
processes can communicate with each other within a

known transmission delay bound (an assumption re-
quired for failure detection). When this assumption is
violated for a pair of (otherwise live) processes, there is
no obvious definition to determine which one of them
is faulty (though at least one is). We resolve this using
the parameters L and K as follows. Every process p (a
subject) is monitored by K observer processes. If L-of-
K correct observers cannot communicate with a subject,
then the subject is considered observably unresponsive.
We consider a process faulty if it is either crashed or ob-
servably unresponsive.

Cut Detection Guarantees Let C be the current con-
figuration at time t. Consider a subset of processes F ⊂C

where |F |
|C| <

1
2 . If all processes in C \ F remain non-

faulty, we guarantee that the multi-process cut will even-
tually be detected and a view-change C \F installed 1:
• Multi-process cut detection: With high probability,

every process in C \F receives a multi-process cut de-
tection notification about F . In Rapid, the probability is
taken over all the random choices of the observer/subject
overlay topology, discussed in §4. The property we use
is that with high probability the underlying topology re-
mains an expander at all times, where the expansion is
quantified in terms of its second eigenvalue.

A similar guarantee holds for joins. If at time t a set J

of processes join the system and remain non-faulty, then
every process in C∪ J is notified of J joining.

Joins and removals can be combined: If a set of pro-
cesses F as above fails, and a set of processes J joins,
then (C \F)∪ J is eventually notified of the changes.
• View-Change: Any view-change notification in C

is by consensus, maintaining Agreement on the view-
change membership among all correct processes in C;
and Liveness, provided a majority of C∪J (J = /0 if there
are no joiners) remain correct until the VC configuration
becomes current.

Our requirements concerning configuration changes
hold when the system has quiesced. During periods of
instability, intermediate detection(s) may succeed, but
there is no formal guarantee about them.

Hand-off Once a new configuration C j+1 becomes cur-
rent, we abstractly abandon C j and start afresh: New fail-
ures can happen within C j+1 (for up to half of the mem-
bership set), and the Cut Detection and View Change
guarantees must hold.

We note that liveness of the consensus layer depends
on a majority of both C j and C j+1 remaining correct to
perform the ‘hand-off’: Between the time when C j be-
comes current and until C j+1 does, no more than a mi-
nority fail in either configuration. This dynamic model

1The size of cuts |F | we can detect is a function of the monitoring
topology. The proof is summarized in §8, and a full derivation appears
in a tech report [51].

390    2018 USENIX Annual Technical Conference USENIX Association



p

r

p

s

w

v p

t

x
Ring	0 Ring	1 Ring	2

p

u

y

Ring	3 p

v

w

x

y

r

s

t

u

Figure 2: p’s neighborhood in a K = 4-Ring topology.
p’s observers are {v,w,x,y}; p’s subjects are {r,s, t,u}.

Edge Alerts

(JOIN, REMOVE)

Multi-process 

Cut Detection

(CD)
,

Proposal with

Almost-everywhere

agreement

View Change

With Consensus

(VC)

Apply change

to membership

,
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borrows the dynamic-interplay framework of [35, 66].

4 Decentralized Design

Rapid forms an immutable sequence of configurations
driven through consensus decisions. Each configuration
may drive a single configuration-change decision; the
next configuration is logically a new system as in the vir-
tual synchrony approach [22]. Here, we describe the al-
gorithm for changing a known current configuration C ,
consisting of a membership set (a list of process identi-
ties). When clear from the context, we omit C or explicit
mentions of the configuration, as they are fixed within
one instance of the configuration-change algorithm.

We start with a brief overview of the algorithm, break-
ing it down to three components: (1) a monitoring over-
lay; (2) an almost-everywhere multi-process cut detec-
tion (CD); and (3) a fast, leaderless view-change (VC)
consensus protocol. The response to problems in Rapid
evolves through these three components (see Figure 3).

Monitoring We organize processes into a monitoring
topology such that every process monitors K peers and
is monitored by K peers. A process being monitored is
referred to as a subject and a process that is monitoring
a subject is an observer (each process therefore has K

subjects and K observers). The particular topology we
employ in Rapid is an expander graph [38] realized us-
ing K pseudo-random rings [34]. Other observer/subject
arrangements may be plugged into our framework with-
out changing the rest of the logic.

Importantly, this topology is deterministic over the
membership set C ; every process that receives a noti-
fication about a new configuration locally determines its
subjects and creates the required monitoring channels.

There are two types of alerts generated by the moni-
toring component, REMOVE and JOIN. A REMOVE alert
is broadcast by an observer when there are reachability
problems to its subject. A JOIN alert is broadcast by an

observer when it is informed about a subject joiner re-
quest. In this way, both types of alerts are generated by
multiple sources about the same subject. Any best-effort
broadcast primitive may be used to disseminate alerts
(we use gossip-based broadcast).

Multi-process cut detection (CD) REMOVE and JOIN

alerts are handled at each process independently by
a multi-process cut detection (CD) mechanism. This
mechanism collects evidence to support a single, stable
multi-process configuration change proposal. It outputs
the same cut proposal almost-everywhere; i.e., unanimity
in the detection among a large fraction of processes.

The CD scheme with a K-degree monitoring topol-
ogy has a constant per-process per-round communication
cost, and provides stable multi-process cut detection with
almost-everywhere agreement.

View change (VC) Finally, we use a consensus proto-
col that has a fast path to agreement on a view-change. If
the protocol collects identical CD proposals from a Fast

Paxos quorum (three quarters) of the membership, then it
can decide in one step. Otherwise, it falls back to Paxos
to form agreement on some proposal as a view-change.

We note that other consensus solutions could use CD
as input and provide view-change consistency. VC has
the benefit of a fast path to decision, taking advantage of
the identical inputs almost-everywhere.

We now present a detailed description of the system.

4.1 Expander-based Monitoring

Rapid organizes processes into a monitoring topology
that is an expander graph [38]. Specifically, we use the
fact that a random K-regular graph is very likely to be a
good expander for K ≥ 3 [34]. We construct K pseudo-
randomly generated rings with each ring containing the
full list of members. A pair of processes (o, s) form an
observer/subject edge if o precedes s in a ring. Duplicate
edges are allowed and will have a marginal effect on the
behavior. Figure 2 depicts the neighborhood of a single
process p in a 4-Ring topology.

Topology properties. Our monitoring topology has
three key properties. The first is expansion: the number
of edges connecting two sets of processes reflects the rel-
ative sizes of the set. This means that if a small subset F

of processes V are faulty, we should see roughly |V |−|F |
|V |

fraction of monitoring edges to F emanating from the set
V \F of healthy processes. This ensures with high proba-
bility that healthy processes detect failures, as long as the
set of failures is not too large. The size of failures we can
detect depends on the expansion of the topology as quan-
tified by the value of its second eigenvalue (§ 8). Second,
every process monitors K subjects, and is monitored by
K observers. Hence, monitoring incurs O(K) overhead
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Figure 4: Almost everywhere agreement protocol exam-
ple at a process p, with tallies about q,r,s, t and K =
10,H = 7,L = 2. K is the number of observers per sub-
ject. The region between H and L is the unstable region.
The region between K and H is the stable region. Left:

stable = {r,s, t}; unstable = {q}. Right: q moves from
unstable to stable; p proposes a view change {q,r,s, t}.

per process per round, distributing the load across the en-
tire cluster. The fixed observer/subject approach distin-
guishes Rapid from gossip-based techniques, supporting
prolonged monitoring without sacrificing failure detec-
tion scalability. At the same time, we compare well with
the overhead of gossip-based solutions (§7). Third, every
process join or removal results only in 2 ·K monitoring
edges being added or removed.

Joins New processes join by contacting a list of K tem-
porary observers obtained from a seed process (deter-
ministically assigned for each joiner and C pair, until
a configuration change reflects the join). The temporary
observers generate independent alerts about joiners. In
this way, multiple JOIN alerts are generated from distinct
sources, in a similar manner to alerts about failures.

Pluggable edge-monitor. A monitoring edge between
an observer and its subject is a pluggable component
in Rapid. With this design, Rapid can take advantage
of diverse failure detection and monitoring techniques,
e.g., history-based adaptive techniques as used by popu-
lar frameworks like Hystrix [57] and Finagle [68]; phi-
accrual failure detectors [31]; eliciting indirect probes
[29]; flooding a suspicion and allowing a timeout period
for self-rebuttal [50]; using cross-layer information [54];
application-specific health checks; and others.

Irrevocable Alerts When the edge-monitor of an ob-
server indicates an existing subject is non-responsive, the
observer broadcasts a REMOVE alert about the subject.
Given the high fidelity made possible with our stable
edge monitoring, these alerts are considered irrevocable,
thus Rapid prevents spreading conflicting reports. When
contacted by a subject, a temporary observer broadcasts
JOIN alert about the subject.

4.2 Multi-process Cut Detection

Alerts in Rapid may arrive at different orders at each
process. Every process independently aggregates these
alerts until a stable multi-process cut is detected. Our ap-

proach aims to reach agreement almost everywhere with
regards to this detection. Our mechanism is based on
a simple key insight: A process defers a decision on
a single process until the alert-count it received on all
processes is considered stable. In particular, it waits
until there is no process with an alert-count above a
low-watermark threshold L and below a high-watermark
threshold H.

Our technique is simple to implement; it only requires
maintaining integer counters per-process and comparing
them against two thresholds. This state is reset after each
configuration change.

Processing REMOVE and JOIN alerts Every process
ingests broadcast alerts by observers about edges to their
subjects. A REMOVE alert reports that an edge to the sub-
ject process is faulty; a JOIN alert indicates that an edge
to the subject is to be created. By design, a JOIN alert can
only be about a process not in the current configuration
C , and REMOVE alerts can only be about processes in C .
There cannot be JOIN and REMOVE alerts about the same
process in C .

Every process p tallies up distinct REMOVE and JOIN

alerts in the current configuration view as follows. For
each observer/subject pair (o, s), p maintains a value
M(o, s) which is set to 1 if an alert was received from
observer o regarding subject s; and it is set to (default) 0
if no alert was received. A tally(s) for a process s is the
sum of entries M(∗, s).

Stable and unstable report modes We use two pa-
rameters H and L, 1≤ L≤H ≤K. A process p considers
a process s to be in a stable report mode if |tally(s)| ≥ H

at p. A stable report mode indicates that p has received
at least H distinct observer alerts about s, hence we con-
sider it “high fidelity”; A process s is in an unstable re-

port mode if tally(s) is in between L and H. If there are
fewer than L distinct observer alerts about s, we consider
it noise. Recall that Rapid does not revert alerts; hence, a
stable report mode is permanent once it is reached. Note
that, the same thresholds are used for REMOVE and JOIN

reports; this is not mandatory, and is done for simplicity.

Aggregation Each process follows one simple rule
for aggregating tallies towards a proposed configuration
change: delay proposing a configuration change un-

til there is at least one process in stable report mode

and there is no process in unstable report mode. Once
this condition holds, the process announces a configura-
tion change proposal consisting of all processes in sta-
ble report mode, and the current configuration identi-
fier. The proposed configuration change has the almost-
everywhere agreement property, which we analyze in §8
and evaluate in §7. Figure 4 depicts the almost every-
where agreement mechanism at a single process.
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Ensuring liveness: implicit detections and reinforce-

ments There are two cases in which a subject process
might get stuck in an unstable report mode and not accrue
H observer reports. The first is when the observers them-
selves are faulty. To prevent waiting for stability forever,
for each observer o of s, if both o and s are in the un-
stable report mode, then an implicit-alert is applied from
o to s (i.e., an implicit REMOVE if s is in C and a JOIN

otherwise; o is by definition always in C ).
The second is the case when a subject process has

good connections to some observers, and bad connec-
tions to others. In this case, after a subject s has been in
the unstable reporting mode for a certain timeout period,
each observer o of s reinforces the detection: if o did not
send a REMOVE message about s already, it broadcasts a
REMOVE about s to echo existing REMOVEs.

4.3 View-change Agreement

We use the result of each process’ CD proposal as in-
put to a consensus protocol that drives agreement on a
single view-change.

The consensus protocol in Rapid has a fast, leaderless
path in the common case, that has the same overhead
as simple gossip. The fast path is built around the Fast
Paxos algorithm [53]. In our variation, we use the CD re-
sult as initial input to processes, instead of having an ex-
plicit proposer populating the processes with a proposal.
Fast Paxos reaches a decision if there is a quorum larger
than three quarters of the membership set with an identi-
cal proposal. Due to our prudent almost-everywhere CD
scheme, with high probability, all processes indeed have
an identical multi-process cut proposal. In this case, the
VC protocol converges simply by counting the number
of identical CD proposals.

The counting protocol itself uses gossip to disseminate
and aggregate a bitmap of “votes” for each unique pro-
posal. Each process sets a bit in the bitmap of a proposal
to reflect its vote. As soon as a process has a proposal for
which three quarters of the cluster has voted, it decides
on that proposal.

If there is no fast-quorum support for any proposal
because there are conflicting proposals, or a timeout is
reached, Fast Paxos falls back to a recovery path, where
we use classical Paxos [52] to make progress.

In the face of partitions [36], some applications may
need to maintain availability everywhere (AP), and oth-
ers only allow the majority component to remain live to
provide strong consistency (CP). Rapid guarantees to re-
configure processes in the majority component. The re-
maining processes are forced to logically depart the sys-
tem. They may wait to rejoin the majority component,
or choose to form a separate configuration (which Rapid
facilitates quickly). The history of the members forming
a new configuration will have an explicit indication of

these events, which applications can choose to use in any
manner that fits them (including ignoring).

5 Logically Centralized Design

We now discuss how Rapid runs as a logically central-
ized service, where a set of auxiliary nodes S records the
membership changes for a cluster C . This is a similar
model to how systems use ZooKeeper to manage mem-
bership: the centralized service is the ground truth of the
membership list.

Only three minor modifications are required to the pro-
tocol discussed in §4:

1. Nodes in the current configuration C continue mon-
itoring each other according to the k-ring topology
(to scale the monitoring load). Instead of gossiping
these alerts to all nodes in C , they report it only to
all nodes in S instead.

2. Nodes in S apply the CD protocol as before to iden-
tify a membership change proposal from the incom-
ing alerts. However, they execute the VC protocol
only among themselves.

3. Nodes in C learn about changes in the membership
through notifications from S (or by probing nodes in
S periodically).

The resulting solution inherits the stability and agree-
ment properties of the decentralized protocol, but with
reduced resiliency guarantees; the resiliency of the over-
all system is now bound to that of S (F = S

2 −1) – as with
any logically centralized design. For progress, members
of C need to be connected to a majority partition of S.

6 Implementation

Rapid is implemented in Java with 2362 lines of code
(excluding comments and blank lines). This includes all
the code associated with the membership protocol as well
as messaging and failure detection. In addition, there are
2034 lines of code for tests. Our code is open-sourced
under an Apache 2 license [2].

Our implementation uses gRPC and Netty for messag-
ing. The counting step for consensus and the gossip-
based dissemination of alerts are performed over UDP.
Applications interact with Rapid using the APIs for join-
ing and receiving callbacks described in §3. The logical
identifier (§3) for each process is generated by the Rapid
library using UUIDs. The join method allows users to
supply edge failure detectors to use. Similar to APIs of
existing systems such as Serf [44] and Akka Cluster [69],
users associate application-specific metadata with the
process being initialized (e.g., "role":"backend").

Our default failure detector has observers send probes
to their subjects and wait for a timeout. Observers mark
an edge faulty when the number of communication ex-
ceptions they detect exceed a threshold (40% of the last
10 measurement attempts fail). Similar to Memberlist
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Figure 5: Bootstrap convergence measurements showing
the time required for all nodes to report a cluster size of
N. Rapid bootstraps a 2000 node cluster 2-2.32x faster
than Memberlist, and 3.23-5.81x faster than ZooKeeper.

and Akka Cluster, Rapid batches multiple alerts into a
single message before sending them on the wire.

7 Evaluation

Setup We run our experiments on a shared internal
cloud service with 200 cores and 800 GB of RAM (100
VMs). We run multiple processes per VM, given that the
workloads are not CPU bottlenecked. We vary the num-
ber of processes (N) in the cluster from 1000 to 2000.

We compare Rapid against (i) ZooKeeper [15] ac-
cessed using Apache Curator [13], (ii) Memberlist [47],
the SWIM implementation used by Serf [44] and Con-
sul [45]. For Rapid, we use the decentralized variant
unless specified otherwise (Rapid-C, where a 3-node en-
semble manages the membership of N processes).

We also tested Akka Cluster [69] but found its boot-
strap process to not stabilize for clusters beyond 500 pro-
cesses, and therefore do not present further (see §2.1
and Figure 1). All ZooKeeper experiments use a 3-
node ensemble, configured according to [16]. For Mem-
berlist, we use the provided configuration for single data
center settings (called DefaultLANConfig). Rapid uses
{K,H,L} = {10,9,3} for all experiments and we also
show a sensitivity analysis. We seek to answer:

• How quickly can Rapid bootstrap a cluster?

• How does Rapid react to different fault scenarios?

• How bandwidth intensive is Rapid?

• How sensitive is the almost-everywhere agreement
property to the choice of K,H,L?

• Is Rapid easy to integrate with real applications?

Bootstrap experiments We stress the bootstrap proto-
cols of all three systems under varying cluster sizes. For
Memberlist and Rapid, we start each experiment with a
single seed process, and after ten seconds, spawn a sub-
sequent group of N −1 processes (for ZooKeeper, the 3-
node ZooKeeper cluster is brought up first). Every pro-
cess logs its observed cluster size every second. Every
measurement is repeated five times per value of N. We
measure the time taken for all processes to converge to
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Figure 6: Bootstrap latency distribution for all systems.

Figure 7: Timeseries showing the first 150 seconds of all
three systems bootstrapping a 2000 node cluster.

a cluster size of N (Figure 5). For N = 2000, Rapid im-
proves bootstrap latencies by 2-2.32x over Memberlist,
and by 3.23-5.8x over ZooKeeper.

ZooKeeper suffers from herd behavior during the
bootstrap process (as documented in [18]), resulting in
its bootstrap latency increasing by 4x from when N=1000
to when N=2000. Group membership with ZooKeeper is
done using watches. When the ith process joins the sys-
tem, it triggers i − 1 watch notifications, causing i − 1
processes to re-read the full membership list and regis-
ter a new watch each. In the interval between a watch
having triggered and it being replaced, the client is not
notified of updates, leading to clients observing differ-
ent sequences of membership change events [17]. This
behavior with watches leads to the eventually consistent
client behavior in Figure 7. Lastly, we emphasize that
this is a 3-node ZooKeeper cluster being used exclusively

to manage membership for a single cluster. Adding even
one extra watch per client to the group node at N=2000
inflates bootstrap latencies to 400s on average.

Memberlist processes bootstrap by contacting a seed.
The seed thereby learns about every join attempt. How-
ever, non-seed processes need to periodically execute a
push-pull handshake with each other to synchronize their
views (by default, once every 30 seconds). Memberlist’s
convergence times are thereby as high as 95s on average
when N = 2000 (Figure 7).

Similar to Memberlist, Rapid processes bootstrap by
contacting a seed. The seed aggregates alerts until it
bootstraps a cluster large enough to support a Paxos quo-
rum (minimum of three processes). The remaining pro-
cesses are admitted in a subsequent one or more view
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System N=1000 N=1500 N=2000
ZooKeeper 1000 1500 2000
Memberlist 901 1383 1858

Rapid-C 9 10 7
Rapid 4 8 4

Table 1: Number of unique cluster sizes reported by pro-
cesses in bootstrapping experiments.

Figure 8: Experiment with 10 concurrent crash failures.

changes. For instance, in Figure 7, Rapid transitions
from a single seed to a five node cluster, before forming
a cluster of size 2000. We confirm this behavior across
runs in Table 1, which shows the number of unique
cluster sizes reported for different values of N. In the
ZooKeeper and Memberlist experiments, processes re-
port a range of cluster sizes between 1 and N as the clus-
ter bootstraps. Rapid however brings up large clusters
with very few intermediate view changes, reporting four
and eight unique cluster sizes for each setting. Our log-
ically centralized variant Rapid-C, behaves similarly for
the bootstrap process. However, processes in Rapid-C
periodically probe the 3-node ensemble for updates to the
membership (the probing interval is set to be 5 seconds,
the same as with ZooKeeper). This extra step increases
bootstrap times over the decentralized variant; in the lat-
ter case, all processes participate in the dissemination of
votes through aggregate gossip.

Crash faults We now set N = 1000 to compare the dif-
ferent systems in the face of crash faults. At this size, we
have five processes per-core in the infrastructure, leading
to a stable steady state for all three systems. We then fail
ten processes and observe the cluster membership size
reported by every other process in the system.

Figure 8 shows the cluster size timeseries as recorded
by each process. Every dot in the timeseries represents
a cluster size recording by a single process. With Mem-
berlist and ZooKeeper, processes record several different
cluster sizes when transitioning from N to N −F . Rapid
on the other hand concurrently detects all ten process
failures and removes them from the membership using a
1-step consensus decision. Note, our edge failure detec-
tor performs multiple measurements before announcing
a fault for stability (§6), thereby reacting roughly 10 sec-
onds later than Memberlist does. The results are identical
when the ten processes are partitioned away completely

Figure 9: Asymmetric network failure with one-way net-
work partition on the network interface of 1% of pro-
cesses (ingress path).

Figure 10: Experiment with 80% ingress packet loss on
the network interface of 1% of processes.

from the cluster (we do not show the plots for brevity).

Asymmetric network failures We study how each
system responds to common network failures that we
have seen in practice. These scenarios have also been
described in [49, 19, 37, 67, 41].

Flip-flops in one-way connectivity. We enforce a “flip-
flopping" asymmetric network failure. Here, 10 pro-
cesses lose all packets that they receive for a 20 sec-
ond interval, recover for 20 seconds, and then repeat the
packet dropping. We enforce this by dropping packets
in the iptables INPUT chain. The timeseries of cluster
sizes reported by each process is shown in Figure 9.

ZooKeeper does not react to the injected failures be-
cause clients do not receive packets on the ingress path,
but send heartbeats to the ZooKeeper nodes. Reversing
the direction of connectivity loss as in the next experi-
ment does cause ZooKeeper to react. Memberlist never
removes all the faulty processes from the membership,
and oscillates throughout the duration of the failure sce-
nario. We also find several intervals of inconsistent views
among processes. Unlike ZooKeeper and Memberlist,
Rapid detects and removes the faulty processes.

High packet loss scenario. We now run an experi-
ment where 80% of outgoing packets from the faulty pro-
cesses are dropped. We inject the fault at t = 90s. Fig-
ure 10 shows the resulting membership size timeseries.
ZooKeeper reacts to the failures at t = 200s, and does
not remove all faulty processes from the membership.
Figure 10 also shows how Memberlist’s failure detec-
tor is conservative; even a scenario of sustained high
packet loss is insufficient for Memberlist to conclusively
remove a set of processes from the network. Further-

USENIX Association 2018 USENIX Annual Technical Conference    395



KB/s (received / transmitted)
System Mean p99 max
ZooKeeper 0.43 / 0.01 17.52 / 0.33 38.86 / 0.67
Memberlist 0.54 / 0.64 5.61 / 6.40 7.36 / 8.04
Rapid 0.71 / 0.71 3.66 / 3.72 9.56 / 11.37

Table 2: Mean, 99th percentile and maximum network
bandwidth utilization per process.
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Figure 11: Almost-everywhere agreement conflict prob-
ability for different combinations of H, L and failures F
when K=10. Note the different y-axis scales.

more, we observe view inconsistencies with Memberlist
near t = 400s. Rapid, again, correctly identifies and re-
moves only the faulty processes.

Memory utilization. Memberlist (written in Go) used
an average of 12MB of resident memory per process.
With Rapid and ZooKeeper agents (both Java based), GC
events traced using -XX:+PrintGC report min/max heap
utilization of 10/25MB and 3.5/16MB per process.

Network utilization. Table 2 shows the mean, 99th
and 100th percentiles of network utilization per sec-
ond across processes during the crash fault experiment
(1000 processes). Rapid has a peak utilization of 9.56
KB/s received (and 11.37 KB/s transmitted) versus 7.36
KB/s received (8.04 KB/s transmitted) for Memberlist.
Rapid therefore provides stronger guarantees than Mem-
berlist for a similar degree of network bandwidth utiliza-
tion. ZooKeeper clients have a peak ingress utilization of
38.86 KB/s per-process on average to learn the updated
view of the membership.

K, H, L sensitivity study We now present the effect of
K, H and L on the almost-everywhere agreement prop-
erty of our multi-process detection technique. We ini-
tialize 1000 processes and select F random processes to
fail. We generate alert messages from the F processes’
observers and deliver these alerts to each process in a
uniform random order. We count the number of pro-
cesses that announce a membership proposal that did not
include all F processes (a conflict). We run all parame-
ter combinations for H = {6,7,8,9},L= {1,2,3,4},F =
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Figure 12: Transaction latency when testing an in-house
gossip-style failure detector and Rapid for robustness
against a communication fault between two processes.
The baseline failure detector triggers repeated failovers
that reduce throughput by 32%.

{2,4,8,16} with 20 repetitions per combination.
Figure 11 shows the results. As our analysis (§8) pre-

dicts, the conflict rate is highest when the gap between
H and L is lowest (H = 6,L = 4) and the number of fail-
ures F is 2. This setting causes processes to arrive at a
proposal without waiting long enough. As we increase
the gap H −L and increase F , the algorithm at each pro-
cess waits long enough to gather all the relevant alerts,
thereby diminishing the conflict probability. Our system
is thereby robust across a range of values; for H −L = 5
and F = 2, we get a 2% conflict rate for different values
of H and L. Increasing to H−L= 6 drops the probability
of a conflict by a factor of 4.

Experience with end-to-end workloads We inte-
grated Rapid within use cases at our organization that
required membership services. Our goal is to understand
the ease of integrating and using Rapid.

Distributed transactional data platform. We worked
with a team that uses a distributed data platform that
supports transactions. We replaced the use of its in-
house gossip-based failure detector that uses all-to-all
monitoring, with Rapid. The failure detector recom-
mends membership changes to a Paxos-based reconfig-
uration mechanism, and we let Rapid provide input to
the re-configuration management instead. Our integra-
tion added 62 and removed 25 lines of code. We also
ported the system’s failure detection logic such that it
could be supplied to Rapid as an edge failure detector,
which involved an additional 123 lines of code.

We now describe a use case in the context of this sys-
tem where stable monitoring is required. For total or-
dering of requests, the platform has a transaction serial-
ization server, similar to the one used in Google Megas-
tore [20] and Apache Omid [14]. At any moment in time,
the system has only one active serialization server, and
its failure requires the cluster to identify a new candidate
server for a failover. During this interval, workloads are
paused and clients do not make progress.
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Figure 13: Service discovery experiment. Rapid’s batch-
ing reduces the number of configuration reloads during a
set of failures, thereby reducing tail latency.

We ran an experiment where two update-heavy clients
(read-write ratio of 50-50) each submit 500K read/write
operations, batched as 500 transactions. We injected a
failure that drops all packets between the current seri-
alization server and one other data server (resembling a
packet blackhole as observed by [41]). Note, this fault
does not affect communication links between clients and
data servers. We measured the impact of this fault on the
end-to-end latency and throughput.

With the baseline failure detector, the serialization
server was repeatedly added and removed from the mem-
bership. The repeated failovers caused a degradation of
end-to-end latency and a 32% drop in throughput (Fig-
ure 12). When using Rapid however, the system contin-
ued serving the workload without experiencing any in-
terruption (because no node exceeded L reports).

Service discovery. A common use case for member-
ship is service discovery, where a fleet of servers need
to be discovered by dependent services. We worked
with a team that uses Terraform [46] to drive deploy-
ments where a load balancer discovers a set of backend
servers using Serf [44]. We replaced their use of Serf
in this workflow with an agent that uses Rapid instead
(the Rapid specific code amounted to under 20 lines of
code). The setup uses nginx [1] to load balance requests
to 50 web servers (also using nginx) that serve a static
HTML page. All 51 machines run as t2.micro instances
on Amazon EC2. Both membership services update ng-
inx’s configuration file with the list of backend servers on
every membership change. We then use an HTTP work-
load generator to generate 1000 requests per-second. 30
seconds into the experiment, we fail ten nodes and ob-
serve the impact on the end-to-end latency (Figure 13).

Rapid detects all failures concurrently and triggers a
single reconfiguration because of its multi-node mem-
bership change detection. Serf, which uses Memberlist,
detects multiple independent failures that result in sev-
eral updates to the nginx configuration file. The load bal-
ancer therefore incurs higher latencies when using Serf
at multiple intervals (t=35s and t=46s) because nginx is

reconfiguring itself. In the steady state where there are
no failures, we observe no difference between Rapid and
Serf, suggesting that Rapid is well suited for service dis-
covery workloads, despite offering stronger guarantees.

8 Summary of Proofs

In the interest of space, we report the complete proof
of correctness in a tech report [51], and only present the
key take aways here. Our consensus engine is standard,
and borrows from known literature on consensus algo-
rithms [53, 32, 52]. We do not repeat its proof of Agree-
ment and Liveness.

It is left to prove that faced with F failures in a config-
uration C, the stable failure detector detects and outputs
F at all processes with high probability. We divide the
proof into two parts.

Detection guarantee For parameters L and K, we can
detect a failure of a set F as long as |F | is bounded by the

relationship |F |
|C| ≤ (1− L

K
− λ

2K
). Here, λ is the second

eigenvalue of the underlying monitoring topology, and is
tied to the expansion properties of the topology. In our
experiments, with K = 10, we have observed consistently
that λ

2K
< 0.45 (which, for L = 3, yields |F |

|C| ≤ 0.25).

Almost-everywhere agreement Second, we prove the
almost-everywhere agreement property about our multi-
process cut protocol. We assume that there are t fail-
ures, and that nodes receive alerts about these failures in
a uniform random order. Let Pr[B(z)] be the probability
that the CD protocol at z outputs a subset of t that differs
from the output at other nodes. We show that if multi-
ple processes fail simultaneously, Pr[B(z)] exponentially

decreases with increasing K.

9 Conclusions

In this paper, we demonstrated the effectiveness of de-
tecting cluster-wide multi-process cut conditions, as op-
posed to detecting individual node changes. The high fi-
delity of the CD output prevents frequent oscillations or
incremental changes when faced with multiple failures.
It achieves unanimous detection almost-everywhere, en-
abling a fast, leaderless consensus protocol to drive
membership changes. Our implementation successfully
bootstraps clusters of 2000 processes 2-5.8x times faster
than existing solutions, while being stable against com-
plex network failures. We found Rapid easy to integrate
end-to-end within a distributed transactional data plat-
form and a service discovery use case.
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