
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

The Battle of the Schedulers:
FreeBSD ULE vs. Linux CFS

Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, and Willy Zwaenepoel, EPFL;
Redha Gouicem, Julia Lawall, Gilles Muller, and Julien Sopena,

Sorbonne University/Inria/LIP6

https://www.usenix.org/conference/atc18/presentation/bouron

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

The Battle of the Schedulers: FreeBSD ULE vs. Linux CFS

Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy Zwaenepoel
EPFL

Redha Gouicem, Julia Lawall, Gilles Muller, Julien Sopena
Sorbonne University, Inria, LIP6

Abstract

This paper analyzes the impact on application perfor-
mance of the design and implementation choices made
in two widely used open-source schedulers: ULE, the
default FreeBSD scheduler, and CFS, the default Linux
scheduler. We compare ULE and CFS in otherwise iden-
tical circumstances. We have ported ULE to Linux, and
use it to schedule all threads that are normally scheduled
by CFS. We compare the performance of a large suite
of applications on the modified kernel running ULE and
on the standard Linux kernel running CFS. The observed
performance differences are solely the result of schedul-
ing decisions, and do not reflect differences in other sub-
systems between FreeBSD and Linux.

There is no overall winner. On many workloads the
two schedulers perform similarly, but for some work-
loads there are significant and even surprising differ-
ences. ULE may cause starvation, even when execut-
ing a single application with identical threads, but this
starvation may actually lead to better application perfor-
mance for some workloads. The more complex load bal-
ancing mechanism of CFS reacts more quickly to work-
load changes, but ULE achieves better load balance in
the long run.

1 Introduction

Operating system kernel schedulers are responsible for
maintaining high utilization of hardware resources (CPU
cores, memory, I/O devices) while providing fast re-
sponse time to latency-sensitive applications. They have
to react to workload changes, and handle large numbers
of cores and threads with minimal overhead [12]. This
paper provides a comparison between the default sched-
ulers of two of the most widely deployed open-source
operating systems: the Completely Fair Scheduler (CFS)
used in Linux, and the ULE scheduler used in FreeBSD.
Our goal is not to declare an overall winner. In fact, we

find that for some workloads ULE is better and for oth-
ers CFS is better. Instead, our goal is to illustrate how
differences in the design and the implementation of the
two schedulers are reflected in application performance
under different workloads.

ULE and CFS are both designed to schedule large
numbers of threads on large multicore machines. Scal-
ability considerations have led both schedulers to adopt
per-core runqueues. On a context switch, a core accesses
only its local runqueue to find the next thread to run. Pe-
riodically and at select times, e.g., when a thread wakes
up, both ULE and CFS perform load balancing, i.e., they
try to balance the amount of work waiting in the run-
queues of different cores.

ULE and CFS, however, differ greatly in their design
and implementation choices. FreeBSD ULE is a simple
scheduler (2,950 lines of code in FreeBSD 11.1), while
Linux CFS is much more complex (17,900 lines of code
in the latest LTS Linux kernel, Linux 4.9). FreeBSD run-
queues are FIFO. For load balancing, FreeBSD strives to
even out the number of threads per core. In Linux, a core
decides which thread to run next based on prior execu-
tion time, priority, and perceived cache behavior of the
threads in its runqueue. Instead of evening out the num-
ber of threads between cores, Linux strives to even out
the average amount of pending work.

The major challenge in comparing ULE and CFS is
that application performance depends not only on the
scheduler, but also on other OS subsystems, such as net-
working, file systems and memory management, which
also differ between FreeBSD and Linux. To isolate the
effect of differences between CFS and ULE, we have
ported ULE to Linux, and we use it as the default sched-
uler to run all threads on the machine (including kernel
threads that are normally scheduled by CFS). Then, we
compare application performance between this modified
Linux with ULE and the default Linux kernel with CFS.

We first examine the impact of the per-core scheduling
decisions made by ULE and CFS, by running applica-

USENIX Association 2018 USENIX Annual Technical Conference 85

tions and combinations of applications on a single core,
We then run the applications on all cores of the machine,
and study the impact of the load balancer. We use 37
applications ranging from scientific HPC applications to
databases. While offering similar performance in many
circumstances, CFS and ULE occasionally behave very
differently, even on simple workloads consisting of one
application running one thread per core.

This paper makes the following contributions:

• We provide a complete port of FreeBSD’s ULE
scheduler in Linux and release it as open source
[21]. Our implementation contains all the features
and heuristics used in the FreeBSD 11.1 version.

• We compare the application performance under the
ULE and CFS schedulers in an otherwise identical
environment.

• Unlike CFS, ULE may starve threads that it deems
non-interactive for an unbounded amount of time.
Surprisingly, starvation may also occur when the
system executes only a single application consist-
ing of identical threads. Even more surprising, this
behavior actually proves beneficial for some work-
loads (e.g., a database workload).

• CFS converges faster towards a balanced load, but
ULE achieves a better load balance in the long run.

• The heuristics used by CFS to avoid migrating
threads can hurt performance in HPC workloads
that only use one thread per core, because CFS
sometimes places two threads on the same core,
while ULE always places one thread on each core.

The outline of the rest of this paper is as follows. Sec-
tion 2 presents the CFS and ULE schedulers. Section 3
describes our port of ULE to Linux and the main differ-
ences between the native ULE implementation and our
port. Sections 4 presents the machines and the work-
loads used in our experiments. Section 5 analyzes the im-
pact of per-core scheduling in CFS and ULE. Section 6
analyzes the load balancer of CFS and ULE. Section 7
presents related work and Section 8 concludes.

2 Overview of CFS and ULE

2.1 Linux CFS

Per-core scheduling: Linux’s CFS implements a
weighted fair queueing algorithm: it evenly divides CPU
cycles between threads weighted by their priority (rep-
resented by their niceness, high niceness meaning low
priority and vice versa) [18]. To that end, CFS orders

threads by a multi-factor value called vruntime, repre-
senting the amount of CPU time a thread has already
used divided by the thread’s priority. Threads with the
same priority and same vruntime have executed the same
amount of time, meaning that core resources have been
shared fairly between them. To ensure that the vruntime
of all threads progresses fairly, when the current running
thread is preempted, CFS schedules the thread with the
lowest vruntime to run next.

Since Linux 2.6.38 the notion of fairness in CFS has
evolved from fairness between threads to fairness be-
tween applications. Before Linux 2.6.38 every thread
was considered as an independent entity and got the same
share of resources as other threads in the system. This
meant that an application that used many threads got a
larger share of resources than single-threaded applica-
tions. In more recent kernel versions, threads of the same
application are grouped into a structure called a cgroup.
A cgroup has a vruntime that corresponds to the sum of
the vruntimes of all of its threads. CFS then applies its
algorithm on cgroups, ensuring fairness between groups
of threads. When a cgroup is chosen to be scheduled,
its thread with the lowest vruntime is executed, ensuring
fairness within a cgroup. Cgroups can also be nested.
For instance, systemd automatically configures cgroups
to ensure fairness between different users, and then fair-
ness between the applications of a given user.

CFS avoids thread starvation by scheduling all threads
within a given time period. For a core executing fewer
than 8 threads the default time period is 48ms. When
a core executes more than 8 threads, the time period
grows with the number of threads and is equal to 6 ∗
number o f threads ms; the 6ms value was chosen to
avoid preempting threads too frequently. Threads with
a higher priority get a higher share of the time period.
Since CFS schedules the thread with the lowest vruntime,
CFS needs to prevent a thread from having a vruntime
much lower than the vruntimes of the other threads wait-
ing to be scheduled. If that were to happen, the thread
with the low vruntime could run for a long time, starving
the other threads. In practice, CFS ensures that the vrun-
time difference between any two threads is less than the
preemption period (6ms). It does so at two key points:
(i) when a thread is created, the thread starts with a vrun-
time equal to the maximum vruntime of the threads wait-
ing in the runqueue, and (ii) when a thread wakes up af-
ter sleeping, its vruntime is updated to be at least equal
to the minimum vruntime of the threads waiting to be
scheduled. Using the minimum vruntime also ensures
that threads that sleep a lot are scheduled first, a desir-
able strategy on desktop systems, because it minimizes
the latency of interactive applications. Most interactive
applications sleep most of the time, waiting for user in-
put, and are immediately scheduled as soon as the user

86 2018 USENIX Annual Technical Conference USENIX Association

interacts with them.
CFS also uses heuristics to improve cache usage. For

instance, when a thread wakes up, it checks the differ-
ence between its vruntime and the vruntime of the cur-
rently running thread. If the difference is not significant
(less than 1ms), the current running thread is not pre-
empted – CFS sacrifices latency to avoid frequent thread
preemption, which may negatively impact caches.

Load balancing: In a multicore setting, Linux’s CFS
evens out the amount of work on all cores of the machine.
This is different from evening out the number of threads.
For instance, if a user runs 1 CPU-intensive thread and
10 threads that mostly sleep, CFS might schedule the 10
mostly sleeping threads on a single core.

To balance the amount of work, CFS uses a load met-
ric for threads and cores. The load of a thread corre-
sponds to the average CPU utilization of a thread: a
thread that never sleeps has a higher load than one that
sleeps a lot. Like the vruntime, the load of a thread is
weighted by the thread’s priority. The load of a core is
the sum of the loads of the threads that are runnable on
that core. CFS tries to even out the load of cores.

CFS takes into account the loads of cores when creat-
ing or waking up threads. The scheduler first decides
which cores are suitable to host the thread. This de-
cision involves many heuristics, such as the frequency
at which the thread that initiated the wakeup wakes
up threads. For instance, if CFS detects a 1-to-many
producer-consumer pattern, then it spreads out the con-
sumer threads as much as possible on the machine, and
most cores of the machine are considered suitable to host
woken up threads. In a 1-to-1 communication pattern,
CFS restricts the list of suitable cores to cores sharing a
cache with the thread that initiated the wakeup. Then,
among all suitable cores, CFS chooses the core with the
lowest load on which to wake up or create the thread.

Load balancing also happens periodically. Every 4ms
every core tries to steal work from other cores. This
load balancing takes into account the topology of the ma-
chine: cores try to steal work more frequently from cores
that are “close” to them (e.g., sharing a cache) than from
cores that are “remote” (e.g., on a remote NUMA node).
When a core decides to steal work from another core, it
tries to even out the load between the two cores by steal-
ing as many as 32 threads from the other core. Cores
also immediately call the periodic load balancer when
they become idle.

On large NUMA machines, CFS does not compare the
load of all cores against each other, but instead balances
the load in a hierarchical way. For instance, on a machine
with 2 NUMA nodes, CFS balances the load of cores in-
side the NUMA nodes, and then compares the load of
the NUMA nodes (defined as the average load of their

cores) to decide whether or not to balance the load be-
tween nodes. If the load difference between the nodes is
small (less than 25% in practice), then no load balancing
is performed. The greater the distance between two cores
(or groups of cores), the higher the imbalance has to be
for CFS to balance the load.

2.2 FreeBSD ULE
Per-core scheduling: ULE uses two runqueues to
schedule threads: one runqueue contains interactive
threads, and the other contains batch threads. A third
runqueue called idle is used when a core is idle. This
runqueue only contains the idle task.

The goal of having two runqueues is to give priority
to interactive threads. Batch processes usually execute
without user interaction, and thus scheduling latency is
less important. ULE keeps track of the interactivity of
a thread using an interactivity penalty metric between 0
and 100. This metric is defined as a function of the time
r a thread has spent running and the time s a thread has
spent voluntarily sleeping (not including the time spent
waiting for the CPU), and is computed as follows:

scaling factor = m = 50

penalty(r,s) =

{
m
s
r

s > r
m
r
s
+m otherwise

A penalty in the lower half of the range (≤ 50) means
that a thread has spent more time voluntarily sleeping
than running, while a penalty above means the opposite.

The amount of history kept for the sleep and running
times is (by default) limited to the last 5 seconds of the
thread’s lifetime. On the one hand, having a large amount
of history would lengthen the time required to detect
batch threads. On the other hand, too little history would
induce noise in the classification [15].

To classify threads, ULE first computes a score de-
fined as interactivity penalty + niceness. A thread is con-
sidered interactive if its score is under a certain thresh-
old, 30 by default as in FreeBSD11.1. With a niceness
value of 0, this corresponds roughly to spending more
than 60% of the time sleeping. Otherwise, it is classified
as batch. A negative nice value (high priority) makes it
easier for a thread to be considered interactive.

When a thread is created, it inherits the runtime and
sleeptime (and thus the interactivity) of its parent. When
a thread dies, its runtime in the last 5 seconds is returned
to its parent. This penalizes parents that spawn batch
children when being interactive.

Inside the interactive and batch runqueues, threads
are further sorted by priority. The priority of interac-
tive threads is a linear interpolation of their score (i.e.,
a thread with a penalty of 0 has the highest interactive

USENIX Association 2018 USENIX Annual Technical Conference 87

priority, while a thread with a penalty of 30 has the low-
est interactive priority). Inside the interactive runqueue,
there is one FIFO per priority. To add a thread to a run-
queue, the scheduler inserts the thread at the end of the
FIFO indexed by the thread’s priority. Picking a thread
to run from this runqueue is simply done by taking the
first thread in the highest-priority non-empty FIFO.

The priority of batch threads depends on their runtime:
the more a thread runs, the lower its priority. The nice-
ness of the thread is added to get a linear effect on the pri-
ority. Inside the batch runqueue, there is also one FIFO
per priority. Insertion and removal work as in the inter-
active case, with a slight difference. To avoid starvation
between batch threads, ULE tries to be fair among batch
threads by minimizing the difference of runtime between
threads, similarly to what CFS does with the vruntime.

When picking the next thread to run, ULE first
searches in the interactive runqueue. If an interactive
thread is ready to be scheduled, it returns that thread. If
the interactive runqueue is empty, ULE searches in the
batch runqueue instead. If both runqueues are empty, that
means that the core is idle, and no thread is scheduled.

The order in which ULE searches the runqeues ef-
fectively gives interactive threads absolute priority over
batch threads. Batch threads may potentially starve if the
machine executes too many interactive threads. How-
ever, it is thought that, as interactive threads by definition
sleep more than they execute, starvation does not occur.

A thread runs for a limited period of time defined as a
timeslice. Contrary to CFS, the rate at which a thread’s
timeslice expires is the same regardless of its priority.
However, the value of a timeslice changes with the num-
ber of threads currently running on the core. When a
core executes 1 thread, the timeslice is 10 ticks (78ms).
When multiple threads are running, this value is divided
by the number of threads while being constrained to a
lower bound of 1 tick (1/127th of a second). In ULE, full
preemption is disabled, meaning that only kernel threads
can preempt others.

Load balancing: ULE only aims to even out the num-
ber of threads per core. In ULE, the load of a core is sim-
ply defined as the number of threads currently runnable
on this core. Unlike CFS, ULE does not group threads
into cgroups, but rather considers each thread as an inde-
pendent entity.

When choosing a core for a newly created or awoken
thread, ULE uses an affinity heuristic. If the thread is
considered cache affine on the last core it ran on, then it
is placed on this core. Otherwise, ULE finds the high-
est level in the topology that is considered affine, or the
entire machine if none is available. From there, ULE
first tries to find a core on which the minimum priority
is higher than that of this thread. If that fails, ULE tries

again, but now on all cores of the machine. If this also
fails, ULE simply picks the core with the lowest number
of running threads on the machine.

ULE also balances threads periodically, every 500-
1500ms (the duration of the period is chosen randomly).
Unlike CFS, the periodic load balancing is performed
only by core 0. Core 0 simply tries to even out the num-
ber of threads amongst the cores as follows: a thread
from the most loaded core, the (donor), is migrated to
the less loaded core, the (receiver). A core can only be
a donor or a receiver once, and the load balancer iterates
until no donor or receiver is found, meaning that a core
may give away or receive at most one thread per load
balancer invocation.

ULE also balances threads when the interactive and
batch runqueues of a core are empty. ULE tries to steal
from the most loaded core with which the idle core shares
a cache. If ULE fails to steal a thread, it tries at a higher
level of the topology and so on, until it finally manages
to steal a thread. As with the periodic load balancer, the
idle stealing mechanism steals at most one thread.

Periodic load balancing in ULE happens less often
than in CFS, but more computation is involved in select-
ing a core during thread placement in ULE. The rationale
is that having a better initial thread placement avoids the
need for frequently running a global load balancer.1

3 Porting ULE to the Linux kernel

In this section we describe the problems encountered
when porting ULE to Linux, and the main differences
between our port and the original FreeBSD code.

The Linux kernel offers an API to add new schedulers
to the kernel. Schedulers must implement the set of func-
tions presented in Table 1. These functions are responsi-
ble for adding and removing threads in runqueues, pick-
ing threads to be scheduled, and placing threads on cores.

FreeBSD does not offer such an API to schedulers. In-
stead, it declares prototypes of the functions that must be
defined, meaning that only one scheduler can be used at
a time, as opposed to Linux, in which multiple schedul-
ing classes can co-exist. Fortunately, functions inside the
ULE scheduler can easily be mapped to their counter-
parts in Linux (see Table 1). In the few cases where
the interfaces do not match, it was possible to find a
workaround. For instance, Linux uses a single func-
tion to enqueue newly created threads and threads that
have been woken up, while FreeBSD uses two functions.
Linux uses a flag parameter in its function to distinguish
between the two cases. It then suffices to use this flag to
choose the corresponding FreeBSD function.

1In recent versions of FreeBSD, due to a bug, the periodic load
balancer never executes [1]. In our ULE code we fixed the bug, and the
load balancer is executed periodically.

88 2018 USENIX Annual Technical Conference USENIX Association

Linux FreeBSD equivalent Usage

enqueue_task sched_add for new threads Enqueue a thread in a runqueuesched_wakeup for woken up threads
dequeue_task sched_rem Remove a thread from a runqueue
yield_task sched_relinquish Yield the CPU back to the scheduler
pick_next_task sched_choose Select the next task to be scheduled
put_prev_task sched_switch Update statistics about the task that just ran
select_task_rq sched_pickcpu Choose the CPU on which a new (or waking up) thread should be placed

Table 1: Linux scheduler API and equivalent functions in FreeBSD.

Other than interfaces, CFS and ULE also differ in
some low-level assumptions. The most notable differ-
ence is related to the presence or absence of the cur-
rent thread in the runqueue data structures. The Linux
scheduling class mechanism relies on the assumption
that the current thread stays in the runqueue data struc-
ture while it runs on a core. In ULE, a thread that runs
on a core is removed from the runqueue data structure,
and added back when its timeslice is depleted, so that
the FIFO property holds. When trying to implement this
behavior in Linux, we encountered several showstopper
issues, such as kernel crashes for threads that tried to
change their scheduling class. We decided instead to
adhere to the Linux way of doing things, and leave the
currently running thread in the runqueue. Because of
that, we had to slightly change the ULE load balancing
to avoid migrating a currently running thread.

Furthermore, in ULE, when migrating a thread from
one CPU to another, the scheduler acquires the lock on
both runqueues. In Linux, this locking mechanism lead
to deadlocks. Therefore, we modified the ULE load bal-
ancing code to use the same mechanism as that of CFS.

Finally, in FreeBSD, ULE is responsible for schedul-
ing all threads, whereas Linux uses different schedul-
ing policies for different priority ranges (e.g., a realtime
scheduler for high priority threads). In this work, we are
mainly interested in comparing workloads with priorities
falling in the CFS range (100-139). Hence, we scaled
down the ULE penalty scores to fit within the CFS range.

4 Experimental environment

4.1 Machines

We evaluate ULE on a 32-core machine (AMD Opteron
6172) with 32GB of RAM. All experiments were per-
formed on the latest LTS Linux kernel (4.9). We also ran
experiments on a smaller desktop machine (8-core In-
tel i7-3770), reaching similar conclusions. Due to space
limitations, we omit these results from the paper.

4.2 Workloads

To assess the performance of CFS and ULE, we used
both synthetic benchmarks and realistic applications.
Fibo is a synthetic application computing Fibonacci
numbers. Hackbench [10] is a benchmark designed by
the Linux community to stress the scheduler. It creates
a large number of threads that run for a short amount of
time and exchange data using pipes. We also selected
16 applications from the Phoronix test suite [2] based on
their completion time. We excluded Phoronix applica-
tions that take more than 10 minutes to complete on a
single core, or that were too short to allow reliable time
measurements. The 16 Phoronix applications are: com-
pilation benchmarks (build-apache, build-php), compres-
sion (7zip, gzip), image processing (c-ray, dcraw), sci-
entific (himeno, hmmer, scimark), cryptography (john-
the-ripper) and web (apache). We use the NAS bench-
mark suite [6] to benchmark HPC applications, the Par-
sec benchmark suite [7] to benchmark parallel applica-
tions, and Sysbench [3] with MySQL and RocksDB [16]
as database benchmarks. We use a read-write workload
for sysbench and RocksDB to schedule threads with dif-
ferent behaviors.

5 Evaluation of per-core scheduling

In this section, we run applications on a single core to
avoid possible side effects introduced by the load bal-
ancer. The main difference between CFS and ULE in
per-core scheduling is in the handling of batch threads:
CFS tries to be fair to all threads, while ULE gives pri-
ority to interactive threads. We first analyze the impact
of this design decision by co-scheduling a batch and an
interactive application on the same core, and we show
that under ULE batch applications can starve for an un-
bounded amount of time. We then show that starva-
tion under ULE can occur even when the system is only
running a single application. We conclude this section
by comparing the performance of 37 applications, and
show how different choices regarding the preemption of
threads impact performance.

USENIX Association 2018 USENIX Annual Technical Conference 89

5.1 Fairness and starvation when
co-scheduling applications

In this section, we analyse the behavior of CFS and
ULE running a multi-application workload consisting
of a compute-intensive thread that never sleeps (fibo,
computing numbers), and an application whose threads
mostly sleep (sysbench, a database, using 80 threads).
Having more than 80 threads per core is not uncommon
in datacenters [12]. These threads are never all active at
the same time; they mostly wait for incoming requests,
or for data stored on disk.

Fibo runs alone for 7 seconds, and then sysbench is
launched. Both applications then run to completion. Fig-
ure 1(a) presents the runtime accumulated by fibo and
sysbench on CFS, and Figure 1(b) presents the same
quantities on ULE.

On CFS, sysbench completes in 235s, and then fibo
runs alone. Both fibo and sysbench threads share the ma-
chine. When sysbench executes, the cumulative runtime
of fibo progresses roughly half as fast as when it runs
alone, meaning that fibo gets 50% of the core. This is
expected: CFS tries to share the core fairly between the
two applications. In practice, fibo gets a bit less than half
of the CPU due to rounding errors.

On ULE, sysbench is able to complete the same work-
load in 143s, and then fibo runs by itself. fibo starves
while sysbench is running. sysbench threads mainly
sleep, so they are classified as interactive and get abso-
lute priority over fibo. Since sysbench uses 80 threads,
these threads are able to saturate a core, and prevent fibo
from running. Figure 2 presents the evolution of the in-
teractivity penalty of fibo and sysbench over time. Both
applications start out as interactive (penalty of 0). The
penalty of fibo quickly rises to the maximum value, and
then fibo is no longer considered interactive. Sysbench
threads, in contrast, remain interactive during their entire
execution (penalty below the 30 limit). Thus, sysbench
threads get absolute priority over the fibo thread. This
situation persists as long as sysbench is running (i.e., the
starvation time is not bounded by ULE).

Table 2 presents the total execution time of fibo and
sysbench on CFS and ULE, and the latency of requests
for sysbench. Sysbench runs 50% slower on CFS, be-
cause it shares the CPU with fibo, instead of running in
isolation, as it does with ULE (290 transactions/s with
CFS vs. 532 with ULE). Fibo is “stopped” during the ex-
ecution of sysbench on ULE, but then gets to execute by
itself, and thus can use the cache more efficiently than
when running simultaneously with sysbench on CFS.
Thus, fibo runs slightly faster on ULE than on CFS.

We found the strategy used by the ULE scheduler to
work well with latency-sensitive applications. These ap-
plications are usually correctly classified as interactive

CFS ULE
Fibo - Runtime 160s 158s
Sysbench - Transactions/s 290 532
Sysbench - Avg. latency 441ms 125ms

Table 2: Execution time of fibo and sysbench using CFS
and ULE, average latency of requests in sysbench using
CFS and ULE.

and get priority over background threads. To achieve
the same result in Linux, the latency-sensitive applica-
tion would have to be executed by the realtime scheduler,
which gets absolute priority over CFS.

5.2 Fairness and starvation within a single
application

The starvation exhibited by ULE in the multi-application
scenario above also occurs in single-application work-
loads. We now exemplify this behavior using sysbench.

In ULE, newly created threads inherit the interactivity
penalty of their parent at the time of the fork. In sys-
bench, the master thread is created with the interactivity
penalty of the bash process from which it was forked.
Since bash mostly sleeps, sysbench is created as an in-
teractive process. The sysbench master thread initializes
data and creates threads. While doing so, it never sleeps,
and its interactivity penalty increases. The first threads
are created with an interactivity penalty below the inter-
active threshold, while the remaining threads are created
with an interactivity penalty above it. As a consequence,
the first threads get absolute priority over the remaining
ones. Since these threads spend most of their time wait-
ing for new requests, their interactivity penalty stays low
(it decreases to 0), and their priority remains higher than
that of threads that were forked late in the initialization
process. The latter threads sysbench may starve forever,
if the interactive threads keep the CPU busy at all times.

Figure 3 presents the cumulative runtime of sysbench
threads, and Figure 4 presents their interactivity penalty.
Sysbench is configured to use 128 threads. The threads
created early execute, and their interactivity penalty
drops to 0. The threads created later never execute.

Counterintuitively, in this benchmark ULE actually
performs better than CFS, because it avoids over-
subscription: the machine runs as many threads as it
can. As a consequence, ULE has a lower average la-
tency than CFS. In general, we found that this starvation
mechanism, seemingly problematic on paper, performs
very well in applications where all threads compete to
perform the same job.

In contrast to sysbench, the scientific applications
we tested are not impacted by starvation, because their
threads never sleep. After a short initialization period

90 2018 USENIX Annual Technical Conference USENIX Association

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 50 100 150 200 250 300 350

R
un

tim
e

(s
)

Time (s)

fibo
 sysbench

(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 50 100 150 200 250 300 350

R
un

tim
e

(s
)

Time (s)

fibo
 sysbench

(b)

Figure 1: Cumulative runtime of fibo, and sysbench on (a) CFS, and (b) ULE. (a) On CFS, fibo continues to accumulate
runtime, albeit more slowly, when sysbench executes, meaning that fibo is not starved. (b) On ULE, when sysbench
executes, fibo stops accumulating runtime, meaning that it is starved.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

In
te

ra
ct

iv
ity

 p
en

al
ty

Time (s)

Interactivity penalty of fibo

Interactivity penalty of sysbench threads

Figure 2: Interactivity penalty of threads over time.
Fibo’s penalty quickly rises to the maximum value, while
the penalty of sysbench threads drops to 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 R
un

tim
e

Time (s)

Runtime of the master thread

Runtime of interactive threads

Runtime of background threads

Figure 3: Cumulative runtime of threads of sysbench on
ULE. The master thread first spawns 128 threads. 80
threads are classified as interactive and are executed, and
48 threads are classified as background and starve.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 20 40 60 80 100 120 140

In
te

ra
ct

iv
ity

 p
en

al
ty

Time (s)

Interactivity penalty of interactive threads

Interactivity penalty of background threads

Figure 4: Interactivity penalty of the threads presented
in Figure 3. Threads inherit the interactivity penalty of
their parent when created. Some are created with a low
penalty, and their penalty decreases as they execute (bot-
tom of the graph), while other threads are created with a
high penalty and never execute (top of the graph).

all threads are considered as background threads and are
scheduled in a fair manner.

5.3 Performance analysis

We now analyze the impact of the per-core scheduling
on the performance of 37 applications. We define “per-
formance” as follows: for database workloads and NAS
applications, we compare the number of operations per
second, and for the other applications we compare “1/ex-
ecution time”. The higher the “performance”, the better
a scheduler performs. Figure 5 presents the performance
difference between CFS and ULE on a single core, with
percentages above 0 meaning that the application exe-
cutes faster with ULE than CFS.

Overall, the scheduler has little influence on most
workloads. Indeed, most applications use threads that
all perform the same work, thus both CFS and ULE end
up scheduling all of the threads in a round-robin fashion.
The average performance difference is 1.5%, in favor of

USENIX Association 2018 USENIX Annual Technical Conference 91

-40
-30
-20
-10

 0
 10
 20
 30
 40

Bu
ild

-a
pa

ch
e

Bu
ild

-p
hp

7z
ip

G
zi

p
C

-R
ay

D
C

ra
w

hi
m

en
o

hm
m

er
sc

im
ar

k2
-(1

)
sc

im
ar

k2
-(2

)
sc

im
ar

k2
-(3

)
sc

im
ar

k2
-(4

)
sc

im
ar

k2
-(5

)
sc

im
ar

k2
-(6

)
jo

hn
-(1

)
jo

hn
-(2

)
jo

hn
-(3

)
Ap

ac
he BT C
G D
C EP FT IS LU M
G SP U
A

Sy
sb

en
ch

R
oc

ks
db

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

fa
ce

si
m

fe
rre

t
flu

id
an

im
at

e
fre

qm
in

e
ra

yt
ra

ce
st

re
am

cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

 P
er

fo
rm

an
ce

(%
 d

iff
, w

rt
C

FS
)

 ULE

Figure 5: Performance of ULE with respect to CFS on a single core. A number higher than 0 means that the application
runs faster on ULE than on CFS.

ULE. Still, scimark is 36% slower on ULE than CFS, and
apache is 40% faster on ULE than CFS.

Scimark is a single-threaded Java application. It
launches one compute thread, and the Java runtime ex-
ecutes other Java system threads in the background (for
the garbage collector, I/O, etc.). When the application is
executed with ULE, the compute thread can be delayed,
because Java system threads are considered interactive
and get priority over the computation thread.

The apache workload consists of two applications: the
main server (httpd) running 100 threads, and ab, a single-
threaded load injector. The performance difference be-
tween ULE and CFS is explained by different choices
regarding thread preemption.

In ULE, full preemption is disabled, while CFS pre-
empts the running thread when the thread that has just
been woken up has a vruntime that is much smaller than
the vruntime of the currently executing thread (1ms dif-
ference in practice). In CFS, ab is preempted 2 million
times during the benchmark, while it never preempted
with ULE. This behavior is explained as follows: ab
starts by sending 100 requests to the httpd server, and
then waits for the server to answer. When ab is wo-
ken up, it checks which requests have been processed
and sends new requests to the server. Since ab is single-
threaded, all requests sent to the server are sent sequen-
tially. In ULE, ab is able to send as many new requests
as it has received responses. In CFS, every request sent
by ab wakes up a httpd thread, which preempts ab.

6 Evaluation of the load balancer

In this section, we analyze the impact of the load balanc-
ing and thread placement strategies on performance. In
CFS and ULE, load balancing happens periodically, and
thread placement occurs when threads are created or wo-
ken up. We first analyze the time it takes for the periodic
load balancer to balance a static workload on all cores
of the machine. We then analyze design choices made
by CFS and ULE when placing threads. Next, we com-

pare the performance of 37 applications running on CFS
vs. ULE. Finally, we analyze the performance of multi-
application workloads.

6.1 Periodic load balancing

CFS relies on a rather complex load metric. It uses a hi-
erarchical load balancing strategy that runs every 4ms.
ULE only tries to even out the number of threads on
the cores. Load balancing happens less often (the period
varies between 0.5s and 1.5s) and ignores the hardware
topology. We now evaluate how these strategies impact
the time needed to balance the load on the machine.

To that end, we pin 512 spinning threads on core 0, we
launch a taskset command to unpin the threads, and we
let the load balancer balance the load between cores. All
threads perform the same work (an infinite empty loop),
so we expect the load balancer to place 16 threads on
each of the 32 cores. Figure 6 presents the evolution over
time of the number of threads per core. In the figure,
each of the 32 lines represents the number of threads on
a given core. The taskset command that unpins threads
is launched at 14.5s.

On ULE, as soon as the threads are unpinned, idle
cores steal threads (at most one per core) from core 0,
thus right after the unpinning, core 0 has 512−31 = 481
threads while every other core has 1 thread. Over time,
the periodic load balancer is triggered and tries to bal-
ance the thread count. However, as the load balancer
only migrates one thread at a time from core 0, it takes
more that 450 load balancer invocations or about 240
seconds to reach a balanced state.

CFS balances the load much faster. 0.2 seconds af-
ter the unpinning, CFS has migrated more that 380
threads from core 0. Surprisingly, CFS never achieves
perfect load balance. CFS only balances the load be-
tween NUMA nodes when the imbalance between the
two nodes is “big enough” (25% load difference in prac-
tice). So cores in one node can have 18 threads while
cores in another only have 15.

92 2018 USENIX Annual Technical Conference USENIX Association

(a) ...

(b) ...

Figure 6: Number of threads per core over time on (a) ULE and (b) CFS. Each line represents a core (32 in total), time
passes on the x-axis (in seconds), and colors represent the numbers of threads on the core. Thread counts below 15 are
represented in shades of grey. Threads are pinned on core 0 for the first 14.5 seconds of the execution.

While the load balancing strategy used by CFS is well
suited for solving a large imbalance loads in the system,
it is less suited when a perfect load balance is important
for performance.

6.2 Thread placement

We study placement of threads using c-ray, an image pro-
cessing application from the phoronix benchmark suite.
C-ray starts by creating 512 threads. Threads are not
pinned at creation time, so the scheduler chooses a core
for each thread. Then all threads wait on a barrier be-
fore performing the computation. Since all threads be-
have in the same way, we would expect ULE to perform
better than CFS in that configuration: ULE always forks
threads on the core with the lowest number of threads, so
the load should be perfectly balanced from the start.

Figure 7 presents the evolution in the number of
runnable threads per core over time. Load is always bal-
anced in ULE, but surprisingly it takes more than 11 sec-
onds for ULE to have all threads runnable, while it only
takes 2 seconds for CFS. This delay is explained by star-
vation. C-ray uses a cascading barrier in which thread
0 wakes up thread 1, thread 1 wakes up thread 2, etc.
Threads are originally created with different interactiv-
ity penalties, and some threads are initially interactive,
while others are initially batch (same reason as in sys-
bench, see Section 5.2). When a batch thread is woken
up, it might starve until all interactive threads are done,
or until their penalty has increased enough for them to
be downgraded to the batch runqueue. In practice, in c-
ray, threads never sleep after the barrier, so eventually all
threads become batch, but, before they do, threads that
were initially categorized as batch cannot wake up other
threads. Thus, it takes 11 seconds for all threads to be
woken up after the barrier.

CFS on the contrary is fair, and all threads are quickly
woken up. Then, CFS runs into the imperfect load bal-

ancing issue that we explained in Section 6.1.
Despite these load balancing differences, c-ray com-

pletes in the same time on CFS and ULE, because c-ray
creates more threads than cores, and because both sched-
ulers always keep all cores busy. Preemptions do occur
more often with CFS, but do not affect the performance.

6.3 Performance analysis

Figure 8 presents the performance difference between
CFS and ULE in a multicore context. The average per-
formance difference between CFS and ULE is small:
2.75% in favor of ULE.

MG, from the NAS benchmark suite, benefits the most
from ULE’s load balancing strategy: it is 73% faster on
ULE than on CFS. MG spawns as many threads as there
are cores in the machine, and all threads perform the
same computations. When a thread has finished its com-
putation, it waits on a spin-barrier for 100ms and then
sleeps if some threads are still computing. ULE correctly
places one thread per core, and then never migrates them
again. Threads spend very little time waiting for each
other in the barriers, and never sleep. In contrast, CFS
reacts to micro changes in the load of cores (e.g., due to a
kernel thread waking up), and sometimes wrongly places
two MG threads on the same core. Since MG uses bar-
riers, the two threads scheduled on the same core end up
delaying the whole application. The delay is more than
50% because threads scheduled alone on their cores go
to sleep, and then have to be woken up, thus adding la-
tency to the barriers. This suboptimal thread placement
also explains the performance difference between CFS
and ULE on FT and UA. The simple approach of bal-
ancing the number of threads used by ULE works better
on HPC-like applications because it ends up placing one
thread per core and then never migrates them again.

Sysbench, is slower on ULE due to the overhead of the
ULE load balancer. When a thread wakes up, ULE scans

USENIX Association 2018 USENIX Annual Technical Conference 93

(a)

(b)

Figure 7: Number of threads per core over time on c-ray on (a) ULE and (b) CFS. Contrary to Figure 6, threads do not
start pinned on core 0.

-40

-20

 0

 20

 40

 60

 80

Bu
ild

-a
pa

ch
e

Bu
ild

-p
hp

7z
ip

G
zi

p
C

-R
ay

D
C

ra
w

hi
m

en
o

hm
m

er
sc

im
ar

k2
-(1

)
sc

im
ar

k2
-(2

)
sc

im
ar

k2
-(3

)
sc

im
ar

k2
-(4

)
sc

im
ar

k2
-(5

)
sc

im
ar

k2
-(6

)
jo

hn
-(1

)
jo

hn
-(2

)
jo

hn
-(3

)
Ap

ac
he BT C
G D
C EP FT IS LU M
G SP U
A

Sy
sb

en
ch

R
oc

ks
db

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

fa
ce

si
m

fe
rre

t
flu

id
an

im
at

e
fre

qm
in

e
ra

yt
ra

ce
st

re
am

cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

H
ac

kb
-8

00
H

ac
kb

-1
0

 P
er

fo
rm

an
ce

(%
 d

iff
, w

rt
C

FS
)

 ULE

Figure 8: Performance of ULE with respect to CFS on a multicore.

the cores of the machine to find an appropriate core for
the thread, and, at worst, may scan all cores three times.
This worst case scenario happens on most wakeups in
sysbench, resulting in 13% of all CPU cycles being spent
on scanning cores. To validate this assumption, we re-
placed the ULE wakeup function by a simple one that
returns the CPU on which the thread was previously run-
ning, and then observed no difference between ULE and
CFS.

In all the benchmarks we tested, 13% is the highest
time spent in the scheduler we observed in ULE, and
2.6% is the highest time spent in the scheduler we ob-
served in CFS. Note that ULE runs into a corner case
situation with sysbench, but has a low overhead on other
benchmarks, even when they spawn a large number of
threads: for instance in hackbench (32 000 threads), the
overhead of ULE is 1% (compared to 0.3% for CFS).

6.4 Multi application workloads
Finally, we evaluate the combination of interactive and
background workloads using a set of different applica-
tions: c-ray + EP (from NAS) is a workload where both
applications are considered background by ULE, fibo +
sysbench and blackscholes + ferret are workloads where
only one application is interactive, and apache + sys-
bench is a fully interactive workload. Figure 9 shows the
performance of CFS and ULE with respect to the perfor-
mance of the application running alone on the machine
(higher is better). Overall, most applications run slower
when they are co-scheduled with another application.

When both applications are non-interactive (c-ray +
EP), CFS and ULE perform similarly. This is expected,

as they schedule background threads in a similar way.
EP runs slightly faster on ULE when executed alone, and
this performance difference is still present when it is co-
scheduled with c-ray. When both applications are inter-
active, CFS and ULE also perform similarly.

For blackscholes + ferret, ULE gives priority to the in-
teractive application, and ferret is not impacted by being
co-scheduled with blackscholes. Blackscholes however
runs more than 80% slower. In that context, blacksc-
holes does not fully starve because ferret does not use
100% of all cores. CFS on the contrary shares the CPU
fairly, and both applications suffer equally (the impact of
co-scheduling on these applications is less than 50% be-
cause neither ferret nor blackscholes scales to 32 cores).

Surprisingly when co-scheduled with fibo, sysbench
performs worse on ULE than on CFS even though it is
correctly categorized as interactive and gets priority over
fibo threads. The lack of preemption in ULE explains the
performance difference. MySQL does not achieve per-
fect scaling and, when executed on 32 cores, lock con-
tention forces the threads to sleep when waiting for the
locks to be released. Thus, fibo does not starve. When
a MySQL lock is released, ULE does not preempt the
currently running thread (usually fibo) to schedule a new
MySQL thread to enter the critical section. This adds
delays (of up to the length of fibo’s timeslice, between
7.8ms and 78ms) to the execution of sysbench.

7 Related work

Previous works have compared the design choices made
by FreeBSD and Linux. Abaffy et al. [4, 5] compare the

94 2018 USENIX Annual Technical Conference USENIX Association

-100
-80
-60
-40
-20

 0
 20
 40

c-ray
EP fibo

sysbench

blackscholes

ferret
apache

sysbench

Pe
rf.

 im
pr

ov
em

en
t r

el
at

iv
e

to
ru

nn
in

g
al

on
e

on
 C

FS
 (%

) Batch + batch Batch + interactive Batch + interactive Interactive + interactive

 CFS multiapp
 ULE singleapp
 ULE multiapp

Figure 9: Performance of CFS and ULE on multi application workloads with respect to the performance of the appli-
cation running alone on CFS.

average waiting time of threads in scheduler runqueues.
Schneider et al. [17] compare the networking stack per-
formance of the two operating systems. Design choices
made by FreeBSD are also frequently discussed on the
Linux kernel mailing list [20]. This study differs in its
approach: instead of comparing two complete operat-
ing systems, we ported the FreeBSD ULE scheduler to
Linux. To the best of our knowledge, this is the first
apples-to-apples comparison of the design of ULE and
CFS.

The Linux scheduler design has also been discussed
in previous works. Torrey et al. [19] compare the la-
tency of the Linux scheduler against a custom imple-
mentation of a multilevel feedback queue. Wong et al.
compare the fairness of CFS with the O(1) scheduler
that was the default Linux scheduler prior to 2.6.23 [23],
and with a RSDL scheduler (Rotating Staircase Deadline
Scheduler) [22]. Groves et al. [9] compare the overhead
of CFS against BFS (Brain Fuck Scheduler), a simplis-
tic scheduler aimed at improving responsiveness on ma-
chines with few cores. Other work has studied the over-
head of schedulers. Kanev et al. [12] report that the CFS
alone accounts for more than 5% of all datacenter cycles.

The performance of operating systems is frequently
assessed by measuring the evolution of performance be-
tween kernel versions. The Linux Kernel Performance
project [8] started in 2005 to measure performance re-
gressions in the Linux Kernel. Mollison et al. [14]
propose Litmus tests to find performance regressions in
schedulers. Performance issues in operating systems are
also frequently reported in the Systems community. Lozi
et al. [13] report bugs in the Linux scheduler that could
lead to cores being permanently left idle while work was
waiting to be scheduled on other cores. Harji et al. [11]
report similar performance bugs in earlier kernel ver-
sions. During the work on this paper we also reported
bugs in the scheduler to the FreeBSD community [1]. In
this study we chose to compare “glitch free” versions of
ULE and CFS by fixing obvious bugs that were not in-
tended as features of the schedulers.

8 Conclusion

Scheduling threads on a multicore machine is hard. In
this paper, we perform a fair comparison of the design
choices of two widely used schedulers: the ULE sched-
uler from FreeBSD and CFS from Linux. We show that
they behave differently even on simple workloads, and
that no scheduler performs better than the other on all
workloads.

References

[1] [PATCH] Fix bug in which the long term
ULE load balancer is executed only once.
https://bugs.freebsd.org/bugzilla/
show_bug.cgi?id=223914.

[2] Phoronix Test Suite. https://www.phoronix.
com.

[3] Sysbench. https://github.com/akopytov/
sysbench.

[4] ABAFFY, J., AND KRAJČOVIČ, T. Latencies
in Linux and FreeBSD kernels with different
schedulers-O(1), CFS, 4BSD, ULE. In Proceed-
ings of the 2nd International Multi-Conference on
Engineering and Technological Innovation (2009),
pp. 110–115.

[5] ABAFFY, J., AND KRAJČOVIČ, T. Pi-ping-
benchmark tool for testing latencies and throughput
in operating systems. Innovations in Computing
Sciences and Software Engineering (2010), 557–
560.

[6] BAILEY, D., BARSZCZ, E., BARTON, J. T.,
BROWNING, D. S., CARTER, R. L., DAGUM, L.,
FATOOHI, R., FREDERICKSON, P. O., LASIN-
SKI, T. A., SCHREIBER, R. S., SIMON, H.,
VENKATAKRISHNAN, V., AND WEERATUNGA, S.
The NAS parallel benchmarks summary and pre-

USENIX Association 2018 USENIX Annual Technical Conference 95

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=223914
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=223914
https://www.phoronix.com
https://www.phoronix.com
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench

liminary results. In Supercomputing ’91. (Nov.
1991), pp. 158–165.

[7] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI,
K. The PARSEC benchmark suite: Character-
ization and architectural implications. In PACT
(2008).

[8] CHEN, T., ANANIEV, L. I., AND TIKHONOV,
A. V. Keeping kernel performance from regres-
sions. In Linux Symposium (2007), vol. 1, pp. 93–
102.

[9] GROVES, T., KNOCKEL, J., AND SCHULTE,
E. BFS vs. CFS scheduler comparison. The
University of New Mexico (2009). http://cs. unm.
edu/˜eschulte/classes/cs587/data/bfsv-cfs_groves-
knockel-schulte. pdf (accessed Jan. 5, 2017).

[10] Hackbench. https://git.kernel.org/pub/
scm/utils/rt-tests/rt-tests.git/tree/
src/hackbench?h=v0.93, 2008.

[11] HARJI, A. S., BUHR, P. A., AND BRECHT, T. Our
troubles with Linux and why you should care. In
Proceedings of the Second Asia-Pacific Workshop
on Systems (New York, NY, USA, 2011), APSys
’11, pp. 2:1–2:5.

[12] KANEV, S., DARAGO, J. P., HAZELWOOD, K.,
RANGANATHAN, P., MOSELEY, T., WEI, G.-Y.,
AND BROOKS, D. Profiling a warehouse-scale
computer. In Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium
on (2015), IEEE, pp. 158–169.

[13] LOZI, J.-P., LEPERS, B., FUNSTON, J., GAUD,
F., QUÉMA, V., AND FEDOROVA, A. The Linux
scheduler: a decade of wasted cores. In EuroSys’16
(2016), ACM, pp. 1:1–1:16.

[14] MOLLISON, M. S., BRANDENBURG, B., AND
ANDERSON, J. H. Towards unit testing real-time
schedulers in LITMUSRT. In Proceedings of the 5th

Workshop on Operating Systems Platforms for Em-
bedded Real-Time Applications (2009), OSPERT.

[15] ROBERSON, J. ULE: a modern scheduler for
FreeBSD.

[16] ROCKSDB - PERFORMANCE BENCHMARKS.
https://github.com/facebook/rocksdb/
wiki/Performance-Benchmarks.

[17] SCHNEIDER, F., AND WALLERICH, J. Perfor-
mance evaluation of packet capturing systems for
high-speed networks. In Proceedings of the 2005
ACM conference on Emerging network experiment
and technology (2005), ACM, pp. 284–285.

[18] THE DESIGN OF CFS. https://www.kernel.
org/doc/Documentation/scheduler/
sched-design-CFS.txt.

[19] TORREY, L. A., COLEMAN, J., AND MILLER,
B. P. A comparison of interactivity in the Linux
2.6 scheduler and an MLFQ scheduler. Software:
Practice and Experience 37, 4 (2007), 347–364.

[20] TORVALDS, L. Is sendfile all that sexy? http://
yarchive.net/comp/linux/sendfile.html.

[21] ULE PORT IN LINUX. https://github.com/
JBouron/linux/tree/loadbalancing.

[22] WANG, S., CHEN, Y., JIANG, W., LI, P., DAI,
T., AND CUI, Y. Fairness and interactivity of three
CPU schedulers in Linux. In Embedded and Real-
Time Computing Systems and Applications, 2009.
RTCSA’09. 15th IEEE International Conference on
(2009), IEEE, pp. 172–177.

[23] WONG, C., TAN, I., KUMARI, R., LAM, J., AND
FUN, W. Fairness and interactive performance of
O(1) and CFS Linux kernel schedulers. In Informa-
tion Technology, 2008. ITSim 2008. International
Symposium on (2008), vol. 4, IEEE, pp. 1–8.

96 2018 USENIX Annual Technical Conference USENIX Association

https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/tree/src/hackbench?h=v0.93
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/tree/src/hackbench?h=v0.93
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/tree/src/hackbench?h=v0.93
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://yarchive.net/comp/linux/sendfile.html
http://yarchive.net/comp/linux/sendfile.html
https://github.com/JBouron/linux/tree/loadbalancing
https://github.com/JBouron/linux/tree/loadbalancing

	Introduction
	Overview of CFS and ULE
	Linux CFS
	FreeBSD ULE

	Porting ULE to the Linux kernel
	Experimental environment
	Machines
	Workloads

	Evaluation of per-core scheduling
	Fairness and starvation when co-scheduling applications
	Fairness and starvation within a single application
	Performance analysis

	Evaluation of the load balancer
	Periodic load balancing
	Thread placement
	Performance analysis
	Multi application workloads

	Related work
	Conclusion

