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Abstract

Deep learning models can take weeks to train on a single
GPU-equipped machine, necessitating scaling out DL
training to a GPU-cluster. However, current distributed
DL implementations can scale poorly due to substantial
parameter synchronization over the network, because the
high throughput of GPUs allows more data batches to be
processed per unit time than CPUs, leading to more fre-
quent network synchronization. We present Poseidon, an
efficient communication architecture for distributed DL
on GPUs. Poseidon exploits the layered model structures
in DL programs to overlap communication and compu-
tation, reducing bursty network communication. More-
over, Poseidon uses a hybrid communication scheme that
optimizes the number of bytes required to synchronize
each layer, according to layer properties and the num-
ber of machines. We show that Poseidon is applicable
to different DL frameworks by plugging Poseidon into
Caffe and TensorFlow. We show that Poseidon enables
Caffe and TensorFlow to achieve 15.5x speed-up on
16 single-GPU machines, even with limited bandwidth
(10GbE) and the challenging VGG19-22K network for
image classification. Moreover, Poseidon-enabled Ten-
sorFlow achieves 31.5x speed-up with 32 single-GPU
machines on Inception-V3, a 50% improvement over the
open-source TensorFlow (20x speed-up).

1 Introduction
Deep learning (DL) is a class of machine learning (ML)
approaches that has achieved notable success across
a wide spectrum of tasks, including speech recogni-
tion [10], visual recognition [34, 35] and language un-
derstanding [21, 20]. These DL models exhibit a high
degree of model complexity, with many parameters in
deeply layered structures that usually take days to weeks
to train on a GPU-equipped machine. The high compu-
tational cost of DL programs on large-scale data neces-
sitates the training on distributed GPU cluster in order to

keep the training time acceptable.
DL software such as TensorFlow [1] and Caffe [14]

allow practitioners to easily experiment with DL models
on a single machine. However, their distributed imple-
mentations can scale poorly for larger models. For exam-
ple, we find that on the VGG19-22K network (229M pa-
rameters), open-source TensorFlow on 32 machines can
be slower than single machine (Section 5.1). This obser-
vation underlines the challenge of scaling DL on GPU
clusters: the high computational throughput of GPUs al-
lows more data batches to be processed per minute (than
CPUs), leading to more frequent network synchroniza-
tion that grows with the number of machines. Exist-
ing communication strategies, such as parameter servers
(PS) for ML [31, 19], can be overwhelmed by the high
volume of communication [7]. Moreover, despite the
increasing availability of faster network interfaces such
as Infiniband or 40GbE Ethernet, GPUs have continued
to grow rapidly in computational power, and continued
to produce parameter updates faster than can be naively
synchronized over the network. For instance, on a 16-
machine cluster with 40GbE Ethernet and one Titan X
GPU per machine, updates from the VGG19-22K model
will bottleneck the network, so that only an 8x speedup
over a single machine is achieved (Section 5.1).

These scalability limitations in distributed DL stem
from at least two causes: (1) the gradient updates to
be communicated are very large matrices, which quickly
saturate network bandwidth; (2) the iterative nature of
DL algorithms causes the updates to be transmitted in
bursts (at the end of an iteration or batch of data), with
significant periods of low network usage in between. We
propose that a solution to these two problems should ex-
ploit the structure of DL algorithms on two levels: on one
hand, it should identify ways in which the matrix updates
can be separated from each other, and then schedule them
in a way that avoids bursty network traffic. On the other
hand, the solution should also exploit the structure of the
matrix updates themselves, and wherever possible, re-
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duce their size and thus the overall load on the network.
For such a solution to be relevant to practitioners (who
may have strong preferences for particular frameworks),
we would prefer not to exploit specific traits of Tensor-
Flow’s or Caffe’s design, but should strive to be relevant
to as many existing frameworks as possible.

With this motivation, we design Poseidon, an effi-
cient communication architecture for data-parallel DL
on distributed GPUs. Poseidon exploits the sequential
layer-by-layer structure in DL programs, finding inde-
pendent GPU computation operations and network com-
munication operations in the training algorithm, so that
they can be scheduled together to reduce bursty network
communication. Moreover, Poseidon implements a hy-
brid communication scheme that accounts for each DL
program layer’s mathematical properties as well as the
cluster configuration, in order to compute the network
cost of different communication methods, and select the
cheapest one – currently, Poseidon implements and sup-
ports a parameter server scheme [31] that is well-suited
to small matrices, and a sufficient factor broadcasting
scheme [32] that performs well on large matrices. We
focus on synchronous parallel training which is shown
to yield faster convergence compared with asynchronous
training in distributed DL (as measured by wall clock
time) on GPUs [7, 2]. Unless otherwise specified, our
discussion in this paper assumes synchronous replica-
tion of model parameters in each training iteration, al-
though we note that Poseidon’s design can easily be ap-
plied to asynchronous or bounded-asynchronous consis-
tency models [12, 8].

To demonstrate Poseidon’s applicability to multiple
DL frameworks, we implement it into two different
DL frameworks: Caffe and TensorFlow, and show that
Poseidon allows them to scale almost-linearly in algo-
rithm throughput with additional machines, while incur-
ring little additional overhead even in the single ma-
chine setting. For distributed execution, with 40GbE
network bandwidth available, Poseidon consistently de-
livers near-linear increases in throughput across vari-
ous models and engines: 31.5x speedup on training
the Inception-V3 network using TensorFlow engine on
32 nodes, which improves 50% upon the original Ten-
sorFlow (20x); when training a 229M parameter net-
work (VGG19-22K), Poseidon still achieves near-linear
speedup (30x on 32 nodes) using both Caffe and Ten-
sorFlow engines, while distributed TensorFlow some-
times experiences negative [37] scaling with additional
machines. Our experiments also confirm that Poseidon
successfully alleviates network communication bottle-
necks, by reducing the required bandwidth for paralleliz-
ing large models. For example, when training VGG19-
22K under limited bandwidth (10GbE), in contrast to a
PS-based parallelization which only achieves 4x speedup

with 16 machines, Poseidon effectively reduces the com-
munication overheads by automatically specializing the
best communication method for each layer, and is able
to keep linearly scaling with throughput. Compared to
other communication reduction methods [4, 36], Posei-
don demonstrates either systems advantages (increased
algorithm throughput) or statistical advantages (fewer al-
gorithm steps or iterations to reach a fixed termination
criteria). Poseidon does not suffer much from imbal-
anced communication loads, which we found to be the
case when using the sufficient factor strategy used in
Project Adam [4]. Poseidon also guarantees that the
number of algorithm steps to reach termination remains
unchanged, unlike the 1-bit quantization strategy used in
CNTK [36] which is approximate and can hurt statistical
performance in some applications.

The rest of the paper is organized as follows. Sec-
tion 2 motivates Poseidon with introduction on large-
scale DL, parameter servers and sufficient factor broad-
casting. Section 3 and section 4 elaborates Poseidon’s
design and implementation, respectively. Section 5 eval-
uates Poseidon by training different models over multiple
datasets, including comparisons to state-of-the-art GPU-
based distributed DL systems. Section 6 discusses re-
lated works and section 7 concludes.

2 Large-scale Deep Learning
In this section, we formulate the DL training as an
iterative-convergent algorithm, and describe parameter
server (PS) and sufficient factor broadcasting (SFB) for
parallelizing such computation on clusters.

2.1 Distributed Deep Learning
DL programs are distinguished from other ML programs
mainly by their use of neural networks (NNs), a family of
hierarchical models containing many layers, from as few
as 5-10 [16] to as many as 100s [11]. Figure 1 illustrates
a neural network with 6 layers. The first layer (green) is
an input layer that reads data in application-specific for-
mats, e.g., raw pixels if it is trained to classify images.
The input layer is connected to a sequence of interme-
diate layers (cyan, orange), each of which consists of a
few neurons, where each neuron applies a function trans-
formation f on its input and produces an output. A vec-
tor output is obtained by concatenating the output of all
neurons from a layer. By stacking multiple intermediate
layers, the NN can transform raw input data one layer at
a time, first into a series of intermediate representations,
and finally into the desired output or prediction (red). DL
programmers usually need to specify the computation of
a layer by defining two properties of its neurons. The first
is the transformation function f (W,x), where x is the in-
put to the neuron, and W is an optional trainable param-
eter. The other is the connectivity that determines how
the neuron should be connected to its adjacent layer. For
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Conv	layers FC	layers
Figure 1: A convolutional neural network with 6 layers.
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Figure 2: An illustration of (a) the parameter server and (b)
sufficient factor broadcasting for distributed ML.

instance, a convolutional neural network has two types
of neuron: convolutional (CONV) neuron (cyan) that are
only locally connected to a subset of neurons in its pre-
vious layer, and fully-connected (FC) neurons (orange).

Most NNs need to be trained with data to give accu-
rate predictions. Stochastic gradient descent (SGD) and
backpropagation are commonly employed to train NNs
iteratively – each iteration performs a feed forward (FF)
pass followed with a backpropagation (BP) pass. In the
FF pass, the network takes a training sample as input,
forwards from its input layer to output layer to produce
a prediction. A loss function is defined to evaluate the
prediction error, which is then backpropagated through
the network in reverse, during which the network param-
eters are updated by their gradients towards where the
error would decrease. After repeating a sufficient num-
ber of passes, the network will usually converge to some
state where the loss is close to a minima, and the training
is then terminated. In a mathematical form, given data D
and a loss function L, fitting the parameters θ of a NN
can be formulated as an iterative-convergent algorithm
that repeatedly executing the update equation

θ
(t) = θ

(t−1)+ ε ·∇L(θ (t−1),D(t)) (1)

until θ reaches some stopping criteria, where t denotes
the iteration. The update function ∇L calculates the gra-
dients of L over current data Di(Di ∈ D). The gradi-
ents are then scaled by a learning rate ε and applied on
θ as updates. As the gradients are additive over data
samples i, i.e., θ (t) = θ (t−1) + ε ·∑i ∇L(θ

(t−1),Di), for
efficiency, we usually feed a batch of training samples
D(t)(D(t) ⊂ D) at each training iteration t, as in Eq.1.

In large-scale deep learning, data D are usually too
large to process on a single machine in acceptable time.
To speedup the training, we usually resort to data par-

allelism, a parallelization strategy that partitions the data
D and distributes to a cluster of computational worker
machines (indexed by p = 1, · · · ,P), as illustrated in Fig-
ure 2. At each iteration t, every worker fetches a batch
D(t)

p from its data partition and computes the gradients
∇L(θ

(t),D(t)
p ). Gradients from all workers are then ag-

gregated and applied to update θ (t) to θ (t+1) following

θ
(t+1) = θ

(t)+ ε

P

∑
p=1

∇L(θ
(t),D(t)

p ) (2)

Data-parallelism allows data to be locally partitioned to
each worker, which is advantageous for large datasets.
It however requires every worker to have read and
write access to the shared model parameters θ , which
causes communication among workers; this shared ac-
cess can be provided by a parameter server architec-
ture [31, 4] (Figure 2a) or a peer-to-peer broadcast-
ing architecture [32] (Figure 2b), both are designed for
general-purpose data-parallel ML programs on CPUs.
Parameter Server. A parameter server (PS) is a
distributed shared memory system that provides sys-
tematic abstraction of iterative-convergent algorithms
in data-parallel distributed ML. Typically, PS enables
each worker to access the global model parameters θ

via network communications following the client-server
scheme. DL can be trivially parallelized over distributed
workers using PS with the following 3 steps: (1) Each
worker computes the gradients (∇L) on their own data
partition and send them to remote servers; (2) servers re-
ceive the updates and apply (+) them on globally shared
parameters; (3) a consistency scheme coordinates the
synchronization among servers and workers (Figure 2a).
Sufficient Factor Broadcasting. Many ML models rep-
resent their parameters θ as matrices. For example, fully-
connected NNs, when trained using SGD, their gradi-
ent ∇θ over a training sample is a rank-1 matrix, which
can be cast as the outer product of two vectors u,v:
∇θ = uv>, where u and v are called sufficient factors
(SFs). Sufficient factor broadcasting (SFB) [32] is de-
signed to parallelize these models by broadcasting SFs
among workers and then reconstructing the gradient ma-
trices ∇θ using u,v locally. SFB presents three key dif-
ferences from PS: (1) SFB uses a P2P communication
strategy that transmits SFs instead of full matrices. (2)
Unlike gradients, SFs are not additive over training sam-
ples, i.e., the number of SFs needed to be transmitted
grows linearly with the number of data samples (not data
batches); (3) the overall communication overheads of
SFB increase quadratically with the number of workers.

2.2 Parallel DL on Distributed GPUs
Modern DL models are mostly trained using NVIDIA
GPUs, because the primary computational steps (e.g.,
matrix-matrix multiplications) in DL match the SIMD
operation that could be efficiently performed by GPUs.
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In practice, DL practitioners often use single-node soft-
ware frameworks, such as Caffe [14] and Torch [6],
which mathematically derive the correct training algo-
rithm and execute it on GPU by calling GPU-based ac-
celeration libraries, such as CUBLAS and cuDNN. It is
thus straightforward to parallelize these programs across
distributed GPUs using either PS or SFB, by moving the
computation from CPU to GPU, and performing memory
copy operations (between DRAM and GPUs) or com-
munication (among multiple nodes) whenever needed.
However, we argue below and show empirically in Sec-
tion 5 that these usually lead to suboptimal performance.

The inefficiency is mainly caused by parameter syn-
chronization via the network. Compared to CPUs, GPUs
are an order of magnitude more efficient in matrix com-
putations; the production of gradients on GPUs is much
faster than they can be naively synchronized over the net-
work. As a result, the training computations are usually
bottlenecked by communications. For example, when
training AlexNet [16] (61.5M parameters) on Titan X
with a standard batch size 256, 240 million gradients will
be generated per second on each GPU (0.25s/batch). If
we parallelize the training on 8 nodes using a PS, with
every node also holding 1/8 of parameters as a PS shard;
then, every node needs to transfer 240M×7/8× 4 =
840M float parameters in one second to make sure the
next iteration of computation not being blocked. Ap-
parently, the demanded throughput (>26Gbps) exceeds
the bandwidth that commodity Ethernet (i.e., 1GbE and
10GbE Ethernet) provides; the GPUs distributed across
clusters cannot be fully utilized. Practically, it is usually
difficult to partition the parameters completely equally,
which will result in more severe bandwidth demands, or
bursty communication traffic on several server nodes (as
we will show in Section 5.3), which prevents the trivial
realization of efficient DL on distributed GPUs 1. We
next describe our strategies and system design to over-
come the aforementioned obstacles.
3 Poseidon Design
In this section, we first analyze the DL program in both
a single-node and distributed environment by decompos-
ing the program into a sequence of operations. Based on
it, we introduce two strategies to address the issues.
The Structure of DL Programs. At the core of the
DL program is the BP algorithm that performs forward-
backward pass through the network repeatedly. If we
define a forward and a backward pass through the lth
layer of a network as f l

t and bl
t , respectively, then

a Computation step at iteration t is notated as Ct =
[ f 1

t , · · · , f L
t ,b

L
t , · · · ,b1

t ], as illustrated in Fig. 3(a). When

1Frequent memory copy operations between DRAM and GPU
memory can also cause extra overheads, which is minor compared to
the network communication according to our empirical results. How-
ever, our strategies in this paper can also alleviate this overhead.
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Figure 3: (a) Traditional backpropagation and (b) wait-free
backpropagation on distributed environment.

executing on distributed GPUs, inter-machine communi-
cations are required after each C step to guarantee the
synchronized replication of model parameters. We sim-
ilarly define the Synchronization step St as the process
that a worker sends out locally generated updates and
then receives updated parameters from remote workers at
iteration t. Therefore, a naive parallelization of DL train-
ing over distributed GPUs using either PS or SFB can
be expressed as alternating Ct and St defined above. We
note that DL training is highly sequential; the commu-
nication and computation perform sequentially, waiting
each other to finish (Fig. 3a).

Fortunately, we also note that as every layer of a NN
contains an independent set of parameters, St can be de-
coupled as St = (s1

t , · · · ,sL
t ), by defining sl

t as the syn-
chronization of parameters of layer l. If we further de-
compose sl

t = [ol
t , i

l
t ] as first sending out local updates of

layer l (ol
t ) and reads in the updated parameters remotely

(ilt ), we can rewrite a training iteration as: [Ct ,St ] =
[ f 1

t , · · · , f L
t ,b

L
t , · · · ,b1

t ,o
L
t , · · · ,o1

t , i
L
t , · · · , i1t ]. The sequen-

tial nature of the BP algorithm presents us an opportunity
to overlap the computations and communications. Our
first strategy, wait-free backpropagation, overlaps Ct and
St by partially rescheduling those bt and st that are in-
dependent. Our second strategy, hybrid communication,
utilizes the independency among st , and tries to reduce
the communication overheads by specializing different
communication methods for different st .
3.1 Wait-free Backpropagation
The wait-free backpropagation (WFBP) is designed to
overlap communication overheads with the computation
based on two key independencies in the program: (1) the
send-out operation ol

t is independent of backward oper-
ations bi

t(i < l), so they could be executed concurrently
without blocking each other; (2) the read-in operation ilt
could update the layer parameters as long as bl

t was fin-
ished, without blocking the subsequent backward opera-
tions bi

t(i < l). Therefore, we can enforce each layer l to
start its communication once its gradients are generated
after bl

t , so that the time spent on operation sl
t could be

overlapped with those of bi
t(i < l), as shown in Fig. 3b.
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WFBP is most beneficial for training DL models that
have their parameters concentrating at upper layers (FC
layers) but computation concentrating at lower layers
(CONV layers)2, e.g., VGG [26] and AdamNet [4, 7]),
because it overlaps the communication of top layers
(90% of communication time) with the computation of
bottom layers (90% of computation time) [37, 7]. Be-
sides chain-like NNs, WFBP is generally applicable to
other non-chain like structures (e.g., tree-like structures),
as the parameter optimization for deep neural networks
depends on adjacent layers (and not the whole network),
there is always an opportunity for parameter optimiza-
tion (i.e., computation) and communication from differ-
ent layers to be performed concurrently.

Some DL frameworks, such as TensorFlow, represent
the data dependencies of DL programs using graphs,
therefore implicitly enable auto-parallelization. How-
ever, they fail on exploring the potential opportunities
of parallelization between iterations. For example, Ten-
sorFlow needs to fetch the updated parameters from the
remote storage at the beginning of each iteration, while
it is possible to overlap this communication procedure
with the computation procedure of the previous iteration.
In comparison, WFBP enforces this overlapping by ex-
plicitly pipelining compute, send and receive procedures.
We describe our implementation of WFBP in Section 4
and empirically show its effectiveness in Section 5.1.

3.2 Hybrid Communication
While WFBP overlaps communication and computation,
it does not reduce the communication overhead. In sit-
uations where the network bandwidth is limited (e.g.,
commodity Ethernet or the Ethernet is shared with other
communication-heavy applications), the communication
would still be unacceptably slow. To address the issue,
we introduce a hybrid communication (HybComm) strat-
egy that combines the best of PS and SFB by being aware
of both the mathematical property of DL models and the
structure of computing clusters. Our idea comes from
two observations: first, as presented in Section 3, the syn-
chronization operations {Sl

t}L
l=1 are independent of each

other, meaning that we can use different communication
methods for different Sl

t by specializing ol
t and ilt accord-

ing to the two methods described in Figure 2; second, a
NN structure is usually predefined and fixed throughout
the training – by measuring the number of parameters
needed to transferred, we are able to estimate the com-
munication overhead, so that we can always choose the
optimal method even before the communication happens.

Consider training VGG19 network [26], the over-
heads of Sl

t could be estimated as follows (Table 1):
assume the batch size K = 32, the number of work-

2Most classification models will fall into this family if the number
of classes to be classified is large.

Method Server Worker Server & Worker

PS 2P1MN/P2 2MN 2MN(P1 +P2−
2)/P2

SFB N/A 2K(P1−
1)(M+N)

N/A

Adam
(max)

P1MN +
P1K(M+N)

K(M+N)+
MN

(P1−1)(MN +
KM+KN)

Table 1: Estimated communication cost of PS, SFB and Adam
for synchrnizing the parameters of a M×N FC layer on a clus-
ter with P1 workers and P2 servers, when batchsize is K.

ers and server nodes P1 = P2 = 8 (assume parameters
are equally partitioned over all server shards), respec-
tively. On one hand, if l is an FC layer (with shape
4096× 4096,M = N = 4096), synchronizing its param-
eters via PS will transfer 2MN ≈ 34 million parameters
for a worker node, 2P1MN/P2 ≈ 34 million for a server
node, and 2MN(P1 + P2 − 2)/P2 ≈ 58.7 million for a
node that is both a server and a worker, compared to
2K(M+N)(P1−1)≈ 3.7 million for a single node using
SFB. On the other hand, if l is a CONV layer, the updates
are indecomposable and sparse, so we can directly resort
to PS. Therefore, the synchronization overheads depend
not only on the model (type, shape, size of the layer), but
also the size of the clusters. The optimal solution usu-
ally changes with M,N,K,P1,P2. HybComm takes into
account these factors and allows to dynamically adjust
the communication method for different parts of a model
– it always chooses the best method from available ones
whenever it results in fewer communication overheads.

Microsoft Adam [4] employs a different communica-
tion strategy from those in Figure 2. Instead of broad-
casting SFs across workers, they first send SFs to a pa-
rameter server shard, then pull back the whole updated
parameter matrices. This seems to reduce the total num-
ber of parameters needed to be communicated, but usu-
ally leads to load imbalance; the server node that holds
the corresponding parameter shard overloads because it
has to broadcast the parameter matrices to all work-
ers (P1MN + P1K(M +N) messages need to be broad-
casted), which easily causes communication bottleneck
(Section 5.3). It is noticeable that reconstructing gradi-
ents from SFs may cause extra computation cost, which
however is often negligible compared to communication.
We describe our implementation of HybComm in the
next section, and assess its effectiveness in Section 5.

4 Implementation
This section first elaborates Poseidon’s system architec-
ture and APIs, and then describes how to modify a frame-
work using Poseidon to enable distributed execution.

4.1 System Implementation and APIs
Figure 4 illustrates the architecture of Poseidon: a C++
communication library that manages parameter commu-
nication for DL programs running on distributed GPUs.
It has three main components: coordinator, that main-
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Method Owner Arguments Description
BestScheme Coordinator A layer name or index Get the best communication scheme of a layer
Query Coordinator A list of property names Query information from coordinators’ information book
Send Syncer None Send out the parameter updates of the corresponding layer
Receive Syncer None Receive parameter updates from either parameter server or peer workers
Move Syncer A GPU stream and an indicator

of move direction
Move contents between GPU and CPU, do transformations and
application of updates if needed

Send KV store updated parameters Send out the updated parameters
Receive KV store parameter buffer of KV stores Receive gradient updates from workers

Table 2: Poseidon APIs for parameter synchronization.

Algorithm 1 Get the best comm method of layer l
1: function BESTSCHEME(l)
2: layer property = Query(l.name)
3: P1,P2,K = Query(‘n worker’, ‘n server’, ‘batchsize’)
4: if layer property.type == ‘FC’ then
5: M = layer property.width
6: N = layer property.height
7: if 2K(P1−1)(M+N)≤ 2MN(P1+P2−2)

P2
then

8: return ‘SFB’
9: end if

10: end if
11: return ‘PS’
12: end function

GPU CPU

Stream 
Pool

KV Store

Synceri

Coordinator

SFB

data flow
allocate
instruction

KV Store

Thread 
Pool

Client Library

Figure 4: An overview of the architecture of Poseidon.

tains the model and the cluster configuration; KV store, a
shared memory key-value store that provides support for
parameter server based communication; client library,
which is plugged into DL programs to handle parame-
ter communication. Their APIs are listed in Table 2.
Coordinator. To setup distributed training, the client
program (e.g., Caffe) first instantiates Poseidon by cre-
ating a coordinator within its process. Coordinators will
first collect necessary information, including the clus-
ter information (e.g., the number of workers and server
nodes, their IP addresses) and the model architecture
(e.g., the number of layers, layer types, number of neu-
rons and how they are connected, etc.). With the in-
formation, the coordinator will initialize the KV stores
and the client library with two steps: (1) allocate proper
communication ports for each PS shard and peer worker;
(2) determine what parameters should be transmitted via
the KV store and what by SFB, and hash the parame-
ters equally to each KV store if necessary, and save the
mapping in the information book, which, throughout the
whole training, is maintained and synchronized across

nodes, and could be accessed elsewhere through coor-
dinator’s Query API. Besides, the coordinator provides
another API BestScheme that takes in a layer and re-
turns the optimal communication scheme for it according
to the strategy described in Section 3.2 (Algorithm 1).
KV Store. The KV store is implemented based on a bulk
synchronous parameter server [31, 7], and instantiated
by coordinators on a list of user-specified “server” ma-
chines. Each instance of the KV store holds one shard
of the globally shared model parameters in the form of
a set of KV pairs, of which each KV pair is stored on
a chunk of DRAM. Poseidon sets the size of a KV pair
to a fixed small size (e.g., 2MB), so as to partition and
distribute model parameters to server nodes as equally as
possible, reducing the risk of Ethernet bottleneck. Each
KV store instance manages a parameter buffer on RAM,
and provides PS-like APIs, such as Receive and Send,
for receiving and applying updates from client libraries,
or sending out parameters. It will regularly checkpoint
current parameter states for fault tolerance.
Client Library. Poseidon coordinates with DL pro-
grams via its client library. Particularly, users plug the
client library into their training program, and the client
library will create a syncer for each NN layer during net-
work assembling (so that each layer one-to-one maps to
one syncer), accounting for its parameter synchroniza-
tion. Each sycner is then initialized, for example, set-
ting up connections to its corresponding PS shards or
(remote) peer syncers according to the coordinator’s in-
formation book, and allocating a small memory buffer
for receiving remote parameter matrices or SFs, etc.

The client library manages a CPU thread pool and a
GPU stream pool on the worker machine, which can
be allocated by the syncer APIs when there is a syncer
job created. The syncer has three main APIs, Send,
Receive and Move, to be used in client programs. The
Move API takes care of the memory movement between
RAM and GPU memory, and performs necessary com-
putation, e.g., the transformation between SFs and gradi-
ents, and the application of updates. It is multi-threaded
using the CUDA asynchronous APIs, and will trigger an
allocation from the client library’s thread/stream pools
when a syncer job starts (see L14 of Algorithm 2). The
Send and Receive are communication APIs that syn-
chronize layer parameters across different model repli-
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cas. The Send API is nonblocking; it sends out param-
eter updates during backpropagation once they are gen-
erated, following the protocol returned by coordinator’s
BestScheme API. The Receive API will be called
once Send is finished. It requests either fresh parameter
matrices from the KV stores or SFs from its peer syncers,
and will block its current thread until it receives all of
what it requested. The received messages are put into
the syncer’s memory buffer for the Move API to fetch.
Managing Consistency. Poseidon implements the bulk
synchronous consistency (BSP) model as follows. The
client library maintains a binary vector C with length the
number of syncers and values reset to zeros at the start
of each iteration. A syncer will set its corresponding en-
try in C as 1 when its job finishes, and the client starts
next iteration when all entries are 1. While, the KV store
maintains a zero-initialized count value for each KV pair
at the start of each iteration. Every time when there is
an update being applied on a KV pair, its count value
is increased by 1. The KV pair will be broadcasted via
its Send API when its count equals to the number of
workers. Poseidon handles stragglers by simply drop-
ping them. Although asynchronous models can alleviate
the straggler problem in distributed ML [12], Poseidon
focuses on synchronous parallel training, because syn-
chronous execution yields the fastest per-iteration im-
provement in accuracy for distributed DL (as measured
by wall clock time) on GPUs [7, 2] (see Section 5.1).

Algorithm 2 Parallelize a DL library using Poseidon
1: function TRAIN(net)
2: for iter = 1→ T do
3: sync count = 0
4: net.Forward()
5: for l = L→ 1 do
6: net.BackwardThrough(l)
7: thread pool.Schedule(sync(l))
8: end for
9: wait until(sync count == net.num layers)

10: end for
11: end function
12: function SYNC(l)
13: stream = stream pool.Allocate()
14: syncers[l].Move(stream, GPU2CPU)
15: syncers[l].method = coordinator.BestScheme(l)
16: syncers[l].Send()
17: syncers[l].Receive()
18: syncers[l].Move(stream, CPU2GPU)
19: sync count++
20: end function

4.2 Integrate Poseidon with DL Libraries
Poseidon could be plugged into most existing DL frame-
works to enable efficient distributed execution. Algo-
rithm 2 provides an example. Specifically, one needs to
first include Poseidon’s client library into the framework,

then figure out where the backpropagation proceeds (L6),
and insert Poseidon’s syner APIs in between gradient
generation and application (L7). We demonstrate in Sec-
tion 5.1 that with slight modifications (150 and 250 LoC
for Caffe and TensorFlow), both Poseidon-enable Caffe
and TensorFlow deliver linear scalings up to 32 GPU ma-
chines. Poseidon respects the programming interfaces by
the native DL library and stores necessary arguments for
distributed execution as environment variables to allow
zero changes on the DL application programs.

5 Evaluation
In this section, we evaluate Poseidon’s performance on
scaling up DL with distributed GPUs. We focus on the
image classification task where DL is most successfully
applied. Our evaluation reveals the following results: (1)
Poseidon has little overhead when plugged into exist-
ing frameworks; it achieves near-linear speedups across
different NNs and frameworks, on up to 32 Titan X-
equipped machines. (2) Poseidon’s system design effec-
tively improves GPU and bandwidth utilization. (3) Po-
seidon’s communication strategy HybComm effectively
alleviates the communication bottleneck, thus achieves
better speedups under limited bandwidth; Moreover,
Poseidon compares favorably to other communication-
reduction methods, such as the SF strategy in Adam [4],
and the 1-bit quantization in CNTK [36].
Cluster Configuration. We conduct our experiments on
a GPU cluster with each node equipped with a NVIDIA
GeForce TITAN X GPU card, an Intel 16-core CPU and
64GB RAM, interconnected via a 40-Gigabit Ethernet
switch. All cluster nodes have shared access to a NFS
and read data through the Ethernet interface. We run our
system on UBUNTU 16.04, with NVIDIA driver version
361.62, CUDA 8.0 and cuDNN v5.
Computation Engines. We deploy Poseidon on two DL
frameworks, Caffe [14] and TensorFlow [1]. For Caffe,
we use the official version at 2016/06/30 as the single
node baseline, and modify it using Poseidon’s client li-
brary API for distributed execution. For TensorFlow,
we use its open source version r0.10, and parallelize its
single-node version with Poseidon’s client library, and
compare to its original distributed version. 3

Dataset and Models. Our experiments use three well-
known image classification datasets. (1) CIFAR-10 [15],
which contains 32× 32 colored images of 10 classes,
with 50K images for training and 10K for testing; (2)
ILSVRC12 [23], a subset of ImageNet22K that has 1.28
million of training images and 50K validation images in
1,000 categories; (3) ImageNet22K [23], the largest pub-
lic dataset for image classification, including 14,197,087

3Note that as the distributed engine of TensorFlow is highly opti-
mized (e.g., auto-parallelization of graphs [1]). Poseidon avoids lever-
aging any build-in optimization of distributed TensorFlow by paral-
lelizing its single-node version instead.
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Model # Params Dataset Batchsize

CIFAR-10 quick 145.6K CIFAR10 100
GoogLeNet 5M ILSVRC12 128

Inception-V3 27M ILSVRC12 32
VGG19 143M ILSVRC12 32

VGG19-22K 229M ImageNet22K 32
ResNet-152 60.2M ILSVRC12 32

Table 3: Neural networks for evaluation. Single-node batchsize
is reported. The batchsize is chosen based on the standards
reported in literature (usually the maximum batch size that can
fill in the GPU memory).

labeled images from 21,841 categories.
We test Poseidon’s scalability across different neural

networks: (1) CIFAR-10 quick: a toy CNN from Caffe
that converges at 73% accuracy for classifying images
in CIFAR-10 dataset; (2) GoogLeNet [27]: a 22-layer
CNN with 5M parameters. (3) Inception-V3 [28]: the
ImageNet winner, an improved version of GoogLeNet
from TensorFlow; (4) VGG19: A popular feature extrac-
tion network in the computer vision community [26] that
has 16 CONV layers and 3 FC layers, in total 143M pa-
rameters; (5) VGG19-22K: we modify the VGG19 net-
work by replacing its 1000-way classifier with a 21841-
way classifier, to classify images from the ImageNet22K
dataset. The modified network has 229M parameters. (6)
ResNet-152: the ImageNet winner network with 152 lay-
ers. We list their statistics and configurations in Table 3.
Metrics. In this paper, we mainly focus on metrics that
measure the system performance, such as speedups on
throughput (number of images scanned per second). Our
experiments focus on medium-scale distributed cluster
with up to 32 machines, which distributed DL empiri-
cally benefits most from. Larger clusters require larger
batch sizes, which hurt the convergence rate of each iter-
ation [3, 7]. For completeness, we also report the statis-
tical performance (time/epoch to converge) on ResNet-
152. Poseidon uses synchronized replication which en-
ables many models to converge in fewer steps [1, 7, 3, 2].

5.1 Scalability
To demonstrate Poseidon’s scalability, we train CNNs
using Poseidon with different computational engines,
and compare different systems in terms of their speedups
on throughput. For Caffe engine, we train GoogLeNet
VGG19 and VGG19-22K networks; for TensorFlow en-
gine, we train Inception-V3, VGG-19, VGG19-22K.
Caffe Engine. Figure 5 shows the throughput vs. num-
ber of workers when training the three networks using
Caffe engine, given 40GbE Ethernet bandwidth avail-
able. We compare the following systems: (1) Caffe:
unmodified Caffe that executes on a single GPU; (2)
Caffe+PS: we parallelize Caffe using a vanilla PS, i.e.,
the parameter synchronization happens sequentially after
the backpropagation in each iteration; (3) Caffe+WFBP:
Parallelized Caffe using Poseidon so the communication

and computation are overlapped. However, we disable
HybComm so that parameters are synchronized only via
PS; (4) Poseidon: the full version of Poseidon-Caffe.

Poseidon shows little overheads when combined with
Caffe; running on a single node with no communication
involved, Poseidon-Caffe can process 257, 35.5 and 34.2
images per second when training GoogLeNet, VGG19
and VGG19-22K, respectively, as compared to the origi-
nal Caffe, which can process 257, 35.5 and 34.6 images,
and Caffe+PS, which can only process 213.3, 21.3 and
18.5 images per second, due to the overheads caused
by memory copy operations between RAM and GPU,
which have been overlapped by Poseidon with the com-
putation. In distributed environment, the rescheduling of
computation and communication significantly improves
the throughput: when training GoogLeNet and VGG19,
incorporating WFBP achieves almost linear scalings up
to 32 machines, and for the larger VGG19-22K network,
Caffe+WFBP achieves 21.5x speedup on 32 machines.
We conclude that rescheduling and multi-threading the
communication and computation are key to the perfor-
mance of distributed DL on GPUs, even when the band-
width resource is abundant. Poseidon provides an effec-
tive implementation to overlap these operations for DL
frameworks, to guarantee better GPU utilization.

When the available bandwidth is sufficient, Poseidon’s
HybComm strategy shows small improvement on train-
ing GoogLeNet and VGG19. However, when training
VGG19-22K which has three FC layers that occupy 91%
of model parameters, it improves over Caffe-WFBP from
21.5x to 29.5x on 32 nodes.
TensorFlow Engine. We also modify TensorFlow using
Poseidon, and compare the following systems in terms
of speedup on throughput: (1) TF: TensorFlow with its
original distributed executions; (2) TF+WFBP: we mod-
ify TensorFlow using Poseidon’s client library. Specif-
ically, we change the assign operator in TensorFlow, so
that instead of being applied, the parameter updates will
be synchronized via Poseidon’s PS interface with WFBP;
(3) Poseidon: the full version of Poseidon-parallelized
TensorFlow with HybComm enabled.

We train Inception-V3, VGG19 and VGG19-22K
models and report the results in Figure 6. Running on a
single node, Poseidon processes 43.2, 38.2 and 34.5 im-
ages per second on training Inception-V3, VGG19 and
VGG19-22K, while original TensorFlow processes 43.2,
38.5 and 34.8 images per second on these three models,
respectively – little overhead is introduced by our modi-
fication. In distributed execution, Poseidon achieves al-
most linear speedup on up to 32 machines. Distributed
TensorFlow, however, demonstrates only 10x speedup on
training Inception-V3 and even fails to scale on training
the other two networks in our experiments. To investi-
gate the problem of TensorFlow and explain how Posei-
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Figure 5: Throughput scaling when training GoogLeNet, VGG19 and VGG19-22K using Poseidon-parallelized Caffe and 40GbE
bandwidth. Single-node Caffe is set as baseline (i.e., speedup = 1).
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Figure 6: Throughput scaling when training Inception-V3, VGG19 and VGG19-22K using Poseidon-parallelized TensorFlow and
40GbE bandwidth. Single-node TensorFlow is set as baseline (i.e., speedup = 1).
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Figure 7: Breakdown of GPU computation and stall time when
training the three networks on 8 nodes using different systems.

don improves upon it, we illustrates in Figure 7 the (aver-
aged) ratio of busy and stall time of a GPU when training
the three networks using different systems on 8 nodes.
Observe that Poseidon keeps GPUs busy in most of the
time, while TensorFlow wastes much time on waiting
for parameter synchronization. The inefficiency of dis-
tributed TensorFlow stems from two sources. First, Ten-
sorFlow partitions model parameters in a coarse-grained
granularity – each tensor (instead of a KV pair) in the
model is assigned to a PS shard. A big tensor (such as
the parameter matrix in VGG19) is highly likely to cre-
ate communication bottleneck on its located server node.
Poseidon fixes this problem by partitioning parameters
among server nodes in a finer-grained granularity us-
ing KV pairs, so that every node has evenly distributed
communication load; as an evidence, TF-WFBP demon-
strates higher computation-to-stall ratio in Figure 7. Sec-
ond, TensorFlow cannot reduce the communication over-
heads while Poseidon’s HybComm effectively reduces
the size of messages. As a result, Poseidon further im-
proves upon TF-WFBP from 22x to 30x on 32 nodes.
Multi-GPU Settings. Poseidon’s key strategies can be

directly extended to support distributed multi-GPU en-
vironment with minor modifications. Specifically, when
there are more than 1 GPU on a worker node, Poseidon
will first collect the gradient updates following WFBP lo-
cally (either by full matrices or SFs) from multiple GPUs
to a leader GPU using CudaMemcpy(DeviceToDevice)
API. If those updates are determined to be communi-
cated via full matrices, Poseidon will aggregate them lo-
cally before sending out. Using Caffe engine on a single
node, Poseidon achieves linear scalings on up to 4 Titan
X GPUs when training all three networks, outperforming
Caffe’s multi-GPU version, which shows only 3x and 2x
speedups when training GooLeNet and VGG19. When
running on AWS p2.8xlarge instances (8 GPUs each
node), Poseidon reports 32x and 28x speedups when
training GoogLeNet and VGG19 with 4 nodes (32 GPUs
in total), confirming our statement that the overheads
caused by memory movement between GPUs are usually
negligible compared to network communication4.
Statistical Performance. For completeness, we re-
port in Figure 9 the statistical performance for training
ResNet-152 using Poseidon. Poseidon achieves near-
linear speedups on both system throughput and statisti-
cal convergence: Poseidon delivers 31x speedup in terms
of throughput, and reaches 0.24 reported error with less
than 90 epochs with both 16 and 32 nodes – thus lin-
ear scales in terms of time to accuracy, compared to 8
nodes with batchsize = 32× 8, which is a standard set-

4The K80 GPUs on p2.8xlarge has less GFLOPS than Titan X used
in our main experiments – the communication burden is less severe.
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Figure 8: Throughput scaling when training GoogLeNet, VGG19 and VGG19-22K using Poseidon-parallelized Caffe with varying
network bandwidth. Single-node Caffe is set as baseline (speedup = 1).
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Figure 10: Averaged communication load when training
VGG19 using TF-WFBP, Adam and Poseidon with TensorFlow
engine. Each bar represents the network traffic on a node.

ting as in [11], echoing recent results that synchronous
training on distributed GPUs yields better performance
than asynchronous training in terms of time to quality
for most NNs [7, 2]. For other NNs in Table. 3, Posei-
don delivers the same quality of accuracies as reported in
their papers [16, 28, 27, 26] on up to 32 GPUs.

5.2 Bandwidth Experiments
To further assess Poseidon’s HybComm strategy, we
simulate the environment where network bandwidth is
limited. We use Linux traffic control tool tc to lower
the available bandwidth on each node, and compare
the training throughput between with and without Hyb-
Comm. We focus on Caffe engine in this section because
it is lighter and less optimized than TensorFlow.

Figure 8 plots the speedup on throughput vs. num-
ber of workers when training GoogLeNet, VGG19
and VGG19-22K with different maximum bandwidth.
Clearly, limited bandwidth prevents a standard PS-
based system from linearly scaling with number of
nodes; for example, given 10GbE bandwidth (which is
a commonly-deployed Ethernet configuration in most
cloud computing platforms), training VGG19 using PS

on 16 nodes can only be accelerated by 8x. This observa-
tion confirms our argument that limited bandwidth would
result in communication bottleneck when training big
models on distributed GPUs. Fortunately, Poseidon sig-
nificantly alleviates this issue. Under limited bandwidth,
it constantly improves the throughput by directly reduc-
ing the size of messages needed to be communicated,
especially when the batch size is small; when training
VGG19 and VGG19-22K, Poseidon achieves near-linear
speedup on 16 machines using only 10GbE bandwidth,
while an optimized PS would otherwise need 30GbE or
even higher to achieve. Note that Poseidon will never
underperform a traditional PS scheme because it will re-
duce to a parameter server whenever it results in less
communication overheads; for instance, we observe that
Poseidon reduces to PS when training GoogLeNet on 16
nodes, because GoogleNet only has one thin FC layer
(1000×1024) and is trained with a large batch size (128).

5.3 Comparisons to Other Methods
In this section, we compare Poseidon against other com-
munication methods, including Adam [4] and CNTK 1-
bit quantization [36], and show Poseidon’s advantages.
Adam. To save bandwidth, Adam [4] synchronizes the
parameters of a FC layer by first pushing SFs generated
on all workers to a PS node, and then pulling back the
full parameter matrices thereafter. As direct comparisons
to Adam [4] are inaccessible, we implement its strategy
in Poseidon, and compare it (denoted as Adam) to TF-
WFBP and Poseidon by monitoring the network traffic
of each machine when training VGG19 on 8 nodes using
TensorFlow engine. As shown in Figure 10, the com-
munication workload is highly imbalanced using Adam’s
strategy. Unlike a traditional PS (TF-WFBP) where the
parameters are equally distributed over multiple shards,
Adam cannot partition the parameters of FC layers be-
cause of their usage of SFs. Although the “push” op-
eration uses SFs to reduce message size, the “pull” re-
quires some server nodes to broadcast big matrices to
each worker node, which creates bursty traffic that re-
sults in communication bottleneck on them. By contrast,
Poseidon either partitions parameters equally over multi-
ple PS shards, or transmits SFs among peer workers, both
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are communication load-balanced that avoid bursty com-
munication situations. Quantitatively, Adam delivers 5x
speedup with 8 nodes when training VGG19.
CNTK. We compare Poseidon to the 1-bit quantization
technique proposed in CNTK [36]. We create a baseline
Poseidon-1bit which uses the 1-bit strategy to quantize
the gradients in FC layers, and add the residual to up-
dates of the next iteration. We then train the CIFAR-10
quick network, and plot the training loss and test error
vs. iterations for two systems (both have linear scal-
ing on throughput). As in Figure 11, 1-bit quantization
yields worse convergence in terms of accuracy – on 4
GPUs, it achieves 0.5 error after 3K iterations, while Po-
seidon quickly converges to 0.3 error at iteration 1000.
We conjecture this is caused by the quantization residual,
which is equivalent to delayed updates that may hurt the
convergence performance when training NNs on images,
confirmed by [7]. We also directly train VGG19 using
CNTK-1bit system, and report 5.8x, 11x, 20x speedups
on 8, 16 and 32 nodes, respectively, thus less scale-ups
than Poseidon, and also compromised statistical perfor-
mance due to approximated updates.
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Figure 11: Training loss and test error vs. iteration when train-
ing CIFAR-10 quick network using Poseidon and Poseidon-
1bit on 4GPUs with Caffe engine.

6 Related Work
PS-based Distributed DL Systems. Based on the pa-
rameter server [31, 19] architecture, a number of CPU-
based distributed DL systems have been developed, such
as [38, 29, 9, 17] and Adam [4]. They are purely PS-
based systems on CPU-only clusters, whereas we ad-
dress the more challenging case of GPU clusters.

Scaling up DL on distributed GPUs is an active field
of research. Coates et al. [5] build a GPU-based multi-
machine system for DL using model parallelism rather
than data parallelism, and their implementation is rather
specialized for a fixed model structure while demand-
ing specialized hardware, such as InfiBand networking.
TensorFlow [1] is Google’s distributed ML platform that
uses a dataflow graph to represent DL models, and syn-
chronizes model parameters via PS. It therefore can-
not dynamically adjust its communication method de-
pending on the layer and cluster information as Posei-
don does. MXNet [3] is another DL system that uses
PS for distributed execution, and supports TensorFlow-
like graph representations for DL models. By auto-

parallelizing independent subgraphs, both frameworks
implicitly overlap the communication and computation.
By contrast, Poseidon has a more explicit way to over-
lap them via its client library. Hence, Poseidon can
be also used to parallelize non-graph-based frameworks.
Moreover, both MXNet and TensorFlow do not address
the bottleneck caused by limited network bandwidth,
which undermines their scalability when training large
models with dense layers (e.g., big softmax). Besides,
Cui et al. propose GeePS [7] that manages the limited
GPU memory and report speedups on distributed GPUs.
While, GeePS does not address the issue of limited
network bandwidth. Therefore, Poseidon’s technique
could be combined with them to enable better training
speedups. Also of note are several efforts to port Caffe
onto other distributed platforms, such as SparkNet [22],
YahooCaffe [33] and FireCaffe [13], the former reports
a 4-5 times speedup with 10 machines (and hence less
scalability than our results herein).
Other distributed ML systems. CNTK [36] is a DL
framework that supports distributed executions and ad-
dresses the problem of communication bottleneck via
the 1-bit quantization technique. CNTK demonstrates
little negative impact on convergence in speech do-
mains [25, 24]. However, in some other domains (Sec-
tion 5.3), the performance is usually compromised by
noisy gradients [1, 7]. By contrast, Poseidon’s Hyb-
Comm reduces the communication while always guar-
anteeing synchronous training. There are also growing
interest in parallelizing ML applications using peer-to-
peer communication, such as MALT [18], SFB [32] and
Ako [30]. Poseidon draws inspiration from these works
but goes one step further as it is an adaptive best-of-both-
worlds protocol, which will select client-server commu-
nication whenever it would result in fewer overheads.

7 Conclusion
We present Poseidon, a scalable and efficient commu-
nication architecture for large-scale DL on distributed
GPUs. Poseidon’s design is orthogonal to TensorFlow,
Caffe or other DL frameworks – the techniques present
in Poseidon could be used to produce a better distributed
version of them. We empirically show that Poseidon
constantly delivers linear speedups using up to 32 nodes
and limited bandwidth on a variety of neural network,
datasets and computation engines, and compares favor-
ably to Adam and Microsoft CNTK.
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