
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Cache Modeling and Optimization
using Miniature Simulations

Carl Waldspurger, Trausti Saemundson, and Irfan Ahmad, CachePhysics, Inc.;
Nohhyun Park, Datos IO, Inc.

https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger

Cache Modeling and Optimization using Miniature Simulations

Carl A. Waldspurger
CachePhysics, Inc.
carl@cachephysics.com

Trausti Saemundson
CachePhysics, Inc.

trauzti@gmail.com

Irfan Ahmad
CachePhysics, Inc.
irfan@cachephysics.com

Nohhyun Park
Datos IO, Inc.

nohhyun.park@datos.io

Abstract

Recent approximation algorithms (e.g., CounterStacks,
SHARDS and AET) make lightweight, continuously-
updated miss ratio curves (MRCs) practical for online
modeling and control of LRU caches. For more complex
cache-replacement policies, scaled-down simulation, in-
troduced with SHARDS, offers a general method for em-
ulating a given cache size by using a miniature cache pro-
cessing a small spatially-hashed sample of requests.

We present the first detailed study evaluating the ef-
fectiveness of this approach for modeling non-LRU al-
gorithms, including ARC, LIRS and OPT. Experiments
with over a hundred real-world traces demonstrate that
scaled-down MRCs are extremely accurate while requir-
ing dramatically less space and time than full simulation.

We propose an efficient, generic framework for dy-
namic optimization using multiple scaled-down simula-
tions to explore candidate cache configurations simulta-
neously. Experiments demonstrate significant improve-
ments from automatic adaptation of parameters includ-
ing the stack size limit in LIRS, and queue sizes in 2Q.

Finally, we introduce SLIDE, a new approach inspired
by Talus that uses scaled-down MRCs to remove per-
formance cliffs automatically. SLIDE performs shadow
partitioning transparently within a single unified cache,
avoiding the problem of migrating state between distinct
caches when partition boundaries change. Experiments
demonstrate that SLIDE improves miss ratios for many
cache policies, with large gains in the presence of cliffs.

1 Introduction

Caches are ubiquitous in modern computing systems,
improving system performance by exploiting locality to
reduce access latency and offload work from contended
storage systems and interconnects. However, caches are
notoriously difficult to model. It is well-known that per-
formance is non-linear in cache size, due to complex
effects that vary enormously by workload. Techniques
for accurate and efficient cache modeling are especially
valuable to inform cache allocation and partitioning de-
cisions, optimize cache parameters, and support goals in-
cluding performance, isolation, and quality of service.

�

���

���

���

���

���

���

���

���

� �� �� �� �� �� �� �� ��

�
��
�
�
��
��

����� ���� ����

Figure 1: Example MRC. Miss-ratio curve for a production
disk block trace using ARC cache algorithm. The ratio of cache
misses to total references is plotted as a function of cache size.

1.1 Cache Modeling
Cache utility curves plot a performance metric as a func-
tion of cache size. Figure 1 shows an example miss-ratio
curve (MRC), which plots the ratio of cache misses to
total references for a workload (y-axis) as a function of
cache size (x-axis). The miss ratio generally decreases as
cache size increases, although complex algorithms such
as ARC [14] and LIRS [9] can exhibit non-monotonic
behavior due to imperfect dynamic adaptation.

MRCs are valuable for analyzing cache behavior. As-
suming a workload exhibits reasonable stationarity at the
time scale of interest, its MRC can also predict future
performance. Thus, MRCs are powerful tools for op-
timizing cache allocations to improve performance and
achieve service-level objectives [3, 11, 18, 22, 27, 28].

1.2 MRC Construction
Before the seminal paper by Mattson et al. [13], studies
of memory and storage caching required running sepa-
rate experiments for each cache size. Their key insight
was that many replacement policies exhibit an inclusion
property: given a cache C of size S, C(S) ✓ C(S + 1).
Such policies, which include LRU, LFU, and MRU, are
referred to as stack algorithms. Mattson et al. introduced
a method for such algorithms that constructs the entire
MRC for all cache sizes in a single pass over a trace.

For a trace of length N containing M unique blocks,
Mattson’s algorithm takes O(NM) time and O(M) space.
Efficient modern implementations of this algorithm have

USENIX Association 2017 USENIX Annual Technical Conference 487

an asymptotic cost of O(N logM) time and O(M) space,
employing a balanced tree to compute reuse distances
and a hash table to accelerate lookups into this tree [16].

Recent advances [7, 20, 23, 26] have produced approx-
imate methods that construct accurate MRCs with dra-
matically lower costs than exact methods. In particular,
SHARDS [23] and AET [7] require only O(N) time and
O(1) space, with a tiny footprint of approximately 1 MB.

Previously relegated to offline modeling, MRCs for
stack algorithms can now be computed so inexpensively
that they are practical for dynamic, online cache manage-
ment, even in the most demanding environments. How-
ever, for more complex non-stack algorithms, such as
ARC and LIRS, there are no known single-pass meth-
ods. As a result, separate runs are required for each cache
size, similar to pre-Mattson modeling of LRU caches.

1.3 Cache Optimization
Low-cost online modeling of cache behavior using
MRCs has many practical applications. Whereas a single
cache instance runs with a single policy and a single set
of configuration parameters, the ability to efficiently in-
stantiate multiple concurrent models with different cache
configurations offers a powerful generic framework for
dynamic optimization. By simulating candidate cache
configurations simultaneously, a system can quantify the
impact of hypothetical parameter changes, so that the
best settings can be applied to the actual cache.

This approach has the potential to overcome a key
challenge in designing cache software today: policy and
parameter tweaking is typically performed only at design
time, considering a small number of benchmarks. Since
no single configuration is best for all workloads, there
is a significant optimization opportunity to instead adapt
parameters automatically in live deployments.

A multi-model approach can help select the best gen-
eral options, such as cache block size, write policy, or
even replacement policy. The same method supports dy-
namic tuning of algorithm-specific parameters, such as
queue sizes for 2Q [10] or LIRS [9].

Lightweight MRCs can be futher leveraged to guide
efficient cache sizing, allocation, and partitioning for
both individual workloads and complex multi-workload
environments. For example, Talus shadow partition-
ing [3], which requires an MRC as input, can remove
performance cliffs within a single workload, and improve
cache partitioning across workloads.

1.4 Contributions
We make several key contributions over prior research in
the areas of cache modeling and optimization:

Evaluate scaled-down simulation for complex policies
To the best of our knowledge, scaled-down simulation is

the only general approach capable of fast and accurate
modeling of complex caching algorithms. We present
the first detailed evaluation with non-LRU caching al-
gorithms, including ARC, LIRS, and OPT. Our results
indicate that sampling rates as low as 0.1% yield accu-
rate MRCs with approximate miss ratio errors averaging
much less than 0.01, at extremely low overhead.
New optimization framework We introduce a pow-
erful new framework for optimizing cache performance
dynamically by leveraging miniature cache simulations.
Transparent cliff removal We highlight challenges
with Talus shadow partitioning for non-stack algorithms,
and introduce SLIDE, a new approach that removes per-
formance cliffs from such algorithms automatically and
transparently – the first practical application of cliff re-
moval techniques to complex cache algorithms.
New LIRS observations We describe previously-
unreported parameter sensitivity and non-monotonic be-
havior with LIRS, and present a useful new optimization.

Although we focus on block-based storage systems,
our techniques are broadly applicable to nearly any form
of caching, including memory management in operating
systems and hypervisors, application-level caches, key-
value stores, and even hardware cache implementations.

The next section provides some background on non-
stack caching algorithms. Section 3 describes our core
scaled-down cache modeling technique, and presents
a detailed evaluation of its accuracy and performance.
Scaled-down caches are leveraged to optimize LIRS and
2Q by adapting algorithm parameters in Section 4. Sec-
tion 5 introduces SLIDE, a new approach for removing
performance cliffs, and demonstrates improvements with
several cache policies. Related work is discussed in Sec-
tion 6. Finally, we summarize our conclusions and high-
light opportunities for future work in Section 7.

2 Non-stack Algorithms

Many modern caching algorithms outperform LRU on a
wide range of workloads. Several, such as ARC, LIRS,
and 2Q, treat blocks that have recently been seen only
once differently from those that have been seen at least
twice. Many policies employ ghosts – small metadata-
only entries containing block identifiers, but not actual
data. Some, like ARC, adapt to changes in workload pat-
terns automatically. It is not surprising that such sophis-
ticated policies are non-stack algorithms that violate the
stack inclusion property. All caching algorithms aspire to
close the gap with OPT, the unrealizable optimal policy.
2Q Inspired by LRU-K [17], Johnson and Shasha de-
veloped the 2Q algorithm [10]. As its name suggests,
2Q uses two queues: A1 for blocks seen once and Am
for blocks seen more than once. A1 is split into A1in

488 2017 USENIX Annual Technical Conference USENIX Association

and A1out, where A1out is a metadata-only ghost exten-
sion of A1in. 2Q promotes a block to Am only on a hit
in A1out, so A1in behaves as a FIFO. The algorithm has
two tunable parameters – the size of A1in relative to Am,
and the size of A1out relative to the cache size.

ARC Megiddo and Modha introduced ARC, the adap-
tive replacement cache policy [14]. ARC is a self-
tuning algorithm that manages both recently-used and
frequently-used blocks in separate LRU lists: T1 for
blocks seen once, T2 for blocks seen more than once, and
their corresponding ghost extensions, B1 and B2, which
track metadata for recently-evicted blocks. Queue sizes
change adaptively based on which gets more cache hits;
there are no tunable parameters. ARC has been deployed
widely in production systems, and is considered by many
to be the “gold standard” for storage caching.

LIRS Jiang and Zhang developed LIRS, the low inter-
reference recency set algorithm [9]. LIRS uses recency
to estimate reuse distance when making replacement de-
cisions. Blocks are categorized into high reuse-distance
(HIR) and low reuse-distance (LIR) sets. All LIR blocks
are resident but HIR blocks can be resident or ghosts. A
block changes from HIR to LIR when its reuse distance
is low compared to the current LIR set.

LIRS employs two LRU lists, called the S and Q
stacks. Q contains all resident HIR blocks, and S con-
tains LIR blocks as well as some resident HIR blocks
and HIR ghosts. LIRS has two tunable parameters – the
ratio of resident HIR and LIR blocks (the authors suggest
1% HIR), and the maximum size of S, which effectively
bounds the number of ghosts. LIRS has been adopted by
several production systems, including MySQL [25].

OPT Belady first described OPT, the theoretically op-
timal algorithm, also known as MIN [4, 1, 13]. OPT is a
“clairvoyant” algorithm, since it relies on knowledge of
future references to evict the block that will be reused the
farthest in the future. Although OPT is actually a stack
algorithm [21], it cannot be used to implement online
eviction. Instead, OPT provides a bound on the perfor-
mance of realizable algorithms.

3 Scaled-down Modeling

SHARDS [23] introduced single-pass techniques for
constructing approximate MRCs based on randomized
spatial sampling. References to representative locations
are selected dynamically based on a function of their
hash values. The “scaled down” reference stream is pro-
vided as input to a conventional single-pass MRC con-
struction algorithm [13, 16] and the reuse distances it
outputs are “scaled up” to adjust for the sampling rate.

While this approach works extremely well for stack
algorithms such as LRU, there is no known single-pass

method for non-stack caching algorithms. For such poli-
cies, a discretized MRC must be constructed by running
separate simulations at many different cache sizes.

To support efficient modeling of any caching algo-
rithm, the SHARDS authors proposed emulating a given
cache size using a miniature cache running the full, un-
modified algorithm over a small spatially-hashed sam-
ple of requests. Although a proof-of-concept experiment
yielded promising results [23], there has been no detailed
study of this approach. We present the first comprehen-
sive evaluation of scaled-down simulation for modeling
the sophisticated ARC, LIRS and OPT algorithms.

3.1 Miniature Simulations
A miniature simulation can emulate a cache with any
specified size by scaling down both the actual cache size
and its input reference stream. For example, consider
modeling a cache with size S using a sampling rate R.
A miniature simulation may emulate a cache of size S
by scaling down the cache size to R ·S and scaling down
the reference stream using a hash-based spatial filter with
sampling rate R. In practice, sampling rates on the or-
der of R = 0.01 or R = 0.001 yield very accurate results,
achieving huge reductions in space and time compared
to a conventional full-size simulation.

More generally, scaled-down simulation need not use
the same scaling factor for both the miniature cache
size and its reference stream, although such configura-
tions were not discussed when the technique was origi-
nally proposed [23]. The emulated cache size Se, mini-
cache size Sm, and input sampling rate R are related by
Se = Sm/R. Thus, Se may be emulated by specifying a
fixed rate R, and using a mini-cache with size Sm = R ·Se,
or by specifying a fixed mini-cache size Sm, and sam-
pling its input with rate R = Sm/Se. In practice, it is
useful to enforce reasonable constraints on the minimum
mini-cache size (e.g., Sm � 100) and sampling rate (e.g.,
R � 0.001) to ensure sufficient cache space and enough
sampled references to simulate meaningful behavior.

3.1.1 Error Reduction
Like SHARDS, we apply a simple adjustment to re-
duce sampling error when computing the miss ratio for
a miniature simulation. We have observed that when the
number of sampled references, Ns, differs from the ex-
pected number, E[Ns] = N ·R, the sample set typically
contains the wrong proportion of frequently-accessed
blocks. To correct for this bias we divide the number
of misses m by the expected number of references, in-
stead of the actual number of references; i.e., m/E[Ns] is
a better approximation of the true miss ratio than m/Ns.

3.1.2 Caches with Integrated Modeling
We have experimented with an alternative “unified” ap-
proach that integrates MRC construction into a live pro-

USENIX Association 2017 USENIX Annual Technical Conference 489

duction cache, without running separate simulations.
Spatial hashing shards requests across a set of cache par-
titions, all serving actual requests. Several small par-
titions serve as monitoring shards, emulating multiple
cache sizes within a small fraction of the overall cache.

An MRC can be generated on demand by simply ac-
cessing the miss ratios associated with each monitoring
shard. Although integrated monitoring avoids additional
simulation costs, we found that it typically degrades
overall cache performance slightly, since most monitor-
ing shards will not have efficient operating points.

3.2 Scaled-down MRCs
For non-stack algorithms, there are no known methods
capable of constructing an entire MRC in a single pass
over a trace. Instead, MRC construction requires a sep-
arate run for each point on the MRC, corresponding to
multiple discrete cache sizes. Fortunately, we can lever-
age miniature caches to emulate each size efficiently.

We evaluate the accuracy and performance of our ap-
proach with three diverse non-LRU cache replacement
policies: ARC, LIRS, and OPT. We developed efficient
implementations of each in C, and validated their cor-
rectness against existing implementations [6, 8, 19].

We use a collection of 137 real-world storage block
trace files, similar to those used in the SHARDS eval-
uation. These represent 120 week-long virtual disk
traces from production VMware environments collected
by CloudPhysics [23], 12 week-long enterprise server
traces collected by Microsoft Research Cambridge [15],
and 5 day-long server traces collected by FIU [12].

For our experiments, we use a 16 KB cache block size,
and misses are read from storage in aligned, fixed-size
16 KB units. Reads and writes are treated identically,
effectively modeling a simple write-back caching policy.
We have also experimented with 4 KB blocks, model-
ing different write policies, and processing only read re-
quests, all with similar results.

3.2.1 Accuracy
For each trace, we compute MRCs at 100 discrete cache
sizes, spaced uniformly between zero and a maximum
cache size. To ensure these points are meaningful, the
maximum cache size is calculated as the aggregate size
of all unique blocks referenced by the trace. This value
was estimated during a separate, one-time pre-processing
step for each trace, using fixed-size SHARDS [23].

To quantify accuracy, we compute the difference be-
tween the approximate and exact miss ratios at each dis-
crete point on the MRC, and aggregate these into a mean
absolute error (MAE) metric, as in related work [26, 23,
7]. The box plots1 in Figure 2 show the MAE distri-

1The top and the bottom of each box represent the first and third
quartiles. The thin whiskers show the min and max, excluding outliers.

●●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●
●

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ARC LIRS OPT
Cache Algorithms

M
ea

n
A

bs
ol

ut
e

Er
ro

r

Sampling Rate (R)

0.001
0.01

Figure 2: Error Analysis. Distribution of mean absolute er-
ror for all 137 traces with three algorithms (ARC, LIRS, OPT)
at two different sampling rates (R = 0.01, R = 0.001).

butions for ARC, LIRS, and OPT with sampling rates
R = 0.01 and R = 0.001. The average error is surpris-
ingly small in all cases. For R = 0.001, the median MAE
for each algorithm is below 0.005, with a maximum of
0.033. With R = 0.01, the median MAE for each algo-
rithm is below 0.002, with a maximum of 0.012.

Since the minimum cache size for LIRS is 200 blocks
(to support the default 1% allocation to HIR), the LIRS
MAE was calculated using this minimum size for some
miss ratios, implying a higher sampling rate. Excluding
these min-size runs, the median MAE for R = 0.001 is
below 0.003, with a maximum of 0.025; for R = 0.01,
the median is below 0.002, with a maximum of 0.009.2

Figure 3 contains 35 small plots that illustrate the ac-
curacy of approximate MRCs with R = 0.001 on exam-
ple traces with diverse MRC shapes and sizes. In most
cases, the approximate and exact curves are nearly indis-
tinguishable. The plots in Figure 4 show this accuracy
with much greater detail for two example MSR traces.
In all cases, miniature simulations model cache behavior
accurately, including complex non-monotonic behavior
by ARC and LIRS. These compelling results with such
diverse algorithms and workloads suggest that scaled-
down simulation is an extremely general technique ca-
pable of modeling nearly any caching algorithm.

3.2.2 Performance
For our performance evaluation, we used a platform con-
figured with a six-core 3.3 GHz Intel Core i7-5820K pro-
cessor and 32 GB RAM, running Ubuntu 14.04 (Linux
kernel 4.4). Experiments compare traditional exact sim-
ulation with our lightweight scaled-down approach.

Resource consumption was measured using our five
largest traces. We simulated three cache algorithms at

2The reduced MAE may seem counter-intuitive. However, accuracy
generally improves as the size of the scaled-down cache increases, and
the excluded points were the smaller, less-accurate cache sizes.

490 2017 USENIX Annual Technical Conference USENIX Association

t25 t26 t27 t28 t29 t30 t31

t18 t19 t20 t21 t22 t23 t24

t11 t12 t13 t14 t15 t16 t17

t04 t05 t06 t07 t08 t09 t10

msr_mds msr_proj msr_src1 t00 t01 t02 t03

0 5 10 0 30 60 0 20 400 20 40 0 300 600 0 100 200 300 0 7 14

0 100 200 0 200 400 0 300 600 0 200 400 0 300 600 0 200 400 0 20 40

0 20 40 0 20 40 600 30 60 0 100 200 300 0 200 400 0 20 40 0 40 80

0 30 60 0 9 18 0 50 100 0 20 40 0 300 600 0 60 120 0 20 40

0 40 80 0 500 1000 0 100 200 300 0 20 40 0 200 400 0 60 120 0 20
0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

Cache Size (GB)

M
is

s
R

at
io

ARC LIRS OPT Sampled (R=0.001) Exact (unsampled)

Figure 3: Diverse MRCs: Exact vs. Miniature. Exact and approximate MRCs for 35 representative traces: three named
MSR workloads [15], and the CloudPhysics workloads labeled t00–t31 in the SHARDS evaluation [23]. Approximate MRCs are
constructed using scaled-down simulation with sampling rate R = 0.001. Each color represents a different cache algorithm.

five emulated sizes Se (8 GB, 16 GB, 32 GB, 64 GB and
128 GB), using multiple sampling rates R (1, 0.1, 0.01
and 0.001) for a total of 60 experiments per trace. We
repeated each run five times, and report average values.

Unsurprisingly, the memory footprint3 for cache simu-
lation is a simple linear function consisting of fixed over-
head (for policy code, libraries, etc.) plus variable space.
For ARC and LIRS, the variable component is propor-
tional to the cache size, R · Se. For OPT, which must
track all future references, it is proportional to the num-
ber of sampled references, R ·N. Table 1 reports the fixed
and variable components of the memory overhead deter-
mined by linear regression (r2 > 0.99). As expected, ac-
curate results with R = 0.001 require 1000⇥ less space
than full simulation, excluding the fixed overhead.

We also measured the CPU usage4 consumed by our
single-threaded cache implementations with both exact
and scaled-down simulations for ARC, LIRS and OPT.
As shown in Figure 5, runtime consists of two main
components: cache simulation time, which is roughly
linear in R, and the sampling overhead involving hash-

3The peak resident set size was obtained from the Linux procfs node
/proc/<pid>/status immediately before terminating.

4CPU time was obtained by adding the user and system time com-
ponents reported by /usr/bin/time.

Linear Function Example Trace (t22)
Policy Fixed Variable R=0.001 R=1
ARC 1.37 MB 71 B 1.57 MB 284 MB
LIRS 1.59 MB 75 B 1.80 MB 301 MB
OPT 7.10 MB 37 B 19.55 MB 18,519 MB

Table 1: Memory Footprint. Memory usage for ARC and
LIRS is linear in the cache size, R · Se, while for OPT, it is
linear in the number of sampled references, R ·N. Measured
values are shown for CloudPhysics trace t22 with Se = 64 GB.

ing and trace file I/O, which is roughly constant; Mur-
murHash [2] is invoked for each reference to determine
if it should be sampled. The total runtime from each ex-
periment was decomposed by running a corresponding
experiment with a pre-sampled trace file, removing the
overhead of hashing and most I/O costs.

Overall, scaled-down simulation with R = 0.001 re-
quires about 10⇥ less CPU time than full simulation, and
achieves throughput exceeding 53 million references per
second for ARC and LIRS, and 39 million references per
second for OPT. Fortunately, for multi-model optimiza-
tion, hash-based sampling costs are incurred only once,
not for each mini-cache. In an actual production cache,
the cost of data copying would dwarf the hashing over-
head, which represents a larger fraction of the fast cache
simulation operations that manipulate only metadata.

USENIX Association 2017 USENIX Annual Technical Conference 491

(a) msr_src1 (b) msr_web

0 100 200 300 0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache Size (GB)

M
is

s
R

at
io

Sampling Rate (R)

0.001
0.01
Exact MRC

Cache Algorithm

LIRS
ARC
OPT

Figure 4: Detailed MRCs. Approximate MRCs for two enterprise storage traces [15] with three different algorithms. Miniature
simulations capture cache behavior accurately, including complex non-monotonicity. All MAEs for R = 0.001 are less than 0.011.

ARC LIRS OPT

10.10.010.001 10.10.010.001 10.10.010.001

0

1
2
34

10
20
30
40

100

200
300
400

Sampling Rate (R)

Se
co

nd
s

pe
r B

ill
io

n
R

ef
s

Sampling Simulation

Figure 5: Runtime. Time to process one billion references as
a function of R. Sampling represents time spent selecting refer-
ences to simulate; Simulation is time spent actually executing
the cache policy.

4 Adapting Cache Parameters

Our generic multi-model optimization framework lever-
ages miniature simulations to adapt cache parameters dy-
namically. The impact of multiple candidate parameter
values is evaluated periodically, and the best setting is
applied to the actual cache. We present example opti-
mizations that adapt cache parameters automatically for
two well-known replacement algorithms: LIRS and 2Q.

While MRCs are typically stable over short time peri-
ods, they frequently vary over longer intervals. To adapt
dynamically to changing workload behavior, we divide
the input reference stream into a series of epochs. Our
experiments use epochs consisting of one million ref-
erences, although many alternative definitions based on
wall-clock time, evictions, or other metrics are possible.

After each epoch, we calculate an exponentially-
weighted moving average (EWMA) of the miss ratio for

each mini-cache, to balance historical and current cache
behavior. Our experiments use an EWMA weight of 0.2
for the current epoch. The parameter value associated
with the mini-cache exhibiting the lowest smoothed miss
ratio is applied to the actual cache for the next epoch.

4.1 LIRS Adaptation
As discussed in Section 2, the LIRS S stack is LRU-
ordered and contains a mix of LIR blocks, resident HIR
blocks and non-resident HIR blocks (ghosts). This queue
tracks the internal stack-distance ordering between HIR
and LIR blocks. A HIR block is reclassified as LIR if
it is referenced when it has a stack distance lower than
that of the oldest LIR block. During this “status switch”,
the oldest LIR block is changed to HIR, evicted from S,
and inserted into Q. After the status switch, a pruning
operation removes all HIR blocks from the tail of S.

The default LIRS algorithm allows S to grow without
bound on a sequence of misses. To address this issue,
the authors suggest limiting the size of S; to enforce that
limit, the oldest HIR ghost is evicted from S once the size
exceeds the limit. We denote5 this bound by f , relative
to the cache size c; the total size of S is limited to c · f .
The LIRS paper experimented with a few values of f
and reported that even low values such as f = 2 work
well. Our evaluation of scaled-down modeling accuracy
in Section 3.2 uses f = 2, so that LIRS tracks roughly
the same number of ghost entries as ARC.
Code Optimization We started our work on LIRS with
a C implementation obtained from the authors [8]. How-
ever, this code enforced the S size limit by always search-
ing for the oldest HIR ghost starting from the tail of
S. Since this caused excessive overhead with our large
traces, we developed a simple optimization that stores

5This limit was not explicitly named in the LIRS paper.

492 2017 USENIX Annual Technical Conference USENIX Association

 0.24% / 0.27%

−0.98% / 0.69%

 0.23% / 1.21%

 1.61% / 2.43%

−0.46% / 0.15%

 0.86% / 2.17%

 2.66% / 2.74%

 1.51% / 1.81%

2Q [msr_web] LIRS [msr_web]

2Q [msr_src2] LIRS [msr_src2]

2Q [msr_src1] LIRS [msr_src1]

2Q [msr_proj] LIRS [msr_proj]

0 30 60 0 30 60

0 20 40 0 20 40

0 100 200 300 0 100 200 300

0 500 1000 0 500 1000
0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

Cache Size (GB)

M
is

s
R

at
io

f = 1.1
Kout 50%

f = 2
Kout 100%

f = 3
Kout 300%

Auto

Figure 6: Adaptive Parameter Tuning. Dynamic multi-
model optimization results for four example traces. Adaptation
selects good values for 2Q (Kout) and LIRS (f) at most cache
sizes with potential gains. The percentages (upper right) show
the actual adaptation gain (vs. f =2, 50% Kout) and the potential
gain (best per-cache-size values), averaged over all cache sizes.

a pointer to the entry previous to the last-removed HIR
ghost.6 It is guaranteed that no HIR ghost can appear af-
ter this element because entries are always added to the
head of S. If the entry associated with this pointer is re-
moved from the middle of S, such as on a hit, it is simply
updated to the previous entry in the queue. We describe a
similar optimization for SLIDE evictions in Section 5.5.

6This optimization met with approval from the LIRS authors [8].

Non-monotonicity Although the authors reported that
LIRS does not suffer from non-monotonic behavior [9],
we have observed it with several of our workloads when
limiting the size of S. For example, Figure 4 reveals a
prominent region for the msr web trace where increas-
ing the LIRS cache size results in a higher miss ratio.
Interestingly, the degree of non-monotonicity varies with
f , and there appear to be workload-dependent values that
eliminate this behavior. For example, Figure 6 shows that
msr src1, msr src2 and msr web perform well with
f = 1.1, while f = 3.0 is best for msr proj.

Automatic Tuning We use our multi-model optimiza-
tion approach to adapt the LIRS f value dynamically for
a subset of the traces described in Section 3.2. For each
workload, five scaled-down simulations are performed
with different values for f : 1.1, 1.5, 2.0, 2.5 and 3.0.
Each simulation emulates the same cache size, equal to
the size of the actual cache, with a fixed sampling rate
R = 0.005. After each epoch consisting of 1M refer-
ences, the miss ratios for each mini-cache are examined,
and the best f value is applied to the actual cache.

Experiments The goal of automatic LIRS adaptation
is to find the best value of f for each cache size. These
ideal7 static settings form an MRC that traces the lower
envelope of the curves for different static f values. Ac-
tual and potential gains are computed as the mean signed
difference across all cache sizes relative to the curve with
the default fixed value f = 2. Potential gain is based on
the best static f value for each cache size.

Figure 6 presents results for four representative MSR
traces. Among all 12 MSR traces, msr src2 shows the
best actual and potential gains; the worst case for adap-
tation is the net loss for msr proj. For msr web and
msr src2, adaptation converges on the best f = 1.1, and
realizes 83–97% of the potential gain. The average ac-
tual vs. potential improvement across the MSR traces is
0.37% / 0.60%; adaptation captures the majority of pos-
sible gains. Results are mixed for traces like msr src1,
with some regressions, despite an overall gain. We are
experimenting with automatic disabling of ineffective
adaptation; early results show a small gain for msr proj.

LIRS Observations For workloads with a single large
working-set knee (e.g., trace t08 in Figure 3), the LIRS
and OPT MRCs are often surprisingly close. LIRS ap-
pears to trace the convex hull of the LRU curve, slightly
above OPT. This behavior is not intuitive, since LIRS has
no knowledge of the knee, where the miss ratio drops
suddenly once the working set fits. The explanation is
that some blocks initially get stuck in the LIR set, and no
later blocks have a low enough reuse distance to replace

7Although adaptation tends to converge on a single f value, select-
ing the best value for each individual epoch may yield a lower dynamic
optimum. However, the combinatorics make this infeasible to simulate.

USENIX Association 2017 USENIX Annual Technical Conference 493

them. During another pass over the working set, accesses
to these blocks will be hits. Thus, LIRS can effectively
remove some cliffs by trapping blocks in the LIR set.

4.2 2Q Adaptation
The 2Q algorithm is not adaptive, so its queue sizes are
specified manually. The authors suggest allocating 25%
of the cache space to A1in and 75% to Am. They also
suggest sizing the number of ghosts in A1out to be 50%
of the elements in the cache. The 2Q paper defines the
parameter Kin as the size of A1in, and Kout as the size of
A1out, the ghost queue for blocks seen only once.

Comparing 2Q and LIRS, Am is similar to the subset
of the LIRS S stack containing LIR blocks, A1in is com-
parable to the LIRS Q stack, and A1out is similar to the
subset of the LIRS S stack containing HIR ghost blocks.
While LIRS performs well allocating just 1% of its space
to Q, 2Q needs a higher percentage for A1in. The sizing
of A1out in 2Q is similar to f -adaptation in LIRS.

Since 2Q does not adapt its queue sizes dynamically,
we again employ multi-model optimization, using eight
scaled-down simulations with R = 0.005, 25% Kin, and
Kout parameters between 50% and 300%. After each
epoch consisting of 1M references, the best Kout value
is applied to the actual cache. Automatic adaptation is
designed to find the optimal Kout for each cache size.
As in Section 4.1, we compute gain relative to the area
between the default curve with fixed 50% Kout and the
lower envelope of all the curves with static Kout values.

Figure 6 shows adaptation works well for msr web,
which has the best actual and potential gains over all 12
MSR traces; the auto-adapted curve tracks the lower en-
velope closely, capturing 66% of the possible static gain.
For traces like msr proj that are not very sensitive to
Kout, adaptation shows modest absolute gains. The worst
case is the significant loss for msr src1, although the
auto-disabling extension mentioned earlier results in a
small gain. Averaged over all 12 MSR traces, the actual
vs. potential improvement is 0.10% / 0.45%.

5 SLIDE

SLIDE is a new approach inspired by Talus [3] that
leverages scaled-down MRCs to remove performance
cliffs. We describe challenging issues with applying
Talus to non-LRU policies, and explain how SLIDE re-
solves them. We then present efficient SLIDE implemen-
tation techniques that support transparent shadow parti-
tioning within a single unified cache.

5.1 Talus Inspiration
Talus [3] is a technique that removes cache performance
cliffs using hash-based partitioning. It divides the refer-

ence stream for a single workload into two shadow parti-
tions, alpha and beta, steering a fraction r of references
to the alpha partition. Each partition can be made to emu-
late the performance of a smaller or larger cache by con-
trolling its size and input load.

Talus requires the workload’s MRC as an input. The
partition sizes Na and Nb , and their respective loads, r
and 1�r , are computed in a clever manner that ensures
their combined aggregate miss ratio lies on the convex
hull of the MRC. Although Talus was introduced in the
context of hardware processor caches, a similar idea has
also been applied to key-value web caches [5].

We view the hash-based partitioning employed by
Talus for removing performance cliffs and the hash-
based monitoring introduced with SHARDS for efficient
MRC construction as two sides of the same coin. Both
rely on the property that hash-based sampling produces
a smaller reference stream that is statistically self-similar
to the original stream. The ability to construct MRCs us-
ing hash-based sampling was not recognized by the Talus
authors, who emphasized that no known methods could
generate MRCs inexpensively for non-stack algorithms.

5.2 Challenges with Non-LRU MRCs
As noted by the Talus authors, a key challenge with ap-
plying Talus to non-stack algorithms is the need to con-
struct MRCs efficiently in an online manner. This prob-
lem is solved by using the scaled-down modeling tech-
niques described in Section 3. As with parameter adap-
tation described in Section 4, we divide the input refer-
ence stream into a series of epochs. After each epoch, we
construct a discretized MRC from multiple scaled-down
simulations with different cache sizes, smoothing each
miss ratio using an EWMA. We then identify the sub-
set of these miss ratios that form the convex hull for the
MRC, and compute the optimal partition sizes and loads
using the same inexpensive method as Talus.

In theory, the combination of scaled-down MRC con-
struction and Talus shadow partitioning promises to im-
prove the performance of any caching policy by inter-
polating efficient operating points on the convex hulls of
workload MRCs. In practice, we encountered several ad-
ditional challenges while trying to implement Talus for
caching algorithms such as ARC and LIRS.

5.3 Challenges with Non-LRU Partitioning
Talus requires distinct cache instances for its separate al-
pha and beta partitions, which together have a fixed total
size. This hard division becomes problematic in a sys-
tem where the partition boundaries change dynamically
in response to an MRC that evolves over time. Similarly,
when r changes dynamically, some cache entries may re-
side in the “wrong” partition based on their hash values.

494 2017 USENIX Annual Technical Conference USENIX Association

These issues were not discussed in the Talus paper.
We initially tested simple strategies to address these is-

sues. For example, removing cache entries eagerly when
decreasing the size of a partition, and reallocating the re-
claimed space to the other partition. Or migrating entries
across partitions eagerly to ensure that each resides in
the correct partition associated with its hash. Such ea-
ger strategies performed poorly, as migration checks and
actions are expensive, and data may be evicted from one
partition before the other needs the space. Moreover, it’s
not clear how migrated state should be integrated into its
new partition, even for a simple policy like LRU, since
list positions are not ordered across partitions.

A lazy strategy for reallocation and migration gener-
ally fares better. Cache entries can be reclaimed from an
over-quota partition on demand, and entries residing in
incorrect partitions migrated only on hits. However, this
approach adds non-trivial complexity to the core caching
logic. More importantly, while migrating to the MRU
position on a hit seems reasonable for an LRU policy,
it’s not clear how to merge state appropriately for more
general algorithms. Some policies do not even specify
how to transform state to support dynamic resizing.

5.4 Transparent Shadow Partitioning
We developed a new approach called SLIDE (Sharded
List with Internal Differential Eviction) to address these
challenges. In contrast to Talus, SLIDE maintains a sin-
gle unified cache, and defers partitioning decisions until
eviction time. SLIDE conveniently avoids the resizing,
migration, and complexity issues discussed above.

A SLIDE list is a new abstraction that serves as a drop-
in replacement for the standard LRU list used as a com-
mon building block by many sophisticated algorithms,
including ARC, LIRS, and 2Q. Since SLIDE interposes
on primitive LRU operations that add (insert-at-head),
reference (move-to-head), and evict (remove-from-tail)
entries, it is completely transparent to cache-replacement
decisions. An unmodified cache algorithm can support
Talus-like partitioning by simply relinking to substitute
SLIDE lists for LRU8 lists. We have successfully opti-
mized ARC (T1, T2, B1 and B2), LIRS (S and Q), 2Q
(Am, A1in and A1out), and LRU in this manner.

5.5 SLIDE Lists
A SLIDE list is implemented by extending a conven-
tional doubly-linked LRU list. All list entries remain
ordered from MRU (head) to LRU (tail). Each entry is
augmented with a compact hash9 of its associated loca-
tion identifier (e.g., block number or memory address).

8SLIDE also works with FIFO lists, such as the 2Q A1in queue; a
referenced entry simply isn’t moved to the head of the list.

9Our default implementation uses small 8-bit hashes, providing bet-
ter than 0.4% resolution for performing hash-based partitioning.

211 88 141 156

tail
prev

block
hash

next

110 92

head

tailβtailα

if Tα = 200:

if Tα = 100:

tailβ tailα

Figure 7: SLIDE List. Extensions (highlighted) to a doubly-
linked list include hash values plus taila and tailb pointers used
to find the LRU blocks in the alpha and beta partitions. Differ-
ent dynamic thresholds Ta illustrate flexible partitioning.

This hash value is compared to the current threshold Ta
to classify the entry as belonging to either the alpha or
beta “partition”. This makes the SLIDE partition bound-
ary more flexible than the hard partitions in Talus.

As depicted in Figure 7, in addition to the usual head
and tail pointers, SLIDE maintains two new tail pointers,
taila and tailb . To evict from alpha, the LRU alpha entry
is located by walking the list backwards from taila until
an entry with a hash value below Ta is found. Similarly,
an eviction from beta starts with tailb and continues until
an entry with a hash value at or above Ta is found.

The tail-search pointers taila and tailb are initialized
to NULL, which indicates that searches should begin from
the absolute tail of the combined list. They are updated
lazily during evictions, and to skip over entries that are
moved to the MRU position on a hit. Since entries are
added only to the head of the LRU-ordered list, the amor-
tized cost for these updates is O(1), as each tail pointer
traverses a given entry only once.

Many LRU implementations maintain a count of the
number of entries in the list. A SLIDE list also tracks
Na , the number of entries that currently belong to the al-
pha partition. The SLIDE configuration operation spec-
ifies both r and a target size for alpha, expressed as a
fraction Fa of the total number of entries, Ntot . During
an eviction, an entry is preferentially removed from the
alpha partition if it is over quota (i.e., Na > Fa · Ntot), or
otherwise from the beta partition. If the preferred victim
partition is empty, then the absolute LRU entry is evicted.

It is not obvious that substituting SLIDE lists for the
internal lists within non-stack algorithms will approxi-
mate hard Talus partitions. The basic intuition is that
configuring each SLIDE list with identical values of Fa
and r will effectively divide the occupancy of each indi-
vidual list – and therefore divide the entire aggregate al-
gorithm state – to achieve the desired split between alpha
and beta. As with Talus, this depends on the statistical
self-similarity property of hash-based spatial sampling.
While SLIDE may differ from strict Talus partitioning, it
empirically works well for ARC, LIRS, 2Q, and LRU.

USENIX Association 2017 USENIX Annual Technical Conference 495

 0.41% / 0.57%

 2.04% / 4.07%

 3.85% / 9.78%

 4.65% / 9.61%

 0.05% / 0.69%

 0.16% / 2.59%

 1.26% / 5.50%

 1.86% / 5.21%

−0.06% / 0.36%

 3.14% / 4.55%

 0.08% / 2.83%

 0.05% / 2.37%

 0.04% / 0.28%

 1.00% / 4.05%

 0.82% / 5.93%

 2.61% / 6.83%

LRU [msr_web] 2Q [msr_web] LIRS [msr_web] ARC [msr_web]

LRU [msr_src2] 2Q [msr_src2] LIRS [msr_src2] ARC [msr_src2]

LRU [msr_src1] 2Q [msr_src1] LIRS [msr_src1] ARC [msr_src1]

LRU [msr_proj] 2Q [msr_proj] LIRS [msr_proj] ARC [msr_proj]

0 30 60 0 30 60 0 30 60 0 30 60

0 20 40 0 20 40 0 20 40 0 20 40

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

0 500 1000 0 500 1000 0 500 1000 0 500 1000
0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

Cache Size (GB)

M
is

s
R

at
io

Original SLIDE

Figure 8: SLIDE Cliff Removal. Results for four traces using scaled-down MRCs from seven mini-cache simulations. SLIDE
improves the miss ratio for LRU, 2Q, LIRS and ARC caches at most sizes with potential gains, but does exhibit some regressions.
The percentages (upper right) show the actual SLIDE gain and the potential gain (ideal convex hull) averaged over all cache sizes.

5.6 SLIDE Reconfiguration
Periodic reconfiguration may move partition boundaries
dynamically, changing the threshold Ta . To support
constant-time recomputation of Na , SLIDE optionally
maintains an array of counts tracking the number of en-
tries associated with each hash value.10

A change to Ta must also reset the taila and tailb
search pointers, as later entries may have been reclassi-
fied to different partitions. Although not guaranteed to be
O(1), one pointer must be the same as the global tail, and
the expected number of entries the other must re-traverse
is 1/Fa , assuming a uniform hash distribution. This will
typically be small compared to the epoch length, even for
heavily-skewed partitions; Fa could also be bounded.

10An array of 256 counts for our implementation with 8-bit hashes.

5.7 Experiments
We evaluate the effectiveness of SLIDE using a subset of
the traces described in Section 3.2. For each workload,
a separate experiment is performed at 100 cache sizes.
For each size, a discrete MRC is constructed via multiple
scaled-down simulations with sampling rate R = 0.005.
SLIDE is reconfigured after each 1M-reference epoch,
using 0.2 as the EWMA weight for the current epoch.

Seven emulated cache sizes are positioned exponen-
tially around the actual size, using relative scaling factors
of 1/8, 1/4, 1/2, 1, 2, 4, and 8. For R = 0.005, the mini-
cache metadata is approximately 8% of the actual meta-
data size (R times the sum of the scaling factors). For a
16 KB cache block size and 64 B metadata entries, this
represents less than 0.04% of total memory consumption.

Many alternative configurations can provide differ-

496 2017 USENIX Annual Technical Conference USENIX Association

ent time-space tradeoffs, e.g., fixed-size variable-R mini-
caches, as described in Section 3.1. Similarly, increas-
ing the number of emulated cache sizes generally yields
more accurate MRCs and improves SLIDE results, at the
cost of additional mini-cache resource consumption.

Figure 8 plots the results of SLIDE performance cliff
removal for four representative MSR traces with LRU11,
2Q, LIRS and ARC policies. Ideally, SLIDE would trace
the convex hull of the original MRC. In practice, this is
not attainable, since the MRC evolves dynamically, and
its few discrete points yield a crude convex hull. For
each plot, we show both the actual SLIDE gain and the
potential gain on the convex hull, each computed as the
mean signed difference across all cache sizes from the
original curve. We also characterize the larger set of all
12 MSR traces, although this metric often averages out
more significant differences visible in the plots.

As expected, gains are largest for workloads with non-
trivial cliffs, such as msr src2 and msr web; SLIDE re-
duces their miss ratios by more than 10% in many cases.
For the larger set of MSR traces, the best-case actual vs.
potential gains are 4.65% / 9.78% (LRU), 1.86% / 5.50%
(2Q), 3.14% / 4.55% (LIRS) and 2.61% / 6.84% (ARC).
The average actual vs. potential improvements are 0.88%
/ 2.09% (LRU), 0.26% / 1.30% (2Q), 0.23% / 0.89%
(LIRS) and 0.36% / 1.47% (ARC). Overall, SLIDE cap-
tures a reasonable fraction of possible gains.

For traces such as msr proj, where the original MRC
is nearly convex, SLIDE provides little improvement.
For a few traces like msr src1, results are mixed, with
SLIDE improving many policies and cache sizes, but de-
grading others slightly. Across all 12 MSR traces and all
four policies, the worst-case gain is �0.14%. As future
work, we are extending SLIDE to disable itself dynami-
cally to prevent losses and yield Pareto improvements.

6 Related Work

Research on cache modeling and MRC construction has
focused on LRU and stack algorithms [13, 16, 26, 23,
7]. Modeling non-stack algorithms requires offline cache
simulations with extremely high resource consumption,
making online analysis and control impractical.

As explained in Section 3, basic scaled-down sim-
ulation was first introduced with our prior work on
SHARDS [23], but there has been no detailed study of
this approach. To the best of our knowledge, scaled-
down simulation with miniature caches is the only ap-
proach that can model complex algorithms efficiently.

Our automatic adaptation is motivated by the observa-
tion that no single set of cache parameters performs well

11SLIDE is very effective for LRU, and could use SHARDS or AET
to construct MRCs more efficiently for a pure LRU policy.

across all workloads. SOPA [24] is a cache framework
for inter-policy adaptation. It collects a full trace during
an evaluation period, replays it into simulators for multi-
ple candidate policies, and adopts the best one. To facil-
itate policy switches, SOPA maintains a separate LRU-
ordered list of all cached blocks. Blocks are replayed in
LRU-to-MRU order, helping the new algorithm recon-
struct recency metadata, but any frequency or ghost state
is lost in translation. Our techniques are complementary,
and could reduce SOPA analysis overhead significantly.

SLIDE, inspired by Talus [3], uses MRCs to remove
cache performance cliffs. Section 5 presents a detailed
comparison, and explains how SLIDE overcomes the
challenges of applying Talus to non-LRU policies.

Cliffhanger [5] removes performance cliffs from web
memory caches without an explicit miss-ratio curve. As-
suming a full MRC is too expensive, limited-size shadow
queues instead estimate its gradient, with the sign of the
second derivative identifying a cliff. A significant limita-
tion is that Cliffhanger can only scale a single cliff, which
must be located within the limited visibility of its shadow
queues. Although the authors state that Cliffhanger could
work with any eviction policy, their algorithms and ex-
periments are specific to LRU. It is not clear how to
apply their shadow-queue technique to more complex
caching policies, especially given the challenges identi-
fied in Section 5.3. Non-monotonicity may also present
problems; even a small local bump in the MRC could be
misinterpreted as the single cliff to be removed.

7 Conclusions

We have explored using miniature caches for modeling
and optimizing cache performance. Compelling experi-
mental results demonstrate that scaled-down simulation
works extremely well for a diverse collection of complex
caching algorithms – including ARC, LIRS, 2Q and OPT
– across a wide range of real-world traces. This suggests
our technique is a robust method capable of modeling
nearly any cache policy accurately and efficiently.

Lightweight modeling of non-stack algorithms has
many practical applications, including online analysis
and control. We presented a general method that runs
multiple scaled-down simulations to evaluate hypothet-
ical configurations, and applied it to optimize LIRS
and 2Q parameters automatically. We also introduced
SLIDE, a new technique that performs Talus-like perfor-
mance cliff removal transparently for complex policies.

Miniature caches offer the tantalizing possibility of
improving performance for most caching algorithms on
most workloads automatically. We hope to make addi-
tional progress in this direction by exploring opportuni-
ties to refine and extend our optimization techniques.

USENIX Association 2017 USENIX Annual Technical Conference 497

Acknowledgments Thanks to CloudPhysics for helping
to make this work possible, and to John Blumenthal, Jeff
Hausman, Jim Kleckner, Xiaojun Liu, and Richard Sex-
ton for their encouragement and support. Thanks also
to the anonymous reviewers and our shepherd Timothy
Wood for their valuable feedback and suggestions.

References
[1] AHO, A. V., DENNING, P. J., AND ULLMAN, J. D. Principles

of Optimal Page Replacement. J. ACM 18, 1 (Jan. 1971), 80–93.

[2] APPLEBY, A. SMHasher and MurmurHash. https://code.

google.com/p/smhasher/.

[3] BECKMANN, N., AND SANCHEZ, D. Talus: A Simple Way to
Remove Cliffs in Cache Performance. In Proceedings of the 21st
international symposium on High Performance Computer Archi-
tecture (HPCA-21) (February 2015).

[4] BELADY, L. A. A Study of Replacement Algorithms for Virtual
Storage Computers. IBM Systems Journal 5, 2 (1966), 78–101.

[5] CIDON, A., EISENMAN, A., ALIZADEH, M., AND KATTI, S.
Cliffhanger: Scaling Performance Cliffs in Web Memory Caches.
In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16) (Santa Clara, CA, 2016), USENIX
Association, pp. 379–392.

[6] GRYSKI, D. go-arc git repository. https://github.com/

dgryski/go-arc/.

[7] HU, X., WANG, X., ZHOU, L., LUO, Y., DING, C., AND
WANG, Z. Kinetic Modeling of Data Eviction in Cache. In
Proceedings of the 2016 USENIX Conference on Usenix Annual
Technical Conference (Berkeley, CA, USA, 2016), USENIX ATC
’16, USENIX Association, pp. 351–364.

[8] JIANG, S. LIRS source code. Private communication, Oct 2016.

[9] JIANG, S., AND ZHANG, X. LIRS: An Efficient Low Inter-
reference Recency Set Replacement Policy to Improve Buffer
Cache Performance. In Proceedings of the 2002 ACM SIGMET-
RICS International Conference on Measurement and Modeling of
Computer Systems (New York, NY, USA, 2002), SIGMETRICS
’02, ACM, pp. 31–42.

[10] JOHNSON, T., AND SHASHA, D. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm. In
Proceedings of the 20th International Conference on Very Large
Data Bases (San Francisco, CA, USA, 1994), VLDB ’94, Mor-
gan Kaufmann Publishers Inc., pp. 439–450.

[11] KOLLER, R., MASHTIZADEH, A. J., AND RANGASWAMI, R.
Centaur: Host-Side SSD Caching for Storage Performance Con-
trol. 2015 IEEE International Conference on Autonomic Com-
puting (ICAC) (2015), 51–60.

[12] KOLLER, R., AND RANGASWAMI, R. I/O Deduplication: Uti-
lizing Content Similarity to Improve I/O Performance. Trans.
Storage 6, 3 (Sept. 2010), 13:1–13:26.

[13] MATTSON, R. L., GECSEI, J., SLUTZ, D. R., AND TRAIGER,
I. L. Evaluation Techniques for Storage Hierarchies. IBM Sys-
tems Journal 9, 2 (June 1970), 78–117.

[14] MEGIDDO, N., AND MODHA, D. S. ARC: A Self-Tuning,
Low Overhead Replacement Cache. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies (Berkeley,
CA, USA, 2003), FAST ’03, USENIX Association, pp. 115–130.

[15] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write
Off-loading: Practical Power Management for Enterprise Stor-
age. Trans. Storage 4, 3 (Nov. 2008), 10:1–10:23.

[16] NIU, Q., DINAN, J., LU, Q., AND SADAYAPPAN, P. PARDA: A
Fast Parallel Reuse Distance Analysis Algorithm. In Proceedings
of the 2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium (Washington, DC, USA, 2012), IPDPS ’12,
IEEE Computer Society, pp. 1284–1294.

[17] O’NEIL, E. J., O’NEIL, P. E., AND WEIKUM, G. The LRU-
K Page Replacement Algorithm for Database Disk Buffering. In
Proceedings of the 1993 ACM SIGMOD International Confer-
ence on Management of Data (New York, NY, USA, 1993), SIG-
MOD ’93, ACM, pp. 297–306.

[18] QURESHI, M. K., AND PATT, Y. N. Utility-Based Cache Par-
titioning: A Low-Overhead, High-Performance, Runtime Mech-
anism to Partition Shared Caches. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (Washington, DC, USA, 2006), MICRO 39, IEEE Computer
Society, pp. 423–432.

[19] SAEMUNDSSON, T. cache algorithm git repository. https://

github.com/trauzti/cache/.

[20] SAEMUNDSSON, T., BJORNSSON, H., CHOCKLER, G., AND
VIGFUSSON, Y. Dynamic Performance Profiling of Cloud
Caches. In Proceedings of the ACM Symposium on Cloud Com-
puting (New York, NY, USA, 2014), SOCC ’14, ACM, pp. 28:1–
28:14.

[21] SALTZER, J. H., AND KAASHOEK, M. F. Principles of Com-
puter System Design: An Introduction. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2009.

[22] STEFANOVICI, I., THERESKA, E., O’SHEA, G., SCHROEDER,
B., BALLANI, H., KARAGIANNIS, T., ROWSTRON, A., AND
TALPEY, T. Software-defined Caching: Managing Caches in
Multi-tenant Data Centers. In Proceedings of the Sixth ACM Sym-
posium on Cloud Computing (New York, NY, USA, 2015), SoCC
’15, ACM, pp. 174–181.

[23] WALDSPURGER, C. A., PARK, N., GARTHWAITE, A., AND
AHMAD, I. Efficient MRC Construction with SHARDS. In Pro-
ceedings of the 13th USENIX Conference on File and Storage
Technologies (Berkeley, CA, USA, 2015), FAST ’15, USENIX
Association, pp. 95–110.

[24] WANG, Y., SHU, J., ZHANG, G., XUE, W., AND ZHENG, W.
SOPA: Selecting the Optimal Caching Policy Adaptively. Trans.
Storage 6, 2 (July 2010), 7:1–7:18.

[25] WIKIPEDIA. LIRS caching algorithm — Wikipedia, the free en-
cyclopedia, 2017. [Online; accessed 22-Jan-2017].

[26] WIRES, J., INGRAM, S., DRUDI, Z., HARVEY, N. J. A., AND
WARFIELD, A. Characterizing Storage Workloads with Counter
Stacks. In Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA,
2014), OSDI ’14, USENIX Association, pp. 335–349.

[27] ZHAO, W., AND WANG, Z. Dynamic Memory Balancing
for Virtual Machines. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments (New York, NY, USA, 2009), VEE ’09, ACM,
pp. 21–30.

[28] ZHOU, P., PANDEY, V., SUNDARESAN, J., RAGHURAMAN, A.,
ZHOU, Y., AND KUMAR, S. Dynamic Tracking of Page Miss Ra-
tio Curve for Memory Management. In Proceedings of the 11th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (New York, NY, USA,
2004), ASPLOS XI, ACM, pp. 177–188.

498 2017 USENIX Annual Technical Conference USENIX Association

