
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

GPU Taint Tracking
Ari B. Hayes, Rutgers University; Lingda Li, Brookhaven National Laboratory;

Mohammad Hedayati, University of Rochester; Jiahuan He and Eddy Z. Zhang,
Rutgers University; Kai Shen, Google

https://www.usenix.org/conference/atc17/technical-sessions/presentation/hayes

GPU Taint Tracking

Ari B. Hayes
Rutgers University

Lingda Li∗

Brookhaven National Lab
Mohammad Hedayati

University of Rochester

Jiahuan He
Rutgers University

Eddy Z. Zhang
Rutgers University

Kai Shen
Google

Abstract
Dynamic tainting tracks the influence of certain inputs
(taint sources) through execution and it is a powerful
tool for information flow analysis and security. Taint
tracking has primarily targeted CPU program executions.
Motivated by recent recognition of information leaking
in GPU memory and GPU-resident malware, this paper
presents the first design and prototype implementation of
a taint tracking system on GPUs. Our design combines
a static binary instrumentation with dynamic tainting at
runtime. We present new performance optimizations by
exploiting unique GPU characteristics—a large portion
of instructions on GPU runtime parameters and constant
memory can be safely eliminated from taint tracking;
large GPU register file allows fast maintenance of a hot
portion of the taint map. Experiments show that these
techniques improved the GPU taint tracking performance
by 5 to 20 times for a range of image processing, data
encryption, and deep learning applications. We further
demonstrate that GPU taint tracking can enable zeroing
sensitive data to minimize information leaking as well as
identifying and countering GPU-resident malware.

1 Introduction

GPUs have been widely used in many important applica-
tion domains beyond scientific computing, including ma-
chine learning, graph processing, data encryption, com-
puter vision, etc. Sensitive information propagates into
GPUs and, while being processed, leaves traces in GPU
memory. For example, in a face recognition application,
besides the input photo itself, the features extracted at
different levels of the deep learning neural networks may
also contain part of sensitive or private information. Fig-
ure 1 shows the extracted features from the first level of
neural networks in a face recognition program, where

∗This work was done when Lingda Li was a postdoctoral associate
at Rutgers University

Figure 1(a) is the original picture and Figure 1(b) are
features such as silhouette of a human face. Given a sen-
sitive input user photo, features in deep learning appli-
cations may contain much of the sensitive data as well.
Other sensitive data in today’s GPU applications include
encryption keys, digits in personal checks, license plates,
location information in virtual reality apps, etc. If not
tracked or protected, sensitive information can be inad-
vertently leaked or stolen by malicious applications on
GPUs.

(a) Org. Photo (b) Extracted Features

Figure 1: Neural network information leaking example.

Taint analysis [3, 4, 6, 11, 22, 26, 29, 30] is a powerful
tool for information flow tracking and security. It tracks
where and how sensitive information flows during pro-
gram execution. Taint analysis is a form of data flow
analysis, wherein an input set of sensitive data is marked
as “tainted”, and this taint is tracked during runtime as
it spreads into different locations in memory via move,
arithmetic, and control operations. Taint analysis results
can be used to protect data by clearing tainted variables at
the end of its life range—for instance, the temporary key
schedule at every round of AES algorithm—or by en-
crypting live but inactive tainted data [27]. Taint analysis
can also help identify and counter abnormal behaviors
of malicious malware. Existing dynamic taint analysis
has primarily been applied to CPU programs though its
functions are increasingly desirable for GPUs as well.

This paper presents the first design and implementa-
tion of a GPU taint tracking system. Our approach is
based on static binary instrumentation that enables dy-
namic taint tracking of a GPU program. In comparison

USENIX Association 2017 USENIX Annual Technical Conference 209

to dynamic instrumentation that captures and modifies
instructions on the fly, our approach does not require a
dynamic instrumentation framework or virtual machine
emulation that is not readily available on GPUs. We
perform static instrumentation on GPU program binaries
without source access so that it is easy to apply in prac-
tice. We instrument programs on a per-application basis
and when the program runs, every thread can dynami-
cally track information flow by itself.

The major challenge for efficient taint tracking is that
tracking every dynamic binary instruction is expensive.
Our solution exploits the fact that a large portion of a
typical GPU program execution operates on un-taintable
runtime parameters and constants. Examples include
the logical thread indexes, thread block identifiers, di-
mension configurations, and pointer-type kernel param-
eters. We use a simple filtering policy that the run-
time taint tracking only operates on instructions whose
operands can be reached from potential global memory
taint sources through dependencies and can reach poten-
tial global memory taint sinks. We present an iterative
two-pass taint reachability analysis to implement such
instruction filtering which significantly reduces runtime
taint tracking costs.

Our taint tracking system also exploits the heteroge-
neous memory architecture on GPUs. A GPU has dif-
ferent types of memory, including either physically par-
titioned or logically partitioned memory storage. For in-
stance, local memory is private to every thread, shared
memory is a software cache visible to a group of threads,
and global memory is visible to all threads. Our taint
system handles different types of memory storage sep-
arately and optimizes the tracking for different types of
memory storage. Specifically, we allocate a portion of
the register file to store part of the taint map, since GPU
contains a much larger register file than CPU—e.g., ev-
ery streaming multi-processor (SM) has 64K registers on
most NVIDIA GPUs. Not all registers are needed [8,20]
nor the maximum occupancy is necessary [10] for best
performance. Using fast access registers to maintain the
taint map of frequently accessed data will improve the
dynamic tainting performance.

GPU taint tracking enables data protection that clears
sensitive (tainted) data objects at the end of their life
range as well as detects leak of the sensitive data in the
midst of program execution. We recognize that data in
different GPU memory storage may have different life
ranges. For instance, registers and local memory are
thread private and can be cleared once a thread finishes
its execution; shared memory is only used by a thread
block and sensitive data in shared memory can be cleared
by that thread block once it releases the SM. Global
memory may be accessed at any time of a program run
so we cannot clear it at the end of every kernel execu-

tion. However, we can detect when and where the sen-
sitive information (in global memory) is sent out by in-
strumenting memory communication APIs since all com-
munication between GPU, CPU and other network de-
vices require explicit memory API calls. By checking if
the sensitive information falls within the region of mem-
ory that is transferred, we can identify GPU malware
(like Keylogger [17] and Jellyfish [15]) that uses GPU
to snoop CPU activities while storing these activities in
GPU memory. Such GPU-resident malware would es-
cape detection by a CPU-only taint tracking mechanism.

2 Background

GPU functions, also known as kernel functions, make
use of memory which is not directly accessible from the
CPU. GPU memory is split into several regions, both on-
chip and off-chip. On-chip memory consists of registers,
caches, and scratch-pad memory (called shared memory
in NVIDIA terminology). Note that we use NVIDIA
terminology throughout this paper. Off-chip memory
is GDDR SGRAM, which is logically distributed into
texture memory, constant memory, local memory, and
global memory, with texture memory and constant mem-
ory mapped to texture and constant caches.

Both texture memory and constant memory are read-
only during the GPU kernel execution. Therefore, in this
paper we focus on registers, shared memory, local mem-
ory, and global memory. Shared memory is available to
the programmer, often treated as a software cache. Local
memory is thread-private, and is most commonly used
for register spilling. Global memory is visible to the en-
tire GPU device, and is typically used as input and output
for GPU functions. In all four of these memory types,
data persists after deallocation [25].

Global memory can be set and cleared through API
functions, with overhead similar to that of running a GPU
kernel, but local memory, shared memory, and registers
are only accessible from within a kernel function, and al-
located and deallocated by the driver. These three mem-
ory types can only be reliably cleared through instru-
mentation. Moreover, local memory and registers are
managed by compilers and they can only be cleared by
compile-time instrumentation.

Sensitive information can also propagate to differ-
ent data storage locations on GPU: memory, software
caches, and registers. An example is the advanced en-
cryption standard (AES), in which the key and the plain
text to be encrypted may reside in different types of
memory [25]. They can be stored in global memory as
allocated data objects and in registers as program execu-
tion operands.

Currently, there is less memory protection on GPUs
as compared with CPUs. When two applications run si-

210 2017 USENIX Annual Technical Conference USENIX Association

multaneously on the same GPU with the Multi-process
Service (MPS), one application can peek into the mem-
ory of another application, documented in NVIDIA’s
MPS manual at Section 2.3.3.1, “An out-of-range read
in a CUDA Kernel can access CUDA-accessible mem-
ory modified by another process, and will not trigger
an error, leading to undefined behavior.” When two ap-
plications do not run simultaneously, in which case ev-
ery application will get a serially scheduled time-slice
on the whole GPU, information leaking is still possi-
ble. The second running application can read data left
by the first running application if its allocated memory
locations happen to overlap with those of the first one.
This vulnerability has been detailed in several recent
works [18, 25, 28].

Future hardware trends such as the fine-grained mem-
ory protection in AMD APUs suggest potentially bet-
ter process isolation. Hardware-level memory protec-
tion may exhibit superior performance, but its realiza-
tion must take into account the hardware implementation
complexity. And more importantly, process memory pro-
tection does not distinguish sensitive data and its propa-
gation within one program or process. Such protection
would be critical for securing sensitive information flows
between CPU, GPU and their memories.

3 Efficient GPU Taint Tracking

A typical information flow tracking system on CPUs
monitors instructions and operands to maintain proper
taint propagations. For example, in a binary operation
v = binop v1, v2, assuming T (v1), T (v2), and T (v) rep-
resent the taint status for operands v, v1, and v2 respec-
tively: true means tainted and false means untainted. The
taint tracking rule for this instruction is T (v) = T (v1)
|| T (v2). Taint statuses for all data storage locations
(program memory, registers, conditional flags, etc.) are
maintained in a taint map in memory. A baseline GPU
taint tracking system would operate in a similar way.

Dynamic taint tracking [3, 4, 6, 11, 22, 26, 29, 30] is
known to incur high runtime costs. Fortunately, GPU ex-
ecutions exhibit some unique characteristics that enable
optimization. We present an optimization that recognizes
and identifies the large portion of GPU instructions that
cannot be involved in taint propagation from sources to
sinks. Furthermore, given the large register file on GPU
and frequent register accesses, we maintain register taint
map in registers to accelerate their taint tracking. These
optimizations are performed through binary-level static
analysis.

3.1 Taint Reachability
On GPUs, we discover that programs frequently operate
on a set of critical runtime un-taintable values, and that

not all operands need to be tracked. We exploit this fact
and only track the operands that potentially carry taints
or may have an impact on the state transition of the un-
taintable objects. In the earlier example, if v1 does not
carry any taint, the taint maintenance only needs to track
v2 and v such that T (v) = T (v2). If neither v1 or v2 can
be tainted, or if v does not propagate to memory, no taint
maintenance is necessary for the variables v, v1, and v2.

A frequently used GPU runtime un-taintable is the log-
ical thread index. A thread index is used to help identify
the task that is assigned to every thread. It is a built-in
variable, and does not come from global memory that
is managed by a programmer, and thus the instruction
operand as a thread index or an expression of thread in-
dex can never be tainted. Similarly, other built-in thread
identification variables, including thread block id and di-
mension configuration, are also un-taintable.

Another frequently used GPU runtime un-taintable
value are the non-scalar pointer-type kernel parameters.
A GPU kernel function does not allow call-by-reference.
To reference a memory data object that can be modified
at runtime, it can only use pointers. Moreover, these ker-
nel parameters are kept in a memory region named as
“constant memory” in GPUs and are read-only in ker-
nel execution. The memory region pointed to by the
kernel parameter must be tracked, but the pointer or
the address expression computed using the pointer and
thread index (or part of the expression) does not need
to be tracked. Other examples include compile-time un-
taintable values, such as loop induction variables and
stack framework pointers, programmer-specified con-
stants, and combinations of GPU-specific runtime con-
stants with these constants. We analyze and categorize
these un-taintable values in Section 5 and Table 1.

To avoid tracking un-taintable values in GPU pro-
grams, we take the following approaches.

1. We classify an instruction operand into two types:
taintable and un-taintable. The taintable state indi-
cates that the operand might be tainted at runtime—
whether it will be really tainted depends on the ex-
act dynamic analysis done by tracking instructions.
The un-taintable state indicates that the operand
cannot be tainted at runtime. Any operand that
cannot be reached from the taintable source is un-
taintable. The taintable sources are program inputs
given by the users and reside in the global memory
on GPUs. Examples include face recognition pho-
tos, a plain-text message, and encryption key.

2. A variable can be overwritten with taintable or
un-taintable values at different program execution
points. We check for potential state transition of
a variable: from un-taintable to taintable, or from
taintable to un-taintable. The latter arises in a situa-

USENIX Association 2017 USENIX Annual Technical Conference 211

tion called taint removal—e.g., assigning a constant
to a register who might be in a tainted state before
the assignment but must now transition to the un-
tainted state.

3. We statically check the memory reachability:
whether an operand might reach memory (potential
taint sinks). Even if an operand is taintable, as long
as it does not flow into memory, it will not affect any
taint sink. We do not need to add tracking instruc-
tion for this type of operands. Common examples
include loop trip counters, predicate registers, and
stack frame pointers.

block0:
 R0 = 0x1234;
 R0 = 0x0;
 if (some_condition)

 R0 = [R1];
 [R2] = R0;
 some_condition = random();
 GOTO block0;

 T(R0) = false;

T(R0) = T([R1]) || T(R1);
T([R2]) = T(R0);

1:
2:
3:
4:
5:
6:
7:
8:

1:
2:
3:
4:
5:
6:
7:
8:

Original Code Tracking Code

We show an example in the code snippet above. The
code describes a loop. Register R0 is overwritten with
different types of values. Initially R0 is written with an
un-taintable value (lines 2-3). Later in the i f statement,
it is written by a taintable value [R1]; note that here the
[R1] notation indicates a memory operation and the ad-
dress of the memory location is R1. We need a track-
ing instruction within the i f statement since [R1] comes
from global memory and every operand from memory
needs to be tracked. We do not need a tracking instruc-
tion for line 2 since 0x1234 is a constant and the assign-
ment target R0 at line 2 cannot reach memory. However,
we do need a tracking instruction for line 3 since the as-
signment target may reach memory and taint removal ap-
plies here (R0 may be tainted from an earlier iteration of
the loop and if so, taint must be removed here).

3.2 Iterative Two-pass Taint Analysis
To mark the taintability and reachability attributes for ev-
ery operand and to detect potential taint state transition,
we perform an iterative dataflow analysis.

There are two passes in our iterative dataflow anal-
ysis component. The forward pass marks the taintable
operands and the un-taintable operands only at the pro-
gram points where a potential taint state transition oc-
curs. The backward pass marks an operand that poten-
tially reaches memory (taint sinks). In the end, when
adding code to track the original program, we only track
the operands that are marked in both forward and back-
ward passes.

Figure 2 provides an overview of our taint tracking
system. First, we analyze the binary code to obtain
the control flow graph and a list of basic blocks. A

• Store hot taint map
in registers

• Clear sensitive data
• Rewrite binary

• Backward memory
reachability tracking

• Iteratively mark operands
that do not reach memory

• Prepare for forward pass

• Filter un-necessary tracking operands based on
two-pass reachability analysis results

• Insert tracking code for remaining operands

1

Forward Pass
Binary Analysis
• Control flow graph
• Basic blocks
• Memory alloc. info
• Initialize taintability

attributes

• Forward tainting
reachability analysis

• Iteratively mark operands as
taintable or untaintable

• Mark taint state transition

Backward Pass

Tracking Filter
Instrumentation

3 2

5
4

Two-pass Reachability Analysis

Figure 2: Overview of our taint tracking system.

basic block is the maximum length single-entrance and
single-exit code segment. We also mark the operands
that are known to be un-taintable before the program
starts. They include built-in thread identification vari-
ables, non-scalar pointer type kernel parameters, and
other programmer-specified constants.

We perform the backward pass first to analyze each
operand and set its memory reachability attribute. We
name it the mightSpread attribute, indicating whether
there exists an execution path through which the value
of this operand might spread into memory.

We then perform the forward pass to mark all operands
as taintable or un-taintable, and for every un-taintable
operand, we also analyze if its last immediate state is
taintable in one of the potential execution paths. If
an operand is taintable or its last immediate state is
taintable, we set the taintTrack attribute to be true. The
taintTrack attribute indicates that the operand may be
tainted at runtime. For an indirect memory operand, we
also need an attribute on the taintability of the addressing
register. We call this addrTrack attribute.

Finally, in the Tracking Filter component, we scan all
instructions and review the taintability and reachability
attributes each operand. For the destination operand, if
its taintTrack and mightSpread attributes are both true,
we add tracking code for this destination operand, other-
wise we don’t. Similarly, for source operands, if both of
its taintTrack and mightSpread attributes are true, we add
tracking code for the source operand before the tracking
code for the destination operand. For an indirect mem-
ory source operand, if its addrTrack and mightSpread at-
tributes are both true, we add taint tracking code for the
source operand addressing register.

We describe the detailed algorithms for forward and
backward passes below.

Forward Taint Reachability Analysis The input is a
control flow graph and a set of basic blocks for the GPU
program. The output is the taintTrack property value for
every operand in every instruction. We show the forward

212 2017 USENIX Annual Technical Conference USENIX Association

forward_prep(block n, regTaintState & m)
for (each instruction i in execution order in basic block n)
 for (each source operand s in i)
 if (s.type == reg && m[s.id]) s.taintTrack = true;
 if (s.type == mem) s.taintTrack = true;
 if (s.type == mem && m[s.addrReg]) s.addrTrack = true;

 if (∃ source operand s in i such that s.taintTrack == true)
 for (each dest operands d in i)
 d.taintTrack = true;
 if (d.type == reg) m[d.id] = true:;

 for (each dest operand d in i)
 if (d.type == mem) d.taintTrack = true;
 if (!d.taintTrack)
 if (m[d.id] && d.mightSpread) d.taintTrack = true;
 if (d.type == reg) m[d.id] = false;

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

forward_pass(program P)
L = all basic blocks of P;
while (worklist L not empty)

i = dequeue(L);
r = i.taintTrackBeg;

 forward_prep(i, r);
for (each successor block j of i)

if (r != j.taintTrackBeg)
 j.taintTrackBeg = j.taintTrackBeg | r;
 enqueue(L, j);

1:
2:
3:
4:
5:
6:
7:
8:
9:
10

Forward Filtering Pass:
Every operand in every instruction will be assigned a
TaintTrack state: this is set to true iff the operand
might be tainted or its taint state might be changed

(a) (b)

P

Q2Q1 Qn……

P.taintTrackBeg =
 forward_prep(Qi, Qi.taintTrackBeg),

 i = 1…n

(c)

the dataflow problem in the forward pass

∪

Figure 3: Forward taint reachability analysis.

pass algorithm in Figure 3(a).
We adopt the fixed-point computation algorithm that

is used in standard dataflow analysis (DFA) framework.
Function forward pass in Figure 3(a) scans the basic
blocks one by one, sets the taintTrack attribute for ev-
ery operand, and updates the taintTrackBeg attribute for
every basic block. Our forward analysis pass checks if
one basic block’s taintability updates affect another ba-
sic block’s taintability results, and if so, adds the affected
basic block to the worklist. Initially, all basic blocks are
added to the list. The analysis pass finishes only when
all basic block’s taintability results do not change.

A DFA problem is formulated using (a set of) dataflow
equation(s). We describe the dataflow equation as fol-
lows. The taintTrackBeg attribute describes the taint
tracking state of every register at the beginning of a ba-
sic block, which is a bit array. Every bit in the bit array
corresponds to one physical register. If a register’s taint-
Track attribute is true at the beginning of the basic block
of interest, this bit is set to 1, otherwise 0. Assume a
basic block P and it has n predecessor basic blocks Qi,
i = 1...n, the dataflow relation is

P.taintTrackBeg = ∪
forward prep(Qi,Qi.taintTrackBeg).

The forward prep function in Figure 3(b) updates the
taintability state for all instructions in a basic block based
on the taintability state at the beginning of the basic
block. It scans the first instruction to the last instruction.

Given an instruction, the forward prep function
checks its source operands first (lines 3−6 in Fig-
ure 3(b)). If a source operand is register and the taint-
Track attribute is true, this source operand needs to be
tracked. If a source operand is of memory type, it has
to be tracked. Note that if the address register of an in-
direct memory operand is taintable, we need to track the
register as well—setting addrTrack attribute at line 6 in
Figure 3(b).

Next, the forward prep function checks every destina-
tion operand. If any source operand needs to be tracked
based on the above analysis, destination operand needs
to be tracked as well. In the meantime, we update

the register tracking state for the corresponding destina-
tion operand (line 10 in Figure 3(b)). If the destination
operand is of memory type, it needs to be tracked. If the
destination operand is un-taintable (lines 13-15 in Figure
3), and its prior tracking state is taintable, and the desti-
nation operand might spread to memory, the destination
operand needs to be tracked as well. Further we update
the register tracking state for the corresponding destina-
tion operand.

 block 3:
R0 = R1 + R2;
R1 = 0x5000;
R2 = [R1];
R3 = R0 + 0x1;
BRA block5;

taintTrack(R0, R1, R2) = {true, true, false};
taintTrack(R1) = true;
taintTrack(R2, R1) = {true, false};
taintTrack(R3, R0) = {true, true};

[1,1,0,0];
[1,0,0,0];
[1,0,1,0];
[1,0,1,1];

regTaintState taintTrackcode

We use the above example to illustrate the for-
ward prep step for updating the register tracking state.
Let the initial regTaintState be [0, 1, 0, 0], meaning that
only register R1 is found to be taintable on entry to this
basic block. Since the first instruction has R1 as a source
and R0 as a destination, we set the operand’s taintTrack
flag and regTaintState[0] to true.

Since the second instruction writes an immediate value
to R1, but since regTaintState[1] was previously true, we
have to set the operand’s taintTrack flag to true, if its re-
sult can spread to memory. This instruction potentially
changes the taint value of R1 at runtime from true to
false, so if it can reach memory, then we need to instru-
ment it, or else we will suffer from over-tainting as a re-
sult of incorrectly treating the data as still being tainted.
We flip regTaintState[1] to false since at compile-time
and at the second instruction, register R1 is untaintable.

The next instruction loads from memory into R2,
so we set the operands’ taintTrack flags and reg-
TaintState[2] to true, because memory is a possible taint
source. The final instruction before the branch carries
potential taint from R0 to R3; since regTaintState[0]
is true, regTaintState[3] is set to true along with the
operand’s taintTrack flag.

USENIX Association 2017 USENIX Annual Technical Conference 213

backward_prep(block n, regSpreadState &m)
 for (each instruction i in reverse order in basic block n)
 for (each destination operand d in i)

if (d.type == mem || (d.type == reg && m[d.id]))
 d.mightSpread = true;
 if (d.type == reg) m[d.id] = false;
 if (d.type == mem) m[d.addr_reg.id] = true;

if (∃ destination operand d in i, d.mightSpread == true)
 for each source operand s in i,
 s.mightSpread = true;
 if (s.type == reg) m[s.id] = true;

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

backward_pass(block n, regReachState m)
L = all basic blocks of P;
while (worklist L not empty)
i = dequeue(L);
s = 0x0;

 for (each successor k of i) s = s | k.mightSpreadBeg;
 backward_prep(i, s);

 if (s != i.mightSpreadBeg)
i.mightSpreadBeg = i.mightSpreadBeg | s;

 for (each predecessor block j of i)
 enqueue(L, j);

1:
2:
3:
4:
5:
6:
7:
8:
9:
11:
12:

Backward Filtering Pass:
Every operand in every instruction will be assigned a
mightSpread state: true means it might spread to
memory, false means not possible to spread to mem

Backward filtering pass called before forward_pass

(a) (b)

P

Q2Q1 Qn……

P.mightSpreadBeg =

 backward_prep(P, Qi.mightSpreadBeg),

the dataflow problem in backward_pass

∪
i = 1…m

(c)

Figure 4: Backward memory reachability analysis.

Backward Memory Reachability Analysis Similar to
the forward pass, the backward pass uses the program as
input. The output is the memory reachability property
of every operand. The backward reachability analysis
also uses a dataflow analysis framework, which solves
the mightSpreadBeg bit array for every individual basic
block, representing the memory reachability state of the
registers at the beginning of basic block. In this bit array,
each bit corresponds to one physical register. A value
of 1 for the bit at index n of basic block b means that
the value of register Rn at the beginning of basic block b
might reach memory.

The relationship between one basic block P and its
successor basic blocks Qi, i = 1..m, where m is the to-
tal number of immediate successor basic blocks, is de-
scribed using the following equation:

P.mightSpreadBeg = backward prep(∪
Qi.mightSpreadBeg).

The initial mightSpreadBeg bit array is set to 0 for
every basic block. Our backward pass keeps updating
the mightSpreadBeg bit arrays until they do not change
any further (Figure 4(a)). In the meantime, the attribute
mightSpread is updated for every operand, as described
in Figure 4(b).

The backward prep function calculates mightSpread-
Beg for every individual basic block. In Figure 4(b), we
scan the instructions in reverse order in a basic block.
First, we check the destination operand, if it is register
type and the register’s memory reachability state is true,
the destination operand’s mightSpread attribute is set to
true. In the meantime, we update the register’s memory
reachability state for the destination register to false since
the value to spread into memory is defined at this point
and for any instruction that happens before this instruc-
tion, they don’t see the same value as defined here. If it is
memory type, the mightSpread attribute is set to true and
the address register’s reachability state is set to true (line
7 in Figure 4(b)). Next, we check the source operands.
If any destination operand can spread into memory, then
all source operands’ mightSpread property is set to true
(line 10). Correspondingly, we will set the register reach-

ability state to true (line 11).

block4:
 R0 = R1 + R2;
 R1 = 0x6000;
 [R1] = R2;
 R3 = R0 + 0x1;
 BRA block6;

regSpreadState is initaially [0, 1, 0, 1].

regSpreadState = [1, 1, 0, 0].
regSpreadState = [1, 1, 1, 0].
regSpreadState = [1, 0, 1, 0].
regSpreadState = [0, 1, 1, 0].

We use the above example to illustrate the process for
updating the mightSpreadBeg bit arrays in the backward
pass. The backward pass is mechanically similar to the
forward pass, aside from the direction in which instruc-
tions are processed. In this example, we assume that
registers R1 and R3 have been determined to spread to
memory in later blocks, hence the initial regSpreadState
value of [0, 1, 0, 1]. We skip over the branch instruction
since it has no operands except for a jump offset.

The last instruction has data flow into R3 from R0, and
regSpreadState[3] is true, so we mark the R0 operand’s
mightSpread flag as true and set regSpreadState[0] to
true. We also flip regSpreadState[3] to false since this
instruction is overwriting R3.

The instruction before the last stores register R2 to
memory, so we simply mark the R2 operand’s might-
Spread flag as true and set regSpreadState[2] to true.

The third instruction counting from the last puts an
immediate value into R1, so we set regSpreadState[1]
to false. Finally, the fourth instruction counting from
the last has data flow into R0 from R1 and R2, and
regSpreadState[0] is true, so we mark both source
operands’ mightSpread as true, set regSpreadState[1]
and regSpreadState[2] to true, and set regSpreadState[0]
to false since R0 has been overwritten.

3.3 Register Taint Map in Registers
A GPU contains a much larger register file than CPU
does—e.g., every streaming multi-processor has 64K
registers on most NVIDIA GPUs. Registers are natu-
rally accessed frequently and maintaining their taint sta-
tuses require frequent reads and writes from/to their taint
map locations. At the same time, the large GPU register

214 2017 USENIX Annual Technical Conference USENIX Association

file presents the opportunity to maintain a portion of the
taint map in registers. These facts motivate us to place
the register taint map in registers.

We use multiple 32-bit general purpose registers to
store the taint map, in which one bit corresponds to
one register that is tracked. Using register-stored taint
map increases the number of registers used per-thread,
and might decrease occupancy, determined as the num-
ber of active threads running at the same time. Fortu-
nately in many GPU programs, not all the register file
is needed [8, 20] nor the maximum occupancy is neces-
sary [10] for the best program performance. Therefore
the overall taint tracking cost is significantly reduced by
our use of register-stored taint map, as demonstrated later
in evaluation.

4 Tainting-Enabled Data Protection

Taint tracking results can be used to help protect sensi-
tive data and prevent information leaking on GPUs. We
describe two major use cases of taint tracking analysis
and present our prototype implementation of tainting-
enabled data protection.

4.1 Sensitive Data Removal
Lee et al. [18] and Pietro et al. [25] have recently demon-
strated that information leaking from one program to an-
other may occur in GPU local memory between GPU
kernel executions, and in GPU global memory between
program runs. Our taint tracking results may help a pro-
gram understand the propagation of certain sensitive in-
formation and clear all taints before relevant points of
vulnerability (e.g., clearing local memory taints at the
end of each kernel and clearing global memory taints at
the end of program run).

We make a prototype implementation of this use case.
For registers, we let every thread clear its own tainted
registers. It is possible that some threads exit earlier
than others. However since register taint map is thread-
private, we can insert the clearing code right before every
EXIT point and thus early-exiting threads can also clear
their tainted registers early. For local memory, since it is
thread-private, we treat it the same way as registers. Note
that registers and local memory cannot be cleared by pro-
grammers themselves (unlike shared memory and global
memory) and thus a trustworthy binary instrumentation
tool is necessary to prevent sensitive data from leaving
taints on GPUs.

For shared memory, since shared memory is visible
to all threads in the same basic block, we need to make
sure the sensitive shared memory data is cleared after all
threads in the same thread block finish their work. There-
fore, our design is to create a control flow reconvergence
point for all threads since different threads might take

different execution paths. We then insert a thread block
level barrier at the reconvergence point before clearing
the tainted shared memory data.

Pietro et al. [25] proposed a register-spilling based at-
tack, which makes use of compiler to force spilling the
registers so that the encryption key (or reversibly trans-
formed encryption key) in the AES encryption module
in the SSLShader program can be moved from registers
to local memory. Then a second running application can
steal the leaked information in local memory. Our taint
clearing approach prevents such attacks by clearing the
registers, local memory, and shared memory right before
every thread in the GPU application completes.

Experimental results in Section 5 will show that the
data clearing cost is low—worst-case slowdown of 13%
and in most cases no more than 5% slowdown.

4.2 GPU Malware Countermeasure
GPU taint analysis identifies where and when sensitive
data is sent from GPU device to CPU or other net-
work devices. This is especially important for integrated
CPU-GPU whole system taint tracking. A dynamic taint
tracking system that only monitors data dependences
during CPU execution may miss the influence propa-
gation of untrusted inputs or execution results through
GPU computation. For example, GPU malware Keylog-
ger [17] and Jellyfish [15] exploited direct memory ac-
cess (DMA) at mapped CPU memory to snoop the CPU
system activities and steal host information. GPU may
obtain the leaked CPU information, process it, and send
it through a network or other output device while evading
countermeasures that only monitor CPU executions.

Our GPU data protection system can not only clear
sensitive data, but also capture possible attempts of steal-
ing and emitting sensitive information. We prevent this
type of attacks by dynamically monitoring the data trans-
fer between CPU and GPU. If the GPU-mapped CPU
memory contains sensitive information (i.e., keystroke
buffer in the Keylogger attack [17]), the mapped data
region is marked as taint sources. We track the depen-
dency propagation of tainted data in GPU executions.
Further we statically instrument memory transfer APIs
so that before any data is sent from GPU through cud-
aMemcpy APIs in CUDA or clEnqueueReadBuffer APIs
in OpenCL, the memory address range is checked. If the
transmitted data falls within the sensitive tainted mem-
ory range, we either alert the system that tainted data
is transmitted, or mark the corresponding CPU destina-
tion memory region (if data is transferred back to CPU)
as tainted. Since all communication between GPU and
other devices rely on explicit memory transfer API, we
can check and protect information flow by instrumenting
these memory transfer APIs.

Our taint tracking and data protection system helps

USENIX Association 2017 USENIX Annual Technical Conference 215

protect applications that utilize both CPU and GPU, if
combined with CPU taint tracking. Our work ensures full
system taint tracking that is essential to whole system se-
curity. We are not aware of any other work that provides
the same degree of protection. Besides the Keylogger
case, other potential whole-system tracking examples in-
clude a web site that relies on taint tracking to prevent un-
trusted user inputs with malicious database queries (e.g.,
through SQL injections) or invoking dangerous system
calls (e.g., through buffer overflow attacks).

Finally, when GPU tainting is securely applied to un-
trusted programs, it can also identify malicious programs
that attempt to scan uninitialized data which may have
been left by previous kernel and program runs from other
users. We have not implemented this type of data protec-
tion. However, our tool can be readily extended to help
detect uninitialized memory region containing sensitive
data left by prior GPU program execution and clear / zero
them if appropriate.

5 Evaluation

We perform evaluation on a machine configured with
an NVIDIA GTX 745. This is a “Maxwell” generation
GPU with compute capability 5.0. Since NVIDIA’s com-
piler and binary ISA are closed-source, we modify the
GPU binaries using tools inspired by the asfermi [12]
and MaxAs [9] projects, allowing for binary instructions
be directly inserted into the executable.

5.1 Benchmarks
Our evaluation employs a variety of GPU kernels in deep
learning, image processing, and data encryption. First,
Caffe [16] is a deep learning framework in which a user
writes a “prototxt” file describing the input and layers
of the deep learning network (e.g., convolutional lay-
ers, inner-product layers, etc.), which can be fed into the
Caffe executable to create, train, and test the network.
Newer versions of Caffe allow various layers to be exe-
cuted on the GPU via CUDA. A common use of Caffe
is image classification. We use three Caffe kernels in
our evaluation: im2col, ReLUForward, and MaxPool-
Forward. These three kernels consume the majority of
the execution time for image classification.

We additionally use kernel functions from the CUDA
SDK [23], the Rodinia benchmark suite [2], and
SSLShader [13]. From the CUDA SDK we include
BlackScholes, a program for financial analysis, and
FDTD3d, a 3D Finite Difference Time Domain solver.
As a numerical analysis program, FDTD3d is unlikely to
have sensitive data to protect, but serves as an additional
data point for testing our performance. From Rodinia,
we include Needleman-Wunsch, a bioinformatics bench-
mark used for DNA sequencing. From SSLShader, we

include an AES encryption program.

5.2 Taint Analysis & Optimizations
We evaluate the effectiveness of the two performance en-
hancing techniques in Section 3—taint reachability filter-
ing and taint map in registers.

Since we modify the executable directly, we measure
the cost of taint analysis in terms of both slowdown and
code size. There are a few factors which exacerbate these
costs. Whenever we insert an instruction to get or set a
location’s taintedness in memory, we first have to calcu-
late its address. Since addresses for global memory are
64-bit on this architecture, but registers and integer oper-
ations are 32-bit, this requires multiple instructions with
immediate dependencies.

Additionally, each thread has access to only one carry
flag, so if it is already in use where we need to get the
taint address, extra instructions are needed to spill it into
a register or to memory. Furthermore, the singular carry
flag makes it difficult to interleave instructions effec-
tively, since they may overwrite each other’s result. As
the GPU is incapable of out-of-order execution within a
thread, the latency for accessing the taint-map is costly.

 0

 10

 20

 30

 40

im
2col

ReLUForward

MaxPoolForward

FDTD3d

BlackScholes

SSLShader

nw

51.8

N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

naive
reg-in-reg

forward-filter
backward-filter

two-pass-filter
fully optimized

(a) Normalized slowdown from instrumentation.

 0

 3

 6

 9

 12

im
2col

ReLUForward

MaxPoolForward

FDTD3d

BlackScholes

SSLShader

nw

N
o
rm

a
liz

e
d
 c

o
d

e
 s

iz
e

naive
reg-in-reg

forward-filter
backward-filter

two-pass-filter
fully optimized

(b) Normalized code size after instrumentation.

Figure 5: Overhead of tainting instrumentation.

Figure 5(a) illustrates the GPU tainting slowdown with
each of our optimizations, compared to native execution.
The ‘naive’ bar shows slowdown without any optimiza-
tions, the ‘reg-in-reg’ bar shows the results of placing
part of the taint map into registers, the ‘forward-filter’
and ‘backward-filter’ bars show the results of each filter
pass, the ‘two-pass-filter’ bar shows results when using

216 2017 USENIX Annual Technical Conference USENIX Association

both filter passes, and the ‘fully optimized’ bar shows re-
sults when using all of these optimizations. Figure 5(b)
shows normalized code sizes (static instruction counts)
for the same cases.

Figure 5 shows that both two-pass filtering and hot
register taint map can reduce the tainting cost signifi-
cantly. For the filter passes, there is a high correlation
between relative slowdown and code size after instru-
mentation. Saving taint mapping into registers does not
shrink as much of the code size as two-pass filtering, but
it still improves the tracking performance significantly.
The tracking cost saving comes more from the reduced
memory latency than from reduced instruction count.

Taint Map in Registers Even on its own, saving part
of the taint map in registers reduces significant time dur-
ing taint analysis. The main alternatives, local memory
and global memory, are both off-chip memories that may
take hundreds of cycles to access. Even the cache to
which such memory is saved is off-chip, because the on-
chip L1-cache is typically only used for read-only data
on newer architectures [24]. Since most GPU programs
have numerous threads running at once, some of this la-
tency is hidden by some threads continuing to execute
while others wait for memory accesses to complete, but
even so, saving register taint information into registers
reduces slowdown compared to naive taint tracking in
our benchmarks by 78% on average.

Filtering The forward pass filtering also saves signif-
icant time, though it has more variance across different
benchmarks. Its effectiveness stems from the properties
of GPU kernels. Most kernels make use of non-taintable,
read-only data such as thread ID and grid size to perform
many calculations. Additionally, function parameters are
read-only in GPU functions, making it impossible for
them to become tainted in most programs. On its own,
the forward pass reduces slowdown in our benchmarks
by an average of 53%.

kernel para- imme- const thread
meter diate mem. block id

im2col 85% 85% 29% 64%
ReLUForward 20% 40% 47% 57%
MaxPoolForward 70% 72% 57% 58%
FDTD3d 17% 17% 11% 12%

Table 1: Percentage of filtered-out instructions for vari-
ous reasons.

We also analyze the reason why we are able to filter
out a significant number of instructions for some appli-
cations in the forward pass. Table 1 shows the percentage
of filtered out instructions under different categories. Pa-
rameter means one or more source registers are from the
(constant-memory) kernel parameters. Immediate means

one or more source operands are immediate numbers.
Const memory means at least one source is from constant
memory. Finally, thread / block id means the influence is
from the identifier of the current thread or thread block.
The identifiers are stored in special registers private to
each thread or constant memory depending on the archi-
tecture, but in either case they are known at static-time.
While it might be surprising that the sum of percentages
due to multiple reasons may exceed 100%, note that an
instruction may be filtered out due to multiple reasons.

We discover that most instructions are filtered out be-
cause of these four categories. The reason is that GPU
programs distribute workload among threads based on
their ids. To get the assigned workload, each thread must
perform a lot of computation using ids, immediate, and
constant memory values (e.g., thread block & grid di-
mensions). The computation results, together with pa-
rameters (e.g., the start address of an array), are used
to fetch assigned data. Then the real computation starts
as well as the taint tracking. For most GPU programs,
the real computation is short with several instructions,
and the preprocessing including address calculation con-
sumes most of the time. That is why we can filter out
most instructions in our forward pass: most instructions
do preparation work and are not related to the potentially
tainted input data. For FDTD3d, the computation is more
complex and fewer instructions are filtered out. It also
explains why FDTD3d does not benefit from two-pass
filtering as much as compared with other benchmarks, as
shown in Figure 5(a).

The backward pass is usually less effective than the
other optimizations. While a lot of the inputs to a ker-
nel function are effectively constants, the only means of
returning anything is through global memory. As such,
we can expect that most operations will produce val-
ues which influence memory. Regardless, the backward
pass does provide some benefit in most cases, and in the
SSLShader benchmark it reduces slowdown compared to
the naive approach by 22%.

Combined Optimizations Compared to the forward
pass, the two-pass filter reduces slowdown by 12% on
average, and compared to the backward pass, it reduces
slowdown by 50%. Full optimization reduces slowdown
by 56% compared to the two-pass filter, and 42% com-
pared to only keeping part of the taint map in registers.
This demonstrates the merit of combining our different
optimization techniques, which together reduce slow-
down by an average of 87%.

With full optimizations, our benchmarks’ kernel func-
tions experience an average normalized runtime of 3.0×
after instrumentation. The FDTD3d benchmark suffers
the worst slowdown at 5.7× runtime, due to frequent use
of shared memory making the filter less effective. The

USENIX Association 2017 USENIX Annual Technical Conference 217

Needleman-Wunsch benchmark, which also has shared
memory usage, is the next slowest with a 3.6× runtime.
Although the SSLShader benchmark also makes use of
shared memory, it only uses shared memory to store
compile-time constants for faster retrieval, allowing us
to filter out all shared memory instructions for less run-
time slowdown of 2.5×.

One special consideration when modifying GPU pro-
grams is occupancy—the number of threads that can be
live at once. A high occupancy means that latency is
less costly, as the GPU can switch to different groups of
threads every cycle. Since our instrumentation results in
additional use of registers, and the register file is evenly
split among all live threads, there is potential for occu-
pancy to be decreased, hurting performance more dras-
tically. In such a case, it may be more beneficial not to
store any part of the taint map into registers. However, in
practice, we use few enough additional registers that re-
ducing occupancy is unlikely, since for every 32 registers
in the original program, we only need 1 extra register to
store their taintedness. We find that GPU programs typ-
ically use less than 64 registers per-thread, and so none
of our benchmarks require more than two extra registers
per-thread for storing register taintedness.

5.3 Memory Protection
We next evaluate the incorporation of memory protection
into our dynamic analysis framework. As discussed in
Section 4, the GPU does not clear memory before deal-
location. This includes all types of memory, both on-chip
and off-chip. [25] demonstrates that data left behind even
in local memory and shared memory can be stolen, such
as the encryption key and plaintext in the SSLShader
benchmark. We have found that this data can also be
stolen directly from registers by preparing a kernel func-
tion with the same thread block size and occupancy as the
victim kernel function—thereby ensuring the register file
will be partitioned in the same, predictable manner—and
then manually coding the eavesdropping kernel’s binary
to read the desired registers.

Programmers can manually erase global memory be-
fore program exit, but registers and local memory are al-
located by the compiler and cannot be as easily cleared.
Sensitive data in registers, local memory, and also shared
memory must be cleared before the kernel function exits,
or else a malicious kernel function may be invoked and
acquire these resources for itself. We leverage our in-
strumentation framework to clear sensitive data in these
regions, via additional modification to the binary code.
This can be used to prevent attacks such as the one in
[25], which stole encryption key data through such re-
sources. The results are summarized in Table 2.

Since registers and local memory are thread-private,
they can be safely cleared by each thread prior to exit.

GPU kernel Memory Slowdown
im2col N/A 0.26%
ReLUForward N/A 0.33%
MaxPoolForward N/A 0.59%
FDTD3d Shared 5.10%
BlackScholes N/A 0.40%
SSLShader Local 0.41%
needle Shared 13.05%

Table 2: Slowdown from memory erasure during kernel
execution, measured as a fraction of the original kernel
time. ”Memory” column indicates which memory types
need to be cleared (besides registers).

We insert instructions to clear this data before the EXIT
instruction, using the results of our forward-filter pass to
avoid unnecessary work. But shared memory is shared
by every thread in a thread block, and therefore may not
be safe to erase until all of its threads finish execution.
Before the EXIT instruction we insert a synchroniza-
tion barrier, which causes threads to halt until all other
threads in the block reach the same point, and then add
a loop which has every thread zero out a separate por-
tion of shared memory. In benchmarks with less regular
control flow, where threads exit at different points in the
code, we can instead have shared memory cleared by a
subset of its threads.

We find that the cost to clear tainted registers is triv-
ial, adding only a fraction of a percent to runtime. Each
register takes only one cycle of amortized time to erase
for every 32 threads, and the GPU is likely able to over-
lap most of these cycles with memory stalls from other
threads. None of our benchmarks use local memory by
default, since it is usually used for register spilling. In
order to evaluate the slowdown of clearing local mem-
ory, we recompile SSLShader, which uses 40 registers,
to instead use 20 registers. Clearing local memory and
registers in this benchmark adds 0.41% time overhead.

Shared memory is slower to clear. In FDTD3d, clear-
ing taints in shared memory adds 5.10% runtime com-
pared to the original kernel function, and in Needleman-
Wunsch it adds 13.05%. The increased slowdown com-
pared to clearing local memory likely stems from the use
of a loop, due to the GPU’s inability to perform specula-
tive and out-of-order execution, forcing a thread to wait
until each shared memory location is cleared until it can
zero the next one. Local memory is simpler to handle,
with every thread accessing the same logical addresses
despite using different physical locations, allowing for
the local memory clearing loop to be fully unrolled.

Using the taint information to erase only sensitive data
can help significantly, compared to naively clearing these
memories fully. For example, in the SSLShader bench-

218 2017 USENIX Annual Technical Conference USENIX Association

mark the tainted registers and local memory are cleared
in 47 mSecs, but this benchmark makes use of shared
memory which is never tainted. If its shared memory ar-
rays are erased, in addition to clearing the small amount
of registers and local memory in their entirety, then the
overhead would jump to 407 mSecs.

6 Related Work

Dynamic taint analysis [3, 4, 6, 11, 22, 26, 29, 30] tracks
data (and sometimes control) dependencies of informa-
tion as a program or system runs. Its purpose is to iden-
tify the influence of taint sources on data storage loca-
tions (memory, registers, etc.) during execution. Taint
tracking is useful for understanding data flows in com-
plex systems, detecting security attacks, protecting sen-
sitive data, and analyzing software bugs. Its implemen-
tation usually involves static code transformation, dy-
namic instrumentation, or instruction emulation using
virtual machines to extend the program to maintain taint-
ing metadata. While existing dynamic tainting systems
track CPU execution, this paper presents the first design
and implementation of a GPU taint tracking system.

A large body of previous work presented techniques
to improve the performance of CPU taint tracking.
LIFT [26] checks whether unsafe data are involved be-
fore a code region is executed, and if not, no taint track-
ing code is executed for that code region to reduce over-
head. Minemu [1] proposes a novel memory layout to
reduce the number of taint tracking instructions. It also
uses SSE registers for taint tracking to reduce perfor-
mance overhead. TaintEraser [30] makes use of function
summary to reduce the performance overhead of taint
tracking. It summarizes taint propagation at the function
level so that instruction level taint tracking is reduced.
TaintDroid [6] is a taint analysis tool proposed for An-
droid systems. By leveraging Androids virtualized exe-
cution environment and coarse-grained taint propagation
tracking, it can achieve nearly real time analysis with
low performance overhead. Jee et al. [14] proposed to
separate taint analysis code from the original program,
and dynamic and static analysis was applied on the taint
analysis code to optimize its performance. In this paper,
we present new performance optimizations by exploiting
unique GPU characteristics.

Security vulnerabilities on GPUs have been recog-
nized recently. Dunn et al. [5] showed that sensitive
data can be leaked into graphics device driver buffers.
They proposed encryption to protect data in transit over
the device driver but their approach does not protect
data in GPU memory. Lee et al. [18] uncovered sev-
eral vulnerabilities of leaking sensitive data in GPU
memory—leaking global memory data after a program
context finishes and releases memory without clearing;

leaking local memory data across kernel switches on a
CU. They did not present any solution to address these
vulnerabilities. More recently, Pietro et al. [25] pro-
posed memory zeroing to prevent information leaking in
GPU. However, memory zeroing alone provides limited
protection—it cannot track information flow in memory;
nor can it counter GPU malware such as Keylogger [17]
and Jellyfish [15]. Furthermore, GPU tainting is comple-
mentary to memory zeroing—tainting identifies a subset
of sensitive memory for zeroing to reduce the costs.

GPU information flow analysis has been performed in
the past. Leung et al. [19] and Li et al. [21] employed
static taint analysis to reduce the overhead of GPU pro-
gram analysis and verification. Static analysis requires
memory aliasing analysis of memory accesses that are
inherently imprecise. While they are suitable for testing
and debugging purposes [19,21], security data flow anal-
ysis in this paper requires more precise dynamic track-
ing. Farooqui et al. [7] proposed static dependency anal-
ysis between thread index and control conditions to iden-
tify possible thread divergence in GPU executions (the
result of which helps determine whether symbolic execu-
tion can be performed on given GPU basic blocks). Their
static dependency analysis is narrowly targeted and it is
unclear whether it applies to general taint tracking.

7 Conclusion

Recent discoveries of information leaking through GPU
memory and GPU-resident malware call for systematic
data protection in GPUs. This paper presents the first
design and implementation of a dynamic taint tracking
system for GPU programs. We exploit unique character-
istics of GPU programs and architecture to optimize taint
tracking performance. Specifically, we recognize that a
large portion of instructions on GPU runtime parameters
and constants can be safely eliminated from taint track-
ing to reduce tainting costs. We also utilize the large
GPU register file for fast maintenance of the taint map
for registers. These optimizations result in 5 to 20 times
tainting speed improvement for a range of image pro-
cessing, data encryption, and deep learning applications.

Acknowledgement

We thank Adam Bates for his help during the prepara-
tion of the final version of the paper, and the anonymous
reviewers for their insightful comments. This work is
supported by NSF Grant NSF-CCF-1421505, NSF-CCF-
1628401, and the Google Faculty Award. Any opinions,
findings, conclusions, or recommendations expressed in
this material are those of the authors and do not neces-
sarily reflect the views of our sponsors.

USENIX Association 2017 USENIX Annual Technical Conference 219

References
[1] BOSMAN, E., SLOWINSKA, A., AND BOS, H. Minemu: The

world’s fastest taint tracker. In International Workshop on Recent
Advances in Intrusion Detection (2011), Springer, pp. 1–20.

[2] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER,
J. W., LEE, S.-H., AND SKADRON, K. Rodinia: A benchmark
suite for heterogeneous computing. In IEEE Int’l Symp. on Work-
load Characterization (IISWC) (2009), pp. 44–54.

[3] CHOW, J., PFAFF, B., GARFINKEL, T., CHRISTOPHER, K.,
AND ROSENBLUM, M. Understanding data lifetime via whole
system simulation. In Proc. of the 13th USENIX Security Symp.
(2004), pp. 321–336.

[4] CLAUSE, J., LI, W., AND ORSO, A. Dytan: A generic dynamic
taint analysis framework. In Proc. of the 2007 Int’l Symp. on
Software Testing and Analysis (London, United Kingdom, 2007),
pp. 196–206.

[5] DUNN, A. M., LEE, M. Z., JANA, S., KIM, S., SILBERSTEIN,
M., XU, Y., SHMATIKOV, V., AND WITCHEL, E. Eternal sun-
shine of the spotless machine: Protecting privacy with ephemeral
channels. In Proc. of the 10th USENIX Symp. on Operating Sys-
tems Design and Implementation (OSDI) (Hollywood, CA, Oct.
2012), pp. 61–75.

[6] ENCK, W., GILBERT, P., HAN, S., TENDULKAR, V., CHUN,
B.-G., COX, L. P., JUNG, J., MCDANIEL, P., AND SHETH,
A. N. Taintdroid: An information-flow tracking system for real-
time privacy monitoring on smartphones. ACM Trans. Comput.
Syst. 32, 2 (June 2014), 5:1–5:29.

[7] FAROOQUI, N., SCHWAN, K., AND YALAMANCHILI, S. Effi-
cient instrumentation of GPGPU applications using information
flow analysis and symbolic execution. In Proc. of Workshop on
General Purpose Processing Using GPUs (Salt Lake City, UT,
Mar. 2014), GPGPU-7, pp. 19:19–19:27.

[8] GEBHART, M., KECKLER, S. W., KHAILANY, B., KRASHIN-
SKY, R., AND DALLY, W. J. Unifying primary cache, scratch,
and register file memories in a throughput processor. In Proc.
of the 45th Annual IEEE/ACM Int’l Symp. on Microarchitecture
(Vancouver, B.C., CANADA, Dec. 2012), MICRO-45, pp. 96–
106.

[9] GRAY, S. Maxas: Assembler for nvidia maxwell architecture.
github.com/NervanaSystems/maxas, 2014.

[10] HAYES, A. B., AND ZHANG, E. Z. Unified on-chip memory
allocation for simt architecture. In Proc. of the 28th ACM Int’l
Conf. on Supercomputing (Munich, Germany, 2014), ICS’14,
pp. 293–302.

[11] HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A., AND
HAND, S. Practical taint-based protection using demand emula-
tion. In Proc. of the First EuroSys Conf. (Leuven, Belgium, Apr.
2006), pp. 29–41.

[12] HOU, Y., LAI, J., AND MIKUSHIN, D. Asfermi: An assem-
bler for the nvidia fermi instruction set. code.google.com/p/
asfermi/, 2011.

[13] JANG, K., HAN, S., HAN, S., MOON, S. B., AND PARK, K.
SSLShader: Cheap SSL acceleration with commodity processors.
In Proc. of the 8th USENIX Conf. on Networked Systems Design
and Implementation (NSDI) (Boston, MA, Mar. 2011), pp. 1–14.

[14] JEE, K., PORTOKALIDIS, G., KEMERLIS, V. P., GHOSH, S.,
AUGUST, D. I., AND KEROMYTIS, A. D. A general ap-
proach for efficiently accelerating software-based dynamic data
flow tracking on commodity hardware. In Proc. of the 19th An-
nual Network & Distributed System Security Symp. (NDSS) (San
Diego, CA, Feb. 2012).

[15] GPU rootkit PoC by team Jellyfish. github.com/x0r1/

jellyfish.

[16] JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG,
J., GIRSHICK, R., GUADARRAMA, S., AND DARRELL, T.
Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014).

[17] LADAKIS, E., KOROMILAS, L., VASILIADIS, G., POLY-
CHRONAKIS, M., AND IOANNIDIS, S. You can type, but you
cant hide: A stealthy GPU-based keylogger. In Proc. of the
6th European Workshop on Systems Security (EuroSec) (Prague,
Czech Republic, Apr. 2013).

[18] LEE, S., KIM, Y., KIM, J., AND KIM, J. Stealing webpages
rendered on your browser by exploiting GPU vulnerabilities. In
Proc. of the 35th IEEE Symp. on Security and Privacy (San Jose,
CA, May 2014), pp. 19–33.

[19] LEUNG, A., GUPTA, M., AGARWAL, Y., GUPTA, R., JHALA,
R., AND LERNER, S. Verifying GPU kernels by test amplifica-
tion. In Proc. of the 33rd ACM Conf. on Programming Language
Design and Implementation (PLDI) (Beijing, China, June 2012),
pp. 383–394.

[20] LI, C., YANG, Y., LIN, Z., AND ZHOU, H. Automatic data
placement into GPU on-chip memory resources. In proc. of the
13th Int’l Symp. on Code Generation and Optimization (CGO)
(Feb. 2015), pp. 23–33.

[21] LI, P., LI, G., AND GOPALAKRISHNAN, G. Practical sym-
bolic race checking of GPU programs. In Proc. of SC14: The
Int’l Conf. for High Performance Computing, Networking, Stor-
age and Analysis (New Orleans, LA, Nov. 2014).

[22] NEWSOME, J., AND SONG, D. X. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In Proc. of the 12th Annual Network
& Distributed System Security Symp. (NDSS) (San Diego, CA,
2005).

[23] NVIDIA. GPU computing sdk. developer.nvidia.com/

gpu-computing-sdk.

[24] NVIDIA. Maxwell tuning guide. docs.nvidia.com/cuda/

maxwell-tuning-guide/, 2014.

[25] PIETRO, R. D., LOMBARDI, F., AND VILLANI, A. CUDA
leaks: A detailed hack for CUDA and a (partial) fix. ACM Trans.
on Embedded Computing Systems (TECS) 15, 1 (Feb. 2016).

[26] QIN, F., WANG, C., LI, Z., SEOP KIM, H., ZHOU, Y., AND
WU, Y. LIFT: A low-overhead practical information flow track-
ing system for detecting security attacks. In 39th Int’l Symp. on
Microarchitecture (2006), pp. 135–148.

[27] TANG, Y., AMES, P., BHAMIDIPATI, S., BIJLANI, A., GEAM-
BASU, R., AND SARDA, N. CleanOS: Limiting mobile data ex-
posure with idle eviction. In Proc. of the 10th USENIX Symp.
on Operating Systems Design and Implementation (OSDI) (Hol-
lywood, CA, Oct. 2012), pp. 77–91.

[28] VASILIADIS, G., ATHANASOPOULOS, E., POLYCHRONAKIS,
M., AND IOANNIDIS, S. PixelVault: Using GPUs for secur-
ing cryptographic operations. In Proc. of the 21st ACM Conf. on
Computer and Communications Security (CCS) (Scottsdale, Ari-
zona, USA, Nov. 2014), pp. 1131–1142.

[29] XU, W., BHATKAR, S., AND SEKAR, R. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of at-
tacks. In Proc. of the 15th USENIX Security Symp. (Vancouver,
B.C., Canada, 2006).

[30] ZHU, D. Y., JUNG, J., SONG, D., KOHNO, T., AND WETHER-
ALL, D. TaintEraser: Protecting sensitive data leaks using
application-level taint tracking. SIGOPS Oper. Syst. Rev. 45, 1
(Feb. 2011), 142–154.

220 2017 USENIX Annual Technical Conference USENIX Association

