
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

SPIN: Seamless Operating System Integration of
Peer-to-Peer DMA Between SSDs and GPUs

Shai Bergman and Tanya Brokhman, Technion; Tzachi Cohen, unaffiliated;
Mark Silberstein, Technion

https://www.usenix.org/conference/atc17/technical-sessions/presentation/bergman

SPIN: Seamless Operating System Integration of Peer-to-Peer DMA
Between SSDs and GPUs

Shai Bergman
Technion

Tanya Brokhman
Technion

Tzachi Cohen Mark Silberstein
Technion

Abstract

Recent GPUs enable Peer-to-Peer Direct Memory Ac-
cess (P2P) from fast peripheral devices like NVMe SSDs
to exclude the CPU from the data path between them
for efficiency. Unfortunately, using P2P to access files
is challenging because of the subtleties of low-level non-
standard interfaces, which bypass the OS file I/O layers
and may hurt system performance.

SPIN integrates P2P into the standard OS file I/O stack,
dynamically activating P2P where appropriate, transpar-
ently to the user. It combines P2P with page cache
accesses, re-enables read-ahead for sequential reads,
all while maintaining standard POSIX FS consistency,
portability across GPUs and SSDs, and compatibility
with virtual block devices such as software RAID.

We evaluate SPIN on NVIDIA and AMD GPUs us-
ing standard file I/O benchmarks, application traces and
end-to-end experiments. SPIN achieves significant per-
formance speedups across a wide range of workloads, ex-
ceeding P2P throughput by up to an order of magnitude.
It also boosts the performance of an aerial imagery ren-
dering application by 2.6× by dynamically adapting to
its input-dependent file access pattern, and enables 3.3×
higher throughput for a GPU-accelerated log server.

1 Introduction

GPU-accelerated applications often require fast data
transfers between the GPU and storage devices. They
combine high I/O demands with heavy computations
amenable to GPU acceleration. Thus, application perfor-
mance is bounded by the throughput of transfers between
the disk and the GPU. As high-speed NVMe SSDs with
multi-GB/s I/O rates are becoming commodity, we ex-
pect an increasing number of I/O-intensive applications
to benefit from GPU acceleration. In fact, recent AMD
Solid State GPUs (SSG) [1] target such I/O intensive
workloads by hosting NVMe SSDs on a GPU card.

In order to realize the potential of high speed I/O de-
vices in GPU workloads, all recent discrete GPUs enable
peer-to-peer direct memory access (P2P) to GPU mem-
ory from PCIe-attached peripherals [2, 3]. P2P eliminates
redundant copies in CPU memory when transferring data
between the devices. Without P2P, copying file contents
into a GPU buffer requires reading it first into an interme-
diate CPU buffer, which is then transferred to the GPU.
P2P allows direct transfers into GPU memory, improving
performance and power efficiency, as has been shown in
several prior works [4–8].

Unfortunately, P2P poses significant programming
challenges. First, the usage of P2P requires intimate
knowledge of low-level hardware constraints. For exam-
ple, P2P cannot access files at misaligned file offsets [9],
and may be slow or unusable across devices in different
NUMA nodes [10].

More crucially, P2P actually hurts system performance
for a range of popular file access patterns. Figure 1
shows one such example. For short sequential reads P2P
is dramatically slower than CPU-mediated I/O. It per-
forms faster only for reads larger than 512KB. In this
scenario, CPU-mediated I/O reaps the benefits of the OS
read-ahead mechanism, which P2P bypasses.

Finally, the use of P2P in hybrid CPU-GPU producer-
consumer workloads is prone to subtle consistency bugs.
Consider, for example, a log processing application like
fail2Ban [11], accelerated by leveraging GPUs. Using
P2P to read recently updated files might result in an in-
consistent read if the contents have not yet reached the
disk. Furthermore, because P2P is not integrated with the
page cache, users would not benefit from the extensive
OS efforts to cache file contents.

We conclude that P2P between SSDs and GPUs is too
low-level a mechanism to be exposed directly to devel-
opers. Existing frameworks [4–8] provide non-standard,
custom APIs for performing P2P, but rely on the pro-
grammer to work around its limitations and to choose
the best-performing transfer mechanism for a given ap-

USENIX Association 2017 USENIX Annual Technical Conference 167

plication scenario. Instead, the OS should hide the sub-
tleties of direct access to storage, exploit existing file
I/O optimization mechanisms like read-ahead and page
cache, while dynamically and transparently steering the
data path to P2P.

SPIN is a system that achieves these goals by integrat-
ing P2P into the file I/O layer in the OS. The programmer
uses standard pread and pwrite calls to transfer the
file contents to and from the GPU memory, while SPIN
seamlessly activates P2P when necessary. Unlike previ-
ous works on P2P [4–8] which target GPU-only work-
loads with large sequential reads, SPIN addresses a broad
range of application scenarios with diverse file access
patterns and cooperative CPU-GPU processing.

SPIN addresses three key challenges: integration of
P2P with the page cache, read-ahead for GPU reads, and
invocation of P2P via a direct disk I/O interface.

Combining page cache and P2P. If a GPU read re-
quest can be partially served from the CPU page cache,
naively reading all the cached data from memory and the
rest via P2P might be slower by up to 16× vs. serving
the whole request via P2P. We construct a greedy heuris-
tic that solves the underlying scheduling problem for ev-
ery access, and produces the interleaving schedule that
achieves about 98% of the optimal performance (§4.3.1).

GPU read-ahead. Our read-ahead mechanism uses
CPU page cache pages to store the contents of prefetched
data for GPU reads. However, SPIN prevents page cache
pollution by maintaining a separate GPU read-ahead
eviction policy that restricts the space used for prefetched
contents (§4.3.2).

Direct disk I/O for P2P. Using direct disk I/O inter-
face to invoke P2P SSD-GPU transfers is advantageous
because of its tight integration with the file I/O stack, in-
cluding page cache consistency handling and file offset-
to-logical block address mapping. However, direct I/O
calls cannot be used with GPU resident pages. We devise
a lightweight address tunneling mechanism to overcome
this problem (§5.1).

We implement and systematically evaluate SPIN in
Linux by running standard file system benchmarks, ap-
plication traces and full applications. We use NVIDIA
K40 and AMD R9 Fury GPUs with two Intel P3700
SSDs, both separately and in a software RAID. SPIN
tracks or exceeds the performance of the best transfer
mechanism for the respective access pattern, with pro-
nounced benefits over P2P for sequential accesses and ac-
cesses to cached files. For example, it achieves 10.1GB/s
when reading a file from the page cache – 3.8× higher
than 2.65 GB/s of P2P in the same configuration (within
5% of the maximum SSD bandwidth). For partially
cached files, SPIN is faster than either CPU-mediated I/O
or P2P in isolation, e.g., by 2× and 20% respectively for
50% cache hits.

SPIN is compatible with virtual block devices such as
software RAID, in contrast to the published P2P imple-
mentations. SPIN achieves up to 5.2GB/s of file stream-
ing performance from two SSDs in RAID-0 managed by
Linux software RAID [12] – the fastest P2P result re-
ported to date, to the best of our knowledge. For com-
parison, AMD SSG [1] GPUs with the SSD drives on
a GPU card [13] reportedly achieve 4GB/s and require
custom API and special-purpose hardware.

In real application scenarios, we evaluate a GPU-
accelerated log server, an aerial imagery viewer [14], and
an image collage creator [15]. SPIN achieves signifi-
cant speedups for all applications, e.g., 3.3× for the log
server. A highly optimized implementation of the collage
creator is improved by 29% while requiring modification
of only 10 LOC.

Our main contributions are as follows:
• Analysis of programmability and performance limita-

tions of P2P.
• Integration of P2P into the OS file I/O stack, including

standard file I/O API, page cache with a transfer in-
terleaving scheduler, read-ahead and enabling P2P via
direct I/O.

• Thorough evaluation on synthetic and real workloads
for both NVIDIA and AMD GPUs, showing significant
performance benefits of SPIN over alternatives.

2 Background

This section provides a brief overview of the system ar-
chitecture we target in our work.
System architecture. We consider a system where the
CPU, discrete GPUs, and NVMe SSD are connected via
Peripheral Component Interconnect Express (PCIe) bus.
The PCIe switch enables fast peer-to-peer direct memory
access (P2P) between the GPU and the SSD. P2P allows
the SSD to transfer data directly to/from GPU memory,
bypassing the CPU.
Mapping GPU memory into process address space.
GPUs expose a portion of GPU memory on the PCIe bus
(device’s BAR) accessible to the CPU. To allow access
to this memory from a user mode application NVIDIA’s
gdrcopy and AMD’s OpenCL extensions provide the
tools to map it into the process address space.
Direct disk I/O. Direct disk I/O (O DIRECT) allows file
system operations to bypass kernel caches and interact
directly with the storage device.

3 Motivation

Prior works [4–8] show that P2P between SSDs and
GPUs substantially boosts system performance for popu-
lar GPU benchmarks. These applications exhibit stream-

168 2017 USENIX Annual Technical Conference USENIX Association

����

����

����

����

����

����

����

��

�	

�
�

�
�

���

���

��

�	

�

���	

����

��

�
��

�
�
�
�
�
�
�

��������	

�����

������

��������	
���

����� ������

Figure 1: The speedup of CPU-mediated I/O over P2P
for sequential reads.

ing access patterns, sequentially reading files in large
chunks. Our measurements in this section, however,
show that P2P is actually slower than CPU-mediated I/O
for access patterns and application scenarios that have not
been considered previously. We then highlight the key
challenges that P2P poses to programmers, motivating its
integration into the OS file I/O stack.

3.1 P2P inefficiencies

Short sequential reads. We compare the performance
of P2P and CPU-mediated I/O for reading file contents
into NVIDIA GPU (AMD GPUs are similar). We run
the standard TIOtest [16] benchmark only modifying it
to transfer data to GPU buffers. The CPU-mediated I/O
version issues pread() into a CPU buffer followed by
cudaMemcpy() to transfer the buffer to the GPU. For
P2P we use our own implementation described in detail
in Section 5.1. For the hardware setup see Section 6.

Figure 1 shows the relative throughput of sequential
accesses to a 100MB file. P2P is more than an order of
magnitude slower that CPU-mediated I/O for very short
reads, and about 3× slower for larger 32KB reads. This
is a common access pattern, found, e.g., in grep utility.
P2P attains speedups only for reads of 512KB and above.

This performance gap is due to the read-ahead mecha-
nism which transparently optimizes CPU-mediated I/O,
and which P2P bypasses entirely. The OS asyn-
chronously prefetches the file into the page cache, over-
lapping the reads from the disk with CPU-GPU data
transfers. The prefetcher gradually increases the size
of the prefetch data requests up to 512KB (by default),
achieving much higher effective bandwidth to SSD than
P2P, which performs short reads.
Complex workloads. P2P is significantly slower than
CPU-mediated I/O if the file contents are cached in the
page cache, as is often the case for complex software
systems with multiple cooperating applications. How-
ever, since the page cache contents change dynamically
depending on the workload, a programmer is left with-
out a single best choice of file transfer mechanism. For
example, consider a central log server that receives logs
from other machines over the network and stores them lo-

cally. A log scanner invoked as another application might
analyze the logs later to detect suspicious events. Using
P2P for such a streaming workload might seem as a vi-
able choice. However, if the scanner is invoked immedi-
ately after the files are updated, the contents might still
be in the page cache, thus using P2P would reduce sys-
tem throughput, as we also show in our experiments in
Section 6.

3.2 P2P programming challenges
P2P is a low-level mechanism, exposed directly to the
programmer. Besides the performance issues discussed
earlier, it introduces a number of challenges to program-
mers.
Non-standard API. There is no standard OS API for ac-
cessing files via P2P. All the existing frameworks devi-
ate from the standard file API, e.g., send()/recv()
streaming-like calls in Gullfoss [5] and NVMMU’s
move() [4]. Custom APIs require programmers to ex-
plicitly select the file transfer mechanism, a choice that
is not trivial in many cases, as we explain earlier.
Data inconsistency. Updates written to a file via regular
FS API will be stored in the page cache first, and might
remain invisible to the P2P unless the file contents are
written back to the disk.
Unsupported misaligned accesses. P2P requires both
the source and destination to be aligned according to
device-specific rules (p.91, [9]). Specifically, an SSD
data offset and destination address must be aligned on
the minimum transfer size supported by the device (512
bytes on Intel SSDs), otherwise the I/O request fails.

In summary, as GPUs find their ways to accelerat-
ing complex data-processing systems, such as Apache
Spark [17], the simplicity, portability, and transparent op-
timizations offered by OS file I/O interfaces make such
interfaces essential for building efficient and maintain-
able GPU-accelerated systems. These observations guide
us in our goal to integrate P2P mechanism into the OS file
system layer as we discuss next.

4 Design

Design goals. SPIN aims to integrate P2P into the OS
file I/O layer. It uses P2P as a low-level mechanism for
optimizing file I/O where applicable. We focus on the
following design goals:
• CPU-GPU workloads: efficiently handle complex

scenarios with opportunistic data reuse, where appli-
cations may share files, e.g., in producer-consumer in-
teraction. SPIN should provide standard POSIX file
consistency guarantees regardless of the transfer mech-
anism used.

USENIX Association 2017 USENIX Annual Technical Conference 169

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
PD

M
A

tr
an

sf
er

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

Figure 2: SPIN high-level design and control flow of
pread (), as explained in Section 4.2

• Various access patterns: enable high performance
across random/sequential access patterns and an unre-
stricted range of request sizes, from as little as a few
bytes.
• Standard File API: support standard I/O calls like
pwrite () and pread () for portability.
• Compatibility: be compatible with virtual block de-

vices such as LVM and software RAIDs, as well as with
different GPUs and SSDs.

4.1 Design considerations

Page cache is the cornerstone of file I/O in CPU systems,
but its integration with P2P raises a number of questions.
Page cache in GPU memory? One way to combine
caching with P2P is to partition the page cache between
the CPU and GPU memories, and use each to cache
file accesses from the respective device. In fact, GPUfs
demonstrated the benefits of hosting a page cache for
GPU tasks in GPU memory [15, 18]. Unfortunately,
modern GPUs still lack critical features to enable OS-
controlled GPU-resident page cache. In particular, they
do not support anonymous memory that does not belong
to any CPU process, neither do they provide the means
for the OS to manage GPU memory mappings. As a
result, GPUfs, for example, maintains a per-application
page cache, which disappears when an application termi-
nates. Workarounds, such as running a daemon process
in user space that owns the GPU page cache, are insecure
because they expose the whole page cache to all running
GPU tasks. We conclude that maintaining page cache in
GPU memory is currently not practical.
Reusing file contents from the CPU page cache. P2P
transfers bypass the CPU page cache. But if the content

is already in the cache, using P2P would be slower than
reading the data from the page cache. However, if only
part of the request can be served from the cache, the best
way to combine P2P and cache accesses depends on the
distribution of the pages in the cache. For example, if
only every second page in a 8MB-large read request is
cached, reading from the page cache is 16× slower than
a single P2P of the whole requested buffer. We address
the problem of optimal interleaving in Section 4.3.1.
Read-ahead integration. A read-ahead mechanism is
essential for fast sequential accesses (see § 3), but the
best way to integrate it with P2P is not obvious. Tech-
nically, the prefetcher never runs because P2P bypasses
the heuristic which identifies a sequential access pat-
tern and triggers the read-ahead mechanism. However
if we re-enable the prefetcher, where will it store the
prefetched contents? One of the benefits of P2P is that
it does not pollute the CPU page cache with the data
used only by the GPU. But without the page cache on
the GPU, the read-ahead mechanism would have to store
the prefetched data in the CPU page cache, losing this
advantage. We discuss the prefetcher in Section 4.3.2.
Portability across GPU software. GPU vendors expose
different APIs for GPU management and data transfers to
and from GPU memory, none of which are available for
use from kernel space. As a result, providing a generic
OS service which is agnostic to the GPU type and its
software stack is challenging.

4.2 Overview
Figure 2 shows the main design components. SPIN is
positioned on top of the Virtual File System (VFS) layer.
We illustrate the interaction of the SPIN components on
the example of pread (). The user allocates the desti-
nation buffer in GPU memory and passes the pointer to
the buffer to pread. To make GPU memory buffers ac-
cessible to I/O calls, the user maps the buffers into the
CPU process address space using existing GPU vendor-
specific tools (§ 5). We note that using CPU-mapped
GPU buffers in I/O calls is possible without SPIN, how-
ever P2P is not invoked.

The SPIN core is implemented in P-router. P-router
inspects every I/O request (1 in the Figure) and detects
the requests that operate on GPU memory buffers and
are amenable to P2P. P-router invokes the P-readahead
mechanism, which identifies sequential access pattern
and prefetches file contents into a GPU read-ahead par-
tition (GPU RA in the Figure) of the CPU page cache, as
described in § 4.3.2). It also checks with P-cache whether
the request can be served from the page cache, and cre-
ates an I/O schedule to interleave P2P and page cache ac-
cesses, as discussed in § 4.3.1. Finally, it generates VFS
I/O requests that are served by a combination of the page

170 2017 USENIX Annual Technical Conference USENIX Association

cache 2.b and P2P 2.a . To invoke P2P via direct disk I/O
interface, P-router employs an address tunneling mecha-
nism 3.a described in § 5.1.

4.3 Integration with page cache
We deal with three aspects: interleaving page cache reads
with P2P, integration with read-ahead, and data consis-
tency.

4.3.1 Combining page cache with P2P

Optimal scheduling of page cache transfers. P-cache
retrieves the CPU page cache residence map for a given
read access. If the entire requested region is cached, the
request is served from the page cache. However, if the
cache contains only part of the requested data, the system
combines both P2P and page cache transfers, by breaking
the original request into sub-requests each served via its
own method.

Finding the best interleaving of P2P and page cache
accesses is a challenge. On the one hand, reading from
the page cache is faster than reading from the SSD. On
the other hand, interleaving P2P and page cache reads at
a fine granularity results in poor performance, because
short I/O requests to the SSD are less efficient than larger
ones, and because of the P2P invocation overhead. Thus,
SPIN needs to determine the best interleaving schedule
for each I/O request.

The following example illustrates the problem. Con-
sider a request of 20KB (5 pages) with its second, and
fourth pages in the page cache. Then, there are 3 possi-
ble schedules: three P2P transfers of 4KB and two 4KB
transfers from page cache, a single P2P of 20KB of the
whole range, and a combination of P2P and page cache
transfers for the second and the fourth page, resulting in
two P2P transfers of 4KB and 12KB. The choice of the
best schedule depends on the actual P2P throughput for
each transfer size, as well as on the throughput of the
page cache reads. The scheduling decision for different
pages are not independent, however, because SSD trans-
fer time is a non-linear function of the request size for
smaller reads [19].

To summarize, the scheduling problem at hand is as
follows: for a given I/O request, find all the constituent
continuous ranges of pages which can be served from the
page cache. For every such a range, decide whether to
transfer it from the page cache or via P2P, effectively
merging it with the two flanking segments into a single
P2P transfer, such that the total transfer time of the whole
request is minimized.
Greedy heuristic. This problem can be solved exactly
in polynomial time via dynamic programming, however
this is too slow since the solution has to be found for

every I/O request. Instead, we simplify the problem to
apply a simple greedy heuristic as follows.

We start by assuming that the P2P transfer time,
Tp2p(s), is a piece-wise linear function of the transfer
size s of the form given in Eq 1. Intuitively, for requests
smaller than Scuto f f , the device bandwidth is not satu-
rated, thus the transfer time is constant and capped by the
device’s invocation overhead Cp2p. For requests larger
than Scuto f f , the device operates at maximum bandwidth
BWp2p. These assumptions are consistent with the archi-
tectural model of modern SSDs [19]. Page cache trans-
fers, in turn, always achieve maximum bandwidth thus
the transfer time for size s is Tpc(s) =

s
BWpc

.

Tp2p(s) =

Cp2p if s < Scuto f f

Cp2p +
s−Scuto f f

BWp2p
if s≥ Scuto f f

(1)

The greedy heuristic works as follows. For each three
consecutive data ranges a,b,c, where b is in the page
cache, if |a|+ |b| < Scuto f f , always choose P2P for b
(where |x| is the size of x). Otherwise, choose P2P for b
if Tp2p(|a|+ |b|+ |c|) < Tp2p(|a|)+Tpc(|b|)+Tp2p(|c|).
In other words, P2P for b is preferable if the benefits of
reading b from the page cache are smaller than the over-
head of transferring c in a separate P2P transaction.
Parameter fitting. We experimentally measure the
transfer times for different request sizes for Intel P3700
SSD, and fit the parameters of the transfer time function
in Eq 1 using regression. The function fits very well,
with the coefficient of determination of over 0.99. We
find Scuto f f = 512KB and Cp2p = 584µsec, which cor-
responds to the time for transferring 249 pages from the
page cache. Thus, for two consecutive data ranges b,c
where b is in the page cache and c is not, b will be al-
ways transferred via P2P if |b|< 249 pages.
Evaluation. We build a simulator which quickly com-
putes the transfer cost of an I/O request, given transfer
schedule, using the transfer times measured on real hard-
ware. We validate the simulator experimentally on 5,000
I/O requests, and find that its error is 1.6% on average.

We use the simulator to evaluate the quality of the
greedy heuristic, by comparing its results with the op-
timal transfer schedules obtained by the exact algorithm.
We evaluate the schedules on 200,000 random vectors,
each representing an 8MB data transfer having different
page cache residency patterns. We find that the transfer
time of the greedy schedules is within 98.9% of the opti-
mal schedule on average.
Generalization to other SSDs. We believe that our
heuristic reflects the general SSD performance trends and
can be used with other SSDs. Specifically, architectural
properties of SSDs, such as multi-channel/multi-way, en-
able a high degree of parallelism for relatively large re-

USENIX Association 2017 USENIX Annual Technical Conference 171

quests. These requests are often striped across domains
and exploit the internal parallelism SSDs offer [19, 20].
Therefore, our model which predicts higher performance
for larger requests is consistent with these properties. We
provide a calibration tool to perform the measurements
and regression to automatically adjust Scuto f f and Cp2p.

4.3.2 Read-ahead for GPU accesses

The OS read-ahead is not activated for accesses via
P2P, therefore we introduce P-readahead. It stores the
prefetched data in a special partition in the CPU page
cache as we explain next.
GPU read-ahead cache. To avoid cache pollution by
the contents prefetched as part of the read-ahead, we
add a lightweight management mechanism, GPU read-
ahead cache, RA cache. A page is assigned to the RA
cache when it is first used by P-readahead to store the
prefetched data. The pages in the RA cache belong to the
OS page cache, and are subject to OS page cache man-
agement policies. In addition, the RA cache forces evic-
tion of its pages once its total size exceeds a predefined
threshold. If a page is later accessed by a CPU program,
the page is removed from the RA cache, but remains in
the OS page cache. As a result, the pages used exclu-
sively to store the data prefetched for GPU I/O do not
pollute the OS page cache.
Read-ahead mechanism. P-readahead watches for se-
quential access pattern by monitoring the last accessed
offset in each file, similarly to the CPU read-ahead
heuristic. For sequential accesses, the data is read into the
GPU RA cache via CPU VFS calls, effectively engaging
the original OS read-ahead mechanism redirected to store
data in the GPU RA page cache. As a result, P-readahead
respects the standard fadvise calls, and does not re-
quire new management interfaces. We also modify the
default behavior of P-readahead in response to fadvise
policies, e.g., disabling it for POSIX FADV RANDOM.

For sequential requests that cannot be served from the
page cache and exceed a certain threshold, P-router deac-
tivates P-readahead and switches to P2P. The threshold
equals to the maximum size of the OS-configured read-
ahead window (512KB by default), which determines the
maximum size of SSD requests generated by the read-
ahead. Using P2P for requests exceeding the threshold
results in larger SSD requests and higher throughput.

4.3.3 Data consistency

Combining file accesses from the page cache with direct
accesses to a storage device raises an obvious data con-
sistency problem, since the data in the page cache might
not be synchronized with the content on the SSD. There-
fore, SPIN detects dirty pages in the range of the P2P

transfer, and explicitly performs a write back from the
page cache to the SSD.

5 Implementation

Our implementation leverages existing kernel mecha-
nisms to achieve SPIN’s design goals. We encapsulate
all new functionality in a kernel module SPINDRV, a
slightly modified generic NVMe driver, and a lightweight
user space library LIBSPIN. Thus, SPIN requires no
modifications to the kernel and is readily deployable on
existing systems.
libSPIN. is a shim that interposes on standard file I/O
calls. The library is loaded via an LD PRELOAD envi-
ronment variable. Applications that do not load LIBSPIN
may share files with those that do.
Interaction with GPUs. SPIN leverages exist-
ing tools for mapping GPU memory into the CPU
address space. In particular, we use OpenCL’s
CL MEM USE PERSISTENT MEM AMD extension
from AMD, and gdrcopy module from NVIDIA.
Using CPU-mapped GPU memory for I/O enables porta-
bility across GPU vendors, interaction with GPUs from
kernel space, and independence from GPU software
interfaces.
SPINdrv. The driver implements the SPIN design in-
cluding the page cache and read-ahead as described in
§ 4. In addition, it introduces a new address tunneling
mechanism to enable P2P via direct disk I/O which we
discuss next.

5.1 P2P via direct disk I/O
Our implementation of P2P takes advantage of the direct
disk I/O file interface, adding a special mechanism to en-
able its use with GPU memory buffers.

Direct disk I/O and P2P pursue the same goals: they al-
low direct access to storage devices while bypassing the
OS page cache. Using direct disk I/O mechanisms for
P2P has a number of advantages. First, the file I/O stack
performs the standard file offset-to-LBA mapping which
is compatible with virtual block layers, e.g., software
RAID. Second, the mechanism already implements vari-
ous optimizations, e.g. uses multiple submission queues
and merges/splits block I/O requests. Last, it already
handles the data consistency by writing back dirty page
cache pages in the range of its I/O request.

Unfortunately, direct disk I/O requires the user buffers
to reside in CPU physical memory, and cannot accommo-
date CPU-mapped GPU buffers. This is because it pins
user buffers in memory to perform DMA to/from the stor-
age device, and fails to pin GPU buffers. This problem
has no easy solution, as we discuss below (§5.2).

172 2017 USENIX Annual Technical Conference USENIX Association

Translation

SPIN
Driver

SPIN LIb

Linux File I/O stack

fd GPU
bufferpread(,)

GPU
buffer

Phony
Buffer

Phony
Buffer

GPU
buffer

NVMe SSD

Figure 3: Address tunneling for direct disk I/O with GPU
buffers.

Address tunneling. To overcome this limitation with-
out major modifications to the Linux kernel, we design a
simple mechanism that we call address tunneling, which
delivers the GPU address through unmodified VFS stack
and block layers down to the generic NVMe driver.

Figure 3 explains the basic idea. We allocate a special
user-space phony buffer in the CPU, which is used as an
envelope for the GPU buffer address. The phony buffer
is then passed to a VFS file I/O call, instead of the origi-
nal GPU buffer. Therefore, it successfully undergoes all
the translation and pinning process while passing through
intermediate I/O layers. When the envelope reaches the
generic NVMe driver, the driver retrieves the address of
the GPU buffer and uses this address to perform P2P.
Security of address tunneling. One potential problem
with the tunneling mechanism is that phony buffers are
allocated in the user-space memory (otherwise they can-
not be passed to VFS calls), hence they are accessible to
user-space programs and can be overwritten by an ad-
versary to potentially hold any physical CPU address,
thereby enabling DMA attacks. SPIN, therefore, does
not store the actual GPU addresses in phony buffers. In-
stead, it first creates a temporary pseudo-random token
associated with the current request, and uses the token
as the key to the kernel-space translation table with the
actual GPU addresses.
Implementation details. The phony buffer is a user
space CPU memory buffer allocated once during the pro-
cess invocation when LIBSPIN is loaded. The buffer is
pinned in memory and registered with the SPINDRV. Its
size remains constant (currently 4MB) throughout the ex-
ecution. Since an I/O request must fit in the phony buffer,
the I/O requests larger than 4MB are split into multiple
requests. Each memory page of the phony buffer is used
to store the address of one page in the GPU buffer, since

the block layer may reorder the requests and split them
into smaller chunks.

Multiple threads in the same process may use the same
phony buffer simultaneously in a lockless manner. One
thread consumes only 16 bytes per a GPU address in a 4K
page, therefore a single phony buffer may accommodate
up to 256 concurrent requests from different threads.

The GPU read-ahead cache is implemented as a linked
list that references 512 pages (tunable), located in the OS
page cache. The eviction is policy is LRU. Pages ac-
cessed by a CPU program are simply removed from the
list, and are not evicted from the OS page cache itself.
Interaction with generic NVMe driver. The phony
buffer’s pages are marked by setting an unused (for user
mode) arch 1 flag in their page struct. This flag
is used by the driver to differentiate P2P requests from
regular pages and extract the GPU addresses.
Implementation complexity. SPINDRV is implemented
in 700 LOC and LIBSPIN just 30 LOC. We modified 10
LOC in the Linux generic NVMe driver to detect phony
buffers and extract respective GPU addresses.

5.2 Limitations
Supporting pwrite(). Mapping GPU memory into
the process’s address space is a recent capability that is
not yet well supported in current systems. Specifically,
CPU reads from that memory mapping are about two-
three orders of magnitude slower than CPU writes [21],
i.e., about 30MB/s and 70MB/s for NVIDIA and AMD
GPUs respectively. Therefore, while reading data from
the page cache into the GPU is fast, writing files from the
GPU into the page cache – which might be beneficial e.g.,
for buffering writes in CPU memory – results in severe
performance degradation. Therefore, we currently con-
figure SPIN to perform writes from GPU memory only
via P2P, while taking care of data consistency.
Changing Linux to natively support GPU buffers. The
address tunneling mechanism sidesteps the problem of
passing GPU buffers to direct disk I/O, but why not
changing the kernel in the first place? Technically, the
problem originates in the use of struct page which is
not available for I/O re-mapped addresses such as GPU
memory buffers. However, this struct is required by the
block layer. Attempts have been made to solve the prob-
lem in a systematic way [22], yet they require touching
over 100 files of kernel code. We therefore choose a more
conservative solution.

6 Evaluation

We evaluate SPIN on two hardware systems (Table 1).
We disable HyperThreading and configure the frequency

USENIX Association 2017 USENIX Annual Technical Conference 173

Nvidia Tesla K40c 2 × Intel Xeon E5-2620v2,
Intel C602 Chipset, 64GB DDR4, 1 NVMe SSD

AMD Radeon R9 Fury Intel Core i7-5930K,
Intel X99 Chipset, 24GB DDR4, 2 NVMe SSDs

Table 1: Evaluation platforms. Both use one or two Intel
P3700 800GB NVMe SSD

ClWrite Regular read into the CPU, followed by a blocking
clEnqueueWriteBuffer / cudaMemcopy call to
the GPU.

ClWrite+D Same as ClWrite but with bypassing the CPU page cache via
O DIRECT flag.

P2P SPIN’s implementation of P2P that bypasses the page cache.
pread+GPU pread into the GPU memory that is mapped to the pro-

cess’s address space. Unlike SPIN, pread ()+GPU always
uses the page cache. Not evaluated in prior works.

Table 2: Transfer mechanisms used for evaluation.

governor to high performance to reduce overall system
noise. Both machines run Ubuntu 15.04 with and un-
tainted Linux kernel 3.19.0-47 and ext4 on SSD. We use
CUDA 7.5 for NVIDIA and OpenCL 2.0 for AMD.
Methodology. We run each experiment 11 times, omit
the first result as a warmup, and report the average of
the last 10 runs. We explicitly flush the contents of the
page cache before each run (unless stated otherwise). We
observe the standard deviation below 1% across all the
experiments and do not report it in the figures.
Alternative transfer methods. We compare SPIN with
several different implementations described in Table 2.
We note that the implementation where pread () is in-
voked with the CPU-mapped GPU buffer (last row) has
not been evaluated in prior works.
Alternative implementations of P2P. Although several
prior works reportedly implement P2P between SSDs and
GPUs [4–8], we found only the early prototype of Project
Donard [8] to be publicly available. However, this pro-
totype is limited and is slower for all request sizes, and
particularly for shorter requests, therefore we do not in-
clude it in the experiments.

6.1 Threaded IO benchmarks

We use TIOtest [16] for our benchmarks. TIOtest is a
standard tool for evaluating file I/O performance in CPU-
only systems. It supports multi-threading (each thread
accesses its own file), sequential/random access patterns
and different I/O request sizes. We modify the original
code 1 to read data into GPU buffers using all the five
evaluated implementations. For SPIN our changes re-
quired modifying 10 LOC for buffer allocation.

1https://wiki.codeaurora.org/xwiki/bin/Linux+
Filesystems/Tiobench

We report the results for the AMD GPU, and discuss
the performance of the NVIDIA GPU in the text.

Random Reads. In this experiment each worker thread
reads 500 blocks at random offsets from a 50GB thread-
private file. Figure 4a shows the results. Note that the
drops in the relative throughput on the graph do not imply
lower absolute throughput, rather they mean slowdown
compared to SPIN in the respective configuration. The
results for a single CPU thread are similar and omitted
due space limitations.

SPIN performance matches the one of P2P, adding
only 1% overhead. For blocks above 1MB the overhead
of additional memory copy in CPU memory gets amor-
tized for all the implementations but ClWrite, because of
its second extra copy in the temporary CPU buffer.

Sequential reads. For sequential reads, each worker
thread in TIOtest reads an entire file of 100MB. Figure 4b
shows that SPIN tracks the best performing method for
the specific block size, switching from page cache to P2P
at 512KB as explained in Section 4.3.2. We observe that
for blocks smaller than 4K SPIN experiences higher rel-
ative overhead of up to 10% because it serves them from
the page cache. The overhead is amortized for larger
reads, however.

Sequential/random writes. For the sequential writes,
each worker thread writes a 100MB file. The pwrite
+GPU mechanism is dramatically slower than P2P, as we
explain in Section 5.2, therefore SPIN always performs
aligned writes via P2P. Random writes perform similarly.
Due to the lack of space, the figure is omitted.

Performance on NVIDIA and AMD GPUs. SPIN
achieves 5-10% higher throughput on AMD R9 GPU
than on NVIDIA K40C GPU, while the overall behav-
ior is similar. We find that cudaMemcopy might be
slower then AMD ClWrite, and the GPU BAR writes for
NVIDIA GPUs are slower for some block sizes. These
results indicate that SPIN works well with GPUs from
different vendors, however the small performance gap we
observe requires further investigation.

Software RAID-0 . We use the standard mdadm Linux
utility to create a RAID-0 (striping) volume over two
NVMe SSDs. In this configuration, the stored data is split
between two SSDs according to the configured stripe size
(512KB in our configuration), thus performing larger file
accesses in parallel.

Figure 4c shows the relative throughput of random ac-
cesses for which SPIN always uses P2P. RAID-0 outper-
forms a single SSD only for large reads (above 512KB).
This is due to extra overheads of additional processing
in the RAID layer which get amortized for larger blocks.
For large sequential reads, SPIN achieves a throughput
of 5.2GB/s. The higher bandwidth is due to the SSDs
performance characteristics.

174 2017 USENIX Annual Technical Conference USENIX Association

https://wiki.codeaurora.org/xwiki/bin/Linux+Filesystems/Tiobench
https://wiki.codeaurora.org/xwiki/bin/Linux+Filesystems/Tiobench

�

��

��

��

��

���

���

����

��

�	

�
�

��	

���

��	

���

���	

��
�

��

����

��

����

��

����

�
�
��
��
�
�
��
	

�
�

	
�
�
��
�

��������	

�����
 �����
�� ��� �
���������� ����

��������	
���

(a) Random reads, 4 threads

�

��

��

��

��

���

���

����

����

��

�			

���

�

	

���

�	��

����

����

��

��	�

��

�	�	

�

����

�
�
��
��
�
�
��
	

�
�

	
�
�
��
�

��������	

�����
 �����
�� ��� �
�������� ����

��������	
���

(b) Sequential reads, 4 threads

�

��

��

��

��

���

���

����

�	

�

�	�

��

���

��

	��

���

����

��

����

��

�	��

��

����

�
�
��
��
�
�
��
	

�
�

	
�
�
��
�

��������	

�����
 �����
�� ��� �
���������� ����

��������	
���

(c) RAID: Random reads, 4 threads

�

��

��

��

��

���

���

�� ��� ���� �� ��� ���� �� ��� ����

���	 �	�
 ��	� ���� �	�� ���� �
� �
�� �
��

��������� ���������� ����������
�
�
��
��
�
�
��
	

�
�

�
��
�

�������������	
����
��

������� ��������� ��� 	��
��������� ����

��������	
���

(d) Random 512KB reads, in parallel with CPU / I/O workloads

Figure 4: Threaded IO benchmarks for AMD GPUs.

SPIN pread
+ GPU

P2P P2P +
RAID

ClWrite CLWrite+
D+RAID

10.13 10.28 2.65 5.29 5.72 4.69

Table 3: Max read throughput (GB/s). File in page cache.

�

��

��

��

��

���

���

�

�

��

�

��

�

��

��

��

��

	�

��

��

��

��

��

��

��

�

	�

���

��

�
�
��
��
�
�
��
	

�
�

	
�
�
��
�

�������������	
����
��

������� ��������� ������ 	��
������� ����

��������	
���

Figure 5: Random access performance for different page
cache occupancy. Reading blocks of 512B.

Maximum sequential read throughput. We compare
the maximum achievable throughput over different trans-
fer mechanisms. The test performs sequential reads from
4 threads, 8MB per read from a 4GB file, when a file is
prefetched into the page cache. Table 3 shows the re-
sults. SPIN is faster than all the transfer methods that
do not use page cache, and faster than ClWrite that does.
SPIN’s overhead in this scenario is 1.5%.

Effect of the page cache on read throughput. The
goal of this experiment is to show potential performance
gains for producer-consumer workloads which may uti-
lize both the CPU and GPU while they access a shared
file. We prefetch different portions of a 40GB file into
the page cache using vmtouch 2, and run TIOtest for
512B random reads.

Figure 5 shows the relative throughput, highlighting
the differences between transfer methods. Not only does
SPIN track the best alternative, it is faster than the fastest
among them by up to 20%. That is because it combines
both page cache and P2P, dynamically choosing between
them per request depending on the residence in the page
cache (discussed in (§ 4.3.1)). SPIN is slightly slower
on the extremes due to the 5% overhead it introduces
in this scenario. ClWrite results in low performance
due to its constant invocation overhead, whose relative
weight grows when most requests are served from the
page cache, as we also see in Figure 4b.

SPIN performance under CPU and I/O load. We exe-
cute the same experiment as in Figure 5, but now impose
heavy load on all the CPUs or SSD in parallel with the
benchmark. The benchmark performs 512KB random
reads (cutoff size for reading from the page cache), to
show the worst-case scenario for SPIN under CPU load.

2https://hoytech.com/vmtouch/

USENIX Association 2017 USENIX Annual Technical Conference 175

�

��

��

��

��

���

���

��� ��� ���� ��� ����

�	
������������

�	����

��������������

�	����

�
�
��
��
�
�
�	

�
�
�
�

������ �������� ��� ��	�� !�!"�# $�%&

Figure 6: Aerial imagery benchmark throughput relative
to SPIN for different file layouts. Higher is better.

We use stress-ng 3 benchmarking tool. Figure 4d
shows the relative throughput for 0%, 50%, and 100%
file residency in the page cache, with and without CPU
or SSD load. We observe that SPIN retains its perfor-
mance advantages regardless of the system load.

6.2 Application benchmarks

Aerial Imagery Rendering. GPUs are commonly used
for rendering aerial imagery in geographic information
systems (GIS). The datasets used in such systems may
grow to hundreds of GBs. Large rasters are split into tiles
in order to shorten system response time. The rendering
engine reads the tiles from a file depending on the view
point, and stitches them together.

In our evaluation we generate I/O traces via a bench-
marking tool for web-based rendering engines [23].
We use TrueMarble dataset [24] from standard bench-
marks [23], which is a 190GB multi-raster of the Earth,
each raster corresponds to a different image resolution.

The actual file access pattern in this application de-
pends on the underlying file layout. There are two lay-
outs: (1) raster-contiguous layout, where the whole raster
is stored as a 1D vector in the file and (2) tile-contiguous
layout, where each tile is a 1D vector and the raster is
composed of many 1D tiles. The first layout results in
mostly random accesses 2-4KB each, whereas the sec-
ond involves mostly sequential accesses each from 12KB
to 192KB. We emphasize that the rendering applications
must be able to accommodate files with both layouts.

To generate the trace we randomly choose the target
image resolution and the view region, derive the tiles to
render that region and record their respective offsets in
the dataset file. We use tiles of sizes ranging from 64x64
pixels up to 1024x1024 pixels. In every trace we emulate
rendering of 1000 different regions in full HD.

We generate the traces for different input layouts
and compare the throughput of different transfer mech-
anisms. As Figure 6 shows, the choice of the transfer

3https://openbenchmarking.org/test/pts/stress-ng

GPUConfiguration CPU
P2P ClWrite() SPIN

Thput 771 594 (0.8×) 1921 (2.5×) 1950 (2.5×)R-time CPU util 79.5% 3% 11.8% 10.7%
Thput 634 2549 (4×) 1822 (2.9×) 2550 (4×)Offline CPU util 70.3% 8.5% 12.3% 8.5%

Table 4: Log server throughput (in MB/s), CPU utiliza-
tion and speedup over the CPU-only version

mechanism depends on the layout in use. For the native
layout with mostly random access pattern, P2P and SPIN
achieve the highest throughput. However, for tiled layout
the reads are mostly sequential, and SPIN benefits from
the read-ahead achieving up to 2.5× higher throughput
than P2P for 12K reads. SPIN eliminates the need to
manually perform such low level optimizations, reducing
code complexity and development efforts.
GPU-accelerated log server. Log servers, such as
VMWare VRealize [25], are commonly used in dis-
tributed systems for centralized storage and processing
of logs from multiple servers. Log processing usually
involves string and regular expression matching, which
may benefit from acceleration on GPUs [26].

We implement a simple log server which receives log
files over the network, stores them locally in files, and
scans them for suspicious IPs from the list provided by
the user. As is common in log processing systems, e.g.,
Fail2Ban [11], log analysis is performed in a separate
scanner process that reads the specified log file and pro-
cesses it. Such a modular design is convenient because
it enables to easily extend the analysis using several in-
dependent backends. Our implementation of the scanner
offloads the string matching to a GPU.

We measure the maximum system throughput in two
scenarios: (1) real time, in which the scanner is invoked
each time the files get updated (using inotify inter-
face) (2) offline, in which the scanner is invoked on a
specific log file to be processed as a whole. In both con-
figurations, a total of 80GB of data is processed.

We evaluate our GPU implementation with different
I/O mechanisms: (1) traditional pread() followed by
ClWrite() to GPU memory, (2) P2P (3) SPIN. We also
implement a CPU-only version that uses Intel’s Thread-
ing Building Blocks and runs on 6 cores.

Table 4 shows that in the real time scenario SPIN
achieves the highest throughput among all other I/O
methods. Since the system triggers log processing right
after it receives log file updates from the network, the
new contents have not yet been written back to the disk
and reside entirely in the page cache. SPIN, therefore,
reads the data from the page cache, relieving I/O con-
tention on the SSD which do occur in P2P configuration.
In the steady state, the system throughput is limited by
the maximum SSD write throughput, because the net-

176 2017 USENIX Annual Technical Conference USENIX Association

work server keeps writing the updates to storage, eventu-
ally exhausting the page cache space. In the offline sce-
nario the data is not in the page cache, therefore SPIN
switches to use P2P.

In this application, complex interactions between mul-
tiple processes dynamically create file data reuse oppor-
tunities that cannot be known in advance, hence are hard
to leverage without the OS support. SPIN re-enables the
standard OS ability to handle such opportunistic reuse
automatically for file transfers to the GPU.
Image collage. The image collage application [15] cre-
ates an image collage by replacing blocks in the input
image with ”similar” tiny images from a data base (we
use [27]). Pre-processed tiny images are stored in a
file of size 38GB. We use an open-source implementa-
tion that uses GPUfs [18] GPU-side library for accessing
files from GPU kernels. GPUfs uses a dedicated worker
thread running on the CPU to handle the file transfers
into the GPU memory. This application performs mostly
random reads 512B each.

The original version of GPUfs first reads the file con-
tents into the host staging area, and then copies the data
into GPU memory via cudaMemcopy. We remove the
staging area in the host, and allocate the staging area in
the GPU memory, changing in total 30 LOC.

We measure the SPIN speedup over the unmodified
version. For three different input images of 3MB, 12MB
and 48MB SPIN is×1.27±0.02 faster on average thanks
to the use of P2P for short random reads.

7 Related work

System support for P2P. There have been several works
which enable P2P between NVMe SSDs and GPUs, but
SPIN is the first to integrate P2P with the OS file I/O,
dealing with page cache, read-ahead, data consistency,
and compatibility with virtual block devices.

GPUDrive [6] is a system for processing streaming
I/O-intensive GPU workloads based on an all-flash stor-
age array connected to the GPU.

NVMMU [4] introduces a special programming model
and runtime for P2P with GPUs. NVMUU shows that
P2P achieves high performance with standard GPU com-
pute benchmarks modified to read input data from files.
Unlike SPIN, however, it requires a custom interface for
P2P, does not address the page cache integration issues,
and focuses only on GPU-only applications with large se-
quential reads. In fact, it shows that P2P is slow for small
I/O requests but does not address this problem.

Project Donard [8] was among the first to support P2P
via a low level driver interface. Among its many limita-
tions, it runs only with root privileges due to direct access
to NVMe DMA, and suffers from performance issues.

Gullfoss [5] software framework for P2P shares many
conceptual similarities with NVMMU, and hence many
of its limitations. Morpheus [7] enables P2P to GPUs
from SSDs, but does not address the challenges of inte-
grating P2P into standard file I/O, focusing primarily on
low level P2P functionality.

GDRcopy [21] uses CPU-mapped regions of GPU
memory for efficient data transfers to GPUs. SPIN lever-
ages the same functionality.
P2P technologies. Recent GPUs offer support for P2P,
including GPUDirectRDMA [28] from NVIDIA and Di-
rectGMA [3] from AMD. These technologies provide
generic support for direct access to GPU memory from
PCIe devices, but they do not integrate it into higher level
services like file I/O.
System abstractions for GPUs. GPUfs and GPUnet
[10, 18, 29] provide file access and networking directly
to GPU programs. The current work is complementary
as it simplifies the use of P2P for CPU programs.

8 Conclusions

SPIN focuses on the fundamental problem of providing
generic OS abstractions in heterogeneous systems, ex-
tending the traditional I/O mechanisms to systematically
deal with direct I/O into the GPU. We show the impor-
tance of tighter integration of P2P with the file I/O stack,
expose the challenges associated with the use of P2P to-
gether with the page cache and read-ahead, and devise a
practical solution which outperforms the state-of-the-art
in a range of realistic scenarios.

Current hardware trends are toward systems with mul-
tiple accelerators [30, 31], which will dramatically in-
crease system heterogeneity and complicate software de-
velopment. OS support for such increasingly heteroge-
neous systems must extend beyond low-level APIs, and
provide the convenience of high level OS abstractions to
achieve their performance potential. SPIN is a step in this
direction.

SPIN is available at https://github.com/acsl-
technion/spin

Acknowledgements

Mark Silberstein is supported by the Israel Science Foun-
dation (grant No. 1138/14), and the Israeli Ministry of
Economics via HiPer consortium.

References

[1] “AMD Radeon Pro SSG Set to Transform
Workstation PC Architecture, and to Shat-
ter Real-Time Visual Computing Barriers.”

USENIX Association 2017 USENIX Annual Technical Conference 177

https://github.com/acsl-technion/spin
https://github.com/acsl-technion/spin

http://www.amd.com/en-us/press-
releases/Pages/amd-radeon-pro-
2016jul25.aspx, 2016.

[2] “GPUDirect RDMA.” http://docs.nvidia.
com/cuda/gpudirect-rdma/index.
html, 2015.

[3] “Tech Brief: AMD FireProTM SDI -
Link and AMD DirectGMA Technology.”
https://www.amd.com/Documents/SDI-
tech-brief.pdf.

[4] J. Zhang, D. Donofrio, J. Shalf, M. T. Kandemir,
and M. Jung, “NVMMU: A Non-volatile Memory
Management Unit for Heterogeneous GPU-SSD
Architectures,” in PACT, pp. 13–24, IEEE, 2015.

[5] H.-W. Tseng, Y. Liu, M. Gahagan, J. Li, Y. Jin, and
S. Swanson, “Gullfoss: Accelerating and Simplify-
ing Data Movement Among Heterogeneous Com-
puting and Storage Resources,” Tech. Rep. CS2015-
1015, Department of Computer Science and Engi-
neering, University of California, San Diego tech-
nical report, 2015.

[6] M. Shihab, K. Taht, and M. Jung, “GPUDrive: Re-
considering Storage Accesses for GPU Accelera-
tion,” in Workshop on Architectures and Systems for
Big Data, 2014.

[7] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and
S. Swanson, “Morpheus: creating application ob-
jects efficiently for heterogeneous computing,” in
Computer Architecture (ISCA), 2016 ACM/IEEE
43rd Annual International Symposium on, pp. 53–
65, IEEE, 2016.

[8] “Project Donard.” https://github.com/
sbates130272/donard, 2015.

[9] “NVM Express 1.0e.” http://www.
nvmexpress.org/wp-content/uploads/
NVM-Express-1_0e.pdf, 2013.

[10] S. Kim, S. Huh, X. Z. Yige Hu, A. Wated,
E. Witchel, and M. Silberstein, “GPUnet: Network-
ing Abstractions for GPU Programs,” in OSDI 14,
pp. 6–8, USENIX, 2014.

[11] “Fail2Ban.” www.fail2ban.org/.

[12] “mdadm - manage MD devices aka Linux Soft-
ware RAID.” https://www.kernel.org/
pub/linux/utils/raid/mdadm/.

[13] Anandech, “AMD announces Radeon-Pro SSG.”
http://www.anandtech.com/show/
10518/amd-announces-radeon-pro-
ssg-fiji-with-m2-ssds-onboard, 2016.

[14] “ArcGIS for Desktop.” http://desktop.
arcgis.com/en/arcmap.

[15] S. Shahar, S. Bergman, and M. Silberstein, “Ac-
tivePointers: A Case For Software Translation on
GPUs,” ISCA, IEEE, ACM, 2016.

[16] “Threaded I/O Tester.” https://
sourceforge.net/p/tiobench.

[17] “GPU Support in Apache Spark and GPU/CPU
Mixed Resource Scheduling at Production
Scale.” http://www.spark.tc/gpu-
support-in-spark-and-gpu-cpu-
mixed-resource-scheduling-at-
production-scale/, 2016.

[18] M. Silberstein, B. Ford, I. Keidar, and E. Witchel,
“GPUfs: integrating file systems with GPUs,” in
ASPLOS’13, ACM, 2013.

[19] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choil,
S. Yoon, and J. Cha, “Vssim: Virtual machine based
ssd simulator,” in Mass Storage Systems and Tech-
nologies (MSST), 2013 IEEE 29th Symposium on,
pp. 1–14, IEEE, 2013.

[20] F. Chen, R. Lee, and X. Zhang, “Essential roles
of exploiting internal parallelism of flash memory
based solid state drives in high-speed data process-
ing,” in High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium
on, pp. 266–277, IEEE, 2011.

[21] “A fast GPU memory copy library based on
NVIDIA GPUDirect RDMA technology.” https:
//github.com/NVIDIA/gdrcopy, 2015.

[22] “Evacuate struct page from the block layer.”
https://lwn.net/Articles/636968/,
2015.

[23] “FOSS4G Benchmark.” https://wiki.
osgeo.org/wiki/FOSS4G_Benchmark.

[24] “True Marble.” http://www.
unearthedoutdoors.net/global_data/
true_marble/.

[25] VMWare, “vRealize Log Insight.” http://www.
vmware.com/products/vrealize-log-
insight.html.

[26] G. Vasiliadis, M. Polychronakis, S. Antonatos,
E. P. Markatos, and S. Ioannidis, “Regular ex-
pression matching on graphics hardware for intru-
sion detection,” in International Workshop on Re-
cent Advances in Intrusion Detection, pp. 265–283,
Springer, 2009.

178 2017 USENIX Annual Technical Conference USENIX Association

http://www.amd.com/en-us/press-releases/Pages/amd-radeon-pro-2016jul25.aspx
http://www.amd.com/en-us/press-releases/Pages/amd-radeon-pro-2016jul25.aspx
http://www.amd.com/en-us/press-releases/Pages/amd-radeon-pro-2016jul25.aspx
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://www.amd.com/Documents/SDI-tech-brief.pdf
https://www.amd.com/Documents/SDI-tech-brief.pdf
https://github.com/sbates130272/donard
https://github.com/sbates130272/donard
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf
www.fail2ban.org/
https://www.kernel.org/pub/linux/utils/raid/mdadm/
https://www.kernel.org/pub/linux/utils/raid/mdadm/
http://www.anandtech.com/show/10518/amd-announces-radeon-pro-ssg-fiji-with-m2-ssds-onboard
http://www.anandtech.com/show/10518/amd-announces-radeon-pro-ssg-fiji-with-m2-ssds-onboard
http://www.anandtech.com/show/10518/amd-announces-radeon-pro-ssg-fiji-with-m2-ssds-onboard
http://desktop.arcgis.com/en/arcmap
http://desktop.arcgis.com/en/arcmap
https://sourceforge.net/p/tiobench
https://sourceforge.net/p/tiobench
http://www.spark.tc/gpu-support-in-spark-and-gpu-cpu-mixed-resource-scheduling-at-production-scale/
http://www.spark.tc/gpu-support-in-spark-and-gpu-cpu-mixed-resource-scheduling-at-production-scale/
http://www.spark.tc/gpu-support-in-spark-and-gpu-cpu-mixed-resource-scheduling-at-production-scale/
http://www.spark.tc/gpu-support-in-spark-and-gpu-cpu-mixed-resource-scheduling-at-production-scale/
https://github.com/NVIDIA/gdrcopy
https://github.com/NVIDIA/gdrcopy
https://lwn.net/Articles/636968/
https://wiki.osgeo.org/wiki/FOSS4G_Benchmark
https://wiki.osgeo.org/wiki/FOSS4G_Benchmark
http://www.unearthedoutdoors.net/global_data/true_marble/
http://www.unearthedoutdoors.net/global_data/true_marble/
http://www.unearthedoutdoors.net/global_data/true_marble/
http://www.vmware.com/products/vrealize-log-insight.html
http://www.vmware.com/products/vrealize-log-insight.html
http://www.vmware.com/products/vrealize-log-insight.html

[27] Antonio Torralba, Robert Fergus and William T
Freeman, “80 Million Tiny Images: A Large Data
Set for Nonparametric Object and Scene Recogni-
tion,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 30, no. 11, pp. 1958–
1970, 2008.

[28] “Benchmarking GPUDirect RDMA on Modern
Server Platforms.” https://devblogs.
nvidia.com/parallelforall/
benchmarking-gpudirect-rdma-on-
modern-server-platforms/, 2014.

[29] M. Silberstein, B. Ford, I. Keidar, and E. Witchel,
“GPUfs: Integrating a File System with GPUs,”
TOCS, vol. 32, no. 1, p. 1, 2014.

[30] OpenCAPI. http://opencapi.org/.

[31] Cache Coherent Interconnect for Accelerators
(CCIX). http://www.ccixconsortium.
com/.

USENIX Association 2017 USENIX Annual Technical Conference 179

https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
http://opencapi.org/
http://www.ccixconsortium.com/
http://www.ccixconsortium.com/

