
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Apps with Hardware: Enabling Run-time
Architectural Customization in Smart Phones

Michael Coughlin, Ali Ismail, and Eric Keller, University of Colorado, Boulder

https://www.usenix.org/conference/atc16/technical-sessions/presentation/coughlin

USENIX Association 2016 USENIX Annual Technical Conference 621

Apps with Hardware: Enabling Run-time Architectural Customization in
Smart Phones

Michael Coughlin, Ali Ismail, Eric Keller
University of Colorado, Boulder

Abstract

In this paper we present a novel system which incorpo-
rates programmable hardware (an FPGA) into a smart
phone to enable a vision where apps can include both
software and hardware components, or apps with hard-
ware. We introduce a novel mechanism to enable sharing
the FPGA in a practical manner by leveraging the unique
deployment model of mobile applications - namely that
deployment is via an app store, where we introduce a
new cloud-based compilation. We present our proto-
type smart phone using the Zedboard, which pairs a Xil-
inx Zynq FPGA with an embedded Cortex A9, running
an Android-based system which we extended to pro-
vide run-time system support for dynamically managing
apps with hardware and providing a secure loading sys-
tem. With this prototype, our evaluation demonstrates
the performance gains for an AES encryption module
(representing cryptography), a QAM modulation mod-
ule (representing software-defined radio) of 3x to several
orders of magnitude, with room for improvement and a
hardware-based memory scanner (representing custom
co-processors). We demonstrate the feasibility of our
cloud-based compilation within the context of real app
store statistics. Finally, we present a case study of a com-
plete integration of hardware into an existing application
(the Orbot Tor client).

1 Introduction

In designing new smart phone devices, the vendor must
operate under a number of constraints – form factor,
functionality, cost, energy use, etc. This leads to the ven-
dor making a number of decisions regarding the various
tradeoffs. These decisions, however, can then lead to the
case where the device has both too little (the application
developers/users want more) and too much (the applica-
tion developers/users don’t use what is there). What if
there was a way to put these trade-offs into the hands of

HW SW

Android

FPGA ARM

App
HW SW

App

Figure 1: Smart phone with a processor (ARM) coupled
with programmable hardware (FPGA).

users and application developers?
In this paper, we present our ‘apps with hardware’ vi-

sion (illustrated in Figure 1), design, and implementa-
tion which incorporates programmable hardware, such
as an FPGA (field programmable gate array), into a smart
phone1, and extends a mobile operating system to allow
for application control of the current hardware configura-
tion (e.g., by including the hardware configuration with
their app). The high-level idea is to couple software-like
(re)programmability with hardware-like performance. In
providing programmability, the phone vendor empow-
ers the application developers (and by extension the end
users) with the ability to influence the design decisions.

Developers, for example, would be able to introduce

1We envision this as being commercially available smart phones,
not just in prototyping devices – a vision supported by the commercial
availability of system-on-chip devices which already couple an ARM
processor that is widely used in smart phones (such as the ARM Cortex
A9 processor found in the iPhone 4) with reconfigurable logic [5, 25],
with or more recently the ARM Cortex A53 [26], and further supported
by recent advances by vendors where hardware modules can be de-
signed using a high-level language, such as C++ [23].

1

622 2016 USENIX Annual Technical Conference USENIX Association

(and deploy) new communication technologies, such as
those that work on the emerging dynamic spectrum ac-
cess paradigm [30], where they can perform ‘software’
radio at the needed hardware performance levels and
gain system wide benefits (e.g., from not needing phones
to include many dedicated radio interfaces). Devel-
opers will also be able to introduce new accelerators,
such as for cryptography or other parallel processing
that improve overall performance and efficiency. Fi-
nally, developers will be able to introduce independent
co-processors, which can, for example, provide addi-
tional security [57] capabilities not possible in today’s
smart phones. In general, we introduce programmabil-
ity of the smart phone hardware by creating an architec-
ture centered on an FPGA with an embedded processor
– with which, as we’ve seen with other programmable
technology, such as graphical processor units (GPUs)
and FPGAs in other contexts within the network systems
community, developers will find creative ways to use the
available processing power [52, 59, 45, 41].

Previous research has proposed adding reconfigurabil-
ity to mobile devices, such as [11] [61] [32], but they
have limitations that prevent them from being used to-
day, such as lacking a method to share FPGA hardware,
a distribution system for applications, or integration into
modern operating systems or devices. Therefore, there
are a number of challenges that we need to address to
make our vision possible. First, we need to be able to
share an FPGA between different smart phone applica-
tions – existing FPGA hardware and software are heav-
ily centered on running a single application and not on
idea of temporal or spacial sharing of resources. Second,
we need a way to distribute apps with hardware to smart
phones with compatible hardware – there is no binary
compatibility in FPGAs or operating system which ab-
stracts resources. Finally, we need the ability to manage
the FPGA so that applications only have access to au-
thorized resources – while processors have been adapted
overtime to isolate running tasks, FPGAs have not.

In this paper we present our Cloud RTR system that
addresses these challenges. In doing so, we introduce a
system-level contribution that makes use of cloud tech-
nologies and builds on existing FPGA technology that
together solve a problem that has eluded researchers for
years. Specifically, we make the following contributions:
A slot based solution that allows for practical FPGA
sharing: A central need to be able to allow apps to span
software and the FPGA hardware is to enable the FPGA
to be shared, as apps will be concurrently running. Our
approach is based on Run-time reconfiguration (RTR),
or the ability to change an FPGA’s configuration at run-
time. Specifically, our Cloud RTR system builds on the
idea of “slots” [38] [49] [42], or areas of the FPGA that
can be reconfigured separately and shared between appli-

cations. To make this practical, where previous systems
have failed, we provide a new approach to slot-based re-
configuration using a compilation system that abstracts
away the underlying FPGA requirements. The resulting
platform supports the use of slots at run-time, whereas
previous systems only support slots at design time, and
can share the FPGA between multiple parties, as we dis-
cuss next. Further, we introduce operating system ser-
vices to manage slots at run-time to allow for on demand
access from apps.
An app store based approach that allows for multiple
parties to distribute apps: Without operating system
and binary compatibility, envisioning a system which al-
lows for multiple parties to create apps and have them be
distributed to a wide variety of devices may seem diffi-
cult. We introduce a new app-store system which extends
existing app stores to to allow for both the compilation
and the distribution of apps with hardware. Developers
can upload apps with hardware to an extended app store,
which will interface with the compilation system in order
to generate the required slot configurations. We extend
the app store system further to ensure that these config-
urations are distributed to the correct devices in pack-
aged apps, and we provide corresponding operating sys-
tem support in order to install them.
A security manager that enforces access control to
sensitive resources Our Cloud RTR architecture also
provides a secure loading subsystem that ensures that
only trusted applications have access to sensitive re-
sources. This subsystem interfaces with the slot run-time
management system to only allow for signed app hard-
ware to access these resources. This system also uses
common hardware security technology to ensure that ap-
plications cannot exploit the operating system to override
these security restrictions.

In addition to the above system-level advances which
enable the apps with hardware vision, we make the fol-
lowing contributions which evaluate and demonstrate
their use:
Evaluation of the computational requirements of
Cloud RTR: While our approach of performing some
compilation in the cloud is, to some degree, simplistic,
the fact that it has not been done before does, we feel,
point to its novelty. Importantly, we go beyond simply
proposing to compile in the cloud and extend our work
to fully evaluate the computation requirements of such
an app store to support this using data about the current
app market ecosystem. We show that for compilation
throughput per machine ranges from 51 to 121 apps per
day, which translates to needing 1020 servers to support
an app ecosystem where 1 percent of all apps use the re-
configurable logic for a case where there is 1000 phone
variants.
Demonstration and evaluation of three applications:

2

USENIX Association 2016 USENIX Annual Technical Conference 623

In Section 2, we describe three example categories of ap-
plications that will benefit from an apps with hardware.
For each, we implemented and evaluated a representa-
tive application (Section 6). Our evaluation of an app
which offloads to a hardware based QAM module (a rep-
resentative software-defined radio application) shows a
40x speedup and a hardware based AES module (a repre-
sentative cryptography application) shows a 3x speedup
(including all of the interface between hardware and soft-
ware). Additionally, our evaluation of a simple memory
security scanner (a representative architectural enhance-
ment) that is capable of searching the entire system ad-
dress space only results in 3% overhead for other soft-
ware running. Finally, to understand the considerations
when integrating into existing, complex, applications, we
modified the open source and widely used Orbot [17]
Tor [37] client for Android to include and use a hardware
cryptography module (Section 7).

In the remainder of the paper we will further motivate
the proposal to incorporate an FPGA into a smart phone
(Section 2), describe past FPGA sharing attempts (Sec-
tion 3), and describe our system, including our Cloud
RTR architecture, which includes both the architecture
for our slot compilation and app store extensions (Sec-
tion 4), our runtime management and secure loading ar-
chitecture (Section 5. We then provide an evaluation
(Section 6), describe our case study of the Orbot Tor
client (Section 7), describe other related work (Section
8), and then conclude (Section 9). We are also pro-
viding the code for the entire implementation (compila-
tion, applications, FPGA system, and Android enhance-
ments) in a git repository: https://github.com/nsr-
colorado/cloud-rtr.

2 Motivation (Why an FPGA)

The premise of incorporating an FPGA into a smart
phone lies in the general benefits of an FPGA – that it
provides hardware-level programmability which will en-
able phone manufacturers to defer some decisions about
tradeoffs to the end user and enable developers with the
ability to innovate in the hardware space.

Here we discuss a few examples that help motivate an
FPGA within a smart phone, including a description of a
demonstration application that we implemented for each
of these categories.

2.1 Architecture enhancements
For our first set of motivating examples, we present sev-
eral architectural enhancements that have been proposed
in the research community that each required a hardware
plug-in and were targeted at a server. With our work,
similar benefits could be brought to a smart phone. It is

important to note that FPGAs are not limited to stream-
ing and highly parallel processing (though they do excel
at that). These types of applications can implement secu-
rity functions, which are supported by our secure loading
technology (discussed in Section 5).
CoPilot: CoPilot [57] is a PCI card designed to de-
tect rootkits. As rootkits execute at the highest privilege,
detection mechanisms at the same (or lower) privilege
are presented with a significant challenge. The CoPilot
PCI card is independent of the processor and operating
system and has access to all memory via the PCI bus.
Rootkit detection (or more generally, security applica-
tions) have tremendous potential with the introduction of
an FPGA within a smart phone.
Somniloquy: The Somniloquy [27] work observed
that the energy consumption on servers was impacted
by a number of low-rate type of tasks that prevented the
servers from entering the power saving states. As such,
they proposed a small, low-power processor that could
perform these tasks, and if needed, trigger the main pro-
cessor to exit a low-power state. In the case of a smart
phone with an FPGA, similar types of activity has been
observed in smart phones [31], so a small co-processor
in the FPGA fabric could provide a solution (while also
enabling the main processor to shut off completely). We
leave full exploration of power as future work.

As a demonstration of architectural enhancements, we
have implemented a memory scanner module, as a sim-
plified proxy for a CoPilot-like function, that scans our
device’s system address space.

2.2 Software-defined Radio
A great deal of research has resulted in many innovations
in wireless communications which allow wireless inter-
faces to have better performance or more functionality.
Research papers in this space commonly use FPGA plat-
forms (such as the WARP Board [28, 53]), or devices to
interface to high performance desktop machines (such as
the USRP [22]) in order to meet the needs of the new
innovation. While these papers provided promising re-
search results, there is little opportunity for deployment
– requiring the researchers to commercialize the technol-
ogy, or get adoption from a major chip vendor.

With a smart phone that has an FPGA along with a
more flexible radio front end (e.g., a tunable antenna), de-
velopers of a new communication protocol could simply
create an app, enhancing the impact of the research. This
architecture also has benefits for production systems, as
existing devices could be upgraded to new wireless sys-
tems without requiring replacement, such as upgrading
such a system from 3G to 4G wireless technology.

As a demonstration of an SDR application, we have
included an example implementation of a Carrier Phase

3

624 2016 USENIX Annual Technical Conference USENIX Association

Recovery Loop for a single carrier Quadrature Ampli-
tude Modulation (QAM) demodulator. QAM is a repre-
sentative building block in signal processing applications
including many real-world modulation systems.

2.3 Cryptographic and Parallel Processing

FPGAs have the ability to perform large amounts of pro-
cessing in parallel. This allows them to achieve higher
throughputs and lower latencies.

An exemplary application for FPGA acceleration on a
smart phone is cryptographic processing, as it both faster
in an FPGA and widely used – including the encryption
of internet communication using SSL and communica-
tion protocols such as Tor [37], the accountable inter-
net protocols [29], and Named-data Networking [44] For
example, an FPGA (Altera Stratix V) was shown to be
520 times faster than a general purpose processor (Intel
Xeon E5503) for AES encryption (and 15x speedup over
an AMD Ratheon HD 7970 GPU) [4]. While the exact
numbers will depend on a number of factors, this is illus-
trative of the potential.

Parallel processing goes beyond cryptography. One
recent example used an FPGA based server [10] to im-
plement common functions used in analytics (search,
fuzzy search, and term frequency), and in each case
demonstrated that it would require 100-200 servers run-
ning Spark [65] to match the performance. This example
is really geared towards cloud scale applications, but we
believe this would allow us to perform some analytic pro-
cessing locally (on the phone) without needing to send
private data to some cloud based backend.

As an example of this type of application, we have im-
plemented a 128-bit AES encryption module that can en-
crypt an arbitrary number of 128-bit contiguous regions
of memory. We also incorporated this AES module into
the Orbot Tor client (Section 7).

3 Past Attempts

A central challenge in reaching our vision relates to how
to share the FPGA between applications and the system.
That is, we wish for multiple apps to be able to simul-
taneously use some of the FPGA’s programmable fabric,
while at the same time allowing the operating system to
use some of the programmable fabric as well (e.g., to
connect to some I/O devices).

The core concept required is run-time reconfiguration,
or the ability to dynamically change the FPGA’s configu-
ration (completely or partially) at run-time while it is still
operating. Despite over a decade of research in run-time
reconfiguration [33, 39, 48, 34, 36, 51, 62, 43] there has
yet to be a practical solution which would enable hard-

CPU

Possible
location to
put module

Hardware module

FPGA

Wire
resource
contention
(red)

Figure 2: Example of partial reconfiguration in a running
FPGA configuration.

ware modules from various sources to be loaded onto a
variety of platforms.

3.1 Why is sharing an FPGA difficult?
The main challenge in achieving FPGA sharing is ensur-
ing that the apps’ modules in the FPGA do not conflict
with each other, or with other logic that is present in the
FPGA. FPGAs are difficult to share because a complex
mapping of resources must occur in order to generate a
configuration for an FPGA. This is because application’s
logic must be mapped to physical resources in the FPGA,
and connections must be made between these locations,
just as in any physical circuit.

As an example, consider Figure 2, which illustrates
a single module to be loaded into an FPGA at run-time.
The dotted area indicates one possible location to put that
module. As indicated, however, there will be contention
for resources – i.e., this module cannot co-exist with the
current FPGA configuration. Because of this, the par-
tial reconfiguration mechanism supported by the vendors
(Altera and Xilinx) comes with great restrictions – the
modules can only work with a single design (in our case,
they wouldn’t work across phone architectures), and they
can only be loaded into a single location. These restric-
tions make partial reconfiguration unusable in its current
form to enable apps with hardware.

More general run-time reconfiguration approaches
have been proposed in the research community that fall
into one of two categories, which we describe next. In
general neither of these approaches are practical.

3.2 Soln. 1: Run-time Place and Route
The first approach is to perform place and route at run
time [60] [46] [56] (rather than when it is normally per-
formed – at design time). As background, place and

4

USENIX Association 2016 USENIX Annual Technical Conference 625

route is a computationally expensive task of first map-
ping logic elements from the design (place) and then de-
termining a collection of wire resources to use to connect
the logic elements from the design (route).

This approach enables reconfigurable modules to be
created entirely separate from the FPGA configuration.
They can be loaded into the FPGA by being placed
around existing hardware and connected with free wiring
resources.

This is a general approach and supports our model,
but there are two major problems. First, place and route
can take a long time, depending on both the size of the
reconfigurable module as well as the sparseness of the
current FPGA configuration – i.e., if there are few re-
sources available, it will be a more difficult task to find a
solution. The implication relates to the second problem
– that a solution is not always possible, which means that
the app would fail to load.

3.3 Soln. 2: Slot-based Reconfiguration

The second method that has been proposed also seeks
to support a general approach where the static design
and the reconfigurable modules can be created indepen-
dently. This approach does so by reserving empty and
identical areas in the static design [38] [49] [42]. These
areas, or slots, are analogous to PCI slots on a mother-
board, where any card can be plugged in independent of
the processor. In this case, the ‘cards’ are partial bit-
streams (a binary file used to configure an FPGA). Two
constraints emerge:
Partial bitstreams need to be relocatable – So that a
partial bitstream can be loaded into any slot, each area
needs to be identical. This is not difficult from a logic
standpoint as FPGAs are fairly regular structures. In or-
der for the static and reconfigurable portions to be able to
communicate, however, there need to be wires that cross
the boundaries which, in turn, need to be identical for
each slot. This puts incredible strain on the creation of
the static design, to the point of not being practical (be-
cause place and route becomes very constrained if certain
circuit elements need to use certain physical wires).
Partial bitstreams cannot conflict with the static de-
sign – That is, when loading a partial bistream, it can-
not, for example, use a wire, that the main system design
used (and vice versa). To achieve this, the static design is
highly constrained to reserve areas such that no logic is
used (generally, easy to achieve) and such that no wires
are used (in Figure 2, this would mean that static portion
of the design would not have been allowed the wires that
are in the dotted area). Such constraints are ultimately
possible (through a painstaking process of reverse engi-
neering and over-constraining), but highly constrains the
static portion of the design – forcing wires to be routed

around these areas, causing them to be extra long and
resulting in congested areas.

In short, this is a good abstraction, but not practical.

4 Cloud RTR: A Practical Approach For
Sharing the FPGA

In order to realize the apps with hardware vision, we
need two things. First, we need a mechanism to be able to
share the FPGA resources – i.e., a practical run-time re-
configuration mechanism that overcomes the limitations
of past solutions in terms of usability and deployability.
Second, we need a mechanism to be able to manage the
apps at run-time. Here, we describe our novel solution
for enabling FPGA sharing, and in Section 5 we describe
our system support for run-time management of apps.

4.1 High-level Overview
Central to our design, we adopt the general idea of slots
– that is, reserved areas within the FPGA where modules
can be loaded. As previously mentioned, we believe this
is a good abstraction, but the previous realizations of it
are not practical. The key difference with our approach is
that our slots are less constrained – only logic resources
need to be left free (which is easier), but the wiring re-
sources within these areas can be used by the static de-
sign logic (i.e., the portion of the FPGA configuration
that does not change and provides system functionality
for different phones). Other key differences with our ap-
proach are that the reconfigurable modules can (i) work
with multiple slot sizes, (ii) work with multiple slot sig-
naling interfaces, and (iii) be targeted at various end-
systems.

The key idea to enable this is that by leveraging the
delivery model of mobile apps (i.e., via an app store), we
can effectively merge the modules into various static de-
signs in the cloud, before delivery to the end user. We
call this Cloud RTR (RTR for run-time reconfiguration).
As illustrated in Figure 3, each phone manufacturer and
app developer would submit their design to the Cloud
RTR system, and the Cloud RTR system would perform
a compilation step to enable a general run-time reconfig-
uration mechanism.

In this section we describe the architecture of the
phone in order to support this model (Section 4.2), how
the apps are designed to work within the framework
(Section 4.3), and finally discuss how Cloud RTR per-
forms the compilation (Section 4.4).

4.2 Static (Phone) Design Architecture
The key requirement for the phone’s design lies in the
ability to support interfacing the reconfigurable modules

5

626 2016 USENIX Annual Technical Conference USENIX Association

stored
apps

DeveloperUser device

Phone
Manufacturer

Front End
(app store)

Cloud
Compiler

stored
variantsapp

sw
.bit.bit

.bit.bit

phone2

phone1

Netlist,
app software

app package
(with hw)

Cloud RTR

phone
hw design

Figure 3: Cloud RTR approach to the generation and deployment of apps with hardware

Memory

CPU

Slot

Mem
Controller

access control

DMA

System Bus

Slot

CLB,
DSP,
BRAM

processor
subsystem

programmable fabric

Device
interfaces

(e.g., HDMI, RF)

embedded
devices

(e.g., UART)

Figure 4: Example static FPGA design.

with the rest of the system resources. Illustrated in Fig-
ure 4, and described below, are the main components.
Slots

Slots should have enough of all types of resources to
be useful. Today’s FPGAs can contain (i) configurable
logic blocks (CLBs), which can implement any logic
function of N inputs, (ii) block random access memory
(BRAM), which are small memory elements (e.g., 36 Kb
in the FPGA we use for implementation), and (iii) digital
signal processing (DSP) blocks, which are custom build-
ing blocks geared toward signal processing applications.

Slots will also need to be able to access various sys-
tem resources and expose an interface for communica-
tion with the processor. For this, we expect that all slots
will allow access to (i) a system bus for communica-
tion with the processor, and (ii) a direct memory access
(DMA) controller for access to system memory.
Module-to-Memory Interface

In order to provide performance benefits, the modules
need to be able to directly access CPU-accessible sys-
tem memory. A DMA controller that is accessible by
the hardware modules would allow for modules to access

system memory without involving the processor (provid-
ing the greatest performance and flexibility). To achieve
this, we also need a security module which performs ac-
cess control – that is, one which limits what memory
each hardware module can access and is configured by
the operating system.
Processor-to-Module Interface

The ability to stream from memory will be important,
but the processor also needs to be able to directly inter-
face to each module. This interfacing is achieved through
the use of, for example, a system bus (such as the ARM-
based Advanced eXtensible Interface, or AXI).
Device interfacing and other misc. logic

The rest of the static design will include interfacing to
the various devices that will connect to the FPGA. Some
devices, such as a UART, may have interface logic in-
cluded in the processor sub-system, but the rest, such as
interfacing to a tunable antenna, may go through the pro-
grammable fabric with custom logic to interface with it.
These devices will be connected to the general interface
of the slots, allowing for manufacturers to include cus-
tom peripherals without requiring new slot definitions.

4.3 Reconfigurable (App) Module Archi-
tecture

In the previous slot-based approaches, the reconfigurable
modules are designed for a specific slot design (device,
interface, etc.). In our approach, we abstract away the
ultimate target such that app developers can develop re-
configurable modules that can be loaded onto a variety
of platforms. Of note, the reconfigurable modules in our
approach can (i) work with multiple slot sizes, (ii) work
with multiple slot signaling interfaces, and (iii) be tar-
geted at various end-systems.

Here we describe the design of an app, with the various
components illustrated in Figure 5.

6

USENIX Association 2016 USENIX Annual Technical Conference 627

App Hardware
The first major component is the app hardware. In

order to match the skills of app developers, we focus on
the high-level synthesis (HLS) design flow [23] that has
emerged in recent years which allows developers to use a
high-level language (e.g., C) to describe hardware mod-
ules2. What this means is that the argument that FPGAs
are hard to design for, and therefore not accessible to the
software app developers, is quickly becoming invalid.

The app hardware (in this example) is written as a C++
function, example(). The parameters to the function de-
scribe the interfaces to the rest of the system, such as
char arrays (e.g., var1), which describe memory mapped
registers accessible to the processor or streaming mem-
ory interfaces (e.g., var2, which has the type hls::stream),
that allow for streaming data from memory (when con-
nected to DMA hardware in the static design). This de-
scription is valid C++ code that can be compiled and
tested as software which can simplify hardware testing.

While there will need to be some consideration by de-
velopers, in general developers will not need to be fully
aware of the hardware architecture. For example, the
exact bus signals for communicating with the module
are not directly used, but are instead inferred based on
the types on the function parameters (such as how to
perform data transmission handshakes or send valid sig-
nals). With this, the same module could actually target
various hardware interfaces (e.g., if different handshake
protocols or signals are used, or if different bus widths
are available). Developers do need to consider the size
(resource utilization) of their hardware modules to en-
sure they will fit in a particular slot size. We envision
standard slot sizes will emerge (much like screen sizes),
and in our design flow we allow for modules designed for
one slot size to always be instantiated in a bigger slot.
App Software

The app software that the developer writes will be
mostly the same as current apps (e.g., written in Java for
Android apps). The only difference is the loading of and
interfacing with the hardware module. To load, the app
will submit a request to a system service to load the bit-
stream (e.g., via an intent in Android).

To interface with the module, the app will use the func-
tions in the user-level driver generated by the FPGA ven-
dor’s high-level synthesis tool when synthesizing the de-
sign (the process which generates the FPGA hardware
from the C++ code). This driver is low-level code that
runs within the same process as the application and pro-
vides functions that can be used to interface with the
reconfigurable module. Functionality includes mapping
memory regions (e.g., via mmap()) that both the recon-

2The developer can use a hardware description language, but will
then need to manually provide the interfacing hardware and software,
which are automatically created with high-level synthesis.

Tools

RegisterDMA

Circuit

to mem

JNI

Java// app code
load module
alloc shared mem
call set/get_var1
poll/interrupt
…

// user level driver
set_var1(val)
…

Software code

int example(char[] var1,
hls::stream var2) {

…
}

Hardware code

generated
netlist

Figure 5: Example app design.

figurable module and the app will access. It also provides
functions to access the various registers (the char[] vari-
able) through functions like set var1().

4.4 Cloud Compiler (in the App Store)
The Cloud RTR compiler is responsible for ensuring that
an app’s hardware module(s) can be loaded into a vari-
ety of target devices (smart phones). Rather than work-
ing around the limitations of the vendor tools, we work
within their constraints, resulting in a practical solution.
Recall that the vendor tools have a partial reconfigura-
tion design flow which has the constraints that a module
can only be used for a specific static design and target
FPGA and for a specific location within that static de-
sign. Working within that, the Cloud RTR compiler will
simply use the vendor tools to compile the module for ev-
ery static design variant and for every possible slot within
each variant.

The end result is a data structure stored within the app
store that looks like the following (where a.bit...e.bit are
individual partial bitstreams):

[phone 1:

[slot1:a.bit, slot2:b.bit, slot3:c.bit]]

[phone 2:

[slot1:d.bit, slot2:e.bit]]

When an app is downloaded to a given device, the
Cloud RTR system will repackage the application with
the set of device-specific bitstreams (possible since the
app store has knowledge of a user’s device). In Android,
for example, apps are packaged in an Android Applica-
tion Package (APK), which will now include module bit-
streams as extra resources for apps that use hardware. To
get a rough idea of how this impacts the size of an APK,
for the case study we describe in Section 7, the hardware

7

628 2016 USENIX Annual Technical Conference USENIX Association

module bitstream is 904KB, the Orbot APK of the ver-
sion we modified is 5.5MB (before any added hardware),
and the latest Orbot release is 11MB.

We show that this brute-force approach is quite practi-
cal in Section 6. As such, it provides a general approach
that is deployable and usable today. In addition, we also
envision a large amount of reuse of both static designs
and hardware modules (e.g., by using precompiled li-
braries). Just as SoCs are oftentimes reused between dif-
ferent mobile devices, there is no need to have a distinct
static design for different devices unless a particular de-
vice requires some custom technology.

5 Run-time Management of Apps

With the ability to share the FPGA, as provided by Cloud
RTR, we now discuss how our system manages the apps’
hardware within the Android operating system. This has
two aspects – (i) how to dynamically manage the load-
ing and unloading of hardware modules for various apps,
and (ii) how to ensure the modules cannot compromise
the running operating system and vice versa. We achieve
the dynamic management by modifying the Android op-
erating system to include a system service that manages
the loading and unloading of modules and enables ap-
plication software to access these modules. Our secure
loading system takes advantage of some hardware secu-
rity features of modern FPGAs and some hardware in the
static design in order to provide the needed security.

5.1 Dynamic Module Loading Service
To support apps with hardware, there needs to be system
support for loading hardware modules into the FPGA.
The operating system will have access to our secure load-
ing system (described in the next section) that can take a
hardware module compiled using the Cloud RTR system
and load it into the FPGA. However, user applications
will not have direct access to this system.

User applications will instead submit requests through
a privileged hardware loader system service. Upon load-
ing and initialization of the app, the service will be pro-
vided with the location of the app’s hardware module
files. The service will then choose an empty slot, se-
lect the module compiled for this slot, and use the secure
loading module to load the module into the FPGA. In the
case where no slots are available, the operating system
can create ‘virtual’ slots by time-slicing existing slots.
Given the slot reconfiguration time, we do not expect to
swap app hardware as frequently as app software, but we
see this is an area for future consideration.

We can implement virtual slots by using the readback
capability of FPGAs to store the running configuration
of modules, and developers can provide custom unload

functionality to aid the readback system in storing diffi-
cult to access state (specifically, certain FPGA memory
is more difficult to access). Applications that would be
disrupted by time slicing can be specifically flagged as
unsafe to swap, but the number of these applications run-
ning simultaneously should be restricted.

The time to load a hardware module provides an es-
timate of the time needed to context switch a hardware
module. This time is a function of the size of the hard-
ware being written to the FPGA, which we measured to
have an average throughput of 37 MiB/s. This leads to
a latency of approximately 100 ms for a 4 MB static bit-
stream, or 27 ms for 1 MB hardware module.

The hardware module is presented as a devfs character
device in the Linux /dev directory (when using Android).
The hardware loading service will set file permissions to
ensure that only the application that requested the load-
ing of the hardware module can access it.

5.2 Secure Loading

We introduce a secure loading mechanism to provide
support for protecting both the operating system from
app hardware and the FPGA configuration from the oper-
ating system (e.g., a rootkit). Our secure loading mech-
anism is an extension of secure boot technology where
(i) we disable the processor’s connection to the config-
uration ports of the FPGA, and (ii) we add a module
within the static design to support loading of app hard-
ware. For space purposes we can only sketch the high-
level overview of the secure loading.
Threat model and assumptions: We assume that any
code running on the CPU, including the operating sys-
tem, can be malicious. We also assume that even with
the support of modules such as the trusted platform mod-
ule (TPM) to protect the booting of the operating system,
malicious code can be executed at run-time that can com-
promise the operating system. We assume that some re-
configurable modules will be untrusted and potentially
malicious. We assume that some reconfigurable modules
will be trusted (from trusted sources, such as the phone
manufacturer) and will not be malicious. Finally, we as-
sume that the static FPGA configuration is trusted and
correct at boot time (through secure boot mechanisms
supported by modern FPGAs [64]). With this, we as-
sume the keys of the app store and an additional trusted
party are present at boot and cannot be modified.

The secure loading can be summarized as follows:

• Secure boot technology of the FPGA will load a
trusted FPGA configuration as well as ensure the
operating system is known to be good at boot.

• As part of the secure boot, the processor will have
its access to the configuration ports disabled (e.g.,

8

USENIX Association 2016 USENIX Annual Technical Conference 629

the processor configuration access port, PCAP, and
the internal configuration access port, ICAP).

• A hardware secure loading module, part of the static
configuration, will accept requests to load a recon-
figurable module from the operating system .

• Every module will be signed by the app store. From
this the hardware secure loading module will verify
the signature in order to ensure that the configura-
tion refers to is the slot to be loaded (preventing the
case where an app was modified to include a con-
figuration which overwrites parts of the FPGA other
than the allocated area).

• For trusted modules (which will signed by the app
store and by an additional trusted party), the hard-
ware secure loading module will verify the signa-
ture and if it succeeds, configure the memory ac-
cess control to allow the module to have access to
system memory. Trusted modules will not be able
to be unloaded or overwritten without a reboot.

• For untrusted modules (which will be signed by the
app store, but not by an additional trusted party), the
hardware secure loading module will configure the
memory access control to restrict access to memory.

With this process, we get the following properties:

• Modules will be correctly loaded only into the slots
for which they are supposed to be loaded and not
overwrite any static configuration.

• Code in the operating system cannot load a mod-
ule in a slot which gets access to system memory
(preventing app hardware from helping apps bypass
system protections, or otherwise harm the system).

• Code in the operating system cannot overwrite or
unload a trusted module (preventing rootkits, for ex-
ample, from unloading security modules meant to
detect the presence of rootkits).

6 Evaluation

There are two main questions to answer, which we dis-
cuss in this section:
Is there value in apps with hardware?

There’s general acceptance that hardware will be faster
than software3. The question we seek to answer here
is whether the same performance benefits are retained
when we consider it within a system (e.g., does crossing
the hw-sw boundary make things worse).

3That’s not really the focus of our paper – we take the stance that
there are places where each wins (FPGA, CPU, GPU) and that het-
erogeneous architectures are good, and more importantly open pro-
grammability is what drives innovation.

Figure 6: The execution time to perform an AES encryp-
tion for a range of data sizes – from 10 to 13000 contigu-
ous 128-bit (16-byte) segments of memory.

Is the cloud compilation of Cloud RTR practical?
As mentioned, rather than continuing the path of run-

time reconfiguration research, which leads to creative,
but impractical solutions, we aimed for a solution which
was highly practical and deployable today. This resulted
in a brute force approach. Here, we ask whether this is
itself practical by examining the processing required to
support the app market ecosystem.

6.1 Application Performance Acceleration
Performance acceleration is one of the benefits of using
an FPGA. Of course, we also believe that new applica-
tions are now enabled, such as our hardware-based mem-
ory scanner. We focus on performance here as a concrete
demonstration with a quantitative evaluation.

We focus on three key application domains that are en-
abled. Each of these applications consists of a hardware
module written in C++ using high-level synthesis and an
Android application that interfaces with the module. We
run the hardware module through the Cloud RTR com-
pilation platform targeting the static design for our de-
velopment board. The end result is an APK that can be
loaded into our demonstration board. Each application
fit within our slots, which we defined at 12% of the over-
all FPGA area – a number resulting from dividing the
remaining area after what is needed for the static design
by six available slots.

For our experiments, we protoyped a mobile device
using the Zedboard development board, which integrates
a Xilinx Zynq 7020 FPGA [25] that has an embedded
dual-core ARM Cortex-A9 CPU. We based our Android
services on the Android 2.3 and 5.0.2 operating systems
that were already ported to our device.

6.1.1 Cryptography: AES

In Figure 6, we compare three different AES implemen-
tations using our development board, and running An-

9

630 2016 USENIX Annual Technical Conference USENIX Association

droid as the operating system on the CPU4:

• FPGA (ours) – an AES FPGA reconfigurable mod-
ule accessed by an Android application in native
code using the the Java native interface (JNI).

• OpenSSL – the OpenSSL AES implementation
which we interfaced directly from a C application.

• Android AES – the AES implementation provided
to Android applications by the AOSP.

This figure shows the execution times of the AES im-
plementation (which we derived from [1], though we
also experimented with versions from Apple [2] and
NIST [3], which had identical performance) for a range
of data sizes to be encrypted, varying in size from 10 to
13000 contiguous 128-bit segments of memory. It can be
seen that the FPGA implementation is on average three
times faster than the OpenSSL implementation, and is
approximately 12 times faster than the AOSP. However,
the execution time of the FPGA module as measured by
Java (marked in red circles) and executed using the JNI is
longer than the execution time of the same module when
executed directly by a C program (marked in blue dia-
monds). This is likely due to overhead entailed in copy-
ing memory to the JNI function call and transferring con-
trol to the JNI. This can potentially be alleviated using
Java direct byte buffers passed directly to the JNI func-
tion, but is deferred to future work.

6.1.2 Software-defined Radio: QAM

This application can process a signal stored in a contigu-
ous memory region and produce an output signal that is
stored into another contiguous region. In a live smart
phone, the static design would place the signal off of the
antenna into buffers in memory, notify the Android ap-
plication of a buffer being full, and the application would
pass this data to the QAM module. The number of sam-
ples the QAM block can process determines the sample
rate of the radio application. We implemented this mod-
ule by modifying (to be compatible with our Cloud RTR
system) a reference Xilinx project [55], which comes
with C++ code that can be executed in software or run
through high-level synthesis to produce hardware.

As shown by Figure 7, the hardware implementation
is several orders of magnitude faster than the software
implementation. The hardware implementation achieves
an average throughput of approximately 5 Msps (mega-
samples per second), while the software implementation
only achieves and average of approximately 500 sam-
ples/s. The Xilinx application notes claim a throughput
value of 50 Msps [55], which is likely achievable due to
the fact that the hardware device is intended to process

4 We also performed the OpenSSL benchmark in Ubuntu Linux to
confirm that the Android OS does not institute a performance penalty.

Figure 7: The execution time to process a different num-
ber of samples with our QAM application.

data received directly from an analog-to-digital converter
(ADC), whereas our implementation has been retrofitted
to stream data from system memory.

6.1.3 Memory Scanner

Our final application is a simple implementation of a
hardware memory scanner that searches our device’s ad-
dress space for occurrences of a 16 byte string. We wrote
custom C++ code that we ran through high-level synthe-
sis for this implementation.

Using the LMbench testbench [50], we instituted a
memory benchmark that measured the throughput of
our device’s memory while under normal operation
and while the hardware memory scanner was executing
(which is constantly reading from memory). Using this
benchmark, we measured a 2.7% reduction in perfor-
mance for read operations and a 5.5% reduction in per-
formance for write operations.

6.2 Cloud Compilation Resources Needed
We propose performing compilation of the reconfig-
urable module in the cloud as part of the process to up-
load to the app store. To understand the feasibility of
this, here we evaluate the amount of computing resources
needed to sustain an ‘apps with hardware’ ecosystem.

The metric of interest is how long it takes to compile
a single reconfigurable module for a given static design.
Recall that a static design is the base design that roughly
corresponds to a system on chip used for a given smart
phone. These static designs have open areas (slots) for
placing reconfigurable modules.

For all experiments, we used a server with an Intel
Xenon CPU (2.1 GHz, 6 cores, 48 GB RAM).

6.2.1 Single App for a Single Static Design

An app with hardware uploaded to the app store must
have its hardware modules compiled for each slot that it

10

USENIX Association 2016 USENIX Annual Technical Conference 631

of slots Compilation Time (min) Throughput (apps/day)
2 11.92 121
3 14.93 96
4 19.02 76
5 24.21 59
6 28.23 51

Table 1: Compilation time and number of apps a single
server could service per day.

6 Slots Requirement % of Jan 2016 Apps that Use Hardware
0.1 1 10

of Apps Uploaded per Day
5 52 520

of Static Designs # of Machines Required to Compile RMs
1 1 1 10
10 1 10 102

100 10 102 1020
1000 102 1020 10200

Table 2: Number of servers required to support the com-
pilation requirements of Cloud RTR, assuming designs
with six slots.

can be placed into. However, certain steps in the process
do not need to be performed for each slot – e.g., syn-
thesis needs to be performed once for each module, then
for each slot, the synthesized module needs to be placed
and routed. For this evaluation we used an FFT module,
which is a highly regular structure and enabled us to ad-
just its parameters to effectively alter its size to fill up
any slot size we experimented with.

Table 1 shows the total time to compile a single ap-
plication’s reconfigurable module for static designs with
two to six slots (each slot is defined as 12% of the over-
all area of our FPGA, as previously mentioned), as well
as the extrapolated throughput (the number of apps that
could be compiled per day on one server given this com-
pilation time). We chose up to six slots (in contrast to the
60-100 slots in [38]) as we believe each to be big enough
to implement a reasonable module within a single slot.

6.2.2 Compiling All Apps

Using the calculated throughput, we can now estimate
the amount of computing resources needed to service the
entire app ecosystem.

First, we need to know how many apps are uploaded
each month. The company AppFigures provided us with
the Google Play Store application upload figures for the
entire year of 2014, with a total of 1.43 million apps
at the end of 2014, and an average monthly growth of
6.10%. While we are unsure if this growth rate persisted
over the past year, we use it to estimate the current needs.
Using this average monthly app growth, for the month of
January 2016, 177,521 applications are predicted to be
uploaded into the Google Play Store.

Table 2 shows the number of machines required to

service monthly demands for compiling apps with hard-
ware, for six slots as an example (2-5 slots would be pro-
portionally less). Each table varies the number of apps
with hardware uploaded each day based on the percent-
age of applications that require hardware (0.1%, 1%, and
10%), as well as the number of static hardware variants –
for the sake of illustration, we assume from one to 1000
variants, with each interval increased by a factor of ten
(we expect the number of variants to be on the low end,
as static bitstreams can be reused between devices, just
as phones today use a small set of SoCs, and not every
device will require a new static bitstream).

The cloud provider will easily be able to support the
lower end of the spectrum internally. On the upper end,
the cloud provider might look to relieve the computation
burden by offloading to the phone manufacturers to com-
pile for their own variants.

7 Case Study: Orbot Tor Client

Developing our demonstration applications from scratch
allows us with to design it to use an FPGA natively. Here
we explore modifying an existing, complex application
to make use of a hardware module to understand the in-
efficiencies that may result.

We chose to modify the Orbot [17] Tor [37] client for
Android. Tor is an anonymization network that allows
for a user to access the internet without disclosing their
source IP address, making identifying and tracking their
internet traffic very difficult for third parties. A Tor client
creates a circuit through this network and encrypts their
traffic separately for each node along the path to prevent
eavesdropping during transmission. Because of this ex-
tensive use of encryption and based on notes by the Or-
bot developers mentioning that AES is one of the areas
to optimize Orbot [21], we see this as an ideal case study.

Our AES module implements the CTR (counter) mode
of operation on top of a standard AES block cipher that is
an equivalent to the OpenSSL CTR implementation used
by Tor. In order to integrate our AES accelerator with
Tor, we replaced all calls to OpenSSL AES encryption
with calls to the FPGA accelerator, which proved to be a
fairly minor modification. We also needed to ensure that
all data that was to be encrypted was located in a con-
tiguous memory region with a known physical address,
which required us to replace all malloc() calls with calls
to a custom memory allocator, and leverage a memory
region that we reserved from the kernel.

With this, the application is able to make use of the
FPGA resources and operate correctly. However, there
are inefficiencies remaining due to (i) the overhead re-
quired to allocate memory in the reserved region, (ii) the
overhead in accessing this memory, as it is implemented
using memory-mapped I/O, and (iii) the fact that certain

11

632 2016 USENIX Annual Technical Conference USENIX Association

memory system calls (e.g., malloc(), memcpy() and mem-
set()) are incompatible with the current memory mapped
implementation – which would require more extensive
modifications to the code to resolve. Even so, this pro-
vides us with great insight into how apps should be de-
signed to capitalize on the FPGA resources and is an area
for future improvements.

8 Related Work

Although there are no existing systems that implement
all of the functionality of our Cloud RTR system in mo-
bile devices, there has been much work done in recon-
figurable computing in other contexts, including several
different attempts with Android.

Of note from previous reconfigurable computing re-
search is the BORPH system [62], which attempts to cre-
ate operating system extensions in Linux for FPGA op-
erations, and uses Berkeley’s BEE2 system [35], and the
more recent Connectal framework [47], which can auto-
matically generate HW/SW interfaces during hardware
development. These systems, however, do not address
application distribution or FPGA resource sharing.

In terms of mobile systems research, some proposals
have been made, such as the rSmart system [63] and the
work from Smit et. al. [61]. Smit et. al. proposes a simi-
lar hardware architecture to the Zynq-7000 architecture,
but does not present an operating system integration or a
deployment system. The rSmart system only presents a
high-level sketch of a system similar to ours, but no de-
tails on implementation or integration are provided. Our
system builds upon this research to create a general sys-
tem that is deployable using existing technology.

There has also been recent advantage in reconfigurable
cloud platforms. For example, Microsoft’s Project Cat-
apult makes use of of FPGA peripherals in data cen-
ters to accelerate web searches [58] and neural networks
[54], and Intel’s acquisition of Altera [13] is leading to
x86 CPU architectures coupled with FPGAs [40]. Mi-
crosoft’s solutions, however, are only single-application
hardware accelerators, whereas our system allows for us-
age in general applications. Intel’s system is more gen-
eral, but has not been released publicly, but does claim to
use OpenCL [16] as the software interface.

Our work is complimentary. For example, OpenCL
can be used on mobile devices with support from major
hardware manufacturers, such as ARM, Intel and Qual-
comm, [14] [20] [8] [12] [18], and can even be used
with our system by using a compatible hardware module.
OpenCL’s main limitation is its focus on parallel acceler-
ation, which does not enable new architectural enhance-
ments, such as our SDR or security applications.

Reconfigurable Android devices and systems have
also been proposed, such as Google’s Project Ara [11],

among others, including various other modular phones
[19] [9] [15]. These modular phone systems allow for
reconfiguration and upgrading of smart phone physical
components, similar to how personal computer compo-
nents can be upgraded. However, these modular architec-
tures can only be reconfigured manually by the user re-
placing the physical modules, whereas our system allows
for dynamic and custom reconfiguration by software.

Finally, the Android OS has been ported to the Zynq-
7000 in several projects, such as the work of Barbareschi,
et. al., among others [32] [7] [6] [24]. However, with
the exception of the work of Barbareschi, et. al., these
projects only port the OS to a new device. The work of
Barbareschi, et. al. only extends this work to create an
Android-compatible custom accelerator to address a sin-
gle problem, whereas our system allows for any general
software to create their own custom hardware modules.

9 Conclusions and Future Work

In this paper we presented the concept of ‘apps with
hardware’ where, with the introduction of an FPGA into
a smart phone we can enable app developers to innovate
in the architectural (hardware) space, as they can today
in the software space. Our Cloud RTR cloud based com-
pilation mechanism overcomes past limitations of using
the FPGA in a general way and does so without requiring
any modifications from the vendors (making it deploy-
able today). Our Android-based run-time application
management system enables the dynamic management
of the execution of apps (and their use of the available
hardware), and provides a secure loading mechanism.

There is a great deal of possible future work. First,
performing a thorough power analysis in a fair man-
ner will provide great insight into both the benefits and
needed system support, and building more apps to cap-
italize on the new capabilities would likewise provide
great insight. Second, we wish to work with additional
tools from other vendors (e.g., Altera) and operating sys-
tem platforms to explore implementation differences and
with a partner to develop an actual prototype smart phone
system (rather than the Zedboard) to further understand
its viability. Finally, we wish to further investigate mem-
ory management techniques for better optimization.

10 Acknowledgments

This research was supported in part by NSF SaTC grant
number 1406192. We would also like to thank Phil
James-Roxby and Derek Woods for their guidance, and
Xilinx for their hardware and software donations.

12

USENIX Association 2016 USENIX Annual Technical Conference 633

References
[1] http://programmablelogicinpractice.com/?p=87.

[2] http://www.opensource.apple.com/source/
CommonCrypto/CommonCrypto-55010/Source/

libtomcrypt/src/ciphers/ltc aes/aes.c.

[3] http://csrc.nist.gov/archive/aes/rijndael/
Rijndael-ammended.pdf.

[4] 40Gbit AES Encryption Using OpenCL and FPGAs.
http://www.nallatech.com/40gbit-aes-encryption-
using-opencl-and-fpgas.

[5] Altera socs. https://www.altera.com/products/soc/
overview.html.

[6] Android 4.2.2 on zynq getting started guide. http:

//www.wiki.xilinx.com/Android+4.2.2+On+Zynq+
Getting+Started+Guide.

[7] Android on zynq getting started guide. http:

//www.wiki.xilinx.com/Android+On+Zynq+Getting+
Started+Guide.

[8] ARM Mali OpenCL SDK. http://malideveloper.arm.com/
resources/sdks/mali-opencl-sdk/.

[9] Fairphone. https://www.fairphone.com/.

[10] FPGA System Smokes Spark on Streaming Analytics.
www.datanami.com/2015/03/10/fpga-system-smokes-
spark-on-streaming-analytics/.

[11] Google Project Ara. http://www.projectara.com/.

[12] GPGPU OpenCL API. http://www.vivantecorp.com/
index.php/en/technology/gpgpu.html.

[13] Intel Altera Acquisition. https://newsroom.intel.com/
news-releases/intel-completes-acquisition-of-

altera/.

[14] Intel OpenCL SDK. https://software.intel.com/en-us/
intel-opencl.

[15] LG G5. http://www.lg.com/us/mobile-phones/g5.

[16] OpenCL. https://www.khronos.org/opencl/.

[17] Orbot. https://guardianproject.info/apps/orbot.

[18] PowerVR SDK. https://community.imgtec.com/
developers/powervr/.

[19] Puzzlephone. http://www.puzzlephone.com/.

[20] Qualcomm Adreno GPU SDK. https://

developer.qualcomm.com/software/adreno-gpu-sdk/
tools.

[21] Tor source code hacking documentation. https:

//gitweb.torproject.org/tor.git/tree/doc/HACKING.

[22] Universal Software Radio Peripheral (USRP) by Ettus Research.
http://www.ettus.com/.

[23] Vivado high-level synthesis. http://www.xilinx.com/
products/design-tools/vivado/integration/esl-

design/.

[24] Zedroid - android (5.0 and later) on zedboard. http:

//www.slideshare.net/noritsuna/zedroid-android-
50-and-later-on-zedboard.

[25] Zynq-7000 all programmable soc. http://www.xilinx.com/
products/silicon-devices/soc/zynq-7000/.

[26] Zynq UltraScale+ MPSoC. http://www.xilinx.com/
products/silicon-devices/soc/zynq-ultrascale-

mpsoc.html.

[27] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and
R. Gupta. Somniloquy: Augmenting Network Interfaces to Re-
duce PC Energy Usage. In Proc. USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2009.

[28] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R. Cavallaro, and
A. Sabharwal. Warp, a unified wireless network testbed for edu-
cation and research. In Proceedings of IEEE MSE, 2007.

[29] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable Internet Protocol (AIP).
In Proc. ACM SIGCOMM, 2008.

[30] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh.
White space networking with Wi-Fi like connectivity. In Proc.
SIGCOMM, Aug. 2009.

[31] N. Balasubramanian, A. Balasubramanian, and A. Venkatara-
mani. Energy consumption in mobile phones: A measure-
ment study and implications for network applications. In Proc.
ACM SIGCOMM Conference on Internet Measurement Confer-
ence (IMC), 2009.

[32] M. Barbareschi, A. Mazzeo, and A. Vespoli. Network traffic anal-
ysis using android on a hybrid computing architecture. In Pro-
ceedings of the 13th International Conference on Algorithms and
Architectures for Parallel Processing - Volume 8286, ICA3PP
2013, pages 141–148, New York, NY, USA, 2013. Springer-
Verlag New York, Inc.

[33] G. Brebner. Circlets: Circuits as applets. In Proc. IEEE Sympo-
sium on FPGAs for Custom Computing Machines (FCCM), 1998.

[34] G. J. Brebner. A virtual hardware operating system for the
xilinx xc6200. In Proc. International Workshop on Field-
Programmable Logic (FPL), 1996.

[35] C. Chang, J. Wawrzynek, and R. W. Brodersen. BEE2: A High-
End Reconfigurable Computing System. IEEE Des. Test, 22(2),
Mar. 2005.

[36] O. Diessel and G. Wigley. Opportunities for operating sys-
tems research in reconfigurable computing. Technical Report
ACRC99018, Advanced Computing Research Centre, School of
Computer and Information Science, University of South Aus-
tralia, 1999.

[37] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proc. USENIX Security Symposium,
2004.

[38] D.Koch, C. Beckhoff, and J. Teich. Recobus-builder a novel tool
and technique to build statically and dynamically reconfigurable
systems for fpgas. In Proc. Field Programmable Logic and Ap-
plications (FPL), 2008.

[39] S. A. Guccione and D. Levi. XBI: A java-based interface to
FPGA hardware. In Configurable Computing: Technology and
Applications, Proc. SPIE 3526, pages 97–102, Nov. 1998.

[40] P. K. Gupta. Xeon+fpga platform for the data center. The Fourth
Workshop on the Intersections of Computer Architecture and Re-
configurable Logic (CARL), June 2015.

[41] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: A gpu-
accelerated software router. In Proceedings of the ACM SIG-
COMM 2010 Conference, SIGCOMM ’10, pages 195–206, New
York, NY, USA, 2010. ACM.

[42] E. Horta, J. Lockwood, and D. Parlour. Dynamic hardware plug-
ins in an fpga with partial run-time reconfiguration. In Proceed-
ings of the 39th conference on Design automation, June 2002.

[43] E. L. Horta, J. W. Lockwood, and S. Louis. PARBIT : A Tool to
Transform Bitfiles to Implement Partial Reconfiguration of Field
Programmable Gate Arrays (FPGAs). Technical Report WUCS-
01-13, Dept. Comput. Sci., Washington Univ., Saint Louis, MO,
2001.

13

634 2016 USENIX Annual Technical Conference USENIX Association

[44] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard. Networking named content. In Proc.
Conference on Emerging Networking Experiments and Technolo-
gies (CoNEXT), 2009.

[45] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen. Rais-
ing the bar for using gpus in software packet processing. In 12th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 409–423, Oakland, CA, May 2015.
USENIX Association.

[46] E. Keller. Jroute: A run-time routing api for fpga hardware. In
IPDPS Workshops, ser. Lecture Notes in Computer Science, vol-
ume 1800, 2000.

[47] M. King, J. Hicks, and J. Ankcorn. Software-driven hardware
development. In Proceedings of the 2015 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, FPGA
’15, pages 13–22, New York, NY, USA, 2015. ACM.

[48] E. Lechner and S. A. Guccione. The java environment for recon-
figurable computing. In Proc. International Workshop on Field-
Programmable Logic and Applications, Sept. 1997.

[49] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. The erlan-
gen slot machine: A dynamically reconfigurable fpga-based com-
puter. In VLSI Signal Processing Systems, 2007.

[50] L. McVoy and C. Staelin. Lmbench: Portable tools for perfor-
mance analysis. In Proceedings of the 1996 Annual Conference
on USENIX Annual Technical Conference, ATEC ’96, pages 23–
23, Berkeley, CA, USA, 1996. USENIX Association.

[51] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and
R. Lauwereins. Infrastructure for design and management of relo-
catable tasks in a heterogeneous reconfigurable system-on-chip.
In Proc. of the Conference on Design, Automation and Test in
Europe (DATE), 2003.

[52] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. Netfpga:
Reusable router architecture for experimental research. In Pro-
ceedings of the ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow (PRESTO), 2008.

[53] S. Neuendorffer and C. Epifanio. Generic partially reconfigured
processor systems applied to software defined radio. In Proc. of
the Software Defined Radio Forum (SDR), 2007.

[54] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung. Accelerating deep convolutional neural networks
using specialized hardware, February 2015.

[55] A. Paek and D. Mackay. Implementing carrier phase recovery
loop using vivado hls. http://www.xilinx.com/support/
documentation/application notes/XAPP1173-

carrier-loop.pdf.

[56] C. Patterson, P. Athanas, M. Shelburne, J. Bowen, J. Suris,
T. Dunham, and J. Rice. Slotless module-based reconfiguration of
embedded fpgas. In ACM Trans. Embedd. Comput. Syst, October
2006.

[57] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copi-
lot - a coprocessor-based kernel runtime integrity monitor. In
Proc. USENIX Security Symposium, 2004.

[58] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and
D. Burger. A reconfigurable fabric for accelerating large-scale
datacenter services. In 41st Annual International Symposium on
Computer Architecture (ISCA), June 2014.

[59] T. Rinta-aho, M. Karlstedt, and M. P. Desai. The click2netfpga
toolchain. In Presented as part of the 2012 USENIX Annual Tech-
nical Conference (USENIX ATC 12), pages 77–88, Boston, MA,
2012. USENIX.

[60] S.Guccione, D. Levi, and P. Sundararajan. Jbits: Java-based in-
terface for reconfigurable computing. In Proc. Conf. on Military
and Aerospace Application of Programmable Devices and Tech-
nology, 1999.

[61] G. J. M. Smit, P. J. M. Havinga, L. T. Smit, P. M. Heysters, and
M. A. J. Rosien. Dynamic reconfiguration in mobile systems.
In Proc. International Conference on Field-Programmable Logic
and Applications (FPL), 2002.

[62] H. K.-H. So and R. Brodersen. A Unified Hardware/Software
Runtime Environment for FPGA-based Reconfigurable Comput-
ers Using BORPH. ACM Trans. Embed. Comput. Syst., 7(2), Jan.
2008.

[63] N. Soundararajan. rSmart: The Reconfigurable (Real) Smart-
phone. Provocative Ideas session of the Eighteenth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2013.

[64] S. Trimberger and J. Moore. Fpga security: Motivations, features,
and applications. Proceedings of the IEEE, 102(8):1248–1265,
Aug 2014.

[65] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), San Jose, CA, 2012.

14

