
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIC ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

StackMap: Low-Latency Networking with the OS
Stack and Dedicated NICs

Kenichi Yasukata, Keio University; Michio Honda, Douglas Santry, and Lars Eggert, NetApp

https://www.usenix.org/conference/atc16/technical-sessions/presentation/yasukata

USENIX Association 2016 USENIX Annual Technical Conference 43

StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs

Kenichi Yasukata†1, Michio Honda2, Douglas Santry2, and Lars Eggert2
1Keio University

2NetApp

Abstract
StackMap leverages the best aspects of kernel-bypass

networking into a new low-latency Linux network service
based on the full-featured TCP kernel implementation, by
dedicating network interfaces to applications and offering
an extended version of the netmap API as a zero-copy, low-
overhead data path while retaining the socket API for the
control path. For small-message, transactional workloads,
StackMap outperforms baseline Linux by 4 to 80 % in
latency and 4 to 391 % in throughput. It also achieves
comparable performance with Seastar, a highly-optimized
user-level TCP/IP stack for DPDK.

1 Introduction

The TCP/IP protocols are typically implemented as part of
an operating system (OS) kernel and exposed to applica-
tions through an application programming interface (API)
such as the socket API [61] standard. This protects and
isolates applications from one another and allows the OS
to arbitrate access to network resources. Applications can
focus on implementing their specific higher-level func-
tionality and need not deal with the details of network
communication.

A shared kernel implementation of TCP/IP has other
advantages. The commercialization of the Internet has
required continuous improvements to end-to-end data
transfers. A collaboration between commercial and open
source developers, researchers and IETF participants over
at least the last 25 years has been improving TCP/IP to
scale to increasingly diverse network characteristics [11,
39, 58], growing traffic volumes [13, 32], and improved
tolerance to throughput fluctuations and reduced transmis-
sion latencies [1, 10, 49].

A modern TCP/IP stack is consequently a complex,
highly optimized and analyzed piece of software. Due to
these complexities, only a small number of stacks (e.g.,

†Most of the research was done during an internship at NetApp.

Linux, Windows, Apple, BSD) have a competitive feature
set and performance, and therefore push the vast majority
of traffic. Because of this relatively small number of OS
stacks (compared to the number of applications), TCP/IP
improvements have a well-understood and relatively easy
deployment path via kernel updates, without the need to
change applications.

However, implementing TCP/IP in the kernel also has
downsides, which are becoming more pronounced with
larger network capacities and applications that are more
sensitive to latency and jitter. Kernel data processing
and queueing delays now dominate end-to-end latencies,
particularly over uncongested network paths. For example,
the fabric latency across a datacenter network is typically
only a few µs. But a minimal HTTP transaction over the
same fabric, consisting of a short “GET” request and an
“OK” reply, takes tens to hundreds of µs (see Section 3).

Several recent proposals attempt to avoid these over-
heads in a radical fashion: they bypass the kernel stack and
instead implement all TCP/IP processing inside the appli-
cation in user space [24, 29, 37] or in a virtual machine
context [4]. Although successful in avoiding overheads,
these kernel-bypass proposals also do away with many
of the benefits of a shared TCP/IP implementation: They
usually implement a simplistic flavor of TCP/IP that does
not include many of the performance optimizations of the
OS stacks, it is unclear if and by whom future protocol im-
provements would be implemented and deployed, and the
different TCP/IP versions used by different applications
may negatively impact one another in the network.

It is questionable whether kernel-bypass approaches
are suitable even for highly specialized network environ-
ments such as datacenters. Due to economic reasons [17],
they are assembled from commodity switches and do not
feature a centralized flow scheduler [2, 45]. Therefore,
path characteristics in such datacenters vary, and more
advanced TCP protocol features may be useful in order to
guarantee sub-millisecond flow completion times.

1

44 2016 USENIX Annual Technical Conference USENIX Association

Another group of recent proposals [16, 22, 46] attempts
to reduce the overheads associated with using the kernel
stack by optimizing the socket API in a variety of ways.
Unlike kernel-bypass approaches, which dedicate network
interfaces (NICs) to individual applications, they continue
to allow different applications to share NICs. This limits
the benefit of this set of proposals, due to the continued
need for kernel mechanisms to arbitrate NIC access, and
motivates our StackMap proposal.

On today’s multi-core and multi-NIC servers, it is com-
mon practice to dedicate individual cores and individual
(virtual) interfaces to individual applications; even more
so for distributed scale-out applications that use all system
resources across many systems.

This paper presents StackMap, a new OS network ser-
vice that dedicates NICs to individual applications (similar
to kernel-bypass approaches) but continues to use the full-
fledged kernel TCP/IP stack (similar to API-optimizing
approaches). StackMap establishes low-latency, zero-copy
data paths from dedicated NICs, through the kernel TCP/IP
implementation, across an extended version of the netmap
API into StackMap-aware applications. The extended
netmap API features operations for explicit execution of
packet I/O and TCP/IP processing, event multiplexing
and application-data I/O, which is tightly coupled with
an abstraction of the NIC packet buffers. Alongside the
data path, StackMap also retains the regular socket API
as a control path, which allows sharing of the OS network
stack properly with regular applications.

StackMap outperforms Linux by 4 to 80 % in average
latency, 2 to 70 % in 99th-percentile latency and 4 to 391 %
in throughput. StackMap also improves memcached
throughput by 42 to 133 %, and average latency by 30 to
58 %. Up to six CPU cores, StackMap even outperforms
memcached on Seastar, which is a highly-optimized, user-
level TCP/IP stack for DPDK.

The StackMap architecture resembles existing kernel-
bypass proposals [4, 6] and borrows common techniques
from them, such as batching, lightweight buffer man-
agement and the introduction of new APIs. However,
applying these techniques to an OS network stack requires
a significant design effort, because of its shared nature.
Additionally, the kernel TCP/IP implementation depends
heavily on other components of the network stack and
other kernel subsystems, such as the memory allocator,
packet I/O subsystem and socket API layer. StackMap
carefully decomposes the OS network stack into its TCP/IP
implementation and other components, and optimizes the
latter for transactional workloads over dedicated NICs.

StackMap inherits the complete set of the rich TCP/IP
protocol features from the OS stack. A latency analysis
of the Linux kernel implementation shows that TCP/IP
processing for both the transmit and receive directions
consumes less than 0.8 µs, respectively. This is less than

the half the overall request handling latency of 3.75 µs
(see Section 3.1).

In summary, we make three major contributions: (1) a
latency analysis of the Linux kernel TCP/IP implementa-
tion, (2) the design and implementation of StackMap, a
new low-latency OS networking service, which utilizes
dedicated NICs together with the kernel TCP/IP imple-
mentation, and (3) a performance evaluation of StackMap
and a comparison against a kernel-bypass approach.

The remainder of this paper is organized as follows:
Section 2 discusses the most relevant prior work, much
of which StackMap draws motivation from. Section 3
analyses latencies of the Linux network stack, in order
to validate the feasibility of the StackMap approach and
identify problems we must address. Section 4 describes
the design and implementation of StackMap. Section 5
evaluates StackMap. Section 6 discusses the inherent
limitations posed by the StackMap architecture as well as
those only present in the current prototype implementation.
The paper concludes with Section 7.

2 Motivation and Related Work

Inefficiencies in OS network stacks are a well-studied topic.
This section briefly discusses the most relevant prior work
in the field from which StackMap draws motivation, and
summarizes other related work.

2.1 Kernel-Bypass Networking

An OS typically stores network payloads in kernel-space
buffers, accompanied by a sizable amount of metadata
(e.g., pointers to NICs, socket and protocol headers).
These buffers are dynamically allocated and managed by
reference counts, so that producers (e.g., a NIC driver in
interrupt context) and consumers (e.g., read() in syscall
context) can operate on them [55].

Around 2010–2012, researchers developed approaches
to use static, pre-allocated buffers with a minimum amount
of metadata for common, simple packet operations, such as
packet forwarding after IPv4 longest-prefix matching [62].
A key architectural feature of these systems [21, 54] is to
perform all packet processing in user space1, by moving
packets directly to and from the NIC, bypassing the OS
stack. These systems also extensively exploit batching,
e.g., for syscalls and device access, which is preceded by
a write barrier. The outcome of these research proposals
is general frameworks for fast, user-space packet I/O, such
as netmap [54] and DPDK [26].

1Click [43], proposed in 1999, has an option to run in user-space, but
as a low-performance alternative to the in-kernel default, due to using the
traditional packet I/O API or Berkeley Packet Filter. A netmap-enabled
version of Click from 2012 outperforms the in-kernel version [52].

2

USENIX Association 2016 USENIX Annual Technical Conference 45

In 2013–2014, “kernel-bypass” TCP stacks based on
these user-space networking frameworks emerged, driven
by a desire to further improve the performance of transac-
tional workloads. UTCP [24] and Sandstorm [37] build
on netmap; mTCP [29] on PacketShader; Seastar [6],
IX [4] and UNS [27] on DPDK. They either re-implement
TCP/IP almost from scratch or rely on existing—often
similarly limited or outdated—user-space stacks such as
lwIP [12], mostly because of assumed inefficiencies in OS
stacks and reported inefficiencies of running more modern
OS stack code in user-space via shims [31, 60].

Further, these kernel-bypass stacks introduce new APIs
to avoid inefficiencies in the socket API, shared-nothing de-
signs to avoid locks, active NIC polling to avoid handling
interrupts, network stack processing in application threads
to avoid context switches and synchronization, and/or
direct access to NIC packet buffers. These techniques
become feasible, because kernel-bypass approaches dedi-
cate NICs or packet I/O primitives, such as a NIC rings,
to application threads. In other words, they do not support
sharing NICs with applications that use the OS stack. Each
thread therefore executes its own network stack instance,
and handles all packet I/O, network protocol processing
in addition to executing the application logic.

However, such techniques are not inherently limited
to user-space use. In 2015, mSwitch [23] demonstrated
that they can be incorporated into kernel code (with small
modifications) and result in similar benefits: mSwitch
speeds up the Open vSwitch data path by a factor of three.
It retains the OS packet representation, but simplifies
allocation and deallocation procedures by performing all
packet forwarding operations within the scope of a single
function. StackMap borrows the idea of using acceleration
techniques first used for kernel-bypass networking inside
the kernel from mSwitch.

2.2 Network API Enhancements

Server applications typically execute an event loop to mon-
itor file descriptors, including network connections. When
an event multiplexing syscall such as epoll_wait() re-
turns “ready” file descriptors, the application iterates over
them, e.g., to read requests, send responses, or to accept
new connections.

In 2012, MegaPipe [22] improved on this common
pattern by introducing a new API that featured two tech-
niques: First, it batches syscall processing across multiple
file descriptors (similarly to FlexSC [59]) to amortize their
cost over a larger number of bytes. This is particularly
effective for transactional workloads with small messages.
Second, it introduces new lightweight sockets, which relax
some semantics of regular sockets that limit multi-core
scalability, such as assigning the lowest available integer
to number a new descriptor (which requires a global lock

for the entire process). Not surprisingly, this approach
provides a smaller performance improvement compared
to the kernel-bypass approaches that dedicate NICs to
applications [29].

2.3 TCP Maintenance
Originally, TCP was a relatively simple protocol [48]
with few extensions [28, 38], and the implementation and
maintenance cost was very manageable. In addition to im-
plementations by general-purpose OS vendors, many more
specialized TCP implementations were undertaken to sup-
port purpose-specific appliances, such as middleboxes [25,
40], storage servers [15] and embedded systems [34].

Over the years, maintaining a TCP implementation has
become much more challenging. TCP is being improved
at a more rapid pace than ever, in terms of performance [1,
3, 39, 49, 57], security [5, 13, 32, 44, 51], as well as
more substantial extensions such as Multipath TCP [18].
In addition to the sheer number of TCP improvements
that stacks need to implement in order to remain compet-
itive in terms of performance, security and features, the
improvements themselves are becoming more complex.
They need to take the realities of the modern Internet
into account, such as the need for correct operation in the
presence of a wide variety of middleboxes or the scarcity
of available option space in the TCP header [5, 49, 50].

Consequently, the set of “modern” TCP stacks that
offer the best currently achievable performance, secu-
rity and features has been shrinking, and at the moment
consists mostly of the large general-purpose OS stacks
with a sizable developer base and interest. Many other
TCP implementations have fallen behind, and it is very
uncertain whether they will ever catch up. This is espe-
cially regrettable for stacks that underlie many deployed
middleboxes, because they in turn limit future Internet evo-
lution [25, 40]. The situation is unfortunately similar for
many of the recent kernel-bypass stacks (see Section 2.1),
none of which shows signs of very active maintenance.
Networking products that wish to take advantage of the
performance benefits of kernel-bypass solutions thus run
the risk of adopting a stack that already is not competitive
in terms of features, and may not not remain competitive
in terms of performance in the future.

StackMap mitigates this risk, by offering similar perfor-
mance benefits to kernel-bypass approaches while using
the OS stack, which has proven to see active maintenance
and regular updates.

2.4 Other Related Work
Some other pieces of relevant related work exist, in addi-
tion to the general areas discussed above.

In the area of latency analyses of network stacks, [33]
analyses the latency breakdown of memcached, in order to

3

46 2016 USENIX Annual Technical Conference USENIX Association

understand how to fulfill the quality-of-service objectives
of multiple workloads. Their measurements show much
higher processing delays than ours, and their focus is not
on improving the OS network service. Also, [4] reports
a one-way latency of 24 µs with Linux TCP/IP, which
is twice what we measure in Section 3. Our results are
similar to those reported in [47], taking into account that
they use UDP instead of TCP.

In the area of API extensions, many UNIX variants
(including Linux) implement a sendfile() syscall that
transmits a regular file from the buffer cache directly into
a TCP socket without a memory copy or multiple con-
text switches. The Linux sendmmsg() and recvmmsg()
syscalls support passing multiple messages to and from
the kernel at a time. However, they do not allow batching
across different descriptors. In late 2015, the Linux kernel
connection multiplexer (KCM) [7] was proposed. It en-
ables applications to use message-based interfaces, such
as sendmmsg(), over TCP and allows syscall batching
across multiple TCP connections. Linux busy poll sock-
ets [8] permit to directly poll a network device to avoid
interrupts when receiving packets. Windows IOCP [42],
the Linux epoll and BSD kqueue families of syscalls
are event multiplexing APIs. All of these approaches are
limited by needing to remain compatible with the seman-
tics established by the socket API and to arbitrate NIC
access, which incurs significant overheads (see Section 3).

Kernel-bypass network stacks introduce other tech-
niques to optimize some TCP code paths, such as sorting
TCP connections by timeout order or pre-allocating TCP
protocol control blocks for fast connection setup. None of
these techniques are inherently limited to kernel-bypass
approaches, and StackMap will immediately gain their
benefits once the kernel stack implements them. The same
is true for Fastsocket [35], a recent optimization of the
Linux stack for multi-core scalability—when Fastsocket
functionality is present in the kernel, applications using
StackMap will immediately gain its benefits.

3 Design Space Analysis

Unless a network hop becomes the bottleneck, the end-to-
end latency of a transactional workload depends on two
main factors: (1) the processing delays of the network
stack and the application, and (2) the queueing latency,
particularly in the presence of concurrent requests. This
section analyzes these latency factors for the Linux kernel
network stack, in order to determine the feasibility of using
the kernel TCP/IP implementation for low-latency net-
working and to identify any challenges such an architecture
must address.

Layer Component Time [µs]

Kernel

Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket enqueue 0.06

Application

epoll_wait() syscall 0.15
read() syscall 0.33
Generate “OK” reply 0.48
write() syscall 0.22

Kernel
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Total 3.75

Table 1: Request processing overheads at a server.

3.1 TCP/IP Processing Cost
We start by analyzing a single, short-message request-
response exchange (96 B “GET”, 127 B “OK”) between
two Linux machines connected with 10 G Ethernet NICs
(see Section 5 for configuration details). We use Sys-
temtap [14] to measure processing delays in particular
components of the server.

Table 1 shows the processing overheads measured at the
various layers during this experiment. The key insight is
that TCP/IP processing takes 0.72 µs on receive (Ethernet
& IPv4 RX and TCP RX) and 0.76 µs on transmit (TCP
TX and IPv4 & Ethernet TX). The combined overhead
of 1.48 µs is not a large factor of the overall processing
delay of 3.75 µs, and of the end-to-end one-way latency of
9.75 µs (half of the round-trip latency reported by wrk).

The significant difference of 6 µs between the end-
to-end one-way latency and the processing delay of the
server is due to link, PCIe bus and switch latencies (1.15 µs
combined, one-way), and some indirection between the
hardware and software, which is unavoidable even for
kernel-bypass TCP/IPs. We confirm this finding by run-
ning a netmap-based ping-pong application between the
same machines and NICs, which avoids most of the
network-stack and application processing. The result is a
one-way latency of 5.77 µs, which is reasonably similar
to the 6 µs measured before.

Data copies do not appear to cause major overheads for
short-message transactions. In this experiment, copying
data only takes 0.01 and 0.06 µs for 127 and 1408 B of
data, respectively (not shown in Table 1).

3.2 Latencies for Concurrent Connections
A busy server continually serves a large number of requests
on many different TCP connections; with clients using po-
tentially multiple parallel connections to the server to avoid
head-of-line blocking. For new data arriving on connec-

4

USENIX Association 2016 USENIX Annual Technical Conference 47

�
���
���
���
���
���

� �� �� �� �� ���

��
���
��
��
��

���������� ��� �����������

����� ����� �����
����� ������

(a) End-to-end latency.

�
��
��
��
��
���

� �� �� �� �� ���

��
���
���
���

���

���������� ��� �����������

���� ���� ������

(b) Descriptors returned by epoll_wait().

�
�
�
�
�
�
�

� �� �� �� �� ���

��
���
��
��
��

���������� ����������� ���

���� ���� ������

(c) Processing delay of epoll_wait().

Figure 1: Latency analysis of concurrent TCP connections.

tions (i.e., new client requests), the kernel needs to mark
the corresponding file descriptor as “ready”. Applications
typically run an event loop on each CPU core around
an event multiplexing syscall such as epoll_wait() to
identify any “ready” connections and serve the new batch
of requests that has arrived on them. During application
processing of one such batch of requests, queuing delays
can occur in two ways: First, an application iterates over
ready descriptors one after the other, serving their requests.
When many requests arrive on many connections, requests
on connections iterated over at the end of the cycle incur
significant delays. Second, new requests arriving while
an application is processing the current batch are queued
in the kernel until the next cycle. This behavior increases
both the mean and tail end-to-end latencies during such
an event processing cycle, proportional to the number of
descriptors processed during the cycle.

In order to demonstrate this effect and quantify its
latency impact, we repeat the measurement from Sec-
tion 3.1, but generate concurrent requests on several TCP
connections. Figure 1a plots the mean (solid lines) and
99th-percentile (dashed lines) end-to-end latencies, as mea-
sured by the client. Figure 1b shows the measured mean
number of descriptors returned by epoll_wait() at the
server (with standard deviations). There is a clear corre-
lation between the end-to-end latencies and the number
of file descriptors returned, as the number of concurrent
connections increases.

Concurrent connections also increase the processing
delay of the epoll_wait() syscall, which iterates over
all the descriptors registered in the kernel. Figure 1c
quantifies this cost for different numbers of registered
descriptors, using Systemtap to measure time spent in
sp_send_events_proc(). The cost to iterate over ready
descriptors is negligible when the number of registered
descriptors is small. However, it reaches about 1 µs for 20
descriptors, and almost 4 µs for 100 descriptors, which is
substantial.

Note that the processing delay for one registered de-
scriptor in Figure 1c is slightly higher than that reported
for epoll_wait() in Table 1, because the numbers
reported there subtract the Systemtap overhead from
the result (estimated by measuring the extremely cheap
(tcp_rcv_space_adjust() function).

3.3 Takeaway

It is clear that compatibility with the socket API comes at
a significant cost, including the overheads of read() and
write() (Table 1) as well as epoll_wait() (Figure 1c).
Packet I/O also introduces significant overheads (Driver
TX and RX in Table 1), and more performance is lost due
to the inability of batching transmissions over multiple
TCP connections. With concurrent TCP connections, the
overheads associated with request processing result in
long average and tail latencies due to queueing delays, on
the order of tens to hundreds of µs (Figure 1a).

4 StackMap Design

The discussion in the last two sections leads us to three
starting points. First, there are a number of existing tech-
niques to improve network stack efficiency. StackMap
should incorporate as many of them as possible. Sec-
ond, it must use an actively-maintained, modern TCP/IP
implementation, i.e., one of the main server OS stacks.
And StackMap must use this stack in a way that lets it im-
mediately benefit from future improvements to that code,
without the need to manually port source code changes.
This is important, so that applications using StackMap are
not stuck with an outdated stack. Finally, while TCP/IP
protocol processing in an OS stack is relatively cheap,
StackMap must improve other overheads, most notably
ones related to the API and packet I/O, in order to sig-
nificantly reduce queueing latency in the presence of
concurrent TCP connections.

4.1 StackMap Design Principles

StackMap dedicates NICs to privileged applications
through a new API. We believe this is a reasonable princi-
ple for today’s high-performance systems, and the same
approach is already followed by kernel-bypass approaches
(netmap, DPDK). However, unlike such kernel-bypass ap-
proaches, StackMap also “maps” the dedicated NICs into
the kernel TCP/IP stack. This key differentiator results in
key benefits, because many overheads of the traditional
socket API and buffer management can be avoided.

5

48 2016 USENIX Annual Technical Conference USENIX Association

A second design principle is retaining isolation: al-
though StackMap assumes that applications are privileged
(they see all traffic on dedicated NICs), it must still pro-
tect the OS and any other applications when a privileged
StackMap application crashes. StackMap inherits most of
its protection mechanisms from netmap, which it is based
on, including protection of NIC registers and exclusive
ring buffer operations between the kernel and user space.
We discuss the limitations posed by our current prototype
in Section 6.

A third design principle is backwards compatibility:
when a NIC is dedicated to a StackMap application, reg-
ular applications must remain able to use other NICs.
StackMap achieves this by retaining part of the socket API
for control plane operations. Since today’s commodity
OSes mostly use monolithic kernels, StackMap must share
a single network stack instance across all NICs, whether
they are dedicated to privileged applications or shared
by regular applications. One implication of this design
principle is that it makes a complete shared-nothing design
difficult, i.e., some coordination remains required. How-
ever, Section 5 shows that this coordination overhead is
small. Additionally, the OS stack is increasingly being dis-
aggregated into shared objects, such as accept queues, and
StackMap will benefit from such improvements directly,
further improving future performance.

4.2 StackMap Architecture

The StackMap design centers around combining a fast
packet I/O framework with the OS TCP/IP stack, to give
application fast message-oriented communication over
TCP connections, which has been crucial for the applica-
tions like memcached, web servers and content delivery
network (CDN) servers, to name a few [7, 22]. Thus, in
addition to dedicating NICs to privileged applications,
StackMap must also enable the kernel stack to apply its
regular TCP/IP processing to those NICs. To this end,
StackMap extends the netmap framework to allow it to
efficiently integrate with the OS stack.

DPDK is not a suitable basis for StackMap, because
it executes its NIC drivers entirely in user space. It is
difficult to efficiently have such user-space NIC drivers
call into the kernel network stack.

Although netmap already supports communicating with
the OS stack [54], its current method has significant
overheads, because it is unoptimized and only focuses on
applications that use the socket API, which as we have
shown to have undesirable overheads.

Figure 2 illustrates the StackMap architecture.
StackMap (i) mediates traffic between a dedicated NIC
and a privileged application through a slightly extended
version of the netmap API; (ii) uses the kernel TCP/IP
stack to process incoming TCP packets and send outgoing

StackMap

StackMap App.

Us
er

Ke
rn

el

Socket API

TCP/IP/Ethernet

netmap
Framework/API

Stack port

OS Packet I/O

NIC port

Regular App.

Drivers, NICs NIC ringsNIC rings

Data path
Control path

rings/
slots

Buffer pool

Figure 2: StackMap architecture overview.

application data; (iii) and uses the regular socket API for
control, to both share the protocol/port-number space with
regular applications and to present a consistent picture of
clients and connections to the kernel.

For the data path API, the goal of StackMap is to
combine the efficiency, generality and security of the
netmap packet I/O framework with the full-fledged kernel
TCP/IP implementation, to give applications a way to
send and receive messages over TCP with much lower
overheads compared to the socket API.

These performance benefits will require an application
to more carefully manage and segment the data it is
handling. However, we believe that this is an acceptable
trade-off, at least for transactional applications that care
about message latencies rather than bulk throughput. In
addition, because StackMap retains the socket API for
control purposes, an application can also still use the
standard data plane syscalls e.g., read() and write()
(with the usual associated overheads).

4.3 Netmap Overview

Netmap [54] maintains several pools of uniquely-indexed,
pre-allocated packet buffers inside the kernel. Some of
these buffers are referenced by slots, which are contained
in rings. A set of rings forms a port. A NIC port maps
its rings to NIC hardware rings for direct packet buffer
access (Figure 2). A pipe port provides a zero-copy point-
to-point IPC channel [53]; a VALE port is a virtual NIC of
a VALE/mSwitch [23, 56] software switch instance (not
shown in Figure 2).

The netmap API provides a common interface to all
types of ports. It defines methods to manipulate rings and
uses poll() and ioctl() syscalls for synchronization
with the kernel, whose backend performs port-specific
operations, e.g., device I/O for NIC ports or packet for-
warding for VALE ports. Netmap buffers that are part
of the same pool are interchangeable between slots, even
across different rings or ports, which enables zero-copy
operations.

6

USENIX Association 2016 USENIX Annual Technical Conference 49

4
5
6
7

0
1
2
3

TCP/IP/
Ethernet

head tail

head

tail

Stack port
RX ring

NIC port
RX ring

Buf. index

Buffer pool

(5)

(2)

(1)

(3)

(4)

(6)

(7)

0
1
2
3
4
5
6
7
8
9

Figure 3: TCP in-order and out-of-order reception. Ini-
tially, buffers 0–7 are linked to either of the rings, and 8–9
are extra buffers.

When a netmap client (i.e., an application) registers a
port, netmap exposes the corresponding rings by mapping
them into its address space. Rings can be manipulated via
head and tail pointers, which indicate the beginning and
end of the user-owned region. A client fills a TX ring with
new packets from head and advances it accordingly. On
the next synchronization syscall, netmap transmits packets
from the original head to the current head. During a
packet reception syscall, netmap places new packets onto
the ring between head and tail; the client then consumes
these packets by traversing the ring from head to tail, again
advancing the head accordingly.

4.4 StackMap Data Path
StackMap implements a new type of netmap port, called
a stack port. A stack port runs in cooperation with a
NIC port, and allocates packet buffers for its rings from
the same pool. StackMap also uses buffers that are not
linked to any slot in the same pool as the NIC and stack
port. These buffers allow StackMap to retain packets
in netmap buffers, but outside NIC or the stack port
rings, which prevents them from being processed by ring
operations. This is useful, for example, to store packets
that may require retransmission or to maintain data that
was received out-of-order. To utilize multiple CPU cores
efficiently, for each core, one stack port ring and NIC port
ring should be configured.

A ring belonging to a stack port can handle multiple
TCP connections, which are exposed to the application
through regular descriptors. This is essential for syscall
and packet I/O batching over these connections. Thus,
an application (on TX) or the kernel (on RX) indicates a
corresponding connection or file descriptor for each slot.
We later explain how this can be used by an application
to process an entire RX ring for a particular descriptor,
rather than looking up it for every packet.

Stack ports implement their own netmap syscall back-
end, so they can provide the netmap API to an application.
Their TX and RX backends start StackMap data path
processing. When a StackMap application performs a
syscall for RX, the stack port backend first brings new
packets into an RX ring of its NIC port, then instructs the

OS stack to run them through its RX path. StackMap then
moves any packets that the OS stack identifies as in-order
TCP segments for their respective connections into an
RX ring of its stack port. Out-of-order TCP segments
are moved into the extra buffer space; They are delivered
to the stack port RX ring when the out-of-order hole is
filled. All buffer movements are performed by swapping
indices, i.e., zero-copy. Figure 3 illustrates these steps
using two packets, where the second one arrives out-of-
order. Step (1) and (5) process a packet in the TCP/IP
stack. StackMap acts as a netmap “client” for a NIC
port, thereby advancing the head pointer of its RX ring to
consume packets. Conversely, StackMap acts as a netmap
“backend” for a stack port. It thus advances the tail pointer
of its RX ring when it puts new data into buffers.

The TX path is the opposite. When an application
wishes to transmit new data located in buffers of a stack
port TX ring, StackMap pushes these buffers through the
TX path of the OS stack (see Table 1 for the overheads
of those steps; in TCP TX StackMap skips packet buffer
allocation, and so is somewhat faster). StackMap then
intercepts the same packets after the Ethernet TX process-
ing and moves the buffers into a TX ring of the NIC port
(again zero-copy by swapping buffer indices). StackMap
then advances the head of the NIC port ring and the old
head of the stack port ring and triggers the NIC port for
transmission. Since the OS stack would normally keep
these TCP packets in its retransmission queue, StackMap
unlinks the packet buffers after transmission.

If the size of data in a given TCP connection exceeds
the available window of the respective connection i.e.,
the minimum of the advertised receive window and the
congestion window computed by the TCP stack, StackMap
swaps the excess buffers out of the stack port TX ring, in
order to avoid stalling the transmission on other connec-
tions. Any such buffers are moved back to the NIC port
ring during the next operation.

To pass netmap buffers to the OS stack, a stack port
pre-allocates a persistent sk_buff for each netmap buffer,
which is the internal OS packet representation structure.
This approach allows StackMap to avoid dynamic alloca-
tion and deallocation of sk_buffs, which has been shown
to significantly reduce packet processing overheads [23].

In addition to being clocked by the stream of inbound
acknowledgments (ACKs), the TCP protocol also has some
inherent timers, e.g., the retransmission timeout (RTO).
StackMap processes any pending TCP timer events only on
the TX or RX syscalls. This preserves the synchronization
model of the netmap API between the kernel and user
space, protecting buffers from concurrent access by a
timer handler and user space code.

7

50 2016 USENIX Annual Technical Conference USENIX Association

1 struct sockaddr_in sin = { AF_INET, "10.0.0.1", INADDR_ANY };
2 int sd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
3 bind(sd, &sin);
4 // prefix “stack” opens stack port for given interface
5 struct nm_desc ∗nmd = nm_open("stack:ix0");
6 connect(sd, dst_addr); /∗ non-blocking ∗/
7 // transmit using ring 0 only, for this example
8 struct netmap_ring ∗ring = NETMAP_TXRING(nmd->nifp, 0);
9 uint32_t cur = ring->cur;

10 while (app_has_data && cur != ring->tail) {
11 struct netmap_slot ∗slot = &ring->slot[cur];
12 char ∗buf = STACKMAP_BUF(ring, slot->buf_index);
13 // place payload in buf, then
14 slot->fd = sd;
15 cur = nm_ring_next(ring, cur);
16 }
17 ring->head = ring->cur = cur;
18 ioctl(nmd->fd, NIOCTXSYNC);

Figure 4: Initiating a connection and sending data.

4.5 StackMap API

In order to share the kernel TCP/IP stack with regular
applications, StackMap retains the socket API for control,
including, e.g., the socket(), bind(), listen() and
accept() syscalls. To reduce connection setup costs,
StackMap optionally can perform accept() in the kernel
before returning to user space, similar to MegaPipe [22].

The StackMap data path API has been designed to re-
semble the netmap API, except for a few extensions. One
is the STACKMAP_BUF(slot_idx, ring) macro, which
extends the netmap NETMAP_BUF(slot_idx, ring)
macro and returns a pointer to the beginning of the pay-
load data in a packet buffer. STACKMAP_BUF allows an
application to easily write and read payload data to and
from buffers, skipping the packet headers (which on TX
are filled in by the kernel).

On TX, the application must indicate the descriptor for
each slot to be transmitted, so that the OS stack can identify
the respective TCP connections. On RX, the OS stack
marks the slots accordingly, so that the application can
identify which connection the data belongs to. Figure 4
illustrates use of the StackMap API for opening a new
TCP connection and sending data in C-like pseudo code.

On RX, an application can consume data by simply
traversing the RX ring of a stack port. However, this
simple approach often does not integrate naturally into
existing applications, because they are written to iter-
ate over descriptors or connections, rather than iterating
over data in packet arrival order. Unfortunately, using
the epoll_wait() syscall is not an option because of
significant overheads shown in Section 3.2.

StackMap thus introduces a new API that allows ap-
plications to consume data more naturally, ordered by
descriptor. It is based on constructing a list of ready file
descriptors during network stack processing, as well as
grouping buffers for each descriptor, and by exploiting the
opportunity that the application synchronously calls into
the kernel network stack.

fd3 fd4fd6 fd4fd4fd3fd6
2536

0123456

Next slot

Slot index

0
1

3
5

4 6

head tail
Stack port RX ring Scratchpad

[fd3]
[fd4]

[fd6]
[fd5]

Descriptor Array

fd3
fd4

fd6

[0]
[1]
[2]

Figure 5: Algorithm to build an array of ready descriptors.

Figure 5 illustrates this algorithm with an example.
Here, the OS stack has identified packets 0, 2 and 3 to
belong to file descriptor 4 (fd4), packets 1 and 5 belong to
fd3, and packets 4 and 6 to fd6. Note that descriptors are
guaranteed to be unique per process. Each slot maintains
a “next slot” index that points to the next slot of the same
descriptor. StackMap uses a scratchpad table indexed
by descriptor to maintain the head and tail slot index for
each. The tail is used by the OS stack to append new
data to a particular descriptor, by setting the “next slot”
of the last packet to this descriptor, without having to
traverse the ring. The head is used by the application to
find the first packet for a particular descriptor, also without
having to traverse the ring. This algorithm is inspired by
mSwitch [23], and we expect similarly high performance
and scalability.

The scratchpad is a process-wide data structure which
requires 32 B (for two 16 B buffer indices) per entry,
and usually holds 1024 entries (the default per-process
maximum number of descriptors in Linux). We do not
consider the resulting size of 32 KB problematic on today’s
systems even if it was extended by one or two orders of
magnitude, but it would be possible to reduce this further
by dynamically managing the scratchpad (which would
incur some modest overhead).

When the first data for a particular descriptor is ap-
pended, StackMap also places the descriptor into a de-
scriptor array (see Figure 5) that is exposed to the applica-
tion. The application uses this array very similarly to how
it would use the array returned by epoll_wait(), but
without incurring the overhead of that syscall. Figure 6
illustrates how an application receives data and traverses
the RX ring by descriptor.

The current API allows an application to traverse an
RX ring both in packet-arrival order (i.e., without using
the descriptor array) and in descriptor order. In the future,
StackMap may sort buffers in descriptor order when
moving them into the stack port RX ring. This would
remove the ability to traverse in packet order, but greatly
simplifies the API and eliminates the need for exporting
the descriptor array and scratchpad to user space.

4.6 StackMap Implementation

In order to validate the StackMap architecture, we imple-
mented it in the Linux 4.2 kernel with netmap support.

8

USENIX Association 2016 USENIX Annual Technical Conference 51

1 // this example reuses (and omits) some of the definitions from Figure 4
2 ioctl(nmd->fd, NIOCRXSYNC);
3 uint32_t cur = ring->cur;
4 uint32_t count = 0;
5 for (uint32_t i = 0; i < nfds; i++) {
6 const int fd = fdarray[i];
7 for (uint32_t slot_idx = scratchpad[fd]; slot_idx != FD_NULL) {
8 struct netmap_slot ∗slot = &ring->slots[slot_idx];
9 char ∗buf = STACKMAP_BUF(slot->buf, ring);

10 // consume data in buf
11 slot_idx = slot->next_slot;
12 ++count;
13 }
14 }
15 // we have consumed all the data
16 cur = cur + count;
17 if (cur > ring->num_slots)
18 cur -= ring->num_slots;
19 ring->cur = ring->head = cur;

Figure 6: Traversing the RX ring by descriptor on receive.

To pass packets from a NIC port RX ring to the OS
stack, StackMap calls netif_receive_skb(), and in-
tercepts packets after this function. To pass packets
from a stack port TX ring to the OS stack, StackMap
calls __tcp_push_pending_frames() after executing
some code duplicated from static functions in tcp.c.
Packetized data is intercepted at the driver transmit rou-
tine (ndo_start_xmit() callback). Also, StackMap
modifies the sk_buff destructor, TCP timer handlers
and connection setup routines in Linux, and implements
StackMap-specific extensions to netmap, such as sk_buff
pre-allocation and APIs.

All in all, StackMap modifies 56 LoC (lines of code) in
the netmap code, and adds 2269 LoC in a new file. In the
Linux kernel, 221 LoC are added and 7 LoC are removed
across 14 existing and 2 new files.

5 Experimental Evaluation

This section presents the results of a series of experiments
that analyze the latency and throughput that StackMap
achieves in comparison to the kernel stack used via the
socket API, in order to validate our design decisions. As
discussed in Section 3, StackMap focuses on improving
transactional workloads with small messages and many
concurrent TCP connections.

Sections 5.2 and 5.3 measure by how much StackMap
reduces processing delays and queueing latencies. The
experiments use a minimal HTTP server, to highlight the
performance differences between StackMap and the Linux
kernel.

Sections 5.4 and 5.5 measure how well StackMap per-
forms for a realistic application (memcached), and how
it competes against a Seastar [6], a highly optimized,
production-quality user-space TCP/IP stack for DPDK.

5.1 Testbed Setup

The experiments use two identical Fujitsu PRIMERGY
RX300 servers equipped with a 10-core Intel Xeon E5-
2680 v2 CPU clocked at 2.8 GHz (3.6 GHz with Turbo
Boost) and 64 GB of RAM. One machine acts as the server,
the other as the client; they are connected via an Arista
DCS-7050QX switch and 10 Gbit Ethernet NICs using
the Intel 82599ES chipset. The multi-core experiments in
Section 5.5 use two additional, similar machines connected
to the same switch, to saturate the server.

The server machine runs either an unmodified Linux 4.2
kernel, our StackMap implementation (see Section 4.6)
or the Seastar user-level TCP/IP stack. For all experi-
ments involving HTTP workloads, the server executes
a minimal HTTP server that uses either the socket or
StackMap APIs. In the former case, the HTTP server
runs an epoll_wait() event loop and iterates over the
returned descriptors. For each returned descriptor, it
(1) fetches events using epoll_wait(), (2) read()s the
client request, (3) matches the first four bytes against
“GET␣”, (4) copies a pre-generated, static HTTP response
into a response buffer and (5) write()s it to the descrip-
tor. In the latter case (using the StackMap API), the
HTTP server runs an ioctl() event loop, as described
in Section 4.5 with the same application logic i.e., (3) and
(4). For all experiments involving memcached workloads,
the server runs a memcached instance. For Linux, we use
memcached [41] version 1.4.24, and for StackMap, we
ported the same version of it, which required 1151 LoC
of modifications.

The client always runs a standard Linux 4.2 kernel.
To saturate the HTTP server, it runs the wrk [19] HTTP
benchmark tool. wrk initiates a given number of TCP
connections and continuously sends HTTP GETs over
them, measuring the time until a corresponding HTTP
OK is received. Each connection has a single outstanding
HTTP GET at any given time (wrk does not pipeline);
open connections are reused for future requests. In the
experiments involving memcached, the client executes the
memaslap [36] tool.

Except for Section 5.5, the server uses only a single
CPU core to serve requests, because in these first experi-
ments, we are interested in how well StackMap solves the
problems described in Section 3. The client uses all its 10
CPU cores with receive-side-scaling (RSS) to efficiently
steer traffic towards them. Unless otherwise stated, the
experiments enable all hardware/software offload facilities
for the experiments that use the socket API. For StackMap,
such offloads are disabled, because netmap at the moment
does not support them. Once such support is added to
netmap, we expect StackMap to directly benefit from these
improvements.

9

52 2016 USENIX Annual Technical Conference USENIX Association

Configuration 64 B 512 B 1280 B memcached

Linux 32.7 46.4 68.4 52
σ = 5.0 σ = 3.7 σ = 4.1 σ = 9.7

Linux-NIM 19.5 21.5 23.7 26
σ = 2.5 σ = 2.8 σ = 3.2 σ = 7.5

StackMap 18.6 20.6 22.7 23
σ = 2.8 σ = 2.9 σ = 3.2 σ = 5.9

Table 2: Mean roundtrip latencies in µs with standard
deviations σ for different response message sizes in a
granularity wrk or memaslap reports.

5.2 Processing Delay
The first experiment highlights the baseline latency of
StackMap, i.e., for a single message exchange without
concurrency and therefore without any queueing.

Table 2 shows the mean latencies and their standard
deviations for single request-response exchanges as mea-
sured by wrk, as well as with the memaslap memcached
client. With wrk, the request message is always 96 B,
and the response size varies between 64 B, 512 B and
1280 B, plus a 63 to 65 B HTTP header in each case. The
memcached workload is described in Section 5.4. For the
regular Linux stack, Table 2 reports two measurements.
“Linux”, where the NIC interrupt moderation period has
been set to 1 µs (which is the Linux default), and “Linux-
NIM”, where interrupt moderation has been disabled. The
“Linux-NIM” 64 B response size measurements were also
used as the basis for the latency drill-down in Table 1 in
Section 3.1.

StackMap achieves latencies that are better than Linux-
NIM by 0.9 to 1 µs, which may seem minor. However, this
is in fact a significant result, because both StackMap and
Linux share most of the network protocol logic (Ethernet
& IPv4 RX, TCP RX, TCP TX and IPv4 & Ethernet TX in
Table 1) as well as the application logic (to generate “OK”
replies). The StackMap latency improvement is a result of
replacing the driver RX and TX operations with netmap,
eliminating the socket enqueue and epoll_wait() oper-
ations, and replacing read() and write() with shared
memory accesses by bypassing the vfs layer. Since these
replaced or eliminated parts take 1.79 µs, this result in fact
means that StackMap eliminates half of this processing
overhead.

Note that for this experiment, busy-waiting on the NIC
should not contribute to the latency reduction. Since
Linux-NIM busy-waits on epoll_wait() to prevent its
thread from sleeping and to avoid the thread wakeup la-
tency, handling an interrupt (entirely done on the kernel
stack of the current thread) is very cheap. We confirmed
this by running netmap between the same machines, using
busy-wait on either the NIC or a epoll_wait() descrip-
tor. The round-trip latencies are 11.70 and 11.53 µs,

respectively. This demonstrates that noticing a new packet
by handling an interrupt in an active thread is slightly
cheaper than through an explicit device access.

Also note that for Linux-NIM and StackMap, the latency
differences between different message sizes do not result
from data copies at the server or client, but are due to two
10 Gbit Ethernet and four 16 Gbit PCIe bus traversals for
each of the packets, which approximately translates into
4 µs for a 1.2 KB size difference.

The “Linux” configuration is used in the rest of this
section, and was used for experiments in Section 3.2.
While this configuration exhibits higher latencies for a
small number of concurrent connections, it achieves 28
to 78 % higher throughput and 22 to 44 % lower average
latencies than Linux-NIM with 40 or more concurrent
connections (not shown in the graphs).

5.3 Queueing Latency
This section evaluates by how much StackMap can reduce
transaction latencies in the presence of concurrent connec-
tions (i.e., transactions) compared to a system that uses
the regular socket API and packet I/O methods (which
were identified as inefficient in Sections 3.1 and 3.2). Re-
call that larger numbers of registered descriptors increase
latencies because of queueing, particularly tail latencies.

The top row of graphs in Figure 7 compares the mean
and 99th-percentile latencies of StackMap and Linux.
The middle row compares the mean numbers of ready
descriptors returned during each event processing cycle
(ioctl() in StackMap and epoll_wait() in Linux),
together with their standard deviations. The bottom row
shows aggregate throughputs across all connections, to
validate that the improved latency does not stem from a
reduction in throughput. Each column shows results for
the same response size (64, 512 and 1280 B).

The results in Figure 7 match our expectations. Because
StackMap reduces per-message processing delays, it can
serve the same number of descriptors at a lower latency
than Linux. This faster turnaround time leads to fewer
descriptors that need to queue for the next round of event
processing, as reflected by the lower numbers of returned
ready descriptors for StackMap (middle row). As a result,
StackMap increasingly outperforms Linux as the number
of concurrent connections increases.

5.4 Memcached Performance
After validating that StackMap outperforms Linux for a
simple application, this section evaluates how StackMap
performs for a realistic application. We also compare
StackMap against memcached on Seastar [6], a highly-
optimized user-space TCP/IP stack for DPDK.

The experiment uses a default workload of memaslap,
which comprises of 10 % “set” and 90 % “get” operations

10

USENIX Association 2016 USENIX Annual Technical Conference 53

�
���
���
���
���
���

� �� �� �� �� ���

��
���
��
��
��

���������� ��� �����������

����� ����� �����
����� ������
�������� ����� �����
�������� ������

�
���
���
���
���
���

� �� �� �� �� ���

��
���
��
��
��

���������� ��� �����������
�

���
���
���
���
���

� �� �� �� �� ���

��
���
��
��
��

���������� ��� �����������

�
��
��
��
��
���

� �� �� �� �� ���

��
���
���
���

���

���������� ��� �����������

�����
��������

�
��
��
��
��
���

� �� �� �� �� ���

��
���
���
���

���

���������� ��� �����������
�
��
��
��
��
���

� �� �� �� �� ���

��
���
���
���

���

���������� ��� �����������

�
�
�
�
�

� �� �� �� �� ���

��
���
��
��
��
��
���

���������� ��� �����������

�����
��������

�
�
�
�
�

� �� �� �� �� ���

��
���
��
��
��
��
���

���������� ��� �����������
�
�
�
�
�

� �� �� �� �� ���

��
���
��
��
��
��
���

���������� ��� �����������
64 B Response Size 512 B Response Size 1280 B Response Size

Figure 7: Mean and 99th percentile round-trip latencies (top row), mean number of ready descriptors in each event
processing cycle (middle row) and throughputs (bottom row), with the number of concurrent TCP connections (horizontal
axis) for different response sizes (64, 512 and 1280 B).

�
���
���
���
���

� �� �� �� �� ���

��
���
��
��
��

���������� ��� �����������

�����
�������
��������

�
�
�
�
�

� �� �� �� �� ���

��
���
��
��
��
��
���

���������� ��� �����������

�����
�������
��������

Figure 8: Memcached latency and throughput results.

on 1024 B objects. While still simple, memcached has a
slightly more complex application logic than the simple
HTTP server we used for the previous benchmarks, and
therefore exhibits higher processing delays (see Table 2).

Figure 8 shows mean latencies with standard deviations,
as well as aggregate throughputs. StackMap achieves
significantly higher throughputs and lower latencies than
Linux, as well as a much smaller latency variance. This is
similar to observations earlier in this section. Surprisingly,
StackMap also slightly outperforms Seastar.

5.5 Memcached Multicore Scalability
Finally, we evaluate multi-core scalability with StackMap,
again using memcached as an application, and compares
the results against Linux and Seastar. The object size for

�
�
�
�
�

� � � � �

��
���
��
��
��
��
���

��� ����� ���

�����
�������
��������
�������� ������

Figure 9: Memcached multi-core throughput.

this experiment is 64 B to prevent the network from becom-
ing saturated. In order to investigate the overheads and
scalability of memcached itself, we also compare against
the simple HTTP server used for our other measurements,
configured to also serve 64 B messages.

Figure 9 shows aggregate throughputs when using a
different number of CPU cores to serve the workload. Up
to six cores used, the relative performance differences
between Linux, Seastar and StackMap remain similar,
with Linux being slowest, and StackMap slightly outper-
forming Seastar. However, Seastar begins to outperform
the others at eight cores. StackMap and Linux retain their
relative performance difference. This is to be expected,
because the current StackMap implementation does not
yet optimize locking when the Linux TCP/IP operates in
StackMap mode, nor has memcached been modified to
remove such locks when used with StackMap. In contrast,
Seastar adopts a shared-nothing design, and memcached
on top of Seastar also has been highly optimized for
multi-core scalability. The inclusion of the simple HTTP
server results for StackMap attempt to illustrate its scal-

11

54 2016 USENIX Annual Technical Conference USENIX Association

ability potential (and also illustrate the need for future
improvements to StackMap).

6 Limitations and Future Work

This section briefly discusses limitations of the StackMap
architecture and prototype implementation, as well as
potential future improvements.

6.1 Misbehaving Applications
The OS packet representation structure (sk_buff or mbuf)
consists of metadata and a pointer to a data buffer, whereas
StackMap exposes only data buffers to its applications.
However, Linux also stores some metadata at the end of
a data buffer (skb_shared_info), which includes infor-
mation to share a data buffer between multiple sk_buffs
and pointers to additional data buffers [9].

Thus, system memory could leak—or the system may
crash—if a misbehaving StackMap application modifies
this metadata. One possible solution is to link a netmap
buffer as an additional buffer, because Linux stores no
metadata for those, and to only use a primary data buffer to
store skb_shared_info. A similar method would also
work for FreeBSD, using external storage associated with
an mbuf. We will explore such solutions in the future.

StackMap also increases the risk of the network stack
malfunction when a StackMap application misuses the
netmap API or it modifies buffers owned by the kernel
(indicated by the head and tail pointers [53]). In the
original netmap, kernel-owned buffers are only touched by
the netmap backend, which is robust against the case where
an application modifies data out of turn. However, with
StackMap, these kernel-owned buffers are also processed
and referred to by the kernel TCP/IP stack. Therefore, if
such buffers are modified by the application out of turn
(e.g., modifying the sequence number of a sent packet that
is referred to from the retransmission queue), the TCP/IP
implementation could fall into inconsistent state.

Possible solutions to this issue include providing a
wrapper API to prevent the application from accessing the
kernel-owned buffers, making the kernel create a private
copy of data and making the kernel its buffers read-only.
Since any of these mitigation methods comes at some cost,
we leave their investigation as future work.

6.2 Support for Other Protocols
Although the StackMap prototype implementation sup-
ports only TCP and IPv4, the StackMap architecture is
not limited to these protocols. However, UDP-based ap-
plications can already batch syscalls using sendmmsg()
and recvmmsg(), may not need an event multiplexing
API like epoll_wait() and can exploit batching dur-
ing packet I/O for transmission of messages to different

clients [30]. Therefore, the performance benefits that the
StackMap architecture could bring to new UDP-based
protocols such as QUIC [20] need to be investigated.

6.3 System Configuration
In order to achieve the best network performance, system
administrators should configure their systems such that
traffic to and from regular applications are routed via
NICs that are not used by any StackMap application.
Not doing so does not crash the system, but regular
applications could see unexpected packet delays, because
moving packets in and out of the NICs is triggered by the
StackMap application, and not the normal kernel methods.
Nevertheless, in many of today’s production systems, such
configuration is already regularly performed, and so does
not complicate StackMap deployment.

7 Conclusion

Our goal in this paper has been to address the latency prob-
lems of transactional workloads over TCP, which consist
of small messages sent over a large number of concurrent
connections. We demonstrated that the kernel TCP/IP
implementation is reasonably fast, but showed that the
socket API and the traditional packet I/O methods increase
transaction latencies and limit throughputs. StackMap,
a new interface to the OS TCP/IP service that exploits
the opportunities afforded by dedicating NICs to applica-
tions, addresses these performance issues. The StackMap
design challenges included combining the full-featured
TCP/IP implementation in the kernel with netmap, which
in addition to fast packet I/O methods provides protection
of the system and NICs, and a sophisticated API.

A key takeaway is that an integration of most of the
techniques introduced by high-performance kernel-bypass
TCP/IPs—including new APIs, syscall and I/O batching,
lightweight buffer management and direct packet buffer
access—can be leveraged smoothly into the OS stack, and
help it achieve comparable performance. The key advan-
tage of this approach is that StackMap allows applications
to enjoy modern TCP/IP features and benefit from the
active maintenance that the OS stack is seeing, which
kernel-bypass TCP/IPs lack.

8 Acknowledgments

This paper has received funding from the European
Union’s Horizon 2020 research and innovation program
2014–2018 under grant agreement No. 644866 (“SSI-
CLOPS”). It reflects only the authors’ views and the
European Commission is not responsible for any use that
may be made of the information it contains.

12

USENIX Association 2016 USENIX Annual Technical Conference 55

References

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. “Data Center TCP (DCTCP)”. Proc. ACM
SIGCOMM. 2010.

[2] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. “pFabric: Min-
imal Near-optimal Datacenter Transport”. Proc.
ACM SIGCOMM. 2013.

[3] M. Allman, H. Balakrishnan, and S. Floyd. Enhanc-
ing TCP’s Loss Recovery Using Limited Transmit.
RFC 3042. Jan. 2001.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. “IX: A Protected
Dataplane Operating System for High Throughput
and Low Latency”. Proc. USENIX OSDI. 2014.

[5] A. Bittau, M. Hamburg, M. Handley, D. Mazières,
and D. Boneh. “The Case for Ubiquitous Transport-
level Encryption”. Proc. USENIX Security. 2010.

[6] Cloudius Systems. Seastar. http://www.seastar-
project.org/.

[7] J. Corbet. The kernel connection multiplexer. https:
//lwn.net/Articles/657999/. Sep. 21, 2015.

[8] J. Cummings and E. Tamir. Open Source Kernel
Enhancements for Low Latency Sockets using Busy
Poll. Intel White Paper. 2013.

[9] David S. Miller. How SKBs work. http://vger.kernel.
org/~davem/skb_data.html.

[10] N. Dukkipati, N. Cardwell, Y. Cheng, and M.
Mathis. Tail Loss Probe (TLP): An Algorithm for
Fast Recovery of Tail Losses. Internet-Draft draft-
dukkipati-tcpm-tcp-loss-probe-01. Feb. 25, 2013.

[11] N. Dukkipati, M. Mathis, Y. Cheng, and M.
Ghobadi. “Proportional Rate Reduction for TCP”.
Proc. ACM IMC. 2011.

[12] A. Dunkels. “Design and Implementation of the
lwIP TCP/IP Stack”. Swedish Institute of Computer
Science, 2001.

[13] W. Eddy. TCP SYN Flooding Attacks and Common
Mitigations. RFC 4987. Aug. 2007.

[14] F. C. Eigler, V. Prasad, W. Cohen, H. Nguyen, M.
Hunt, J. Keniston, and B. Chen. Architecture of
Systemtap: A Linux Trace/Probe Tool. 2005.

[15] M. Eisler, P. Corbett, M. Kazar, D. S. Nydick, and
C. Wagner. “Data ONTAP GX: A Scalable Storage
Cluster”. Proc. USENIX FAST. 2007.

[16] K. Elmeleegy, A. Chanda, A. L. Cox, and W.
Zwaenepoel. “Lazy Asynchronous I/O for Event-
driven Servers”. Proc. USENIX ATC. 2004.

[17] M. Al-Fares, A. Loukissas, and A. Vahdat. “A
Scalable, Commodity Data Center Network Archi-
tecture”. Proc. ACM SIGCOMM. 2008.

[18] A. Ford, C. Raiciu, M. J. Handley, and O. Bonaven-
ture. TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824. Oct. 14, 2015.

[19] GitHub. Modern HTTP benchmarking tool. https:
//github.com/wg/wrk. Jul. 2013.

[20] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk.
QUIC: A UDP-Based Secure and Reliable Trans-
port for HTTP/2. Internet-Draft draft-tsvwg-quic-
protocol-02. Jan. 13, 2016.

[21] S. Han, K. Jang, K. Park, and S. Moon. “Pack-
etShader: A GPU-accelerated Software Router”.
Proc. ACM SIGCOMM. 2010.

[22] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
“MegaPipe: A New Programming Interface for
Scalable Network I/O”. Proc. USENIX OSDI. 2012.

[23] M. Honda, F. Huici, G. Lettieri, and L. Rizzo.
“mSwitch: A Highly-scalable, Modular Software
Switch”. Proc. ACM SOSR. 2015.

[24] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L.
Rizzo. “Rekindling Network Protocol Innovation
with User-level Stacks”. ACM SIGCOMM CCR,
Apr. 2014.

[25] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. “Is It Still Possible to
Extend TCP?”: Proc. ACM IMC. 2011.

[26] Intel. Intel DPDK: Data Plane Development Kit.
http://dpdk.org/. Sep. 2013.

[27] Intel. Introduction to the Storage Performance De-
velopment Kit (SPDK). https : / / software . intel .
com/en-us/articles/introduction-to-the-storage-
erformance-development-kit-spdk. Sep. 18, 2015.

[28] V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. RFC 1323. May
1992.

[29] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. “mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems”. Proc.
USENIX NSDI. 2014.

[30] Jesper Dangaard Brouer. Unlocked 10Gbps TX
wirespeed smallest packet single core. http : / /
netoptimizer . blogspot . de / 2014 / 10 / unlocked -
10gbps-tx-wirespeed-smallest.html.

[31] A. Kantee. “Environmental Independence: BSD
Kernel TCP/IP in Userspace”. AsiaBSDCon, 2009.

[32] M. Larsen and F. Gont. Recommendations for
Transport-Protocol Port Randomization. RFC
6056. Jan. 2011.

13

56 2016 USENIX Annual Technical Conference USENIX Association

[33] J. Leverich and C. Kozyrakis. “Reconciling High
Server Utilization and Sub-millisecond Quality-of-
service”. Proc. ACM EuroSys. 2014.

[34] P. Levis, S. Madden, D. Gay, J. Polastre, R.
Szewczyk, A. Woo, E. Brewer, and D. Culler. “The
Emergence of Networking Abstractions and Tech-
niques in TinyOS”. Proc. USENIX NSDI. 2004.

[35] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y.
Shi. “Scalable Kernel TCP Design and Implemen-
tation for Short-Lived Connections”. Proc. ACM
ASPLOS. 2016.

[36] M. Zhuang and B. Aker. memaslap: Load test-
ing and benchmarking a server. http : / / docs .
libmemcached.org/bin/memaslap.html.

[37] I. Marinos, R. N. Watson, and M. Handley. “Net-
work Stack Specialization for Performance”. Proc.
ACM SIGCOMM. 2014.

[38] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. RFC 2018.
Oct. 1996.

[39] M. Mathis and J. Mahdavi. “Forward Acknowledge-
ment: Refining TCP Congestion Control”. Proc.
ACM SIGCOMM. 1996.

[40] A. Medina, M. Allman, and S. Floyd. “Measuring
the Evolution of Transport Protocols in the Internet”.
ACM SIGCOMM CCR, Apr. 2005.

[41] memcached - a distributed memory object caching
system. http://memcached.org/.

[42] Microsoft. Windows I/O Completion Ports. Mi-
crosoft White Paper. 2012.

[43] R. Morris, E. Kohler, J. Jannotti, and M. F.
Kaashoek. “The Click Modular Router”. Proc. ACM
SOSP. 1999.

[44] V. Paxson, M. Allman, S. Dawson, W. Fenner, J.
Griner, I. Heavens, K. Lahey, J. Semke, and B. Volz.
Known TCP Implementation Problems. RFC 2525.
Mar. 1999.

[45] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. “Fastpass: A Centralized "Zero-
queue" Datacenter Network”. Proc. ACM SIG-
COMM. 2014.

[46] A. Pesterev, J. Strauss, N. Zeldovich, and R. T.
Morris. “Improving Network Connection Locality
on Multicore Systems”. Proc. ACM EuroSys. 2012.

[47] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
“Arrakis: The Operating System is the Control
Plane”. Proc. USENIX OSDI. Oct. 2014.

[48] J. Postel. Transmission Control Protocol. RFC 793.
Sep. 1981.

[49] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B.
Raghavan. “TCP Fast Open”. Proc. ACM CoNEXT.
2011.

[50] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F.
Duchene, O. Bonaventure, and M. Handley. “How
Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP”. Proc. USENIX NSDI.
2012.

[51] A. Ramaiah, R. Stewart, and M. Dalal. Improving
TCP’s Robustness to Blind In-Window Attacks. RFC
5961. Aug. 2010.

[52] L. Rizzo, M. Carbone, and G. Catalli. “Transparent
Acceleration of Software Packet Forwarding using
netmap”. Proc. IEEE Infocom. Mar. 2012.

[53] L. Rizzo, G. Lettieri, and M. Honda. “Netmap
as a Core Networking Technology”. AsiaBSDCon,
2014.

[54] L. Rizzo. “netmap: A Novel Framework for Fast
Packet I/O”. Proc. USENIX ATC. Jun. 2012.

[55] L. Rizzo. “Revisiting Network I/O APIs: The
Netmap Framework”. Queue, Jan. 2012.

[56] L. Rizzo and G. Lettieri. “VALE, a Switched Eth-
ernet for Virtual Machines”. Proc. ACM CoNEXT.
2012.

[57] P. Sarolahti and M. Kojo. Forward RTO-Recovery
(F-RTO): An Algorithm for Detecting Spurious
Retransmission Timeouts with TCP and the Stream
Control Transmission Protocol (SCTP). RFC 4138.
Aug. 2005.

[58] P. Sarolahti, M. Kojo, and K. Raatikainen. “F-
RTO: An Enhanced Recovery Algorithm for TCP
Retransmission Timeouts”. ACM SIGCOMM CCR,
Apr. 2003.

[59] L. Soares and M. Stumm. “FlexSC: Flexible System
Call Scheduling with Exception-less System Calls”.
Proc. USENIX OSDI. 2010.

[60] H. Tazaki, R. Nakamura, and Y. Sekiya. “Library
Operating System with Mainline Linux Network
Stack”. Proc. netdev0.1. Feb. 2015.

[61] The Open Group. Networking Services, Issue 4.
Sep. 1994.

[62] M. Zec, L. Rizzo, and M. Mikuc. “DXR: Towards a
Billion Routing Lookups Per Second in Software”.
ACM SIGCOMM CCR, Sep. 2012.

14

