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U-root: A Go-based, firmware embeddable root file system with on-demand
compilation

Ronald G. Minnich
Google

Abstract

U-root is an embeddable root file system intended to be
placed in a FLASH device as part of the firmware im-
age, along with a Linux kernel. The program source
code is installed in the root file system contained in the
firmware FLASH part and compiled on demand. All the
u-root utilities, roughly corresponding to standard Unix
utilities, are written in Go, a modern, type-safe language
with garbage collection and language-level support for
concurrency and inter-process communication.

Unlike most embedded root file systems, which con-
sist largely of binaries, U-root has only five: an init pro-
gram and 4 Go compiler binaries. When a program is
first run, it and any not-yet-built packages it uses are
compiled to a RAM-based file system. The first invo-
cation of a program takes a fraction of a second, as it is
compiled. Packages are only compiled once, so the slow-
est build is always the first one, on boot, which takes
about 3 seconds. Subsequent invocations are very fast,
usually a millisecond or so.

U-root blurs the line between script-based distros
such as Perl Linux[24] and binary-based distros such as
BusyBox[26]; it has the flexibility of Perl Linux and the
performance of BusyBox. Scripts and builtins are writ-
ten in Go, not a shell scripting language. U-root is a new
way to package and distribute file systems for embedded
systems, and the use of Go promises a dramatic improve-
ment in their security.

Introduction

Embedding kernels and root file systems in BIOS
FLASH is a common technique for gaining boot time
performance and platform customization[25][14][23].
Almost all new firmware includes a multiprocess oper-
ating system with a full complement of file systems, net-
work drivers, and protocol stacks, contained in an em-
bedded file system. In some cases, the kernel is only
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booted long enough to boot another kernel; in others, the
kernel that is booted and the file system it contains con-
stitute the operational environment of the device[15].

These so-called “embedded root file systems” also
contain a set of standard Unix-style programs used for
both normal operation and maintenance. Space on the
device is at a premium, so these programs are usually
written in C using, e.g., the BusyBox toolkit[26]; or in an
interpretive languages, such as Perl[24] or Forth. Busy-
Box in particular has found wide usage in embedded ap-
pliance environments, as the entire root file system can
be contained in under one MiB.

Embedded systems, which were once standalone,
are now almost always network connected. Network-
connected systems face a far more challenging security
environment than even a few years ago. In response to
the many successful attacks against shell interpreters[11]
and C programs[8], we have started to look at using a
more secure, modern language in embedded root file sys-
tems, namely, Go[21][16].

Go is a new systems programming language created
by Google. Go has strong typing; language level support
for concurrency; inter-process communication via chan-
nels, a la Occam[13], Limbo[17], and Alef[27]; runtime
type safety and other protective measures; dynamic al-
location and garbage collection; closures; and a package
syntax, similar to Java, that makes it easy to determine
what packages a given program needs.

The modern language constructs make Go a much
safer language than C. This safety is critical for network-
attached embedded systems, which usually have network
utilities written in C, including web servers, network
servers including sshd, and programs that provide ac-
cess to a command interpreter, itself written in C. All are
proving to be vulnerable to the attack-rich environment
that the Internet has become. Buffer overflow attacks
affecting C-based firmware code (among other things)
in 2015 include GHOST and the so-called FSVariable.c
bug in Intel’s UEFI firmware. Buffer overflows in Intel’s
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UEFI and Active Management Technology (AMT)have
also been discovered in several versions in recent years.
Both UEFI[12] and AMT[4] are embedded operating
systems, loaded from FLASH, that run network-facing
software; attacks against UEFI have been extensively
studied[9]. Most printers are network-attached and are
a very popular exploitation target[6].

Firmware is not visible to most users and is up-
dated much less frequently (if at all) than programs.
It is the first software to run, at power on reset. Ex-
ploits in firmware are extremely difficult to detect, be-
cause firmware is designed to be as invisible as possible.
Firmware is extremely complex; UEFI is roughly equiv-
alent in size and capability to a Unix kernel. Firmware
is usually closed and proprietary, with nowhere near
the level of testing of kernels. These properties make
firmware an ideal place for so-called advanced persistent
threats[10][18][5]. Once an exploit is installed, it is al-
most impossible to remove, since the exploit can inhibit
its removal by corrupting the firmware update process.
The only sure way to mitigate a firmware exploit is to
destroy the hardware.

Even the most skilled programmers make simple mis-
takes that in C can be fatal, especially on network-
connected systems; nowadays, even the lowest-level
firmware in our PCs, printers, and thermostats is
network-connected. These mistakes are either impossi-
ble to make in Go or, if made, are detected at runtime and
result in the program exiting. Perhaps surprisingly, the
case for using a high-level, safe language like Go in very
low level embedded firmware might be stronger than for
user programs, because exploits at the firmware level are
nearly impossible to detect and mitigate.

The challenge to using Go in a storage-constrained en-
vironment such as firmware is that advanced language
features lead to big binaries. Even a date program is
about 2 MiB. One Go binary, implementing one func-
tion, is twice as large as a BusyBox binary implement-
ing many functions. As of this writing, a typical BIOS
FLASH part is 16 MiB. Fitting many Go binaries into a
single BIOS flash part is not practical.

The Go compiler is very fast and its sheer speed points
to a solution: to compile programs only when they are
used. We can build a root file system which has almost
no binaries except the Go compiler itself. The compiled
programs and packages can be saved to a RAM-based
file system.

U-root is our proof of concept of this idea. U-root con-
tains only 5 binaries, 4 of them from the Go toolchain,
and the 5th an init binary. The rest of the programs
are contained in BIOS FLASH in source form, includ-
ing packages. The search path is arranged so that when
a command is invoked, if it is not in /bin, an installer is
invoked instead which compiles the program into /bin;

if the build succeeds, the command is executed. This
first invocation takes a fraction of a second, depending
on program complexity; after that, the RAM-based, stat-
ically linked binaries run in about a millisecond.

U-root blurs the boundary between script-based root
file systems such as Perl Linux[24] and binary-based root
file systems such as BusyBox[26]; it has the flexibility of
Perl Linux and the performance of BusyBox. Scripts are
written in Go, not a shell scripting language, with two
benefits: the shell can be simple, with fewer corner cases;
and the scripting environment is substantially improved,
since Go is more powerful than most shell scripting lan-
guages, but also less fragile and less prone to parsing
bugs.

The U-root design

The u-root boot image is a build toolchain and a set of
programs in source form. When first used, a program
and any needed but not-yet-built packages are built and
installed, typically in a fraction of a second. On second
and later uses, the binary is executed. The root file sys-
tem is almost entirely unformed on boot; /init sets up the
key directories and mounts, including common ones such
as /etc and /proc.

Since the init program itself is only 132 lines of code
and is easy to change, the structure is very flexible and
allows for many use cases.

e Additional binaries: if the 3 seconds it takes to get
to a shell is too long (some applications such as au-
tomotive computing require 800 ms startup time),
and there is room in FLASH, some programs can
be precompiled into /bin.

e Build it all on boot: if on-demand compilation is not
desired, a background thread in the init process can
build all the programs on boot.

o Selectively remove binaries after use: if RAM space
is at a premium, once booted, a script can remove
everything in /bin; those things that are used will be
rebuilt on demand.

e Always build on demand: it is possible to run in a
mode in which programs are never written to /bin
and always rebuilt on demand; this mode is surpris-
ingly comfortable to use, given that program com-
pilation is so fast!.

e Lockdown: if desired, the system can be locked
down once booted in one of several ways: the en-
tire /src tree can be removed, for example, or just
the compiler toolchain can be deleted.
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How u-root works

U-root is packaged as an LZMA-compressed initial
RAM file system (initramfs) in cpio format, contained in
a Linux compressed kernel image, a.k.a. bzImage. The
bootloader (e.g. syslinux) or firmware (e.g. coreboot)
loads the bzImage into memory and starts it. The Linux
kernel sets up a RAM-based root file system and unpacks
the u-root file system into it. This initial root file system
contains a Go toolchain (4 binaries), an init binary, the u-
root program source, and the entire Go source tree, which
provides packages needed for u-root programs.

All Unix systems start an init process on boot and u-
root is no exception. The init for u-root sets up some
basic directories, symlinks, and files; builds a command
installer; and invokes the shell. We describe this pro-
cess in more detail below. The boot file system layout is
shown in Table 1.

The src directory is where programs and u-root pack-
ages live. The go/bin directory is for any Go tools built
after boot; the go/pkg/tool directory contains binaries for
various architecture/kernel combinations. The directory
in which a compiler toolchain is placed provides infor-
mation about the target OS and architecture; for exam-
ple, the Go build places binaries for Linux on x86_64 in
in /go/pkg/tool/linux_amd64/. Note that there is no /bin
or many of the other directories expected in a root file
system. The init binary builds them. The u-root root file
system has very little state.

For most programs to work, the file system must be
more complete. We save space in the image by having
init create additional file system structure at boot time: it
fills in the missing parts of the root filesystem. It creates
/dev and /proc and mounts them. It creates an empty /bin
which is filled with binaries on demand. We show it in
Table 2.

Note that in addition to /bin, there is a direc-
tory called /buildbin. Buildbin and the correct setup
of $PATH are the keys to making on-demand com-
pilation work.  The init process sets $PATH to
/go/bin:/bin:/buildbin:/usr/local/bin. Init
also builds the installcommand, using the go bootstrap
builder; and creates a complete set of symlinks as shown.
As a final step, init execs sh.

There is no /bin/sh at this point; the first sh found in
$PATH is /buildbin/sh. This is a symlink to installcom-
mand. Installcommand, once started, examines argv[0],
which is sh, and takes this as instruction to build /sr-
c/cmds/sh/*.go into /bin and then exec /bin/sh. There
is no difference between starting the first shell and any
other program.

Hence, part of the boot process involves the construc-
tion of an installation tool to build a binary for a shell
which is then run. If a user wants to examine the source

Table 1: The initial layout of a u-root file system. All Go
compiler and runtime source is included under /go/src;
all u-root source under /src; and the compiler toolchain
binaries under /go/pkg.

/src | cmds/
builtin/builtin.go

cat/cat.go

cmp/cmp.go

comm/comm.go

cp/cp.go

date/date.go

dmesg/dmesg.go

echo/echo.go

freq/freq.go

grep/grep.go

init/init.go
installcommand/installcommand.go
ip/ip.go

1dd/1dd.go

losetup/losetup.go

Is/1s.go

mkdir/mkdir.go

mount/mount.go

netcat/netcat.go

ping/ping.go

printenv/printenv.go

rm/rm.go

script/script.go

seq/seq.go
sh/{cd.go,parse.go,sh.go,time.go}
srvfiles/srvfiles.go

tcz/tcz.go

tee/tee.go

uniq/uniq.go

wc/we.go

wget/wget.go

which/which.go

pkg/ dhcp/ (dhep package source)
netlib/ (netlib package source)
golang.org (import package source)

/go src/ Packages and toolchain
pkg/ tool/linux_amd64/{6a,6c,6g,61}
misc/
tool/
bin/ go
include/ | ...
/lib/ | libc.so | Needed for tinycore linux packages
libm.so
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Table 2: Layout after /init has run. /buildbin con-
tains symlinks to enable the on-demand compilation, and
other standard directories and mount points are ready.

/ Root file system from Table 1

/buildbin/ (created by /init)
(built/installed by | installcommand
/init)
builtin->installcommand
(/init creates sym- | cat->installcommand
links)
cmp->installcommand
comm->>installcommand
cp->installcommand
date->installcommand
dhcp->installcommand
dmesg->installcommand
echo->installcommand
freq->installcommand
grep->installcommand
init->installcommand
ip->installcommand
Idd->installcommand
losetup->installcommand
Is->installcommand
mkdir->installcommand
mount->installcommand
netcat->installcommand
ping->installcommand
printenv->installcommand
rm->installcommand
script->installcommand
seq->installcommand
sh->installcommand
srvfiles->installcommand
tcz->installcommand
tee->installcommand
uniqg->installcommand
wc->installcommand
wget->installcommand
which->installcommand

/bin /init creates

/proc /init mounts /proc

ftcz /init creates for tinycore binaries

/dev init creates minimal needed devices

letc init writes resolv.conf

to the shell, they can cat /src/cmds/sh/*.go; the cat com-
mand will be built and then show those files.

U-root is intended for network-based devices, and
hence good network initialization code is essential. U-
root includes a Go version of the ip and dhcp pro-
grams, along with the docker netlink package and a
dhcp package. Support for WIFI configuration is under-
way.

The u-root shell

A shell is a key part of any boot system. Shells run com-
mands, where a command is a sequence of one or more
programs, potentially tied together with pipes or other
operators. Shells may run scripts from a file. Scripts are
usually simple sequences of commands, each command
invoking just one program, but the shell language may
allow more complex commands in a script. Shells have
built-in commands, i.e. commands that do not invoke a
program, but are recognized by the shell and executed di-
rectly. Builtins are used when the command must change
the shell state, as in the cd command; when the cost of
starting a program is felt to be too high relative to the op-
eration the command performs; because the shell source
is not available or it is too hard to change the shell; or
for convenience, i.e. users would rather write in the shell
language instead of C. Most shells can be extended via a
builtin facility, which usually looks like a function defini-
tion style syntax. The shell scripting language is usually
the same language used for builtins.

Every boot loader in common use today has some sort
of shell capability. That these shells have many limita-
tions is a given, but at the same time they need to look as
much as possible like a standard shell.

U-root provides a shell that is stripped down to the fun-
damentals: it can read commands in, using the Go scan-
ner package; it can expand (i.e. glob) the command ele-
ments, using the Go filepath package; and it can run the
resulting commands, either programs or shell builtins. It
supports pipelines and IO redirection. At the same time,
the shell defines no language of its own for scripting and
builtins; instead, the u-root shell uses the Go compiler.
In that sense, the u-root shell reflects a break in impor-
tant ways with the last few decades of shell development,
which has seen shells and their language grow ever more
complex and, partially as a result, ever more insecure[19]
and fragile[11].

The shell has several builtin commands, and the user
can extend it with builtin commands of their own. Be-
fore we discuss user-defined builtins, we will describe
the basic source structure of u-root shell builtins.

All shell builtins, including the ones that come with
the shell by default, are written with a standard Go init
pattern which installs one or more builtins. Shown in
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Figure 1 and 2 is the shell builtin for time.

Builtins in the shell are defined by a name and a func-
tion. One or more builtins can be described in a source
file. The name is kept in a map and the map is searched
for a command name before looking in the file system.
The function must accept a string as a name and a (possi-
bly zero-length) array of string arguments, and return an
error. In order to connect the builtin to the map, the pro-
grammer must provide an init function which adds the
name and function to the map. The init function is spe-
cial in that it is run by Go when the program starts up.
In this case, the init function just installs a builtin for the
time command.

Scripting and builtins

To support scripting and builtins, u-root provides two
programs: script and builtin. The script program
allows users to specify a Go fragment on the command
line, and runs that fragment as a program. The builtin
program allows a Go fragment to be built into the shell
as a new command. Builtins are persistent; the builtin
command instantiates a new shell with the new com-
mand built in. Scripts run via the script command are
ephemeral.

We show a usage of the script command in Figure 3.

This script implements printenv. Note that it is not a
complete Go program in that it lacks a package state-
ment, imports, a main function declaration, and a return
at the end. All the boilerplate is added by the script com-
mand, which uses the Go imports package to scan the
code and create the import statements required for com-
pilation (in this case, both fmt and os packages are im-
ported). Because our shell is so simple, there is no need
to escape many of these special characters. We have of-
floaded the complex parsing tasks to Go.

Builtins are implemented in almost the same way. The
builtin command takes the Go fragment and creates a
standard shell builtin Go source file which conforms to
the builtin pattern. This structure is easy to generate pro-
grammatically, building on the techniques used for the
script command.

A basic hello builtin can be defined on the command
line:

builtin hello \
{ fmt.Printf (”Hello\n”) }’

// Package main is the ’'root’ of the
// package hierarchy for a program.
// This code is part of the main

// program, not another package,

// and is declared as package main.
package main

// A Go source file lists
// all the packages on which
// it has a direct dependency.
import (

”fmt”

5 og”

”time”

)

// init() is an optional function.

//If init() is present in a file,

// the Go compiler and runtime

// arrange for it to be called

// at program startup .

// It is hence like a constructor.

func init () {
// addBuiltln is provided by
// the u—root shell for
// the addition of builtin
// commands. Builtins must

// have a standard type:
// o The first parameter is
// a string

// o The second is a string
// array which may be 0
// length

// o The return is the Go
// error type

// In this case,

// we are creating a builtin

// called time which calls

// the timecmd function.
addBuiltIn (”time”, timecmd)

}

The fragment is defined by the {} pair. Given a fragment
that starts with a {, the builtin command generates all
the wrapper boiler plate needed. The builtin command is
slightly different from the script command in that the Go
fragment is bundled into one argument. The command
accepts multiple pairs of command name and Go code

Figure 1: The code for time builtin, Part I: setup

USENIX Association

2015 USENIX Annual Technical Conference 581




// The timecmd function is passed
// the name of a command to run,
// optional arguments,

// and returns an error. It:

// o gets the start time using Now
// from the time package

// o runs the command using the

// u—root shell runit function
// o computes a duration using

// Since from the time package
// o if there is an error,

// prints the error to os.Stderr
// o uses fmt.Printf to print

// the duration to os.Stderr

// Note that since runtime always
// handles the error, by printing
// it, it always returns nil.

// Most builtins return the error.
// Here you can see the usage

// of the imported packages

// from the imports statement above.
func timecmd (name string , args []
string) error {
start := time .Now()
err := runit(name, args)
if err != nil {
fmt. Fprintf (os. Stderr, "%v\n”,
err)

}

cost := time.Since(start)

fmt. Printf (os.Stderr, "%v”, cost)

// This function is special
in that

// it handles the error, and
hence

// does not return an error.

// Most other builtins return
the

// error.

return nil

Figure 2: The code for the shell time builtin, Part II.

script \
{ fmt.Printf ("%v\n”, os.Environ()) }

Figure 3: Go fragment for a printenv script. Code struc-
ture is inserted and packages are determined automati-
cally.

fragments, allowing multiple new builtin commands to
be installed in the shell.

Builtin creates a new shell at /bin/sh with the source
at /src/cmds/sh/. Invocations of /bin/sh by this
shell and its children will use the new shell. Processes
spawned by this new shell can access the new shell
source and can run the builtin command again and cre-
ate a shell that further extends the new shell. Processes
outside the new shell’s process hierarchy can not use this
new shell or the builtin source. When the new shell ex-
its, the builtins are no longer visible in any part of the
file system. We use Linux mount name spaces to cre-
ate this effect[22]. Once the builtin command has ver-
ified that the Go fragment is valid, it builds a new, pri-
vate namespace with the shell source, including the new
builtin source. From that point on, the new shell and its
children will only use the new shell. The parent process
and other processes outside the private namespace con-
tinue to use the old shell.

Environment variables

The u-root shell supports environment variables, but
manages them differently than most Unix environments.
The variables are maintained in a directory called /env;
the file name corresponds to the environment variable
name, and the files contents are the value. When it is
starting a new process, the shell populates child process
environment variables from the /env directory. The syn-
tax is the same; $ followed by a name directs the shell
to substitute the value of the variable in the argument by
prepending /env to the path and reading the file.

The shell variables described above are relative paths;
/env is prepended to them. In the u-root shell, the name
can also be an absolute path. For example, the command
script $/home/rminnich/scripts/hello will sub-
stitute the value of the hello script into the command line
and then run the script command. The ability to place
arbitrary text from a file into an argument is proving to
be extremely convenient, especially for script and builtin
commands.

Using external packages and programs

No root file system can provide all the packages all users
want, and u-root is no exception. We must have the abil-
ity to load external packages from popular Linux distros.
As a proof of concept, we created a tool to load exter-
nal packages from the TinyCore Linux distribution, a.k.a.
tinycore. A tinycore package is a mountable file system
image, containing all the package files, including a file
listing any additional package dependencies.

To load these packages, u-root provides the tcz com-
mand which fetches the package and and needed depen-
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dencies. Hence, if a user wants emacs, they need merely
type tcz emacs, and emacs will become available in /us-
r/local/bin. The tinycore packages directory can be a per-
sistent directory or it can be empty on each boot.

The tcz command is quite flexible as to what pack-
ages it loads and where they are loaded from. Users may
specify the host name which provides the packages; the
TCP port on which to connect; the version of tinycore to
use; and the architecture. The tcz command must loop-
back mount each package as it is fetched, and hence must
cache them locally. It will not refetch already cached
packages. This cache can be volatile or maintained on
more permanent storage. Performance varies depending
on the network being used and the number of packages
being loaded, but seems to average about 1 second per
package on a WIFI-attached laptop.

U-root also provides a small web server, called srv-
files, that can be used to serve locally cached tinycore
packages for testing. The entire server is 18 lines of Go.

Using u-root: current targets

There are three current targets for u-root. All three are
available in a Docker image we provide.

The first two targets are used to test u-root to make
sure it will work before it is loaded into its real target, a
firmware image.

Chroot test

The first test target is a chroot environment. A chroot is
a file system tree which must have at least one binary. A
standard Unix command, chroot, uses the chroot system
call to set the root for a child process and then execs a
named binary from the tree. Note that the chroot only
applies to the program being run, and does not affect any
other programs.

A script provided with u-root builds an image of the
file system shown in Table 1, including locating and in-
stalling the Go source tree and toolchain. The script also
builds the init binary which the kernel runs as the first
user-mode process.

The chroot environment simulates a full boot environ-
ment. The chroot startup process, running on a linux in-
stance in VmWare Fusion on a Mac laptop takes about
3 seconds, including compiling the two binaries (install-
command and sh) and the packages they need, about 250
files. Once the startup process is done the user sees the
u-root shell prompt and can run tests.

Kernel image

Once the file system tree has been verified via the chroot,
it can be used as the input to the process of creating a

so-called initramfs. An initramfs is a file system image
that is built directly into a bootable Linux kernel image.
When the kernel starts, it locates the initramfs, sets up a
RAM file system, and extracts the intramfs into the RAM
file system. At that point, the kernel can exec /init.

U-root includes the script to create this image. The re-
sult is a file, which can then be used as input to the kernel
build process. The user can then boot the kernel directly
in QEMU (via gemu —kernel) or drop the bzImage into a
boot disk image and test that, either via gemu or booting
on real hardware.

Firmware image

The end goal of u-root is to create an embedded firmware
image. Linux can not run from power on reset directly;
something needs to configure the platform and then load
Linux from FLASH to RAM, and for that we use core-
boot. We build a kernel as shown earlier, containing an
initramfs, which in turn contains u-root; this in turn is
built into a firmware image.

Users can take two steps to test coreboot. The first
(and optional given enough confidence) is to add the ker-
nel bzImage as a payload to a coreboot built to run in
gemu. We provide a working gemu image in a Docker
container to make this easy, as well as a script to add the
bzImage to the coreboot image. Once the image is built,
users start gemu with this image as the bios: gemu —bios
coreboot.rom

Once the Linux image is known good, the user can em-
bed it in a real coreboot image for a real mainboard. A
current known limitation is that the board must contain
a 16 MiB FLASH part. We have tested on the Asrock
E350M1. In that case, we first tested on QEMU, then
took the Linux image unchanged, merged it into the core-
boot for the hardware, and it worked with no changes,
indicating that QEMU provides a very accurate verifica-
tion environment for the hardware target. If a given u-
root build works in QEMU it will almost certainly work
on hardware.

Discussion

Building the image

Building is a straightforward process, which requires a
kernel source tree, Go source tree, the u-root source, and
coreboot source. Build times vary depending on what in-
frastructure is used. In general, the kernel and Go build
steps are measured in minutes, and the u-root and core-
boot build times are measured in seconds. These orders
of magnitude have changed little in the last 5 years.
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Usability

We have been using u-root for a few months. The system
provides a very usable firmware command line environ-
ment, comparable to what we have used with U-boot,
UEF]I, and Open Firmware. The u-root and its shell pro-
vide familiar tools and capabilities. The ability to start
background tasks, shell pipelines, and redirect output to
files is both useful and unusual in an embedded environ-
ment. In terms of scripting, it is more sophisticated than
any shell we know of, given that our scripting language
is Go.

The script command is more powerful than we first re-
alized. It is possible to run it under any shell, or from
any program. It can use much more powerful Go frag-
ments than we have shown here, including whole Go
programs, since its internal parsing is just the standard
Go “imports” library. The script command fills in the
blanks as needed, but only as needed.

The builtin command is perhaps the most powerful
tool in u-root. It allows users to build fully customized
shells for a specific purpose and then just as quickly dis-
card them. The new shell is ready and running in less
than a second. We could apply this technique to the
problem of startup scripts for embedded environments.
To support standard functions in init scripts, distributions
provide several hundred files, and for each invocation of
the shell, some set of these files are included over and
over again. The time it takes to read, parse and run these
standard scripts is a large part startup time'.

With the scripting and builtin tools, users do not need
to write full Go programs to get a new capability. We are
finding that the basic set of tools we have is enough, and
we are writing new tools as Go fragments.

Once the network is up, tools like emacs can be loaded
either via a local disk, local network package server, or a
remote server such as tinycorelinux.org.

Having the source always available in any sort of
firmware environment is both unusual and very useful.
At times, we have forgotten how some of our commands
work. Having the source at hand has proven very helpful.

Future development

While we envisioned u-root as a boot time environment,
we have seen increasing interest in wider use. Some
users have requested common features as tab completion.
The shell parser is written in such a way that it should al-
low for easy addition of tab completion.

History is another question, as it adds more state, com-
plexity, and parsing to the shell. These additions in turn
decrease reliability and open up paths for exploits. We

'A  good discussion can be found in
electrons.com/doc/training/boot-time/boot-time-slides.pdf

http://free-

are experimenting with new models of history mainte-
nance that do not require the complexity of current sys-
tems. We might, for example, maintain history in a
private per-process or per-user directory. Finding com-
mands becomes easy, and with our extension to the shell
variable model, running an old command becomes easy:
$/home/rminnich/history/5 would run the fifth command.
Another attraction of this model is that conversion of an
old command into a shell script is easy. History stops
being special to one shell and instead is common to all
programs that can traverse files. Any program can see
history and use the commands.

Instead of rereading the same scripts over and over,
init could build a special shell at boot time that pulls in
builtins to extend the shell. The scripts themselves would
continue to be human-readable, but the performance of
booting would be much faster, combining the perceived
advantages of upstart-style scripting with systemd-level
performance.

Related work

There are two main components to this work: on-demand
compilaton and embedding a kernel and root file system
in FLASH. Both ideas have been used at different times.
Our work combines the two so that we can use Go. We
review the earlier work below.

On-Demand Compilation

On-Demand compilation is one of the oldest ideas in
computer science.

Slimline Open Firmware (SLOF)[7] is a FORTH-
based implementation of Open Firmware developed by
IBM for some of its Power and Cell processors. SLOF is
capable of storing all of Open Firmware as source in the
FLASH memory and compiling components to indirect
threading on demand|[2].

In the last few decades, as our compiler infrastructure
has gotten slower and more complex, true on-demand
compilation has split into two different forms. First is the
on-demand compilation of source into executable byte
codes, as in Python. The byte codes are not native but
are more efficient than source. If the python interpreter
finds the byte code it will interpret that instead of source
to provide improved performance.

Java takes the process one step further with the Just In
Time compilation of byte code to machine code[20] to
boost performance.
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Embedding kernel and root file systems in
FLASH

The LinuxBIOS project[14][1], together with
clustermatic[25], used an embedded kernel and simple
root file system to manage supercomputing clusters. Due
to space constraints of 1 MiB or less of FLASH, clusters
embedded only a single-processor Linux kernel with a
daemon. The daemon was a network bootloader that
downloaded a more complex SMP kernel and root file
system and started them. Clusters built this way were
able to boot 1024 nodes in the time it took the standard
PXE network boot firmware to find a working network
interface.

Early versions of One Laptop Per Child used Lin-
uxBIOS, with Linux in flash as a boot loader, to boot
the eventual target. This system was very handy, as they
were able to embed a full WIFI stack in flash with Linux,
and could boot test OLPC images over WIFI. The contin-
uing growth of the Linux kernel, coupled with the small
FLASH size on OLPC, eventually led OLPC to move to
Open Firmware.

AlphaPower shipped their Alpha nodes with a so-
called Direct Boot Linux, or DBLX. This work was
never published, but the code was partially released on
sourceforge.net just as AlphaPower went out of business.
Compagq also worked with a Linux-As-Bootloader for the
iPaq.

Car computers and other embedded ARM systems fre-
quently contain a kernel and an ext2 formatted file sys-
tem in NOR FLASH, i.e. FLASH that can be treated as
memory instead of a block device. Many of these ker-
nels use the so-called eXecute In Place[3] (XIP) patch,
which allows the kernel to page binaries directly from
the memory-addressable FLASH rather than copying it
to RAM, providing a significant savings in system startup
time. A downside of this approach is that the executa-
bles can not be compressed, which puts further pressure
on the need to optimize binary size. NOR FLASH is
very slow, and paging from it comes at a significant per-
formance cost. Finally, an uncompressed binary image
stored in NOR FLASH has a much higher monetary cost
than the same image stored in RAM since the cost per bit
is so much higher.

UEFI[12] contains a non-Linux kernel (the UEFI
firmware binary) and a full set of drivers, file systems,
network protocol stacks, and command binaries in the
firmware image. It is a full operating system environ-
ment realized as firmware.

The ONIE project[23] is a more recent realization of
the Kernel-in-FLASH idea, based on Linux. ONIE packs
a Linux kernel and Busybox binaries into a very small
package. Since the Linux build process allows an ini-
tial RAM file system (initramfs) to be built directly into

the kernel binary, some companies are now embedding
ONIE images into FLASH with coreboot. Sage En-
gineering has shown a bzImage with a small Busybox
packed into a 4M image. ONIE has brought new life to
an old idea: packaging a kernel and small set of binaries
in FLASH to create a fast, capable boot system.

Conclusions and future work

U-root is a root file system targeted to embedded
firmware environments. In response to the increas-
ing security challenges facing embedded systems in the
always-connected Internet of Things, we have chosen to
write all the u-root programs in Go, a modern, type safe
language with garbage collection. The safety of the Go
language and runtime reduce many of the security risks
of writing network-facing services. The performance of
the Go compiler makes on-demand compilation practi-
cal: most commands compile in a fraction of a second
and, once compiled, run in about a millisecond.

The U-root file system, on boot, contains only 5 bi-
naries. The rest of the root file system contains source
to programs which are compiled on demand. We have
found the system to be fast and usable. The images
can be tested in emulation environments, of increasing
fidelity to the firmware target, and have been tested on
hardware running coreboot.

Our initial intent was to use u-root to build firmware
images, but we are finding that we would like to use it
more broadly. The structure of the Go toolchain nam-
ing scheme lends itself to heterogeneous environments:
save for init, the toolchain binaries have a directory path
name that includes the name of the target OS and archi-
tecture, e.g. linux_amd64, linux_arm, and so on. A sin-
gle u-root image can contain many Go toolchains with
no path conflicts. Were we to install more toolchains in
the root file system, and move /init to the same direc-
tory containing the toolchain, a single u-root file system
image could be used on many different OS and architec-
ture combinations. We could build a u-root image, for
example, that worked on all linux variants for different
architectures. We are exploring this model now.

Availability
U-root is available as a git repo from

github.com/rminnich/u-root

To make trying it out easier, we have created a docker
container,

docker.io/rminnich:18
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The container includes all the u-root, linux kernel, and
coreboot source needed to test three environments: the
chroot, kernel and initramfs, and coreboot with gemu.
There are scripts and logs of sessions in / which users
can use to guide and verify their testing of the software.

Because u-root changes frequently, users should pull
an update in /u-root once they have done initial testing.
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'In fact, at one point, due to a configuration error, we were using
this mode all the time without realizing it. Go compiles are that fast.
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