
This paper is included in the Proceedings of USENIX ATC ’14: 
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of 
USENIX ATC ’14: 2014 USENIX Annual Technical 

Conference is sponsored by USENIX.

Application-Defined Decentralized Access Control
Yuanzhong Xu and Alan M. Dunn, The University of Texas at Austin; Owen S. Hofmann, 

Google, Inc.; Michael Z. Lee, Syed Akbar Mehdi, and Emmett Witchel,  
The University of Texas at Austin

https://www.usenix.org/conference/atc14/technical-sessions/presentation/xu



USENIX Association  2014 USENIX Annual Technical Conference 395

Application-Defined Decentralized Access Control
Yuanzhong Xu Alan M. Dunn Owen S. Hofmann ∗ Michael Z. Lee

Syed Akbar Mehdi Emmett Witchel
The University of Texas at Austin Google, Inc.∗

Abstract
DCAC is a practical OS-level access control system that
supports application-defined principals. It allows normal
users to perform administrative operations within their
privilege, enabling isolation and privilege separation for
applications. It does not require centralized policy spec-
ification or management, giving applications freedom to
manage their principals while the policies are still en-
forced by the OS. DCAC uses hierarchically-named at-
tributes as a generic framework for user-defined policies
such as groups defined by normal users. For both local
and networked file systems, its execution time overhead
is between 0%–9% on file system microbenchmarks, and
under 1% on applications.

This paper shows the design and implementation of
DCAC, as well as several real-world use cases, includ-
ing sandboxing applications, enforcing server applica-
tions’ security policies, supporting NFS, and authenticat-
ing user-defined sub-principals in SSH, all with minimal
code changes.

1. Introduction
Continued high-profile computer security failures and
data breaches demonstrate that computer security for ap-
plications is abysmal. While there is extensive research
into novel security and access control models little of
this work has an impact on practice. Instead of appli-
cations consistently reimplementing security vulnerabili-
ties, they need a practical and expressive way to use thor-
oughly debugged system-level primitives to achieve best
security practices.

DCAC (DeCentralized Access Control) is our attempt
to make modern security mechanisms practical for ac-
cess control. It has three distinguishing characteristics: it
is decentralized in privilege, decentralized in policy spec-
ification, and allows application-defined principals and
synchronization requirements. Although DCAC greatly
increases the flexibility of access control, it retains a
familiar model of operation, with per-process metadata
checked against per-object ACLs to determine the al-
lowed access. It relies on the standard OS infrastructure
of a hierarchical file namespace, extended file attributes,
and file descriptors. It is practical for distributed envi-
ronments because it avoids requiring centralized storage,
consistency, or management.

∗ Work completed while at the University of Texas at Austin.

Decentralized privilege. In Linux and Windows, users
and groups are principals, and can be assigned privileges.
A user might consider creating another user (a “sub-
principal”) and assigning it a subset of her privileges.
This allows an application to run as the sub-principal,
and thus with restricted privileges compared to the case
where the user directly runs the application. However, on
Linux and Windows, administrative functions on users
and groups require root privilege. As a result, current OS-
level access control does not allow many applications to
run with least privilege.

DCAC decentralizes administrator privilege: a nor-
mal user can perform administrative operations within
her privilege, like creating principals with subsets of her
privilege. Privilege separation makes complex applica-
tions more difficult to exploit. But current systems re-
quire administrative involvement to install and deploy
privilege-separated software.

For example, the suEXEC feature of Apache HTTP
Server allows it to run CGI and SSI programs under UIDs
different from the UID of the calling web server, by using
setuid binaries. However, creating UIDs for CGI/SSI
programs and setting up the setuid binaries requires
administrator privilege. Not only can use of administra-
tive privilege require human involvement, it also adds op-
portunities for configuration mistakes that can actually
harm security. The suEXEC documentation1 warns the
user, “if suEXEC is improperly configured, it can cause
any number of problems and possibly create new holes
in your computer’s security. If you aren’t familiar with
managing setuid root programs and the security issues
they present, we highly recommend that you not con-
sider using suEXEC.” By contrast, DCAC allows forms
of privilege separation, like delegating user privileges to
sub-principals, that even in the case of a configuration
mistake, limit the effect of a compromise to the privi-
leges of the original user.

Decentralized policy specification. OS-level access
control typically defines its principals and policies in a
centralized, secure location, such as the /etc/group

file, the policy.conf file in SELinux, or a central pol-
icy server (e.g., a Lightweight Directory Access Protocol
(LDAP) server). DCAC decentralizes policy specifica-
tion: policies are stored in files and file metadata at arbi-
trary locations. DCAC generalizes the setuid mecha-
nism of Unix, allowing processes to use the file system

1 http://httpd.apache.org/docs/2.4/suexec.html



396 2014 USENIX Annual Technical Conference USENIX Association

to gain fine-grained, user-defined privileges (i.e., not just
root). With DCAC, applications control their privileges
with a mechanism implemented and enforced by the op-
erating system, but without central coordination.

DCAC is particularly practical for distributed environ-
ments, e.g., where machines share a file system via NFS.
In such an environment, applications simply use the file
system to express access control policy, and any host that
mounts the file system will enforce identical access con-
trol rules. DCAC does not add its own synchronization
requirements, such as entries in a central database. Ap-
plications make all access control decisions with access
only to their own files. In contrast, a centralized policy
server might become a bottleneck when policy queries
and updates are frequent, as in many server applications.

Application-defined principals: attributes. Attributes
make applications simpler and more secure by allowing
them to use access control implemented by the operating
system rather than reimplementing their own. Traditional
OS principals, such as users, are heavy-weight abstrac-
tions that cannot be directly used by applications e.g., a
web application that manages its own users.

DCAC attributes are hierarchically named strings.
Strings are separated into components by the “.” char-
acter. The string .u.alice can represent the user Alice,
but applications are free to define their own encodings
and even their own principals. For example, the string
.p.387.1357771171 might be a principal referring to a
process with identifier 387 started about 1.4 billion sec-
onds after January 1, 1970; .app.browser.password
might be a component of a browser that is responsible
for storing and retrieving the user’s passwords. A pro-
cess may carry multiple attributes simultaneously.

Practicality. DCAC combines ideas from mandatory
access control (MAC) systems [7, 16], sandboxing [6],
and decentralized information flow control (DIFC) [9,
15, 17, 21, 29] into a practical access control system that
is fully backward compatible with current Linux. While
MAC and DIFC systems can provide stronger guarantees
than DCAC, they require far more effort to use and often
struggle with backward compatibility. We believe that
application developers will incrementally improve the
security of their applications if presented with a simple
security programming model that introduces a minimum
of new concepts and that can implement security idioms
common in modern web-connected applications.

The next section (§2) provides motivating scenarios
for DCAC, followed by an extended discussion of design
(§3) and relationship to Linux DAC (§4). We describe
our DCAC prototype (§5), with a discussion of several
applications we modified to use DCAC (§6). We evaluate
DCAC (§7), discuss related work (§8) and conclude (§9).

2. Modern access control idioms
We discuss three access control idioms common in to-
day’s web-connected applications that are difficult to
achieve in modern systems: sandboxing, ad hoc shar-
ing, and managing users. Because these idioms are not
well served by current system security abstractions, ap-
plications constantly reimplement these idioms, and im-
plement them poorly. Section 3.2 shows how DCAC sup-
ports them more naturally than current systems.

Privilege separation/Sandboxing. Suppose Alice wish-
es to run a photo management program. By default, her
program will run with the same privileges as her user
account. However, routines for interpreting file formats
are often subject to exploitable bugs (such as in the zlib
library used to decompress .png files [1]). If Alice re-
ceives photos from untrusted sources, or even if Alice
makes a mistake, all of her potentially sensitive files are
endangered, rather than just those that should be man-
aged by her photo management application. Running
untrusted or partially-trusted applications has become
commonplace, as users frequently download applications
from less than trusted sources, or run applications that are
often exploitable, such as pdf viewers.

In order to separate her application into a separate
privilege domain, Alice must contact an administrator to
create a new user (e.g. alice-photos), potentially create a
new group containing both her and alice-photos so that
she may easily share files, and install support for running
her desired application as the new user, such as via a
setuid binary. While it is possible to enforce privilege
restriction without superuser support, solutions that do so
require complex application-level support (such as in the
Chromium web browser [6]) that are easy to get wrong,
with disastrous results (e.g., the frequent exploits enabled
by bugs in the Java VM’s sandboxing mechanism [2, 3]).

This scenario is an example of privilege separation,
a well-known technique for building secure applica-
tions [20], where each component has only the minimal
set of privileges necessary to operate. Privilege separa-
tion with OS support is coarse-grained, such as user-
controlled namespaces [13] (e.g., namespaces can con-
trol access to mount points, but not files or directories).

Ad hoc sharing. Existing systems provide limited fa-
cilities for sharing between users. Suppose Alice wishes
to share a file or directory with Bob. She can directly
send the relevant data to Bob, but if both users wish to be
able to update the data they must manually communicate
each change. She might change file or directory permis-
sions to allow read/write access to a group that contains
both Alice and Bob. Unless this specific group already
exists, Alice must rely on a system administrator to cre-
ate a new group containing both users. If she wishes to
add or remove users, she must also rely on a superuser.



USENIX Association  2014 USENIX Annual Technical Conference 397

Object 
(File/IPC object)

Process

attribute set

.u.alice        modify

.u.bob.photo   read

pmask:  0555

Linux process
credentials:
UID, GIDs, ...

default ACL

Attribute
gateway

Linux object
credentials:
UID GID, 
permission bits,
...

ACL

attribute ACL

 

attribute name

.u.alice.g.mygrp
read= .u.alice
V .g.student

write = ...
exec = ...
modify = ...

read = ...
modify = ...

UID-bit: 0

...

Figure 1: Overview of processes, objects and attribute gateways in
DCAC.

If the need to share files expires, an administrator must
clean up stale groups.

Facilities such as POSIX ACLs [4] allow users to
create more expressive access control lists, by specifying
multiple users and groups who may read and write a
file. If Alice wishes to share with many users, however,
she must either add each user to an ACL for each file
to be shared, or again use a group whose membership
may only be modified by the superuser. Users should be
able to define new groups of users without administrator
support, and use those groups in access control on their
files.

Managing users. Server applications often have ac-
cess control requirements similar to those of operating
systems, with multiple users having different privileges.
However, such applications usually implement access
control with manual checks in their own code. Custom
security code is a common source of security bugs: a
single missed access check can expose sensitive data to
unprivileged users. However, most non-trivial applica-
tions leveraging OS access control for application se-
curity must execute as different OS-level principals and
hence require superuser privilege. Such an application
must reserve user or group identifiers for its use during
installation and possibly during maintenance.

3. Design
In DCAC, the OS enforces simple rules about hierar-
chical strings (called attributes) that are stored in OS-
managed process and file metadata. Applications define
conventions for what attributes mean to them, allowing
them to create access control abstractions that are en-
forced by the OS.

Hierarchical strings are a self-describing mechanism
to express decentralized privilege, where any extension
of an existing string represents a subset of the par-
ent’s privileges. DCAC attributes have components sep-
arated by a “.” character: .u.alice is a parent attribute

of .u.alice.photo. The hierarchy allows regular users
to manage principals and policies without requiring a
system administrator. For example, Alice may define a
new principal for running her photo application (e.g.,
.u.alice.photo) because she owns and controls .u.alice.

Each process carries an attribute set, which is inher-
ited across process control events such as fork() and
exec(). A process also maintains a default ACL. Simi-
lar to Linux’s umask, files created by the process have
their access control lists set to the process’ default ACL.

Each object (such as a file or shared memory seg-
ment) has an access control list containing rules that al-
low processes to access the object based on attributes in
the processes’ attribute sets. An access control list spec-
ifies four access modes: read, write, execute, and mod-
ify. Each mode has an attribute expression, and a pro-
cess may access a file in a given mode if the process’ at-
tribute set satisfies the attribute expression for that access
mode. For example, the read access mode might specify
.u.alice∨ .g.student which provides read access to user
Alice and members of group student (see the read access
mode of the object in Figure 1).

Read, write and execute access modes represent the
rwx permission bits in UNIX-like file systems. The mod-
ify mode specifies the permission to modify the file’s ac-
cess control list. In UNIX-like systems, the file’s owner
implicitly has the right to modify a file’s access control.

In DCAC, each access mode has an attribute expres-
sion in disjunctive normal form (DNF) without nega-
tions. For example, a jpg file may have the following
access modes:

read = (.u.alice.photo) ∨ (.u.bob.photo)

write = (.u.alice.photo ∧ .u.alice.edit)

exec = ∅
modify = (.u.alice)

If a process has attribute set {u.bob.photo}, it can read
this jpg file, but cannot write to it or modify its ACL.

Broadly, DCAC defines rules similar to existing dis-
cretionary access control (DAC) in Linux and other sys-
tems. A process’ attribute set specifies the acting prin-
cipal, similar to a process’ UID and GID. A file’s access
control list specifies which principals may access the file,
similar to permission bits, which in conjunction with a
file’s owner and group specify access rights for a UID
and GID. However, DCAC is significantly more flexible
and decentralized. A process can have many attributes
in its attribute set without differentiating between users
and groups, files can specify formulae for allowing pro-
cesses access, and there is no central mapping between
string identifiers understandable by the user and integers
understandable by the system.

Note that although we use .u.〈user〉 and .g.〈group〉
throughout the paper to couch our discussion in terms of
users and groups, DCAC does not enforce any attribute



398 2014 USENIX Annual Technical Conference USENIX Association

naming scheme. Users and groups in DCAC exist only
by convention.

3.1 Adding and dropping attributes

DCAC allows a process to change its access control state
by modifying its attribute set. Attribute set modification
allows users and applications to run different processes
with different privileges. A process p can always drop an
attribute from its attribute set, but to add an attribute, it
must satisfy one of the following rules:
• p has the parent of the requested attribute (e.g. .u.alice

is the parent of .u.alice.photo).
• p has permission to use an attribute gateway (dis-

cussed later in this section).
A process can add attributes to its attribute set in

one of two modes, read or modify, depending on its at-
tribute set and the configuration of attribute gateways.
Read mode enables a process to use an attribute. Mod-
ify mode adds control over granting the attribute to other
processes. A process with an attribute in modify mode
can always downgrade that attribute to read mode. A pro-
cess cannot upgrade an attribute to modify mode without
a gateway or a parent attribute in modify mode. When
extending an attribute by adding a new component, the
extended attribute has the same mode as the parent.

Allowing a process to create and add attributes based
on hierarchy permits regular users to create new prin-
cipals without requiring administrator privileges. To en-
able flexible, application-defined resource sharing, pro-
cesses use attribute gateways to acquire attributes based
on user-defined rules.

Decentralized policy via attribute gateways. A pri-
mary design goal for DCAC is decentralization. Instead
of centralized credentials (e.g., /etc/group) or cen-
tralized access policy (e.g., SELinux’s policy.conf),
DCAC distributes credentials and access policy using at-
tribute gateways, which are a new type of file (in our
Linux implementation, they are empty regular files with
specific extended attributes). An attribute gateway al-
lows a process to add new attributes to its attribute set
based on its current attribute set. An attribute gateway is
a rights amplification mechanism, like a setuid binary,
but more flexible.

An attribute gateway has only two access modes, read
and modify (execute and write are not used). If a pro-
cess’ attributes fulfill an access mode for a gateway,
then the process may add the attribute to its set in that
mode. For example, Alice might tell her colleagues that
she is starting a group with attribute .u.alice.g.atc for
documents related to a submission to USENIX ATC.
She sends email to the members of the group explain-
ing that there is a gateway for the group in a file called
˜alice/groups/atc.gate. Her collaborators modify
their login scripts to open that attribute gateway as part

of their login process. The gateway’s read access mode
consists of a disjunction listing the user attributes for the
group’s members (e.g., read = (.u.alice)∨(.u.bob) . . .).

Gateways decentralize credentials and access policy.
Multiple gateways (or no gateways) may exist for any
attribute, with the location of the gateways and their
access controlled by users and convention. DCAC does
not force use of a central repository of credentials or
access policy, though users may choose to create and use
centralized repositories.

Having an attribute in modify mode allows a process
to decide which other principals can obtain the attribute,
just as having modify access to a file allows a process to
control which principals can access the file. Specifically,
having an attribute in modify mode allows a process to
change the access control list for any gateway for the
attribute, or to create new gateways for the attribute.

Access policies should incur performance penalties
only for features they actually use [26]. With a hierarchi-
cal attribute namespace and decentralized attribute gate-
ways, different users and applications can perform ad-
ministration in their own domains without contention;
in contrast, any administrative operations on UIDs and
/etc/passwd (for example) require central coordina-
tion across the system.

Gateway management. Gateway management is up
to users and their applications. Since DCAC is a generic
kernel-level mechanism, it does not impose requirements
for gateway locations; however, specific system deploy-
ments or applications can follow conventions such as
a central repository of gateways. (Similarly, the Linux
kernel does not enforce the use of the /etc/passwd

file, making it general enough to support Android’s
application-based access control.) While users can harm
themselves with incorrectly set gateway permissions,
gateways do not add problems beyond those of current
systems as there are already opportunities for self-harm
with standard file permissions. For example, a user can
make his or her ssh private key file world readable.

DCAC allows gateways to be in any location, which
could result in a less regulated environment than in cen-
tralized systems. With current file permissions it is rela-
tively easy (modulo perhaps setuid binaries) to determine
exactly which users and groups may (transitively) access
a file. Attribute gateways require an exhaustive search
of the filesystem to find all attributes that might allow a
given process access to a file. On the other hand, because
it is easier to run processes with reduced privilege, a user
could restrict her programs to only create gateways in
specific, relevant directories.

Summary. We believe DCAC achieves a new balance
of expressivity and simplicity due to the features:
• The attribute abstraction is generic. An attribute can

represent a user, a group, a capability, an application



USENIX Association  2014 USENIX Annual Technical Conference 399

or a category of files, depending on the user or the
application’s need.

• Attributes are hierarchically named, making privilege
delegation possible by extending existing attributes.

• Decentralized attribute gateways allow processes to
acquire attributes that they would otherwise not be
able to acquire strictly from attribute hierarchy. Cre-
ation of and policy for gateways is controlled by users
and applications.

• Attributes are self-explaining strings. There is no
need to map attributes to other OS-level identifiers
like UIDs. Identical strings from different machines
refer to the same attribute, making attributes directly
sharable. This enables DCAC to support NFS (§6.3)
with minimal development effort.

• There is no rigid distinction between “trusted” and
“untrusted” processes. Instead, process access bound-
aries can be flexibly defined and flexibly delegated.

3.2 DCAC supports modern access control idioms

Here, we describe how DCAC supports the modern ac-
cess control idioms described in §2.

Privilege separation/Sandboxing. Suppose Alice wishes
to run her photo manager in a separate, restricted envi-
ronment. Alice invokes her photo manager with a simple
wrapper that does the following:
1. Adds a .u.alice.photo attribute (allowed because Al-

ice’s process runs with the .u.alice attribute).
2. Drops the .u.alice attribute.
3. Executes her photo application.
She may similarly run her PDF reader in a separate, re-
stricted environment by following the same steps with
a .u.alice.pdf attribute. Alice then sets up ACLs to al-
low processes running with .u.alice.photo to access her
photo manager’s files, and .u.alice.pdf to access her pdf
reader’s files. Each application may now access only its
own set of files. In §6.2, we show how DCAC helps to
sandbox an application (Evince) with vulnerabilities.

A DCAC-aware application may also enable finer
privilege separation between different components. Sup-
pose Alice’s photo application wishes to isolate its file
decoding routines. It may run those routines in a sep-
arate process which carries the .u.alice.photo.reader
attribute, and drops the .u.alice.photo attribute. The pro-
gram can grant .u.alice.photo.reader read-only access
to the photo files but nothing else, to prevent an exploit
from reading other files or writing any file.

Ad hoc sharing. Hierarchical attributes combined with
policies for adding attributes to a process’ attribute set
allow regular users to customize how they share files.
Suppose that Alice (whose processes carry the .u.alice
attribute) wishes to share a file or set of files with a
group of users including Bob (see Figure 2). Rather than

gateway ACL
Files to share

attribute name

.u.alice.g.mygrpwrite = ...

read= 
.u.alice.g.mygrp

exec = ...
modify = ...

read = .u.bob
modify = 

Figure 2: Ad hoc sharing with DCAC. Alice shares files by allowing
.u.alice.g.mygrp read access. She then creates an attribute gateway
allowing .u.bob to add the attribute.

updating each file every time she wants to share with a
new user, like Bob, Alice instead does the following:
1. She creates a new attribute .u.alice.g.mygrp.
2. Alice creates a new attribute gateway for .u.alice.g.-

mygrp (e.g., ˜alice/groups/mygrp.gate) and
sets its attribute formula for the read access mode to
(.u.bob). Bob must learn the location of this file.

3. Processes running as Bob can use Alice’s new group
by locating the attribute gateway, and using it to add
the attribute .u.alice.g.mygrp to their attribute set.
These processes will be allowed the relevant access to
any file with an ACL that matches .u.alice.g.mygrp.

Alice can change membership of her group via ACLs
on the attribute gateway. Note that the ad hoc group is
a set of attributes; besides OS users, they may also repre-
sent any application-defined principals. Ad hoc sharing
is used in our modified DokuWiki server in §6.1.

Managing users. Consider a server application that
runs processes for multiple users, and stores user data
in files. The server can use DCAC to implement ac-
cess control by assigning different attributes to different
users’ processes, allowing application-level security re-
quirements to be easily expressed as string attributes. For
example, Linux user Alice runs myserver. A user on the
server, webuser, is assigned an attribute set that has only
.u.alice.myserver.u.webuser. A server process serving
webuser’s requests can only access files which allow ac-
cess to .u.alice.myserver.u.webuser. If the processes
need to share some common files, the server can add a
common attribute .u.alice.myserver.common to their
attribute sets, and add the attribute to the files’ ACLs.
Our modified DokuWiki server (§6.1) manages user and
group permissions this way.

If a server application executes on multiple machines,
it only needs to synchronize on relevant policies under
its management, instead of updating them for the whole
system. Server applications do not need to synchronize
on a map between application-level users and OS-level
access control state.

We apply DCAC to NFS (see §6.3). While different
machines still share a set of OS users and groups that
are already under centralized management, application-
defined principals and policies do not require centraliza-
tion.



400 2014 USENIX Annual Technical Conference USENIX Association

Sub-principals delegating to sub-principals. DCAC
allows flexible delegation to sub-principles, address-
ing one of the most vexing problems created by many
application-specific user management systems (such as
sshd and apache).

Consider the following: Professor X and Professor Y
wish to collaborate. Y sends a credential (like a public
key) to X and X uses it to add Y as a sub-principal. Y can
now access resources shared by X, such as a subversion
repository holding a joint publication. However, Profes-
sor Y recruits graduate student Z to actually do the work.
Most sub-principal systems are not flexible enough to al-
low Y to delegate to Z without giving Z his credential.
Therefore, Y must talk to X and make him aware of Z.
X’s list is a centrally administered bottleneck.

DCAC allows principals in a service to define and
manage their sub-principals, without registering them
with the service in a centralized way. Using DCAC, Pro-
fessor Y can provide Z a login without involving Profes-
sor X and without revealing his credential to Z.

We let a local user, X, have his own program, sub-auth,
to authenticate his sub-users. The program is located at a
known per-user location in the system, such as ˜X/sub-
users/sub-auth. X’s sub-auth program can define
where the credentials of his sub-users are stored, and
how to authenticate sub-sub-users. For example, it may
use a file to store sub-users’ credentials, and delegate
authentication to the sub-user. Thus, Y, a sub-user of X,
would have his own sub-auth program to authenticate
Y’s sub-users. §6.4 shows a detailed example of delega-
tion for sub-users using sshd.

DCAC does not require sub-auth programs, nor
does it require particular naming conventions for them.
A user may authenticate sub-users with a chain of cer-
tificates provided during login. A sub-user would require
a certificate chain of length one: a local user vouching
for the sub-user. A sub-sub-user must provide a chain of
length two, and so on. Such a scheme does not require lo-
cal storage for credentials and each user must only vouch
for (and know about) their direct sub-users.

4. Harmonious coexistence of DCAC and
DAC

DCAC is designed to work harmoniously with Linux’s
existing discretionary access control system (DAC), but
it has mandatory access control (MAC) mechanisms to
express policies more nuanced than what can be ex-
pressed by DAC alone. DCAC can augment a process’
rights (e.g., allow Alice’s calendar process to read a file
Bob’s process wrote and shared with Alice), but it can
also restrict rights (e.g., limit Alice’s photo reader from
reading her email).

Augmenting Linux DAC. A DCAC system is permis-
sive by default, allowing access if DAC or DCAC checks

succeed. By default, files have empty ACLs, so access
checks reduce to DAC checks. As a result, all valid Linux
disk images are valid DCAC disk images. By preserv-
ing DAC permissions, DCAC can be deployed incremen-
tally.

Allowing access if DAC or DCAC checks succeed
makes sharing easy. For example, Alice may share a file
with Bob by simply adding .u.bob to the file’s ACL.
If instead we required DAC and DCAC access checks
to succeed, Alice would have to adjust permissions on
many of her files to start using DCAC (e.g., she would
have to make her authorized keys readable by sshd).

Restricting Linux DAC. Using DCAC for restricting
Linux DAC permissions requires two additional pieces of
state, a pmask (permissions mask), and a UID-bit. Each
process has a pmask and a UID-bit that are inherited
by child processes after a fork(), and are maintained
across exec(). A process can only change its pmask by
making it more restrictive (i.e., by clearing bits), and it
can only clear the UID-bit.

The permissions mask is intended to prevent a process
from reading or writing resources that Linux’s DAC per-
missions allow (e.g., because the UID of a process and
file owner match, and the file owner has read access). The
permissions mask is ANDed with standard DAC permis-
sions bits before each permissions check. So a DCAC
system will check (perms & pmask) instead of perms.
Therefore, pmask = 0777 does not restrict Linux DAC,
while pmask = 0755 restricts write access to other users’
files, and pmask = 0 causes all DAC permission checks
to fail.

Each process has a UID-bit which is intended to
limit the ambient authority granted to a process when
its UID matches the UID of a resource. For example,
currently in Linux, a process may change the permissions
on a file or directory with matching UID even if it has
no permissions on the file or its containing directory.
If the UID-bit is clear, the process is restricted in the
following ways:
1. It can only change the DAC permissions and DCAC

ACLs of files with matching UID if it satisfies the
modify access mode.

2. kill and ptrace are restricted to child processes.
3. It cannot remove an IPC object, change permissions

on it, or lock/unlock a shared memory segment, un-
less the DCAC check for the object’s modify access
mode succeeds.
A process with the UID-bit set may modify DAC

permissions and ACLs for files and directories with
matching UIDs. An unrestricted process (e.g., running
as root) with the UID-bit set can change DAC permis-
sions and DCAC ACLs on any file or directory. It can
also can send signals to any process.



USENIX Association  2014 USENIX Annual Technical Conference 401

5. Prototype implementation
We implement a DCAC prototype by modifying Linux
3.5.4.

5.1 Programming interface

In DCAC, attributes are managed through file descrip-
tors. When a process successfully adds an attribute, it re-
ceives a file descriptor for that attribute. The correspond-
ing kernel file object is a wrapper for the attribute. We
use system calls open, openat and close to add and
drop attributes.

• int openat(int fd, char *suffix,

int flags):
If fd represents an attribute attr in the attribute set,
this call adds attr.〈suffix〉 and returns the asso-
ciated file descriptor. flags can be O RDONLY, or
O RDMOD, representing that the requested access mode
is read or modify (which subsumes read). If the par-
ent attribute has only read mode, requests for modify
access mode on the new attribute will be denied.

• int open(char *pathname, flags):
If the file at pathname is an attribute gateway, DCAC
will evaluate the access modes according to flags

(O RDONLY or O RDMOD). On success, the attribute
is added and the corresponding file descriptor is re-
turned. Note that this operation does not open the ac-
tual gateway file.

• int close(int fd):
If fd represents an attribute, that attribute is dropped.

A potential issue with using file descriptors is compat-
ibility with applications which are not aware of DCAC.
Sometimes applications close all open file descriptors as
a clean-up step (since file descriptors persist on fork and
exec), which results in unintended dropping of attributes.
To address this problem, we add a lock flag to each
process’ DCAC state. When the flag is set, the process’
DCAC state cannot be changed, until the flag is cleared.
One can set this flag in a wrapper and then invoke the
application (see §6.2). The lock flag is intended solely to
ease backward compatibility.

A related complication of using file descriptors to rep-
resent attributes is that programs may set the close on -

exec flag on their open file descriptors. For instance, if
bash is started as a login shell (where it needs to load the
user’s custom settings), it sets the close on exec flag
on all file descriptors except the standard I/O streams.
This can causes attributes to be dropped unintentionally.
DCAC ignores close on exec for attributes.

Besides open, openat, and close, all other opera-
tions are encoded into 4 new system calls. Table 1 shows
the DCAC API.

We additionally wrote a 274-line2 SWIG3 wrapper to
make DCAC functionality available in PHP.

5.2 Processes and Objects

The core functionality of DCAC is implemented as a
Linux security module (LSM [28]).

Processes. LSMs use a security field in the Linux
per kernel thread task struct structure to store the
security context of a process. The DCAC state for a
kernel thread includes the attribute set, default ACL,
pmask and the UID-bit, all of which are stored in a
structure pointed to by the security field (see §4).

In a multi-threaded application, each thread can have
its own DCAC state. Threads can thus run on behalf
of different principals, and access control decisions are
based on their individual DCAC state, which would be
useful for a trusted, uncompromised server application.
However, running untrusted code in a thread can lead to
loss of isolation between principals in case of a compro-
mise as threads share the same address space.

Files. For persistent file systems, DCAC requires sup-
port for extended attributes. File permission (read, write,
execute, and modify) ACLs are stored in files’ extended
attributes, with the entire ACL encoded in a single ex-
tended attribute. For attribute gateways, the attribute con-
trolled by the gateway and its ACLs (read and modify)
are encoded in a single extended attribute.

Permission checks happen only when files are opened
and not on subsequent reads/writes. The permission
check occurs in the inode permission LSM hook. The
inode permission hook is a restrictive hook, which
means it cannot grant access if a request is already denied
by the Linux DAC. However, DCAC allows access if ei-
ther DAC or DCAC is satisfied (§4). Therefore, in addi-
tion to LSM, we modify 4 lines of code in fs/namei.c

to achieve DCAC’s semantics.

ACL cache. DCAC keeps a generic, in-memory ACL
cache for each file in the VFS layer. There are two mo-
tivations for such a cache. First, it reduces performance
overhead for remote file systems (e.g. NFS). Second,
it makes DCAC usable for non-persistent file systems
(e.g. sysfs). The in-memory inode structure contains an
i security field, where DCAC stores the ACL cache.
The cache is initialized (from the file’s extended at-
tributes) when the ACL is first needed: when a DAC
permission check fails. The cache also records each file’s
change time (ctime) when the ACL is fetched. The cache
provides a mechanism for file systems to invalidate ACL
entries to enforce filesystem coherence semantics. The
ctime value in each cache entry can be used to deter-

2 All line counts: http://www.dwheeler.com/sloccount/
3 http://www.swig.org



402 2014 USENIX Annual Technical Conference USENIX Association

Sys call API Functionality

dcac add
int dcac add any attr

Add the the attribute attr, for root user only.
(const char *attr, int flags)

dcac acl

int dcac set def acl Set an access mode, specified by mode, in the
(const char *dnf, int mode) process’ default ACL to dnf.
int dcac set file acl(const char *file, Set one access mode in the file’s ACL to dnf.
const char *dnf, int mode)
int dcac set attr acl(int afd, int ffd, Create/change a gateway. afd and ffd are file
const char *read, const char *mod) descriptors of the attribute and the gateway file.

dcac info

int dcac get attr fd(const char *attr) Get the file descriptor of the attribute attr.
int dcac get attr name Get the string representation of the attribute
(int fd, char *buf, int bufsize) associated with fd.
int dcac get attr list Store the file descriptors of all the attributes of
(int *buf, int bufsize) the process to buf.

dcac mask

int dcac set pmask(short mask) Set pmask to (pmask & mask).
void dcac clear uid enable(void) Clear the UID-bit.
void dcac lock(void) Lock the process’ DCAC states.
void dcac unlock(void) Unlock the process’ DCAC states.

Table 1: DCAC API.

mine whether the entry needs to be invalidated, because
changing the extended attribute causes a ctime change.

IPC objects. The Linux kernel’s IPC object data struc-
tures share a common credential structure, kern ipc -

perm [28], where the DCAC ACL is stored. DCAC
checks permissions to access these objects in LSM multi-
ple hooks. We changed 6 lines in ipc/utils.c to allow
access if DAC or DCAC allows it.

5.3 Attribute management

Using the rules described in §3.1, a process can only add
new attributes based on existing attributes in its attribute
set. To initialize attribute state, our Linux DCAC imple-
mentation allows processes running as root to add any
attribute to their attribute sets with arbitrary modes (read
or modify). We then modify system binaries, such as
login, to initialize the attribute state for user processes.
login is already responsible for initializing a process’
UID and GID state by reading the /etc/passwd and
/etc/group files and invoking system calls such as
setuid and setgroups. We extend this responsibility
to include attributes.

Our examples use .u.alice to represent an attribute
corresponding to a specific Linux user. We encode this
convention in our prototype by changing login to
add the .u.〈username〉 attribute, with both read and
modify access modes, to user login shells. Similarly,
.g.〈grpname〉 attributes represent Linux groups, and
they are added with only read mode, since only root
has administrative control of them. Modifying login

required a 28 line change to the shadow 4.1.5.1 package.
We also modify sshd and the LightDM desktop man-

ager4 to set up the attribute state when the user logs in

4 http://wiki.gentoo.org/wiki/LightDM

remotely or via a graphical user interface. We changed
37 lines of code in OpenSSH 5.9 and 20 lines of code in
LightDM 1.2.1.

6. DCAC application implementation
We demonstrate several use cases of DCAC in real appli-
cations.

6.1 Application-defined permissions in DokuWiki

DokuWiki5 is a wiki written in PHP that stores individual
pages as separate files in the filesystem. As a result,
OS file-level permissions suffice for wiki access control.
In fact, access control only requires setting attributes
and default file ACLs on login. Then the OS ensures
that all ACL checks occur properly, without need for
application-level logic.

We add a 246-line DCAC module to DokuWiki’s
collection of authentication modules. DokuWiki with
DCAC executes in a webserver initialized with the
.apps.dokuwiki attribute. Upon user login, the web-
server process acquires a user-specific attribute .apps-
.dokuwiki.u.〈username〉 and drops .apps.dokuwiki.
Default ACLs on all created files are set to the user-
specific attribute. The server permits anonymous page
creation and access through a common attribute .apps-
.dokuwiki.common. DokuWiki runs as a CGI script to
ensure a new process with the .apps.dokuwiki attribute
handles each request, restricting the impact of a compro-
mise during a request to the logged in user. Otherwise,
a reused compromised process could affect other users
when it acquires their attributes during a new request.

DokuWiki has a built-in ACL system that is only
controllable by superusers. We modify DokuWiki to
support user-created groups. To do this, we create a

5 http://www.dokuwiki.org



USENIX Association  2014 USENIX Annual Technical Conference 403

new directory to hold gateway files with a directory
per wiki user. When a user creates a group, she also
creates a gateway file to attribute .apps.dokuwiki-
.u.〈username〉.g.〈groupname〉 with the name of the
group in a per-user location defined by a DokuWiki nam-
ing convention. The gateway file has read permission
for the members of the group. Each user’s group direc-
tory is traversable (has execute permission) by all users.
When a user is informed (out of band) that she has been
added to a new group, she records the group name and
gateway path name in her groups file. We have a user
modify her own groups file to ensure that her groups are
not disclosed by arbitrary access to a common file. Dur-
ing login, the DCAC authentication module reads the
user’s groups file and attempts to access gateways and
add group attributes.

We add calls to DokuWiki’s XML RPC interface
to use this group functionality: setPerms(pageName,
perms) allows the DCAC permissions of wiki files to be
adjusted. setGroup(groupName, members) modifies
the membership of the group named groupName. Fi-
nally, getMyGroups and setMyGroups allow a user to
activate the additional privileges given to her by groups
by modifying her groups file.

6.2 Sandboxing Evince

We implement an application wrapper that sets up DCAC
state for an application such as the default ACL, UID-bit,
pmask and attribute set. The wrapper can perform user-
specified work (via scripts) before application execution
(e.g., granting a sandboxed application permissions to
a specific file) and after application termination. With
a wrapper, DCAC can sandbox unmodified applications
because DCAC state is inherited across fork and exec.

We port a simple stack-based buffer overflow target-
ing an old version of Evince (evince-0.6.1) to test the
sandboxing ability of DCAC. Since document viewers
generally do not need write permission, we can sand-
box Evince by clearing its UID-bit and setting its
pmask = 0115, by using the application wrapper. We
allow execute permission for directory traversal, and al-
low read for world-readable files so Evince can load its
shared libraries. Additionally, to allow evince to open
the target pdf file, the wrapper keeps .u.alice.evince in
the attribute set, and adds it to the pdf file’s ACL. The
wrapper can reset the file’s ACL after Evince terminates.
Upon triggering the exploit, the attacker only has access
to world readable files, and even a shell opened via an
exploit remains confined.

6.3 NFS

In a normal NFS environment, machines are within
the same trust domain, and share a common set of OS
users and groups, which usually requires centralized
management. By adopting an attribute naming conven-

tion for users and groups (such as .u.〈username〉 and
.g.〈grpname〉), DCAC eliminates centralized manage-
ment. A user can define her own sub-principals and man-
age them in her own way, on all machines.

The Linux NFS implementation does not support ex-
tended attributes, but we ported a patch for NFSv3 [18] to
add extended attribute support. In addition to the patch,
we also modified 326 lines of code for NFS in the Linux
kernel source.

The NFSv3 specification [24] does not define how a
server should check permissions. In the NFS implemen-
tation in Linux, a client OS checks permissions when a
file is opened, but the server does not check permission
for subsequent read calls, or for write calls on the files
that belong to the process’ user. It only checks permis-
sion for write calls on files that belong to a different
user. We remove this extra check in DCAC. We believe
that this change is sensible, since under this change NFS
files still obey the standard UNIX convention where per-
missions are checked only on open.

Clients must make DCAC access control decisions,
as they have access to a process’ attributes as well as
the resource’s (e.g., file’s) attributes. However, creating
or removing files and directories requires write access to
the parent directory and in Linux NFS the client simply
forwards these operations to the server without checking
permissions. In DCAC, if a client uses attributes to de-
termine that a create or remove operation is legal, it
appends a hash of the cached ACL for the parent direc-
tory in its RPC to the server. The server checks the hash
against the ACL, and if they match, it knows the client
has an up-to-date copy and can trust the client’s deci-
sion to allow the operation. While NFS servers trust their
clients, this check is to ensure that clients do not make
wrong decisions based on stale permissions. In addition,
DCAC appends the process’ default ACL to create and
mkdir calls, to initialize ACLs on newly created files and
directories.

For regular files, DCAC also uses the ACL cache to
determine permission when they are opened. To guaran-
tee close-to-open consistency [24], the cache is invali-
dated when a ctime change is observed.

6.4 Managing sub-users in SSHD

We modify 81 lines of sshd to support the access control
model described in Section 3.2.

Modern versions of sshd support a forced command
option, which allows unprivileged users to authenticate
sub-principals with public keys via the svnserve pro-
gram. Arguments to svnserve control details like the
user name for sub-principals (because sub-principals
do not have user names in /etc/passwd). However,
svnserve does not allow the kind of flexible delegation
described in the next example.



404 2014 USENIX Annual Technical Conference USENIX Association

Authentication example. When sshd receives a login
request for X.Y, it invokes X’s sub-auth program with
only X’s privilege, and passes to it the sub-user name “Y”
and the credentials the request provides. If the sub-auth
program returns successfully, sshd approves this request
and restricts X.Y’s privilege by properly setting the at-
tribute set, pmask and UID-bit.

For a more concrete example, consider a hierarchy of
users: X.Y.Z, described here and illustrated in Figure 3.

1. When X.Y.Z tries to login using ssh, he provides
username “X.Y.Z” and some credential.

2. sshd invokes X’s sub-auth program, passing sub-
username “Y.Z” and the credential to it, with UID set
to X’s and only .u.X in the attribute set.

(a) X’s sub-auth finds that it is one-level down, it
keeps only .u.X.Y in the attribute set, and restricts
pmask and UID-bit.

(b) It exec’s Y’s sub-auth, passing sub-username
“Z” and the credential to it. Y’s sub-auth verifies
the credential, and returns successfully.

3. Now sshd knows the request is authenticated. Before
exec’ing the shell, sshd keeps only .u.X.Y.Z in the
attribute set, and restricts pmask and UID-bit.

Note that another OS user, A, can have a completely
different sub-auth program. His sub-auth program
may be based on certificate chains, and does not need
further lower-layer sub-auth programs. For example,
A can sign a certificate for B’s public key as A.B, and B
can sign another certificate for C’s public key as A.B.C.
When A.B.C logs in, he needs to provide the two certifi-
cates to be verified by A’s sub-auth, as well as a proof
that he has C’s private key, such as a signature.

7. Evaluation
We measure the performance overhead of DCAC through
both targeted benchmark programs and representative
applications. Our benchmarking systems had quad-core
Intel Core2 2.66 GHz CPUs, 8 GB of RAM, and a 160
GB, 7200 RPM disk. All servers and clients were con-
nected by gigabit Ethernet.

7.1 Microbenchmarks

Filesystem. We run the Reimplemented Andrew Bench-
mark (RAB) [19], a version of the Andrew benchmark
scaled for modern systems, on both a local ext4 filesys-
tem and NFSv3.

RAB initially creates 100 files of 1 KB each and mea-
sures the time for the following operations: (1) creation
of a number of directories, (2) copying each of the 100
initial files to some of these directories, (3) executing the
du command to calculate disk usage of the files and di-
rectories, and (4) using grep to search all file copies for

Login request
Username: X.Y.Z
Password: ****

sshd

root privilege
fork and exec   

X's sub-auth

With X's UID

X.Y's sub-auth

With X's UID

Search in file
    ~X/subusers/Y/subusers/subusers.db:
for entry {username=Z, password=****}
password matches

exec

exec parameters:
Program:
 ~X/subusers/sub-auth
Username: Y.Z
Password: ****

exec parameters:
Program:
 ~X/subusers/Y/subusers/sub-auth
Username: Z
Password: ****

DCAC state:
Attributes: .u.X.Y
pmask = 0005
UID-bit = 0

DCAC state:
Attributes: .u.X
pmask = 0777
UID-bit = 1

sshd

root privilege

        exits  successfully        

bash

With X's UID

DCAC state:
Attributes: .u.X.Y.Z
pmask = 0005
UID-bit = 0

fork and exec   

wait

Figure 3: Authentication of sub-users in our modified sshd: support
for arbitrary nesting of sub-principals.

ext4

mkdir copy du grep & sum

DCAC no check check wr 32B ACL check wr 256B ACL

check rd+wr 32B ACL check rd+wr 256B ACL

S
lo

w
d

o
w

n

0

0.2

0.4

0.6

0.8

1

1.2

NFSv3

mkdir copy du grep & sum

DCAC no check check wr 32B ACL check wr 256B ACL

check rd+wr 32B ACL check rd+wr 256B ACL

S
lo

w
d

o
w

n

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4: RAB results on local ext4 and NFSv3. 20,000 directories are
created in the mkdir phase, and 100 files of 1 KB each are copied to 500
directories in the copy phase. The slowdown is relative to unmodified
Linux.

a short string and checksumming all the files. The exact
number of operations varied depending on category (ext4
or NFS) and is described with the corresponding figures.
Results are shown in Figure 4.

We compare the results for the following cases:
• The baseline, which uses an unmodified Linux kernel.



USENIX Association  2014 USENIX Annual Technical Conference 405

FS
Time (µs)

chmod
Changing DCAC file ACL
32B ACL 256B ACL

ext4 1.24 2.19 4.27
NFSv3 224 228 238

Table 2: Time to change the ACL of a file, compared to chmod.

• DCAC kernel, where the default ACL is empty, and
ACLs on files are not checked. DCAC adds at most
1% overhead on local ext4 and NFS.

• DCAC kernel, where the default ACL only contains
the write access mode; DCAC ACL checks occur for
every write access. On local ext4, the overhead is 0%
to 4% for a 32B ACL, and 0% to 8% for a 256B ACL.
On NFS, the overhead is below 4%.

• DCAC kernel, like the prior case, but DCAC ACL
checks occur for both read and write accesses. On
local ext4, the overhead is 1% to 4% for a 32B ACL,
and 2% to 9% for a 256B ACL. On NFS, the overhead
is below 5%.
On ext4, the kernel stores extended attributes within

inodes if they are below a certain size threshold. With
256-byte inodes, 32 bytes is below this threshold; 256
bytes is not, so extra disk blocks must be allocated, re-
sulting in larger overhead in the mkdir and copy phases,
where new files are created. For the du phase and the
grep and sum phase, observed differences correspond to
whether read ACLs are being checked and differ little
for ACL sizes. This is likely because DCAC reads ACLs
from ACL caches for most of the time.

On NFS, the number of round trips per operation
dominates the performance; overhead for disk storage for
extended attributes on the server is negligible in compar-
ison. Most of the time, DCAC reads ACLs from the ACL
caches, which does not incur network communication.
On the creation of a file or directory, DCAC appends the
initial ACL to the create or mkdir RPC, instead of us-
ing a separate setxattr RPC. As a result, DCAC adds
very small overhead on NFS.

ACL manipulation. We compare the time it takes to
change the ACL of a file, to chmod in Linux. Table 2
shows that, on a local ext4, changing ACLs can be 1.7×
to 3.4× slower than chmod, depending on the size of
the ACL; on NFSv3, ACL size has a small impact on
performance, and the time spent for changing ACLs is
comparable to chmod (under 6.5%).

IPC. DAC and DCAC check permission for shared
memory segments and named pipes only when they
are attached to the process’ address space or opened;
however, every up or down operation on a System V
semaphore requires a permission check. We measure the
overhead induced on semaphore operations by DCAC
ACL checks. The baseline comes from the DCAC kernel

Setup Baseline DCAC
Time (ns) 279 355 (1.27×)

Table 3: Overhead for a semaphore operation.

FS Time (s)
baseline check wr check rd&wr

ext4 197.3 198.3 (1.01×) 201.2 (1.02×)
NFSv3 322.1 325.4 (1.01×) 325.7 (1.01×)

Table 4: Kernel compile time, averaged over 5 trials. “check wr”
means the DCAC write access modes on output files and directories
are checked; “check rd” means the DCAC read access modes on the
source files are checked. “baseline” means using unmodified kernel.
The size of each ACL is 256 bytes.

where DAC permission checks always succeed, so no
ACL checks ever occur. The DCAC measurement comes
from removing a process’s DAC permissions by setting
its pmask to 0 and giving it an attribute. The semaphore
is accessible to processes with this attribute. Thus, we
ensured that a DCAC ACL check is performed on ev-
ery semaphore operation. We measure the average time
per semaphore operation over a long sequence that al-
ternated between up and down (measuring the average
overhead of both), and set the initial semaphore value so
that no semaphore opertion blocks. Table 3 shows 27%
slowdown for a semaphore operation requiring a DCAC
permission check.

7.2 Macrobenchmarks

Kernel compile. We measure the time to compile the
Linux kernel (version 3.5.4, without modules). Table 4
shows the overhead is negligible for both an ext4 filesys-
tem and NFS. DCAC only performs additional permis-
sion checks on file open, creation, and deletion. The
amount of time spent on these operations is small enough
compared to the computation involved in a kernel com-
pile to cause low overhead.

DokuWiki. We benchmark DokuWiki by playing back
a set of modifications made to the DokuWiki website
(which is itself run using DokuWiki). This is a set of
6,430 revisions of 765 pages. We made a set of requests
to a wiki with a 90% read workload. Each write operation
replaces a page of the wiki with the next version in the
set of revisions that we have. We measured the total wall
clock time for 16 clients to perform 100 requests apiece
against the wiki. The baseline is the wiki running on
the same machine with the same kernel but no attributes
applied to any files and using standard authentication.
Results are in Table 5. DCAC authentication and plain
authentication results were within margin of error of each
other. This is expected, as DCAC merely adds a few
system calls to operations that otherwise have a lot of
computation and file I/O through running PHP scripts.



406 2014 USENIX Annual Technical Conference USENIX Association

Setup Baseline DCAC
Time (s) 45.5± 0.7 45.3± 0.7

Table 5: Wall clock times for 16 clients to complete 100 requests apiece
to DokuWiki. Standard deviations are determined from 10 trials.

Systems Relation to DCAC

Sandboxes Focus on isolation, DCAC also accommo-
dates fine-grained sharing

Flexible policy
specification

Focus on completeness rather than usabil-
ity, DCAC strives for balance

Application- and
user- defined
access control

DCAC provides fine-grained control, sup-
ports network filesystems

New security
models

DCAC concepts easier to understand:
closer to traditional users and groups

Table 6: Comparing DCAC with related systems.

8. Related work
DCAC is most directly inspired by two systems, Cap-
sicum [27] and UserFS [14]. Capsicum shows that pro-
grammers want and will use system abstractions that
make writing secure code easier. Capsicum implements
a fairly standard capability model for security; its in-
novation is in casting file descriptors, an abstraction fa-
miliar to Unix programmers, as a capability. DCAC ap-
plies this insight by representing attributes as file descrip-
tors. Capsicum’s capability mode is similar to DCAC’s
pmask and DCAC’s UID-bit, in that they are both used
to deprivilege a process and restrain its ambient author-
ity granted by legacy access control systems; however,
DCAC’s pmask and UID-bit are more fine-grained –
they can selectively restrict a process’ ability to perform
different operations on different files.

UserFS [14] leverages existing OS protection mecha-
nisms to increase application security by explicitly main-
taining a hierarchy of UIDs to represent principals. Un-
fortunately, system-wide UIDs are awkward for dynamic
principals. For example, independent server applications
would contend for UIDs even though their principals
are in logically separated domains. Moreover, in a dis-
tributed setting, groups of machines would need to syn-
chronize on what UIDs are currently in use. DCAC is
designed to work well where UserFS struggles—highly
dynamic, distributed deployments within a single admin-
istrative domain.

There are too many access control systems and pro-
posals to analyze them all, so we describe the novel com-
bination of features in DCAC by contrasting with entire
classes of access control systems, with modern exem-
plars. Table 6 summarizes our analysis.

Sandboxing. Many projects try to isolate (“sandbox”)
potentially malicious code from the rest of the system.
Android repurposes UIDs to isolate mutually distrusting

applications from one another. The Mac OS X Seatbelt
sandbox system can constrain processes according to
user-defined policies, which is used by Chromium [8].

User-level sandboxes are often specific to an applica-
tion, and are hard to get right because applications reg-
ularly change the files and directories they access. As a
result they suffer problems with usability and security
vulnerabilities [2, 3].

DCAC provides a single mechanism for all applica-
tions, usable by ordinary (non-administrator) users, that
can meet the varying data access requirements of appli-
cations. DCAC also meets access control requirements
that go beyond sandboxing, like user-controlled, fine-
grained sharing. A key contribution of DCAC is that it
combines the models used by users (file access control
and sharing) and administrators (creating sandboxes).

Capsicum has a daemon, Casper, which provides ser-
vices to sandboxed processes; in DarpaBrowser [25],
confined code can access resources in the system via
Powerboxes, which is controlled by user interface inter-
actions. These techniques are also applicable to DCAC,
providing confined processes an alternative path to reach
privileged resources without escalation.

Flexible policy specification. SELinux [16] and App-
Armor [7] aim to provide comprehensive policies for the
resources that applications can access. This comprehen-
siveness can lead to usability problems: SELinux is noto-
riously difficult to use [22]. Both of them are only man-
ageable by administrators and have difficulty accommo-
dating situations where policies for one application vary
per user. DCAC is configurable on a per-user basis.

eXtensible Access Control Markup Language (XA-
CML) [5] is an XML-based format for defining access
control. While flexible, it relies on XML manipulations
(e.g., XPath queries) that are unsuited for use in frequent
latency-sensitive operations within an OS.

POSIX ACLs [4] allow for users to define expressive
access control lists for permissions. However, these have
important limitations, like the inability to support user-
defined groups without explicitly putting all group mem-
bers in the ACL of every file that has group permission
(which in turn makes group membership updates diffi-
cult). DCAC can accommodate user-defined groups.

The Andrew File System [12] (AFS) supports flexible,
per-directory ACLs, and allows users to create groups
under their own administration. In comparison, DCAC is
not restricted to a specific file system or IPC mechanism,
and supports more general usage due to its attribute-
based model.

Application- and user-defined access control. Sev-
eral prior systems allow program-controlled subdivi-
sion of users into further users for finer-grained protec-
tion [10, 14, 23]. These systems still label processes by
one user, and as a result are less flexible than DCAC. Ad-



USENIX Association  2014 USENIX Annual Technical Conference 407

ditionally, these systems do not store information about
the user hierarchy in a way that easily allows shared use
in a network filesystem: UserFS [14] requires synchro-
nization of unrelated applications on a global database
of all users. By contrast, DCAC attributes are strings that
self-describe where they belong in the attribute hierar-
chy.

DCAC is inspired by attribute-based access control,
proposed as part of InkTag [11]. DCAC generalizes the
approach to a trusted OS and makes it coexist with exist-
ing access control.

New security models. Decentralized Information
Flow Control (DIFC) [9, 15, 17, 21, 29] systems mod-
ify access privileges based on the information that ap-
plications have accessed. DIFC-enforcing systems may
provide stronger security guarantees than DCAC.

Systems that use radically different security models
require that developers adapt the logic of their code to
work in these models. While DCAC may require code
changes to applications, we expect they will be less sig-
nificant because DCAC’s core concept, the attribute, is
implemented as a file descriptor, and is easily mapped
onto users and groups, concepts that are familiar to de-
velopers and likely reflected in their code. Enforcing new
security models can require extensive global OS modifi-
cation, whereas DCAC’s changes fit mostly within the
existing LSM framework.

9. Conclusion
OS-level support for application-defined principals makes
DCAC usable and flexible enough to solve modern ac-
cess control problems. DCAC decentralizes privilege and
policy specification, improves application security, and
supports distributed operation.

References
[1] GNU Zlib : List of security vulnerabilities. http:

//www.cvedetails.com/vulnerability-list/
vendor_id-72/product_id-1820/GNU-Zlib.html.

[2] National Vulnerability Database: CVE-2012-4681.
http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-4681.

[3] National Vulnerability Database: CVE-2013-0422.
http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2013-0422.

[4] POSIX 1003.1e Draft (Security APIs). http://users.
suse.com/˜agruen/acl/posix/Posix_1003.
1e-990310.pdf.

[5] eXtensible Access Control Markup Language (XACML) Ver-
sion 3.0. http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-cs02-en.html, August 2012.
OASIS Committee Specification 02.

[6] BARTH, A., JACKSON, C., REIS, C., AND GOOGLE CHROME
TEAM. The security architecture of the chromium browser. Tech.
rep., Google Inc., 2008.

[7] BAUER, M. Paranoid penguin: an introduction to novell AppAr-
mor. Linux Journal (2006).

[8] The Chromium Project: Design Documents: OS X Sand-
boxing Design. http://dev.chromium.org/

developers/design-documents/sandbox/
osx-sandboxing-design.

[9] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLER, D., KOHLER, E., MAZIERES, D.,
KAASHOEK, F., AND MORRIS, R. Labels and event processes
in the Asbestos operating system. In SOSP (2005).

[10] FRIBERG, C., AND HELD, A. Support for discretionary role
based access control in ACL-oriented operating systems. In Pro-
ceedings of the second ACM workshop on Role-based access con-
trol (1997).

[11] HOFMANN, O. S., DUNN, A. M., KIM, S., LEE, M. Z., AND
WITCHEL, E. InkTag: Secure applications on an untrusted oper-
ating system. In ASPLOS (2013).

[12] HOWARD, J. H., ET AL. An overview of the Andrew File Sys-
tem. Carnegie Mellon University, Information Technology Center,
1988.

[13] KERRISK, M. Namespaces in operation, part 1: namespaces
overview. https://lwn.net/Articles/531114/, Jan.
2013.

[14] KIM, T., AND ZELDOVICH, N. Making Linux protection mech-
anisms egalitarian with UserFS. In USENIX Security (2010).

[15] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. In-
formation flow control for standard OS abstractions. In SOSP
(2007).

[16] LOSCOCCO, P., AND SMALLEY, S. D. Meeting critical security
objectives with security-enhanced linux. In Proceedings of the
Ottawa Linux Symposium (2001), pp. 115–134.

[17] MYERS, A. C., AND LISKOV, B. Protecting privacy using the
decentralized label model. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 9, 4 (2000), 410–442.

[18] XATTR protocol patch for NFSv3. http://namei.org/
nfsv3xattr.

[19] PORTER, D. E., HOFMANN, O. S., ROSSBACH, C. J., BENN,
A., AND WITCHEL, E. Operating system transactions. In SOSP
(2009).

[20] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing
privilege escalation. In USENIX Security (2003).

[21] ROY, I., PORTER, D. E., BOND, M. D., MCKINLEY, K. S.,
AND WITCHEL, E. Laminar: Practical fine-grained decentralized
information flow control. In PLDI (2009).

[22] SCHREUDERS, Z. C., MCGILL, T., AND PAYNE, C. Empow-
ering End Users to Confine Their Own Applications: The Results
of a Usability Study Comparing SELinux, AppArmor, and FBAC-
LSM. TISSEC (September 2011).

[23] SNOWBERGER, P., AND THAIN, D. Sub-identities: Towards
operating system support for distributed system security. Tech.
rep., University of Notre Dame, 2005.

[24] SUN MICROSYSTEMS, INC. RFC 1813 - NFS: Network File
System Version 3 Protocol Specification. IETF Network Working
Group, 1995.

[25] WAGNER, D., AND TRIBBLE, D. A Security Analysis of
the Combex DarpaBrowser Architecture. Online at: http:
//www. combex. com/papers/darpa-review (2002).

[26] WATSON, R. N. A decade of os access-control extensibility.
Communications of the ACM (2013).

[27] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND KENN-
AWAY, K. Capsicum: Practical Capabilities for UNIX. In USENIX
Security (2010).

[28] WRIGHT, C., COWAN, C., MORRIS, J., SMALLEY, S., AND
KROAH-HARTMAN, G. Linux security modules: General secu-
rity support for the Linux kernel. In USENIX Security (2002).

[29] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making information flow explicit in HiStar. In
OSDI (2006).




