
This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

The TURBO Diaries: Application-controlled
Frequency Scaling Explained

Jons-Tobias Wamhoff, Stephan Diestelhorst, and Christof Fetzer, Technische Universät
Dresden; Patrick Marlier and Pascal Felber, Université de Neuchâtel; Dave Dice, Oracle Labs

https://www.usenix.org/conference/atc14/technical-sessions/presentation/wamhoff

USENIX Association 	 2014 USENIX Annual Technical Conference  193

The TURBO Diaries: Application-controlled Frequency Scaling Explained
Jons-Tobias Wamhoff
Stephan Diestelhorst

Christof Fetzer
Technische Universtät Dresden, Germany

Patrick Marlier
Pascal Felber

Université de Neuchâtel, Switzerland

Dave Dice

Oracle Labs, USA

Abstract

Most multi-core architectures nowadays support dynamic volt-
age and frequency scaling (DVFS) to adapt their speed to the
system’s load and save energy. Some recent architectures addi-
tionally allow cores to operate at boosted speeds exceeding the
nominal base frequency but within their thermal design power.

In this paper, we propose a general-purpose library that
allows selective control of DVFS from user space to accelerate
multi-threaded applications and expose the potential of hetero-
geneous frequencies. We analyze the performance and energy
trade-offs using different DVFS configuration strategies on sev-
eral benchmarks and real-world workloads. With the focus on
performance, we compare the latency of traditional strategies
that halt or busy-wait on contended locks and show the power
implications of boosting of the lock owner. We propose new
strategies that assign heterogeneous and possibly boosted fre-
quencies while all cores remain fully operational. This allows
us to leverage performance gains at the application level while
all threads continuously execute at different speeds. We also
derive a model to help developers decide on the optimal DVFS
configuration strategy, e.g, for lock implementations. Our in-
depth analysis and experimental evaluation of current hardware
provides insightful guidelines for the design of future hardware
power management and its operating system interface.

1 Introduction

While early generations of multi-core processors were essen-
tially homogeneous with all cores operating at the same clock
speed, new generations provide finer control over the frequency
and voltage of the individual cores. A major motivation for this
new functionality is to maximize processor performance with-
out exceeding the thermal design power (TDP), as well as re-
ducing energy consumption by decelerating idle cores [4, 35].

Two main CPU manufacturers, Intel and AMD, have pro-
posed competing yet largely similar technologies for dynamic
voltage and frequency scaling (DVFS) that can exceed the
processor’s nominal operation frequency, respectively named
Turbo Boost [39] and Turbo CORE [3]. When the majority
of cores are powered down or run at a low frequency, the
remaining cores can boost within the limits of the TDP. In
the context of multi-threaded applications, a typical use case
is the optimization of sequential bottlenecks: waiting threads
halt the underlying core and allow the owner thread to speed
up execution of the critical section.

Boosting is typically controlled by hardware and is com-
pletely transparent to the operating system (OS) and applica-
tions. Yet, it is sometimes desirable to be able to finely control

these features from an application as needed. Examples in-
clude: accelerating the execution of key sections of code on
the critical path of multi-threaded applications [9]; boosting
time-critical operations or high-priority threads; or reducing
the energy consumption of applications executing low-priority
threads. Furthermore, workloads specifically designed to run
on processors with heterogeneous cores (e.g., few fast and
many slow cores) may take additional advantage of application-
level frequency scaling. We argue that, in all these cases, fine-
grained tuning of core speeds requires application knowledge
and hence cannot be efficiently performed by hardware only.

Both Intel and AMD hardware implementations are con-
strained in several ways, e.g., some combination of frequencies
are disallowed, cores must be scaled up/down in groups,
or the CPU hardware might not comply with the scaling
request in some circumstances. Despite the differences of
both technologies, our comparative analysis derives a common
abstraction for the processor performance states (Section 2).
Based on the observed properties, we present the design and
implementation of TURBO, a general-purpose library for
application-level DVFS control that can programmatically
configure the speed of the cores of CPUs with AMD’s Turbo
CORE and Intel’s Turbo Boost technologies, while abstracting
the low-level differences and complexities (Section 3).

The cost of frequency and voltage transitions is subject
to important variations depending on the method used for
modifying processor states and the specific change requested.
The publicly available documentation is sparse, and we believe
to be the first to publish an in-depth investigation on the latency,
performance, and limitations of these DVFS technologies
(Section 4). Unlike previous research, our goal is not energy
conservation or thermal boosting [36], which is usually applied
to mobile devices and interactive applications with long idle
periods, but long running applications often found on servers.
We target efficiency by focusing on the best performance, i.e.,
shorter run times or higher throughput using the available TDP.
In this context, hardware is tuned in combination with the OS
to use frequency scaling for boosting sequential bottlenecks
on the critical path of multi-threaded applications. We use
the TURBO library to measure the performance and power
implications of both blocking and spinning locks (Section 4.2).
Our evaluation shows that connecting knowledge of appli-
cation behavior to programmatic control of DVFS confers
great benefits on applications having heterogeneous load.
We propose new configuration strategies that keep all cores
operational and allow a manual boosting control (Section 4.3).

Based on the evaluation of manual configuration strategies

194  2014 USENIX Annual Technical Conference	 USENIX Association

AMD FX-8120 Intel i7-4770
Model AMD Family 15h Model 1 Intel Core 4th generation

Codename “Bulldozer” “Haswell”
Design 4 modules with 2 ALUs & 1 FPU 4 cores with hyper-threading

L2 cache 4×2MB per module 4×256KB per core
L3 cache 1×8MB per package 1×8MB per package

TDP 124.95W (NB 14.23W) 84W
Frequency 3.1GHz, (1.4–4.0GHz) 3.4GHz (0.8–3.9GHz)

Stepping ACPI P-states, 100MHz multiplier P-states, 100MHz
Voltage 0.875–1.412V (3.41–27.68W) 0.707–1.86V (5–75W)

Table 1: Specification of the AMD and Intel processors.

Package

Northbridge: L3 cache, Integrated memory controller

Module

L2 cache

L1 data cache

x86 Core FPU x86 Core

L1 instr. cache L1 data cache

Module Module Module

Figure 1: Organization of an AMD FX-8120 processor.

and their latencies, we derive a simplified cost model (Sec-
tion 4.4) to guide developers at which size of a critical region a
frequency transition pays off. Four case studies investigate the
performance gains exploited by application-level frequency
control based on real-world benchmarks (Section 5).

2 Hardware Support for Boosting

With both AMD’s Turbo CORE and Intel’s Turbo Boost,
performance levels and power consumption of the processor
are controlled through two types of operational states: P-states
implement DVFS and set different frequency/voltage pairs
for operation, trading off higher voltage (and thus higher
power draw) with higher performance through increased
operation frequency. P-states can be controlled through special
machine-specific registers (MSRs) that are accessed through
the rdmsr/wrmsr instructions. The OS can request a P-state
change by modifying the respective MSR. P-state changes
are also not instantaneous: the current needs to be adapted
and frequencies are ramped, both taking observable time.

C-states are used to save energy when a core is idle.
C0 is the normal operational state. All other C-states halt
the execution of instructions and trade different levels of
entry/wakeup latency for lower power draw. The OS can
invoke C-states through various means such as the hlt and
monitor/mwait instructions. We argue in this paper that
there are benefits in keeping selected cores operational, albeit
at a lower frequency, and that manipulating P-states can be
more efficient in terms of latency than manipulating C-states.

We base our work on AMD’s FX-8120 [1] and Intel’s
i7-4770 [19] CPUs, whose characteristics are listed in Table 1.

2.1 AMD’s Turbo CORE

The architecture of the AMD FX-8120 processor is illustrated
in Figure 1. The cores of a package are organized by pairs
in modules that share parts of the logic between the two cores.

Our processor supports seven P-states summarized in Ta-
ble 2. We introduce a TURBO naming convention to abstract
from the manufacturer specifics. AMD uses P-state numbering
based on the ACPI standard with P0 being the highest perfor-
mance state. The two topmost are boosted P-states (#Pboosted

Hardware P-state P0 P1 P2 P3 P4 P5 P6
TURBO naming Pturbo Pbase Pslow

Frequency (GHz) 4.0 3.4 3.1 2.8 2.3 1.9 1.4
Voltage (mV) 1412 1412 1275 1212 1087 950 875

Power 4×nop (W) — 123.3 113.6 97.2 70.1 49.9 39.3
Power 4×ALU (W) — — 122.6 104.3 74.6 52.9 41.2

Power 3×Pslow, 1×P0..6 (W) 125.0 119.8 100.5 87.4 65.5 48.5 41.2
Power 3×mwait, 1×P0..6 (W) 120.1 116.5 90.9 77.6 55.5 40.5 32.8

Table 2: Default P-state configuration of AMD FX-8120.
=2) that are by default controlled by the hardware. The re-
maining five P-states can be set by the OS through the MSRs1.

The boosting of the frequency beyond the nominal P-state
(Pbase) is enabled by the hardware’s Turbo CORE technology if
operating conditions permit. The processor determines the cur-
rent power consumption and will enable the first level of boost-
ing (P1HW) if the total power draw remains within the TDP
limit and the OS requests the fastest software P-state. A multi-
threaded application can boost one module to P1HW while
others are in Pbase if it does not use all features of the package
to provide the required power headroom, e.g., no FPUs are ac-
tive. The fastest boosting level (Pturbo) is entered automatically
if some cores have furthermore reduced their power consump-
tion by entering a deep C-state. Note that Turbo CORE is
deterministic, governed only by power draw and not tempera-
ture, such that the maximum frequency is workload dependent.
During a P-state transition, the processor remains active and
capable of executing instructions, and the completion of a
P-state transition is indicated in an MSR available to the OS.

The Turbo CORE features can be enabled or disabled al-
together, i.e., no core will run above Pbase. Selected AMD
processors allow developers to control the number of hardware-
reserved P-states by changing #Pboosted through a configuration
MSR. To achieve manual control over all P-states, including
boosting, one can set #Pboosted =0. The core safety mecha-
nisms are still in effect: the hardware only enters a boosted
P-state if the TDP limit has not been reached. In contrast to the
processor’s automatic policy, the manual control of all P-states
can enable Pturbo with all other cores in C0 but running at Pslow.

Due to the pairwise organization of cores in modules, the
effect of a P- and C-state change depends on the state of the
sibling core. While neighboring cores can request P-states
independently, the fastest selected P-state of the two cores will
apply to the entire module. Since the wrmsr instruction can
only access MSRs of the current core, it can gain full control
over the frequency scaling if the other core is running at Pslow.
A module only halts if both cores are not in C0.

The processor allows to read the current power draw (P) that
it calculates based on the load. Out of the total TDP, 14.24W
are reserved for the northbridge (NB) (including L3 cache)
and logic external to the cores. Each of the four modules is
a voltage (V) and frequency (f) domain defined by the P-state.
The package requests V defined by the fastest active P-state
of any module from the voltage regulator module (VRM).

1The numbering in software differs from the actual hardware P-states:
PHW = PSW + #Pboosted . With a default of #Pboosted =2: Pbase = P0SW =
P2HW and Pturbo = P0HW . P0SW is the fastest requestable software P-state.

USENIX Association 	 2014 USENIX Annual Technical Conference  195

Hardware P-state P39 P34 P20 P8
TURBO naming Pturbo Pbase Pslow

Frequency (GHz) 3.9 3.4 2.0 0.8
Voltage (mV) 1860 n/a n/a 707

Power nop (W) — 39 20 11
Power ALU (W) — 51 25 12

Power mwait (W) 25 19 11 8

Table 3: Default P-state configuration of Intel i7-4770.
Table 2 lists P with (1) all cores in the same P-state executing
nop instructions, (2) execution of integer operations with
ALU, (3) three modules in Pslow except one in the given P-
state, and (4) all modules halted using mwait except one
active core. The consumed active P depends on V , f and the
capacitance (C) that varies dynamically with the workload (P=
V2∗ f ∗Cdyn). Therefore, for the nop load all cores can boost
to P1HW , while for integer loads all cores can run only at Pbase.
Boosting under load can be achieved when other modules are
either in Pslow or halted. Mwait provides the power headroom
to automatically boost to Pturbo. The manual boosting control
allows to run one module in Pturbo if the others run at Pslow.

2.2 Intel’s Turbo Boost

Intel’s DVFS implementation is largely similar to AMD’s
but more hardware-centric and mainly differs in the level
of manual control. All cores are in the same frequency and
voltage domain but can each have an individual C-state. The
P-states are based on increasing multipliers for the stepping of
100MHz, non-predefined ACPI P-states in the opposite order.
Our processor supports frequencies from 0.8GHz to 3.9GHz
corresponding to 32 P-states that are summarized in Table 3.
In TURBO terms, Pbase corresponds to P34HW , leaving 5
boosted P-states. All active cores in C0 symmetrically run at
the highest requested frequency, even if some cores requested
slower P-states. The consumed power was measured in a
fashion analogous to that in Section 2.1, with hyper-threading
enabled and all cores always in the same P-State.

The processor enables Turbo Boost if not all cores are in C0.
The level of boosting depends on the number of active cores, es-
timated power consumption, and additionally the temperature
of the package. This “thermal boosting” allows the processor
to temporarily exceed the TDP using the thermal capacitance
of the package. In contrast to AMD, the maximum achievable
frequency also depends on the recent execution history, which
relates to the current package temperature and makes it some-
what stateful. While boosting can be enabled or disabled alto-
gether, the boosted P-states are always controlled automatically
by the processor and no manual control by software is possible.

Intel’s design choice targets to speed up critical periods of
computation, e.g., boosting sequential bottlenecks by putting
waiting cores to sleep using C-states or providing temporarily
peak performance for interactive applications as on mobile de-
vices or desktops. Our focus is on multi-threaded applications
mostly found on servers that run for long periods without much
idle time. Thermal boosting is not applicable to such work-
loads because on average one cannot exceed the TDP. Instead,
our goal is to improve the performance within the TDP limits.

Linux kernel

Hardware
abstraction

Topology
- Cores
- Modules
- Packages

PCI-Configuration
- Vendor info
- Boosting config
- NB config

MSR
- P-state setting
- MWAIT config
- HW counters

PerfEvent
- HW events
- OS events

Performance
configuration

Thread
- TID, CoreID
- Core migration
- Sleep or wait

P-States
- Set: turbo/base/slow, percent
- Enable/disable boosting
- Manual/automatic boosting

PerformanceMonitor
- Interval frequency
- Interval C-states
- Duration: cycles, time

Execution
control

ThreadRegistry
- Create thread
- Register thread
- Affinity policy

ThreadControl
- Lock (blocking, spinning), barrier, conditional variable
- Decorate: P-state transition, core migration, MWAIT
- Optional: performance profiling (e.g., of critical sections)

Turbo driver perf_eventACPI driver & sysfs

ProcessorMSRs PMUCores

Figure 2: Overview of TURBO library components.

3 TURBO Library

The TURBO library, written in C++ for the Linux OS, provides
components to configure, control, and profile processors from
within applications. Our design goals are twofold: we want
to provide a set of abstractions to (1) make it convenient to
improve highly optimized software based on DVFS; and (2) set
up a testbed for algorithms that explore challenges of future
heterogeneous cores [2], such as schedulers. The components
of the TURBO library are organized in layers with different
levels of abstraction as shown in Figure 2. All components
can be used individually to support existing applications that
use multiple threads or processes. The layered architecture
allows an easy extension to future hardware and OS revisions.

3.1 Processor and Linux Kernel Setup

The default configurations of the processors and Linux kernel
manage DVFS transparently for applications: All boosted
P-states are controlled by the processor and the Linux governor
will adapt the non-boosted P-states based on the current
processor utilization (“ondemand”) or based on static settings
that are enforced periodically (“performance”, “userspace”).

We must disable the influence of the governors and the
processor’ power saving features in order to gain explicit
control of the P-states and boosting in user space using our
library. Note that the “userspace” governor provides an
alternative but inefficient P-state interface [16]. Therefore,
we disable the CPU frequency driver (cpufreq) and turn
off AMD’s Cool’n’Quiet speed throttling technology in the
BIOS. To control all available P-states in user space, we can
either disable automatic boosting altogether, which is the only
solution for Intel, or for AMD set #Pboosted = 0 to enable
manual boosting control (for details see Section 2). Changing
the number of boosted P-states also changes the frequency
of the time stamp counter (tsc) for AMD processors so we
therefore disable tsc as a clock source for the Linux kernel
and instead use the high precision event timer (hpet). Note
that these tweaks can easily be applied to production systems
because we only change BIOS settings and kernel parameters.

The processor additionally applies automatic frequency
scaling for the integrated NB that can have a negative
impact on memory access times for boosted processor cores.

196  2014 USENIX Annual Technical Conference	 USENIX Association

Therefore, NB P-states are disabled and it always runs at the
highest possible frequency.

Linux uses the monitor and mwait instructions to idle
cores and change their C-state. When another core writes
to the address range specified by monitor, then the core
waiting on mwait wakes up. The monitor-mwait facility
provides a “polite” busy-waiting mechanism that minimizes
the resources consumed by the waiting thread. For experiments
on AMD, we enable these processor instructions for user space
and disable the use of mwait in the kernel to avoid lockouts.
Similarly, we must also disable the use of the hlt instruction
by the kernel, because otherwise we cannot guarantee that at
least one core stays in C0. We restrict the C-state for the Linux
kernel to C0 and use the polling idle mode. These changes
are required in our prototype only for the evaluation of C-state
transitions and are not necessary in a production system.

The presented setup highlights the importance of the con-
figuration of both hardware and OS for sound benchmarking.
Multi-threaded algorithms should be evaluated by enforcing
Pbase and C0 on all cores to prevent inaccuracies due to fre-
quency scaling and transition latencies. All other sources of un-
predictability should be stopped, e.g., all periodic cron jobs.

3.2 Performance Configuration Interface

The library must be aware of all threads even if they are
managed explicitly by the application. Therefore, the thread
registry is used first to create or register all threads. Next, the
threads are typically assigned to distinct cores based on the
processor’s topology, which is discovered during initialization.
If thread migration to another core is required at runtime, it
must be performed using our library to allow an update of
the core specific configuration, e.g., the P-state.

The easiest way to benefit from DVFS is to replace the appli-
cation’s locks with thread control wrappers that are decorated
with implicit P-state transitions, e.g., boosting the lock owner
at Pturbo, waiting at Pslow, and executing parallel code at Pbase.

If the wrappers are not sufficient, the application can request
an explicit performance configuration that is still independent
of the underlying hardware. Threads can request the executing
core to run at Pturbo, Pbase, or Pslow, and can alternatively spec-
ify the P-state in percent based on the maximum frequency.
The actual P-state is derived from the selected setup, e.g.,
if boosting is enabled and controlled manually. The current
P-state configuration is cached in the library in order to save
the overheads from accessing the MSRs in kernel space. If
a P-state is requested that is already set or cannot be supported
by the processor’s policy or TDP limits, then the operation has
no effect.2 Threads can also request to temporarily migrate
to a dedicated processor core that runs at the highest possible
frequency and stays fully operational in C0.

2In practice, we write our request in MSR Pcmd and can read from
MSR Pval what the CPU actually decided. We can either (a) wait until both
MSRs match, i.e., another core makes room in the TDP, (b) return the CPU’s
decision, or (c) just write and provide best-effort guarantees (default). De-
terministic hardware without thermal boosting does not overwrite MSR Pcmd .

The lowest layer presents hardware abstractions for the ma-
chine specific interfaces and DVFS implementations, as well
as the Linux OS. The Linux kernel provides a device driver
that lets applications access MSRs as files under root privilege
using pread and pwrite. We implemented a lightweight
TURBO kernel driver for a more streamlined access to the
processor’s MSRs using ioctl calls. The driver essentially
provides a wrapper for the wrmsr/rdmsr instructions to be
executed on the current core. Additionally, it allows kernel
space latency measurements, e.g., for P-state transition time,
with more accuracy than from user space. We derive the
topology from the Linux ACPI driver and use sysfs for
AMD’s package configuration using PCI functions.

3.3 Performance and Power Profiling

The TURBO library provides means to profile highly optimized
applications and algorithms for heterogeneous cores. The
profiling can be used to first identify sections that can benefit
from frequency scaling and later to evaluate the performance
and power implications of different configurations.

Again, the simplest ways to obtain statistics is to use thread
control wrappers, which exist to replace locks, barriers, and
condition variables. The wrappers can be decorated with pro-
filing capabilities of the performance monitor, which uses the
aperf/mperf and tsc counters of the processor [1, 19]
and the perf event facilities of the Linux kernel to access
the processor’s performance monitoring unit (PMU).

The performance monitor operates in intervals, e.g., defined
by a lock wrapper, for which it captures the cycles, frequency,
and C-state transitions. Additional counters such as the
number of cache misses or stalled cycles can be activated, e.g.,
to analyze the properties of a critical section. The PMU also
provides counters to read the running average power limit
(RAPL) on Intel and the processor power in TDP on AMD.

4 Processor Evaluation

On top of the TURBO library presented in Section 3, we
implemented a set of benchmark applications that configure
and profile the underlying processor. In this section, we
present (1) the static transition latencies introduced by the OS
and hardware, (2) the overheads of blocking upon contended
locks and when it pays off regarding speed and energy
compared to spinlocks, and (3) new static and dynamic
P-state transition strategies that optimize spinlocks and allow
applications to expose heterogeneous frequencies.

4.1 Hardware Transition Latency

The latency for DVFS results from a combination of OS
overhead to initiate a transition and hardware latency to adjust
the processor’s state. Therefore, we present in Tables 4 (AMD)
and 5 (Intel) the overhead for system calls, P-state requests
and the actual transition latencies in isolation. Throughout
our evaluation, we use a Linux kernel 3.11 that is configured
according to Section 3.1. We use only the x86 cores (ALU)

USENIX Association 	 2014 USENIX Annual Technical Conference  197

P-State Mean Deviation
Operation Transition Cycles ns Cycles ns

System call overheads for futex and TURBO driver
syscall(futex wait private) — 1321 330 42 10
ioctl(trb) — 920 230 14 3

P-state MSR read/write cost using msr or TURBO driver
pread(msr, pstate) — 3044 761 43 10
ioctl(trb, pstate) — 2299 574 30 7
pwrite(msr, pstate, Pbase) Pbase→Pbase 2067 741 110 27
ioctl(trb, pstate, Pbase) Pbase→Pbase 1875 468 42 10
Hardware latencies for P-state set (wrmsr) and transition (wait) (kernel space)
wrmsr(pstate, Pslow) Pbase→Pslow 28087 7021 105 26
wrmsr(pstate, Pslow) & wait Pbase→Pslow 29783 7445 120 30
wrmsr(pstate, Pturbo) Pslow→Pturbo 1884 471 35 8
wrmsr(pstate, Pturbo) & wait Pslow→Pturbo 226988 56747 84 21
wrmsr(pstate, Pbase) & wait Pslow→Pbase 183359 45839 130 32
wrmsr(pstate, Pturbo) & wait Pbase→Pturbo 94659 23664 87 21
wrmsr(pstate, Pbase) Pturbo→Pbase 23203 5800 36 9
wrmsr(pstate, Pbase) & wait Pturbo→Pbase 24187 6046 139 34
wrmsr(pstate, P1HW) Pbase→P1HW 974 234 132 33
wrmsr(pstate, P1HW) & wait Pbase→P1HW 94642 23660 136 34
wrmsr(pstate, Pbase) & wait P1HW→Pbase 24574 6143 138 34

Hardware latencies for C-state transitions (in user space)
monitor & mwait — 1818 454 18 4

Software and hardware latency for thread migration
pthread setaffinity — 26728 6682 49 12

Table 4: Latency cost (AMD FX-8120, 100,000 runs).

P-State Mean Deviation
Operation Transition Cycles ns Cycles ns

System call overheads for futex and TURBO driver
syscall(futex wait private) — 1431 366 32 8
ioctl(trb) — 1266 324 64 16

P-state MSR read/write cost using msr or TURBO driver
pread(msr, pstate) — 2638 775 24 7
ioctl(trb, pstate) — 2314 680 54 16
pwrite(msr, pstate, Pbase) Pbase→Pbase 4246 1248 122 35
ioctl(trb, pstate, Pbase) Pbase→Pbase 3729 1096 72 21
Hardware latencies for P-state set (wrmsr) and transition (wait) (kernel space)
wrmsr(pstate,Pbase) Pslow→Pbase 44451 13073 131 38
wrmsr(pstate,Pbase) & wait Pslow→Pbase 48937 14393 86 25
wrmsr(pstate,Pslow) Pbase→Pslow 2015 592 61 17
wrmsr(pstate,Pslow) & wait Pbase→Pslow 58782 17288 65 19
wrmsr(pstate,Pturbo) Pbase→Pturbo 2012 591 44 12
wrmsr(pstate,Pturbo) & wait Pbase→Pturbo 41451 12191 78 22

Hardware latencies for C-state transitions (in kernel space)
monitor & mwait C1 — 4655 1369 25 7
monitor & mwait C2 — 36500 10735 1223 359
monitor&mwait C6 — 74872 22021 672 197

Software and hardware latency for thread migration
pthread setaffinity — 12145 3572 81 23

Table 5: Latency cost (Intel i7-4770, 100,000 runs).

and no FPU or MMX/SSE/AVX to preserve the required
headroom for manual boosting.

System calls for device-specific input/output operations
(ioctl) have a low overhead and are easily extensible using
the request code parameter. The interface of the TURBO
driver (trb) is based on ioctl, while the Linux MSR driver
(msr) uses a file-based interface that can be accessed most
efficiently using pread/pwrite. The difference in speed
between msr and trb (both use rdmsr/wrmsr to access
the MSRs) results mostly from additional security checks and
indirections that we streamlined for the TURBO driver. The cost
in time for system calls depends on the P-state, i.e., reading the
current P-state scales with the selected frequency, here Pbase.

Observation 1: P-state control should be made available
through platform-independent application program interfaces
(APIs) or unprivileged instructions. The latter would eliminate

the latency for switching into kernel space to access platform-
specific MSRs but require that the OS’s DVFS is disabled.

We measured the cost of the wrmsr instruction that
initiates a P-State transition of the current core, as well as
the latency until the transition is finished, by busy waiting
until the frequency identifier of the P-state is set in the status
MSR. Both measurements are performed in the TURBO driver,
removing the inaccuracy due to system call overheads.

For AMD, requesting a P-state faster than the current one
(e.g., Pslow→Pbase) has low overhead in itself, but the entire
transition has a high latency due to the time the VRM takes
to reach the target voltage. The request to switch to a slower
P-state (e.g., Pbase→Pslow) has almost the same latency as the
entire transition, i.e., the core is blocked during most of the tran-
sition. We suspect that this blocking may be caused by a slow
handshake to coordinate with the other module’s core to see if
an actual P-state change will occur. Overall, the transition has
a lower latency because the frequency can already be reduced
before the voltage regulator is finished. If only switching to a
slow P-state for a short period, the transition to a faster P-state
will be faster if the voltage was not dropped completely.

On the Intel CPU, total latency results are very similar: A
P-state transition also takes tens of microseconds but depends
on the distance between the current and requested P-state.
A significant difference to AMD, however, lies in the faster
execution of the wrmsr request of a P-state transition going
slower (e.g., Pbase→Pslow) because Intel does not need to
perform additional coordination.

Observation 2: The frequency transitions should be
asynchronous, triggered by a request and not blocking, i.e.,
keeping the core operational. The API should include the
ability to read or query P-state transition costs for building a
cost model that allows DVFS-aware code to adapt at runtime.

We additionally show costs related to the OS. In the mwait

experiment, one core continuously updates a memory location
while the other core specifies the location using monitor and
calls mwait. The core will immediately return to execution
because it sees the memory location changed, so the numbers
represent the minimal cost of executing both instructions. Al-
though AMD allows the use of mwait from user space, the
feature is typically used by the OS’s futex system call when
the kernel decides to idle. The pthread setaffinity

function migrates a thread to a core with a different L2 Cache
that is already in C0 state and returns when the migration is fin-
ished. Thread migration typically results in many cache misses
but the benchmark keeps only minimal data in the cache.

Observation 3: The OS should keep the current frequency
in the thread context to better support context switches and
thread migrations. Ideally, the OS would expose a new set
of advisory platform-independent APIs to allow threads to set
their desired DVFS-related performance targets. Furthermore,
the OS kernel (and potentially a virtual machine hypervisor)
would moderate potentially conflicting DVFS resource
requests from independent and mutually unaware applications.

198  2014 USENIX Annual Technical Conference	 USENIX Association

fPturbo

fPbase
fPslow

tCStwait twait

tCSa)

twait

tCS
tCSfP1HW

A
cq
ui
re
en
tr
y

A
cq
ui
re
ex
it

t P b
as
e→
C
ha
lt

t C
ha
lt→

P b
as
e

t P t
ur
bo
→
P b
as
e

t P b
as
e→
P s
lo
w

t P s
lo
w
→
P t
ur
bo

t P t
ur
bo
→
P b
as
e

t P b
as
e→
P1
H
W

t P1
H
W
→
P b
as
e

Re
le
as
e

tramptramp tramp

b) c) d)

Figure 3: Frequency sequence for (a) spinning, (b) blocking, (c) frequency scaling and (d) critical regions.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

f C
S

(G
H

z)

Frequency AMD (#Pboost=2)

spin
mwait
futex

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Frequency Intel (#Pboost=5)

103 104 105 106 107

SizeCS (cycles, log)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

E
N
O
R
M

(k
W

h)

Energy AMD (#Pboost=2)

102 103 104 105 106 107

SizeCS (cycles, log)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Energy Intel (#Pboost=5)

Figure 4: Characteristics of blocking and spinning.

4.2 Blocking vs. Spinning Locks

We evaluate the boosting capabilities using a thread on each
core that spends all its time in critical sections (CS). The CS
is protected by a single global lock implemented as an MCS
queue lock [29] in the TURBO library. The lock is decorated
such that upon contention, the waiting thread either spins or
blocks using mwait (AMD only) or futex. The sequence
is illustrated in Figure 3a and 3b, respectively. In all cases,
the thread-local MCS node is used for the notification of
a successful lock acquisition. Inside the CS, a thread-local
counter is incremented for a configurable number of iterations
(∼10 cycles each). While the global lock prevents any
parallelism, the goal of the concurrent execution is to find the
CS length that amortizes the DVFS cost.

We want to discuss when blocking is preferable over spin-
ning, both in terms of performance and energy, using the de-
fault configuration of hardware and OS: The P-states are man-
aged automatically by the processor and the setup from Sec-
tion 3.1 is not applied. We run the application for 100 seconds
and count the number of executed CS, which gives us the cycles
per CS including all overheads. Separately, we measure the
cycles per CS without synchronization at Pbase, i.e., the cycles
doing real work. The effective frequency inside a CS is: fCS=

fbase∗
cyclesnosync
cyclesmcs

. The energy results are based on the proces-
sor’s TDP/RAPL values, from which we take samples during
another execution. We compute the energy it takes to execute
1 hour of work at Pbase inside CS: E=Esample∗ cyclesmcs

cyclesnosync
.

The results are shown in Figure 4. The spin strategy runs
all cores at Pbase and is only effected by synchronization
overhead, with decreasing impact for larger sizes of CS. The
mwait and futex strategies are additionally effected by
C-state transitions that halt the core while blocking, which
allows to boost the active core. The C-state reached by mwait

is not deep enough to enable Pturbo, probably because it is
requested from user space. Still, CS are executed at P1HW and
the low overhead lets mwait outperform spin already at a CS
size of ∼4k cycles. Using futex has the highest overhead
because it is a system call. The C-state reached depends on
twait (see Figure 3b), which explains the performance drop:
Deep C-states introduce a high latency (see Table 5) but are
required to enable Pturbo. We verified this behavior using
aperf/mperf, which showed that the frequency in C0 is
at Pturbo only after the drop. The futex outperforms spin
and mwait at ∼1.5M cycles for AMD and ∼4M cycles for
Intel, which also boosts spin 2 steps. Note that an optimal
synchronization strategy for other workloads also depends on
the conflict probability and twait , but our focus is on comparing
boosting initiated by the processor and on application-level.

The sampled power values do not vary for different sizes of
CS (see Tables 2 and 3 for ALU and mwait), except for fu-

tex, which varies between 55-124W for AMD depending on
the reached C-state. The reduction in energy consumption due
to deeper C-states must first amortize the introduced overhead
before it is more efficient than spinning. With only a single
core active at a time, futex is the most energy efficient strat-
egy for AMD after a CS size of ∼1M cycles, which results for
8 threads in twait =∼7M cycles because the MCS queue lock
is fair. Intel is already more energy efficient after ∼10k cycles,
indicating that it trades power savings against higher latencies.
Boosting provides performance gains for sequential bottlenecks
and halting amortizes the active cores’ higher energy consump-
tion [31]. The default automatic boosting is not energy efficient
for scalable workloads because all energy is consumed only
by a single core without performance benefit [12].

4.3 Application-level P-state Transition Strategies

Our goal is to enable application-level DVFS while keeping all
cores active. Therefore, we enable manual P-state control with
the setup described in Section 3.1 and restrict the following
discussion to just AMD. For the evaluation, we use the same
application as in the previous Section 4.2 but with a different
set of decorations for the lock: The strategy one executes iter-
ations only on a single core that sets the P-state statically during
initialization to either Pslow, Pbase or Pturbo. All other threads
run idle on cores at Pslow in C0. This provides the baseline
for different P-state configurations without P-state transition
overheads but includes the synchronization. The dynamic
strategies ownr and wait are illustrated in Figure 3c. For
ownr, all threads are initially set to Pslow and the lock owner
dynamically switches to Pturbo during the CS. For wait, all

USENIX Association 	 2014 USENIX Annual Technical Conference  199

103 104 105 106 107 108

SizeCS (cycles, log)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

f C
S

(G
H

z)
Frequency AMD (#Pboost=0)

one Pturbo

one Pbase

one Pslow

103 104 105 106 107 108

SizeCS (cycles, log)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
N
O
R
M

(k
W

h)

Energy AMD (#Pboost=0)
ownr Pturbo

wait Pslow

dlgt Pturbo

mgrt Pturbo

Figure 5: Characteristics of manual P-state control.

threads initially request Pturbo and dynamically switch to Pslow
while waiting. The processor prevents an oversubscription and
allows Pturbo only if 3 modules are in Pslow. The remaining
strategies use only a subset of the cores for executing CS:
dlgt uses only 1 thread per module and delegates the P-state
transition request to the thread executing on the neighboring
core. The strategy is otherwise the same as ownr. mgrt uses
only 6 cores on 3 modules running at Pslow. The remaining
module runs at Pturbo and the current lock owner migrates to
a core of the boosted module during the CS.

The results are presented in Figure 5. The dynamic
strategies ownr and wait introduce overhead in addition to
the synchronization costs because two P-state transitions must
be requested for each CS. This overhead is amortized when
the resulting effective frequency of the CS is above one with
Pbase, starting at CS sizes of ∼600k cycles. Both strategies
behave similarly because the application does not execute
parallel code between CS. Otherwise, the idea is that wait

hides the slow blocking transition to Pslow (see Section 4.1)
within twait , whereas ownr must perform this transition after
releasing the lock. To that extent, dlgt shifts the P-state
transition cost entirely to the other core of the module and
can outperform one already at ∼200k cycles, but only half
of the processor cores can be used. The mgrt strategy does
not include overhead from P-state transitions but costly thread
migrations. Still, it outperforms one at ∼400k cycles. A
real-world benchmark would show worse results because it
suffers from more cache misses on the new processor core
than our synthetic benchmark that keeps only little data in
the cache [30]. Additionally, initiating a migration at Pslow
will be executed slowly until the thread reaches the boosted
core. Overall, we observe that application-level DVFS is more
effective than C-state control because it allows to outweigh
overheads for CS of sizes smaller than ∼1.5M cycles.

Observation 4: The P-state transition should be as fast as
possible so that short boosted sections can already amortize
the transition cost. It exists hardware that can switch to
arbitrary frequencies within one clock cycle [17].

As long as one modules runs at Pturbo, which is the case
here, the processor consumes the maximal TDP of 125W.
The consumed energy solely depends on the overheads of
each strategy because of the serialized execution. Note that
the energy for executing one with a static P-state is almost
identical for Pslow, Pbase and Pturbo, indicating that the energy

consumption is proportional to the P-state. In fact, we get for
a single module in Pturbo 29% more speed using 25% more
power compared to Pbase (see Table 2). Compared to mwait

and futex, application-level DVFS allows less power
savings because all cores stay in C0, but it can be applied to
parallel workloads, which we investigate in Section 5.

Observation 5: Processors should support heterogeneous
frequencies individually for each core to provide headroom
for boosting while staying active. The design should not limit
the frequency domain for a package (Intel) or module (AMD).
An integrated VRM supports fine grained voltage domains
to allow higher power savings at low speeds. Additionally,
for some workloads it would be beneficial to efficiently set
remote cores to Pslow in order to have local boosting control.

4.4 Performance Cost Model

Based on our experimental results, we derive a simplified cost
model for AMD’s boosting implementation to guide develop-
ers when boosting pays off regarding performance. We first
present a model for boosting sequential bottlenecks that for-
malizes the results from Section 4.3. We then specialize it for
boosting CS that are not a bottleneck as well as for workloads
that contain periods with heterogeneous workload distributions.

We make the following simplifying assumptions: (1) the
application runs at a constant rate of instructions per cycle
(IPC), regardless of the processor frequency; (2) we do not
consider costs related to thread synchronization; (3) the
frequency ramps linearly towards faster P-states (e.g.,
fPslow → fPturbo); and (4) the frequency transition to a slower
P-state takes as long as the P-state request. Assumption (4)
is a direct result of our latency measurement, (1) and (2) allow
an estimation without taking application specifics into account.
We will revisit assumptions (1) and (2) when looking at actual
applications that depend on memory performance and thus ex-
hibit varying IPC with changing frequency (due to the changed
ratio of memory bandwidth, latency and operation frequency).

For sequential bottlenecks, we follow the strategy ownr

described in Section 4.3 and illustrated in Figure 3c. Boosting
will pay off if we outperform the CS that runs at fPbase:
tCSfPturbo

≤tCSfPbase
. The minimal tCS must be greater than the

combined P-state request latencies and the number of cycles
that are executed during the P-State transition (tramp, i.e., the
difference between wrmsr and wait in Table 4) to Pturbo:

tCS≥tPslow→Pturbo+tramp+tPtubo→Pbase+
cyclesCS−cyclesramp

fPturbo
Based on the P-state transition behavior that we observed

in Section 4.3, we can compute the minimal tCS as follows:

tCS ≥
fPturbo

fPturbo − fPbase

· (tPslow→Pturbo + tPturbo→Pbase)

+
1
2
·

fPturbo − fPslow

fPturbo − fPbase

· tramp

The minimal wait time twait to acquire the lock should sim-
ply be larger than the time to drop to fPslow: twait ≥tPbase→Pslow .
With the results from Section 4.1, on AMD this equals to

200  2014 USENIX Annual Technical Conference	 USENIX Association

a minimal tCS of ∼436,648 cycles (∼109µs). Note that
optimized strategies can reach the break even point already
earlier (e.g., dlgt in Figure 5). Based on the above cost
model for sequential bottlenecks, we can derive a cost model
for boosting CS by one step (see Figure 3d):

tCS≥
fP1HW

fP1HW − fPbase

·(tPbase→P1HW +tP1HW→Pbase)+
1
2
·tramp

We never move below Pbase and boosting pays off if tCS
is longer than ∼336,072 cycles (∼84µs).

Besides boosting sequential bottlenecks, another interesting
target are periods of heterogeneous workload distributions.
These workloads can run one thread temporarily at a higher
priority than other active threads or have an asymmetric
distribution of accesses to CS from threads. Typically, such
critical regions are longer because they combine several CS,
thus improving the chances of amortizing the transition cost.
Based on the presented cost model, we compute the minimal
duration of such periods instead of the CS size. We present
examples in Section 5.

5 Boosting Applications

We evaluated the TURBO library using several real-world ap-
plications with user space DVFS on the AMD FX-8120. We
chose these workloads to validate the results from our synthetic
benchmarks and the cost model to boost sequential bottle-
necks (5.1); highlight gains by using application knowledge
to assign heterogeneous frequencies (5.2); show the trade-offs
when the IPC depends on the core frequency, e.g., due to mem-
ory accesses (5.3); and outweigh the latency cost of switching
P-states by delegating critical sections to boosted cores (5.4).

5.1 Python Global Interpreter Lock

The Python Global Interpreter Lock (GIL) is a well known
sequential bottleneck based on a blocking lock. The GIL must
always be owned when executing inside the interpreter. Its
latest implementation holds the lock by default for a maximum
of 5ms and then switches to another thread if requested. We are
interested in applying some of the P-state configuration strate-
gies presented in Section 4.3 to see if they provide practical
benefits. For this evaluation, we use the ccbench application
that is included in the Python distribution (version 3.4a).

The benchmark includes workloads that differ in the amount
of time they spent holding the GIL: (1) the Pi calculation
is implemented entirely in Python and spends all its time in
the interpreter; (2) the computation of regular expressions
(Regex) is implemented in C with a wrapper function that
does not release the GIL; and (3) the bz2 compression and
SHA1 hashing have wrappers for C functions that release the
GIL, so most time is spent outside the interpreter. Table 6
summarizes the characteristics of the workloads.

We evaluate the following P-state configuration strategies in
Figure 6. Base runs at Pbase and, hence, does not incur P-state
configuration overheads. Dyn waits for the GIL at Pslow, then
runs at Pturbo while holding the GIL and switches to Pbase
after releasing it. While the workloads Pi and Regex do

1 Thread 2 Threads 4 Threads
Task python native wait python native wait python native

Pi (P) 72694 160 4919 4933 14 14735 4958 18
Regex (C) 116593 160 5533 5556 18 16763 5600 18
bz2 (C) 17 991 10 24 992 34 25 998
SHA1 (C) 6 386 8 12 386 11 12 386

Table 6: ccbench characteristics: average time (µs) per
iteration spent in interpreter (python), executing native code
without GIL (native) and waiting for GIL acquisition (wait).

0.25

0.30

0.35

0.40

0.45
Pi calculation (Python)

Base
Dyn

Own
Wait

0.14

0.16

0.18

0.20

0.22

Regular expression (C)

1 2 3 4 5 6 7 8
Threads

0.5
1.0
1.5
2.0
2.5
3.0
3.5

bz2 compression (C)

1 2 3 4 5 6 7 8
Threads

5

10

15

20
SHA1 hashing (C)

It
er

at
io

n/
m

s

Figure 6: ccbench throughput (AMD FX-8120).

2.2

2.4

2.6

2.8

3.0
Pi calculation (Python)

Base Auto

0.80
0.85
0.90
0.95
1.00
1.05

Regular expression (C)

1 2 3 4 5 6 7 8
Threads

1

2

3

4

5
bz2 compression (C)

1 2 3 4 5 6 7 8
Threads

5

10

15

20

SHA1 hashing (C)

It
er

at
io

n/
m

s

Figure 7: ccbench throughput (Intel i7-4770).

not scale, Dyn supports at least the execution at Pturbo. The per-
formance and power implications are in line with our synthetic
benchmark results (Section 4.3) and the cost model (python in
Table 6 greater than tCS in Section 4.4). For the workloads bz2

and SHA1, the performance benefit reaches its maximum at 4
threads because we pin the threads such that each runs on a dif-
ferent module, giving the thread full P-state control. When two
threads run on a module, more P-state transitions are required
per package that eliminate the performance benefit at 8 threads.
Own runs all threads at Pbase and boosts temporarily to P1HW
while holding the GIL. This manifests in a higher throughput
when the GIL is held for long periods but for bz2 and SHA

the cost of requesting a P-state transition is not amortized by
the higher frequency. Wait runs at Pturbo if permitted by the
TDP and only switches to Pslow while waiting for the GIL.
This strategy works well with high contention but introduces
significant cost if the waiting period is too short (see Table 6).

In Figure 7 we compare Intel’s results for boosting disabled
(Base) and enabled automatically by the processor (Auto).
Overall, the results are similar to the ones obtained on AMD
and what we expect from Section 4.2: The level of boosting
depends on the number of halted cores, which enables Pturbo

USENIX Association 	 2014 USENIX Annual Technical Conference  201

2
4
6
8
10
12
14
16

RB 8192 5%
Seq
Tiny

FL
FL-BM

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

LL 1024 5%

1 2 3 4 6 8
Threads

5

10

15

SL 1024 5%

1 2 3 4 6 8
Threads

10
15
20
25
30
35
40

HS 1024 5%

T
hr

ou
gh

pu
t

(m
ill

io
n

tx
ns

/s
)

Figure 8: FastLane STM integer set benchmarks.
RB LL SL HS

Nb. threads 2 4 6 2 4 6 2 4 6 2 4 6
FL 63 44 35 68 48 44 68 39 24 56 25 13

FL-BM 64 55 54 70 49 53 68 42 28 56 29 16

Table 7: Commit ratio of the master thread (% of all commits).

for Pi and Regex. SHA1 and bz2 boost slightly because
not all processor features are used. The performance drop
beyond 4 threads is due to hyper-threading.

5.2 Software Transactional Memory

FastLane [43] is a software transactional memory (STM)
implementation that processes a workload asymmetrically.
The key idea is to combine a single fast master thread that
can never abort with speculative helper threads that can only
commit if they are not in conflict. The master thread has a very
lightweight instrumentation and runs close to the speed of an
uninstrumented sequential execution. To allow helper threads
to detect conflicts, the master thread must make the in-place
updates of its transactions visible (by writing information in
the transaction metadata). The helpers perform updates in
a write-log and commit their changes after a validation at the
end of the transaction. The benefit is a better performance
for low thread counts compared to other state-of-the art
STM implementations (e.g., TinySTM [13]) that suffer from
instrumentation and bookkeeping overheads for scalability.

We used integer sets that are implemented as a red-black
tree (RB), a linked list (LL), a skip list (SL), or a hash set (HS)
and perform random queries and updates [13]. The parameters
are the working set size and the update ratio. Either all threads
run at Pbase (FL) or the master statically runs at Pturbo (FL-BM)
and the helpers at Pslow, except the helper running on the same
module as the master. Note that the master thread is determined
dynamically. Moreover, we compare with TinySTM (Tiny) and
uninstrumented sequential execution (Seq) at Pbase. Our evalu-
ation on the AMD processor shows in Figure 8 that running the
master and helpers at different speeds (FL-BM) enables high
performance gains compared to running all threads at Pbase
(FL). The higher throughput can outweigh the higher power
(50% vs. 2% for LL), thus, being more energy efficient. Tiny
wins per design for larger thread counts. Table 7 shows that the
master can asymmetrically process more transactions at Pturbo.
While the helpers at Pslow can have more conflicts caused by

Bulk Resize 10MB Resize 1280MB
Move Strategy Ops/s ms stalled freq ms stalled freq

10k baseline 535k 16 63% 3099 2937 67% 3099
10k stat resizer 547k 15 82% 3999 2666 88% 4000
10k dyn resizer 547k 15 81% 3980 2691 87% 3987
10k dyn worker 535k 18 82% 3971 3155 88% 3982
100 baseline 529k 24 66% 3099 4021 68% 3100
100 stat resizer 540k 22 86% 3999 3647 90% 3999
100 dyn resizer 508k 30 56% 3259 4799 59% 3252
100 dyn worker 461k 48 60% 3211 7970 60% 3265

1 baseline 237k 770 72% 3099 103389 72% 3099
1 stat resizer 245k 721 94% 3999 98056 95% 4000
1 dyn resizer 209k 893 62% 3112 120430 63% 3113
1 dyn worker 90k 1886 64% 3111 252035 65% 3113

Table 8: Memcached hash table resize statistics.

the master, the conflict rate caused by other slow helpers does
not change. Dynamically boosting the commits of the helpers
did not show good results because the duration is too short.

This workload highlights the importance of making P-state
configuration accessible from the user space. It allows to
expose properties of the application that would otherwise not
be available to the processor. For applications that contain
larger amounts of non-transactional code, supporting the ability
to remotely set P-states for other cores would be very helpful.
When a master transaction is executed, it could slow down the
other threads in order to get fully boosted for a short period.

5.3 Hash Table Resize in Memcached

Memcached is a high performance caching system based on a
giant hash table. While for the normal operation a fine-grained
locking scheme is used, the implementation switches to a
single global spinlock that protects all accesses to the hash
table during the period of a resizing. The resize is done by
a separate maintenance thread that moves items from the old
to the new hash table and processes a configurable number
of buckets per iteration. Each iteration acquires the global
lock and moves the items in isolation.

Our evaluation was conducted with Memcached version
1.4.15 and the mc-crusher workload generator. We used
the default configuration with 4 worker threads that we pinned
on 2 modules. The maintenance thread and mc-crusher

run on their own modules. The workload generator sends
a specified number of set operations with distinct keys to
Memcached, which result in a lookup and insert on the hash
table that will eventually trigger several resizes. The hash table
is resized when it reaches a size of 2x×10MB. The cache
is initially empty and we insert objects until the 7th resize of
27×10MB (1280MB) is finished.

For the intervals in which the maintenance thread was active,
we gathered for the first (10MB) and the last (1280MB) resize
interval. These are reported in Table 8: number of items that
are moved during one iteration (bulk move, configurable), rate
of set operations during the entire experiment (ops/s), length of
the resize interval (ms), the number of (stalled) instructions and
average frequency achieved by the maintenance thread (freq).

We applied the following strategies during the resizing
period: baseline runs all threads at Pbase, stat resizer runs the
maintenance thread at Pturbo for the entire period, dyn resizer

202  2014 USENIX Annual Technical Conference	 USENIX Association

switches to Pturbo only for the length of an bulk move iteration
and causes additional transition overheads, dyn worker
switches to Pslow while waiting for the maintenance thread’s it-
eration to finish. The last strategy does not show a performance
improvement because the cost cannot be amortized especially
when the bulk move size gets smaller. The stat resizer shows
the best performance because it reduces the resizing duration.

While the benchmark shows the benefit of assigning
heterogeneous frequencies, an interesting observation is that
the speedup achieved by boosting is limited because the
workload is mainly memory-bound. Compared to baseline,
stat resizer shows only a speedup of the resize interval between
7%–9% while it runs at a 22% higher frequency. The higher
the frequency, the more instructions get stalled due to cache
misses that result from the large working set. The number of
stalled instructions effectively limit the number of instructions
that can be executed faster at a higher frequency. On the other
hand, the high cost of the P-state transitions in the dynamic
strategy dyn resizer is hidden by an decreased number of
stalled instructions but it still cannot outweigh the transition
latency. Memcached’s default configuration performs only a
single move per iteration, which according to our results shows
the worst overall duration of the experiment (ops/s). A better
balance between worker latency and throughput is to set bulk
move to 100. With this configuration, memcached spends 15%
of its execution time for resizes, which we can boost by 10%.
This reduces the total execution time by 1.5% and allows 1.5%
more ops/s because the worker threads spent less time spinning.
Combined, this amortizes the additional boosting energy.

5.4 Delegation of Critical Sections

We have shown that critical sections (CS) need to be relatively
large to outweigh the latencies of changing P-states. Remote
core locking [27] (RCL) is used to dedicate a single processor
core to execute all application’s CS locally. Instead of moving
the lock token across the cores, the actual execution of the
critical section is delegated to a designated server. We leverage
this locality property by statically boosting the RCL server
and eliminate the P-state transition overhead for small CS.

We experiment with three of the SPLASH-2 bench-
marks [44] and the accompanying version of BerkeleyDB [33].

We report speedup for all workloads over the single-threaded
baseline P-state in Figure 9, and find that we obtain only
incremental performance gains for the boosted cases. We show
various combinations of worker P-states (reported as “W Px”)
and P-states for the RCL server core (“R Px”), and contrast
these with configurations where all cores run at Pbase (“All P2”)
and P4HW (“All P4”) for comparison. Note that we do show
standard deviation of 30 trials, but there is hardly any noise
visible. We do not reduce the P-state for the waiting workers
(due to latency reasons), but it seems there is enough TDP
headroom for the brief RCL invocations to run even at P1HW
and we get speedups of 4% - 9%. As expected, the relative
boost is larger if we start from a lower baseline at P4HW .

 0

 1

 2

 3

S
p
ee

d
u
p

Raytrace (car)

All P2
All P4

 0

 2

 4

 6

 8

Raytrace (balls4)
W P2 R P0
W P2 R P1

 0

 2

 4

 6

 8

 1 2 3 4 5 6 7 8
Threads

Radiosity

W P4 R P0
W P4 R P1

 0

 1

 2

 3

 1 2 3 4 5 6 7 8
Threads

BerkeleyDB

Figure 9: Throughput of SPLASH-2 and BerkeleyDB.
P-state Intra Module Cross Module
Config 0:0 100:10 500:50 0:0 100:10 500:50
All P2 91 169 461 480 570 876

W P2 R P1 83 154 421 468 557 906
W P2 R P0 70 131 357 445 491 772

All P4 123 227 621 578 699 1161
W P4 R P1 83 155 421 519 636 1112
W P4 R P0 70 133 358 417 566 1010

Table 9: Core to core memory transfer latency (ns) for an aver-
age round-trip (work iterations: NWorker :NRCL, 0.65ns each).

Overall, scalability of the benchmarks is good, reserving one
core exclusively for RCL will cap scalability at 7 (worker)
threads. The authors of RCL claim, however, that reserving this
single core pays off in comparison to cache coherence traffic
arising from spinlock ownership migrating between cores.

Focusing our attention on the CS, we find them to be short
(with a peak at ∼488ns) for the selected benchmarks. To better
understand the cost of communication and its behavior under
various boosting scenarios, we implemented the core of the
RCL mechanism, simple cross-thread polling message passing
with two threads, in a small micro-benchmark. We report
results for select configurations in Table 9 for AMD, which re-
flect unloaded latency with no competition for communication
channels. Overall we were surprised by the round-trip delay
when crossing modules, 480ns, vs. 91ns when communicating
inside a module (both at Pbase). Intra-module communication
benefits greatly from boosting (91ns vs. 70ns), due to both
communication partners and the communication link (shared
L2 cache) being boosted. Communicating cross-module,
boosting has a smaller performance impact on the communi-
cation latency (480ns vs. 445ns, via L3 cache), which helps to
explain the small benefit seen in our workloads with short CS.

6 Related Work

The field of DVFS is dominated by work about improving en-
ergy efficiency [23, 32, 14]. DVFS is proposed as a mid-term
solution to the prediction that, in future processor generations,
the scale of cores will be limited by power constraints [11, 7, 2].
In the longer term, chip designs are expected to combine few
large cores for compute intensive tasks with many small cores
for parallel code on a single heterogeneous chip. Not all cores
can be active simultaneously due to thermal constraints [42,

USENIX Association 	 2014 USENIX Annual Technical Conference  203

22]. A similar effect is achieved by introducing heterogeneous
voltages and frequencies to cores of the same ISA [10]. Energy
efficiency is achieved by reducing the frequency and it was
observed that the overall performance is only reduced slightly
because it is dominated by memory [25] or network latencies.

Semeraro et al. [40] propose multiple clock domains
with individual DVFS. Inter-domain synchronization is
implemented using existing queues to minimize latency,
and frequency can be reduced for events that are not on the
application’s critical path. The energy savings can be extended
by profile-based reconfiguration [28, 5]. Another interesting
approach to save power is to combine DVFS with inter-core
prefetching of data into caches [21]. This can improve perfor-
mance and energy efficiency, even on serial code, when more
cores are active at a lower frequency. Choi et al. [8] introduce
a technique to decompose programs into CPU-bound (on-chip)
and memory-bound (off-chip) operations. The decomposition
allows fine tuning of the energy-performance trade-off, with
the frequency being scaled based on the ratio of the on-chip
to off-chip latencies. The energy savings come with little
performance degradation on several workloads running on a
single core. Hsu et al. [18] propose an algorithm to save energy
by reducing the frequency with HPC workloads. Authors also
present and discuss transition latencies. A recent study [24]
on the Cray XT architecture, which is based on AMD CPUs,
demonstrates that significant power savings can be achieved
with little impact on runtime performance when limiting both
processor frequency and network bandwidth. The P-states are
changed before the application runs. It is recommended that
future platforms provide DVFS of the different system compo-
nents to exploit the trade-offs between energy and performance.
Our work goes in the same direction, by investigating the
technical means to finely control the states of individual cores.

While energy efficiency has been widely studied, few
researchers have addressed DVFS to speed up workloads [15].
Park et al. [34] present a detailed DVFS transition overhead
model based on a simulator of real CPUs. For a large class of
multi-threaded applications, an optimal scheduling of threads
to cores can significantly improve performance [37]. Isci et
al. [20] propose using a lightweight global power manager
for CPUs that adapts DVFS to the workload characteristics.
Suleman et al. [41] optimize the design of asymmetric
multi-cores for critical sections. A study of Turbo Boost has
shown that achievable speedups can be improved by pairing
CPU intensive workloads to the same core [6]. This allows
masking delays caused by memory accesses. Results show
a correlation between the boosting speedup and the LLC
miss rate (high for memory-intensive applications). DVFS
on recent AMD processors with a memory-bound workload
limits energy efficiency because of an increase of static power
in lower frequencies/voltages [26]. Ren et al. [38] investigate
workloads that can take advantage of heterogeneous processors
(fast and slow) and show that throughput can be increased
by up to 50% as compared with using homogeneous cores.

Such workloads represent interesting use cases for DVFS.
Our TURBO library complements much of the related work

discussed in this section, in that it can be used to implement
the different designs and algorithms proposed in these papers.

7 Conclusion

We presented a thorough analysis of low-level costs and charac-
teristics of DVFS on recent AMD and Intel multi-core proces-
sors and proposed a library, TURBO3, that provides convenient
programmatic access to the core’s performance states. The
current implementation by hardware and OS is optimized for
transparent power savings and for boosting sequential bottle-
necks. Our library allows developers to boost performance
using properties available at application-level and gives broader
control over DVFS. We studied several real-world applications
for gains and limitations of automatic and manual DVFS. Man-
ual control exposes asymmetric application characteristics that
would be otherwise unavailable for a transparent optimization
by the OS. Limitations arise from the communication to mem-
ory and other cores that restict the IPC. Our techniques, while
useful today, also bring insights for the design of future OS
and hypervisor interfaces as well as hardware DVFS facilities.

For the future, we plan to add an automatic dynamic tuning
mechanism: based on decorated thread control structures,
e.g., locks, we can obtain profiling information and predict the
optimal frequency for each core. We also envision use cases
beyond optimizing synchronization, such as DVFS for flow-
based programming with operator placement (deriving the
frequency from the load factor) or data routing (basing DVFS
on deadlines or priorities). Finally, the TURBO library provides
a research testbed to simulate future heterogeneous multi-core
processors with fast/slow cores, as well as to evaluate
algorithms targeting energy efficiency or undervolting.

Acknowledgements: We thank André Przywara for his
help on AMD’s P-states and our shepherd Emmett Witchel.
This research has been funded in part by the European
Community’s Seventh Framework Programme under the
ParaDIME Project, grant agreement no. 318693.

References
[1] AMD. BIOS and Kernel Developer’s Guide (BKDG) for AMD

Family 15h Models 00h-0Fh Processors, 2012.
[2] S. Borkar and A. A. Chien. The future of microprocessors.

ACM CACM, 2011.
[3] A. Branover, D. Foley, and M. Steinman. AMD Fusion APU:

Llano. IEEE Micro, 2012.
[4] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen.

A dynamic voltage scaled microprocessor system. IEEE JSSC,
2000.

[5] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González. Meeting points: Using thread criticality to adapt
multicore hardware to parallel regions. In PACT, 2008.

[6] J. Charles, P. Jassi, N. Ananth, A. Sadat, and A. Fedorova. Eval-
uation of the intel core i7 turbo boost feature. In IISWC, 2009.

3https://bitbucket.org/donjonsn/turbo

204  2014 USENIX Annual Technical Conference	 USENIX Association

[7] A. A. Chien, A. Snavely, and M. Gahagan. 10x10: A
general-purpose architectural approach to heterogeneity and
energy efficiency. ELSEVIER PCS, 2011.

[8] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic
voltage and frequency scaling for precise energy and perfor-
mance trade-off based on the ratio of off-chip access to on-chip
computation times. In DATE, 2004.

[9] D. Dice, N. Shavit, and V. J. Marathe. US Patent Application
20130047011 - Turbo Enablement, 2012.

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge.
Razor: a low-power pipeline based on circuit-level timing
speculation. In MICRO, 2003.

[11] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scaling.
In ISCA, 2011.

[12] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S.
McKinley. Looking back on the language and hardware
revolutions: measured power, performance, and scaling. In
ASPLOS, 2011.

[13] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning
of word-based software transactional memory. In PPoPP, 2008.

[14] S. Herbert and D. Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. In ISPLED, 2007.

[15] M. Hill and M. Marty. Amdahl’s law in the multicore era.
IEEE Computer, 2008.

[16] D. Hillenbrand, Y. Furuyama, A. Hayashi, H. Mikami,
K. Kimura, and H. Kasahara. Reconciling application
power control and operating systems for optimal power and
performance. In ReCoSoC, 2013.

[17] S. Hoppner, H. Eisenreich, S. Henker, D. Walter, G. Ellguth, and
R. Schuffny. A Compact Clock Generator for Heterogeneous
GALS MPSoCs in 65-nm CMOS Technology. IEEE TVLSI,
2012.

[18] C.-h. Hsu and W.-c. Feng. A power-aware run-time system
for high-performance computing. In SC, 2005.

[19] Intel. Intel 64 and IA-32 Architectures Software Developers
Manual, 2013.

[20] C. Isci, A. Buyuktosunoglu, C.-Y. Chen, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global power
management policies: Maximizing performance for a given
power budget. In MICRO, 2006.

[21] M. Kamruzzaman, S. Swanson, and D. Tullsen. Underclocked
software prefetching: More cores, less energy. IEEE Micro,
2012.

[22] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen.
Single-isa heterogeneous multi-core architectures: the potential
for processor power reduction. In MICRO, 2003.

[23] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan.
Heterogeneous chip multiprocessors. IEEE Computer, 2005.

[24] J. H. Laros, III, K. T. Pedretti, S. M. Kelly, W. Shu, and C. T.
Vaughan. Energy based performance tuning for large scale high
performance computing systems. In HPC, 2012.

[25] M. Laurenzano, M. Meswani, L. Carrington, A. Snavely,
M. Tikir, and S. Poole. Reducing energy usage with memory
and computation-aware dynamic frequency scaling. In Euro-Par,
2011.

[26] E. Le Sueur and G. Heiser. Dynamic voltage and frequency
scaling: The laws of diminishing returns. In HotPower, 2010.

[27] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller.
Remote core locking: migrating critical-section execution to
improve the performance of multithreaded applications. In
USENIX ATC, 2012.

[28] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and
S. Dropsho. Profile-based dynamic voltage and frequency scal-
ing for a multiple clock domain microprocessor. In ISCA, 2003.

[29] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM TOCS, 1991.

[30] A. Mendelson and F. Gabbay. The effect of seance
communication on multiprocessing systems. ACM TOCS, 2001.

[31] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and
R. Rajkumar. Critical power slope: understanding the runtime
effects of frequency scaling. In ICS, 2002.

[32] K. Nowka, G. Carpenter, E. MacDonald, H. Ngo, B. Brock,
K. Ishii, T. Nguyen, and J. Burns. A 32-bit PowerPC
system-on-a-chip with support for dynamic voltage scaling and
dynamic frequency scaling. IEEE JSSC, 2002.

[33] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley db. In
USENIX ATC, 1999.

[34] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram,
and N. Chang. Accurate modeling of the delay and energy
overhead of dynamic voltage and frequency scaling in modern
microprocessors. IEEE TCAD, 2012.

[35] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage
scaling on a low-power microprocessor. In MobiCom, 2001.

[36] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P.
Pipe, T. F. Wenisch, and M. M. Martin. Computational
Sprinting on a Hardware/Software Testbed. In ASPLOS, 2013.

[37] B. Raghunathan, Y. Turakhia, S. Garg, and D. Marculescu.
Cherry-picking: exploiting process variations in dark-silicon
homogeneous chip multi-processors. In DATE, 2013.

[38] S. Ren, Y. He, S. Elnikety, and K. S. McKinley. Exploiting
processor heterogeneity for interactive services. In ICAC, 2013.

[39] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann. Power-management architecture of the intel
microarchitecture code-named sandy bridge. IEEE Micro, 2012.

[40] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
S. Dwarkadas, and M. Scott. Energy-efficient processor
design using multiple clock domains with dynamic voltage and
frequency scaling. In HPCA, 2002.

[41] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt.
Accelerating critical section execution with asymmetric
multi-core architectures. In ASPLOS, 2009.

[42] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation
cores: reducing the energy of mature computations. In ASPLOS,
2010.

[43] J.-T. Wamhoff, C. Fetzer, P. Felber, E. Rivière, and G. Muller.
Fastlane: improving performance of software transactional
memory for low thread counts. In PPoPP, 2013.

[44] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and methodological
considerations. In ISCA, 1995.

