
This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

Static Analysis of Variability in System Software:
The 90,000 #ifdefs Issue

Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat,
and Daniel Lohmann, Friedrich-Alexander-Universität Erlangen-Nürnberg

https://www.usenix.org/conference/atc14/technical-sessions/presentation/tartler

USENIX Association 2014 USENIX Annual Technical Conference 421

Static Analysis of Variability in System Software: The 90,000 #ifdefs Issue∗

Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat, Daniel Lohmann
{tartler, dietrich, sincero, wosch, lohmann}@cs.fau.de

FAU Erlangen-Nürnberg

Abstract
System software can be configured at compile time to
tailor it with respect to a broad range of supported hard-
ware architectures and application domains. The Linux
v3.2 kernel, for instance, provides more than 12,000
configurable features, which control the configuration-
dependent inclusion of 31,000 source files with 89,000
#ifdef blocks.

Tools for static analyses can greatly assist with ensur-
ing the quality of code-bases of this size. Unfortunately,
static configurability limits the success of automated soft-
ware testing and bug hunting. For proper type checking,
the tools need to be invoked on a concrete configuration,
so programmers have to manually derive many configu-
rations to ensure that the configuration-conditional parts
of their code are checked. This tedious and error-prone
process leaves many easy to find bugs undetected.

We propose an approach and tooling to systematically
increase the configuration coverage (CC) in compile-time
configurable system software. Our VAMPYR tool derives
the required configurations and can be combined with
existing static checkers to improve their results. With
GCC as static checker, we thereby have found hundreds of
issues in Linux v3.2, BUSYBOX, and L4/FIASCO, many
of which went unnoticed for several years and have to
be classified as serious bugs. Our resulting patches were
accepted by the respective upstream developers.

1 Introduction
System software typically employs compile-time config-
uration as a means to tailor it with respect to a broad
range of supported hardware architectures and applica-
tion domains. A prominent example is Linux, which
in v3.2 provides more than 12,000 configurable features
(KCONFIG options) that control the inclusion of 31,000
source files and 89,000 #ifdef blocks when building

∗This work was partly supprted by the German Research Council
(DFG) under grant no. LO 1719/3-1

the Linux kernel. The huge and growing amount of con-
figurability in modern system software implies quite some
challenges with respect to testing and maintenance.

Static configurability is mostly implemented by source-
code transformations [16, 17]: The build system and tex-
tual preprocessors, such as the C Preprocessor (CPP),
interpret configuration flags to (a) filter the set of compi-
lation units and (b) transform their actual content before
passing them to the compiler. Consider this example of a
variation point implemented with CPP in Linux:

#ifdef CONFIG_NUMA
Block1

#else
Block2

#endif

For any given configuration, depending on the configura-
tion switch CONFIG_NUMA, either Block1 or Block2 is
passed to the compiler (or any other static checker that
drops in as a compiler replacement). This means that
the responsible maintainer has to derive at least two con-
figurations to validate that each line of code does even
compile. This is not trivial: CONFIG_NUMA and the con-
taining translation unit are constrained by further rules
and configuration switches in the make files (KBUILD)
and the feature model (KCONFIG) that all have to be set
to the right values.

It is not hard to imagine that doing this manually does
not work in practice. Nevertheless, this is the state of
the art: Point 8 from the Linux Kernel patch submission
checklist1 requires, that all submitted code

has been carefully reviewed with respect to relevant
KCONFIG combinations. This is very hard to get
right with testing – brainpower pays off here.

Our approach replaces brainpower by tools:

$ git am bugfix.diff # Apply patch
$ vampyr -C gcc --commit HEAD # Examine

1cf.Documentation/SubmitChecklist in the source tree

1

422 2014 USENIX Annual Technical Conference USENIX Association

VAMPYR maximizes the configuration coverage (CC) by
automatically deriving a set of configurations that to-
gether cover all variation points (#ifdef blocks and
configuration-conditional files) in all files modified by the
patch. It then invokes the build-system for each configu-
ration, in this case with GCC as static checker.

1.1 Problem: Configuration Coverage
Many papers (e.g., [2, 4, 7, 18]) have been published about
applying static bug-finding approaches to Linux and other
pieces of system software. In all cases the authors could
find a significant number of bugs. It is remarkable that the
issues of configuration-conditional code and CC is not
mentioned at all in these papers – the authors do not even
state which configuration(s) they have analyzed. This
does not only raise strong issues with respect to scientific
reproducibility,2 but also potentially limits their success:
We have to assume that only a single configuration and
architecture was analyzed (as also reported by Palix and
colleagues [15]) – so how many bugs were missed that
could have been found with full coverage?

There also is a more practical side of CC: A Linux
developer, for instance, who has modified a bunch of
files for some maintaining task would probably want to
make sure that every edited line of code does actually
compile and has been tested before submitting a patch.
However, how to derive a set of configurations that covers
all configuration-conditional pieces?

Deriving a configuration that reliably selects a particu-
lar configuration-conditional part of the code is not trivial.
The problem is that for proper type checking the config-
uration needs to be sound and complete, as only then all
header include paths are available and all types are prop-
erly resolved. To derive such a configuration, not only the
C source code, but also the build system, feature model,
and architecture have to be examined.

In practice, this leads to the situation that only a single
architecture and configuration is checked. In the case
of Linux, this typically is Linux/x86 and – in the best
case – the predefined allyesconfig configuration,
which is supposed to be a maximum configuration. How-
ever, current versions of Linux support more than twenty
architectures and allyesconfig is by far not a full
configuration: Depending on the architecture, it covers
only 42–83 percent of all configuration-conditional parts
of the code. The result is that – despite extensive code
reviews and other quality measures performed by the com-
munity – Linux contains quite some code that does not
even compile.

2In their “Ten years later” paper, Palix and colleagues describe the
enormous difficulties to figure out the Linux v2.4.1 configuration used
by Chou et al. in [2] in order to reproduce the results. Eventually, they
had to apply source-code statistics to figure out the configuration “that
is closest to that of Chou et al.” [15].

1.2 Our Contributions
Our variability-aware driver VAMPYR mitigates these
problems. It maximizes the CC by automatically deriving
a set of configurations. By just employing the compiler
(GCC) as a static checker, we thereby already can find hun-
dreds of issues in Linux, L4/FIASCO, and BUSYBOX.
In particular, we claim the following contributions:

(a) We analyze the conceptual and technical issues of
configuration-dependent bugs (Section 2) and quantify
how many variation points of the Linux source base are
missed by the current state of the art (Section 4).

(b) We present an approach and tool implementation to
systematically increase the CC in compile-time config-
urable system software (Section 3). Our approach and
the resulting VAMPYR tool provide an easy and noninva-
sive integration into existing build systems and combina-
tion with existing code checkers, such as CLANG, GCC,
SPARSE or COCCINELLE [14].3 Besides Linux, we also
have applied our approach to the L4/FIASCO µ-kernel
and the BUSYBOX coreutils generator for embedded sys-
tems.

(c) Our experimental studies with GCC 4.7 as a
static checker have revealed hundreds of issues (Sec-
tion 5). For Linux/arm VAMPYR increases the CC (com-
pared to allyesconfig) from 59.9 to 84.4 percent,
which results in 199 additionally reported configuration-
conditional issues (compiler warnings and errors). 91 of
these issues have to be classified as serious bugs. We
proposed patches for seven bugs in Linux and one in
L4/FIASCO and BUSYBOX. All patches got accepted
and the responsible developers have confirmed the found
bugs. Some bugs went unnoticed for up to six years – just
because they do not show up in a standard configuration.

1.3 Previous Work
This paper builds on previous work, especially the open-
sourced variability extractors for KCONFIG, KBUILD, and
CPP we have presented in [3, 20]. Our work on vari-
ability defects in Linux [20] reveals bugs in #ifdef
expressions or KCONFIG constraints, such as typos in
the feature identifiers or presence conditions that are a
tautology/contradiction, so that the #ifdef statement
or the complete block can be removed. In essence [20]
finds faulty #ifdef statements, but does not look in-
side the thereby constrained blocks of code. This is what
VAMPYR does by maximizing the CC of existing static
checkers, so in this paper we look for a very different kind
of configurability-related bugs.

In a previous workshop paper [19], we have sketched
the issue of CC, the coverage of allyesconfig (re-

3VAMPYR and all related tools presented this paper are available for
download under GPLv3 at http://vamos.cs.fau.de/trac/
undertaker.

2

USENIX Association 2014 USENIX Annual Technical Conference 423

stricted to Linux/x86), and the idea to improve the CC by
employing multiple configurations. However, we did not
find any bug; our results regarding CC later turned out to
be way too optimistic: The generated configurations were
not sound, as we did not consider the coarse-grained vari-
ability implemented by the build system. This led to the
development of our variability extractor for KBUILD [3],
which we have integrated into our VAMPYR tool for this
work. Only thereby, VAMPYR has become a practically
usable driver for static checkers that has already helped to
identify hundreds of issues in Linux, L4/FIASCO, and
BUSYBOX.

2 Configuration-Dependent Bugs
The goal of our approach is to increase the effectiveness
of existing static analysis tools so that they reveal also
configuration-dependent bugs. Those are bugs that man-
ifest only in configuration-conditional parts of the code,
such as #ifdef blocks or configuration-conditional
source files.

We classify a bug as a configuration-dependent bug,
iff there exists any configuration in which the bug is not
observed. In the following, we present some examples
of configuration-dependent bugs we have found by maxi-
mizing the CC of GCC with VAMPYR:

(1) Consider the following situation in the HAL
for the ARM architecture in Linux. In the file
arch/arm/mach-bcmring/core.c, the timer fre-
quency depends on the configured derivate:
#if defined(CONFIG_ARCH_FPGA11107)
/* fpga cpu/bus are currently 30 times slower so

scale frequency as well to slow down Linux’s
sense of time */

[...]
#define TIMER3_FREQUENCY_KHZ (tmrHw_HIGH_FREQUENCY_HZ

/1000 * 30)
#else
[...]
#define TIMER3_FREQUENCY_KHZ (tmrHw_HIGH_FREQUENCY_HZ

/1000)
#endif

The variable tmrHw_HIGH_FREQUENCY_MHZ is de-
fined in the header file tmrHw_reg.h with the value
150,000,000 to denote a frequency of 150 MHz. These
timer frequencies are used in the static C99 initialization
of the timer sp804_timer3_clk:
static struct clk sp804_timer3_clk = {

.name = "sp804-timer-3",

.type = CLK_TYPE_PRIMARY,

.mode = CLK_MODE_XTAL,

.rate_hz = TIMER3_FREQUENCY_KHZ * 1000,
};

The problem is that the member rate_hz, which has the
type unsigned long (i.e., 32 bits on this platform),
is too small to contain the resulting value of 30 times
150 Mhz in Hertz. We have reported this issue (unnoticed
for three years and detected by our tool) to the responsible

maintainer, who promptly acknowledged it as a new bug.4

The point, however, is: This is a configuration-conditional
bug that is easy to detect at compile time! The GCC
compiler correctly reports it (with an integer overflow
warning) iff (a) Linux is compiled for a 32-bit platform
and (b) the Linux configuration happens to include the
#ifdef block, which, however, is inserted by the CPP
only if the CONFIG_ARCH_FPGA11107 feature flag is
set – which in turn depends on several other features.

(2) BUSYBOX is a compile-time tailorable implementa-
tion of the UNIX core utilities for memory-constrained
environments. It is employed in many wireless routers
and DSL modems, but also in several Linux distributions.
With VAMPYR, we found several configurations of BUSY-
BOX, for which the GCC compiler warns about format-
string security problems in coreutils/stat.c. The
upstream developers have confirmed this issue as a new
security-relevant bug.5

(3) In the L4/FIASCO µ-kernel, the file
ux/main-ux.cpp revealed a compilation error,
as the instantiation of a Spin_lock type lacks a type
parameter. Again, this is a configuration-dependent
bug, which is reported by GCC iff the feature flags
CONFIG_UX (for choosing Linux user-mode as target
architecture) and CONFIG_MP (for multi-processor
support) are both enabled. We have reported this issue
(detected by our tool) to the L4/FIASCO developers,
who confirmed it as a new bug.

Summary All of the above bugs were caused by subtle
issues that are difficult to spot with code reviewing, but
easy to detect by a static checker (even the compiler in
our case) – if the respective lines of code are getting
compiled. However, the problematic lines of code are not
covered by a standard configuration, which probably is
the reason these bugs went unnoticed for up to three years.
By increasing the CC, we have found tens of such issues
in BUSYBOX and L4/FIASCO and hundreds in Linux
(see Section 5).

3 Our Approach
The goal of our approach is, ultimately, to find
configuration-conditional bugs by the systematic and au-
tomatic increasing of the configuration coverage (CC) of
static code checkers and other quality measures, such as
unit tests. Technically, this is achieved by automatically
deriving a (reasonably small) set of configurations that
together provide coverage of all configuration-conditional
parts of the code. The static checker or unit test driver
is then invoked individually for each element of this set.

4https://lkml.org/lkml/2012/4/23/229
5http://lists.busybox.net/pipermail/busybox/

2012-September/078360.html

3

424 2014 USENIX Annual Technical Conference USENIX Association

Hence, existing bug-hunting tools become configurability-
aware without changing them. For now, we aim for state-
ment coverage, that is, we want to make sure that every
line of code is checked at least once by the employed static
checker. We consider statement coverage as a significant
first step to increase CC with modest computational com-
plexity. While algorithms for higher coverage criteria
are technically easy to integrate with our approach, we
discuss their feasibility in Section 6.2.

The key idea is to extract configuration constraints and
use a SAT Checker to construct sets of configurations. The
challenge is that static variability is not only implemented
by means of the CPP, but by a multitude of languages
and tools that introduce and constrain variation points at
different stages of the build process. In the following,
we illustrate this on the example of the Linux generation
process.

3.1 Static Variability in Linux
Linux is configured and generated in a sequence of steps
that is depicted in Figure 1. Each of these steps effec-
tively constraints the set of static variation points in the
subsequent steps:

� The first decision is to choose a target architecture.
Technically, this is done by setting an environment vari-
able, which, if omitted, leads to native compilation; other-
wise KBUILD uses a cross-compiler to produce a kernel
for a nonnative architecture.

� Depending on the selected architecture, the KCON-
FIG configuration tool loads a set of Kconfig files that
together define the configuration space (features and con-
straints) of the chosen architecture. On Linux/x86, for
instance, the user can choose from more than 7,700 fea-
tures. KCONFIG saves the resulting feature selection to
a file (.config) that is used for storing, loading and
interchanging feature selections. The generated artifacts
(.config and auto.conf) control the compilation
process in the subsequent steps.

� MAKE is used to implement coarse-grained variabil-
ity on a per-file basis. Depending on the configured fea-
tures, the KBUILD tool selects the subset of all source
files that are actually passed to the compiler and linker.

� In this subset, the CPP representation is used to imple-
ment fine-grained variability on a sub-file basis. De-
pending on the configured features (configure.h),
#ifdef blocks are included or excluded by the CPP
from the token stream passed to the compiler.

� Finally, MAKE is also used to derive, depending on the
selected features, compiler options and binding units, and
thus, to drive the compilation and linking process. The
result is a bootable kernel image and the associated load-
able kernel modules (LKMs) for the chosen architecture
and KCONFIG selection.

Source files

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

CPP

autoconf.h

Root Feature
Kconfig

selection1

.config

4Build scripts

Makefile
arch/x86/init.c

arch/x86/...
arch/x86/entry32.S

lib/Makefile
kernel/sched.c
...

auto.conf

2

kbuildKbuild

kbuildKconfig

derives from

coarse-grained
variability

fine-grained
variability

drives and controls

derives from

$ ld numa.o <...> -o vmlinux

drivers.kovmlinuz
5

$ gcc -O2 -Wall -c numa.c -o numa.o

$ export ARCH=arm

Choose target architecture

3

Figure 1: Fine-Grained and Coarse-Grained Variability Imple-
mentation in Linux.

Variation points are not only specified on the CPP level,
but on different levels and in different languages. In fact,
each build step (�−�) in Figure 1 also constitutes a dis-
tinct level of variability implementation, which constrains
the effective number of variation points on subsequent
levels: The chosen architecture � constrains the possi-
ble KCONFIG selection �, which in turn constrains the
inclusion and exclusion of complete source files (coarse-
grained variability) �, which further constrains the in-
clusion and exclusion of #ifdef blocks (fine-grained
variability) �. To derive a concrete configuration that
selects a particular #ifdef block in some translation
unit, the developer basically has to go back all steps of
this hierarchy to make sure that all dependencies of the
translation unit and block are fulfilled.

The general lesson to be learned is that CC cannot be
achieved by looking at the source code alone – all levels
of static variability, including the constraints specified in
the build system (KBUILD), feature model (KCONFIG)
and architecture selection have to be taken into account.
This makes it so challenging for developers to manually
derive configurations that cover all parts of their code.

3.2 Maximizing Configuration Coverage
The goal of the approach is to find a set of configurations
for each source file that, when accumulated, selects all
configuration-conditional parts of the code. Analyzing
all configurations then maximizes the CC with respect to
statement coverage.

Configuration-conditional parts of the code are given
as complete files (level �, coarse-grained variability) and
#ifdef blocks (level �, fine-grained variability). The
resulting set of configurations has to cover both, but we

4

USENIX Association 2014 USENIX Annual Technical Conference 425

conceptually operate on the most fine-grained level only:
variation points that represent the selection (or deselec-
tion) of #ifdef blocks. Conditionally compiled files
(level �) are treated as a single #ifdef block that (con-
ceptually) spans the whole file content. Without loss
of generality, in the following we therefore use block
or #ifdef block as a collective noun for any kind of
configuration-conditional variation point.

The reason why a single configuration is not the solu-
tion to this problem arises from the fact that blocks and
whole source files may be in conflict to each other and
can therefore not be enabled by the same configuration.
Such conflicts can stem from all variability levels �–� in
Figure 1, including the configuration model (KCONFIG)
and architecture.

The CPP-statements of a C program describe a meta-
program that is executed by the C Preprocessor before the
actual compilation by the C compiler takes place. In this
meta-program, the CPP expressions (such as #ifdef–
#else– #endif) correspond to the conditions in the
edges of a loop-free6 control flow graph (CFG); the
thereby controlled #ifdef blocks are the statement
nodes. On this CFG, established metrics, such as state-
ment coverage or path coverage, can be applied.

The structure of CPP blocks and the identifiers used
in their expressions translate into a propositional formula
such that each CPP identifier and each #ifdef block
is represented as a propositional variable. For the sake
of a uniform treatment of source files with CPP blocks,
we introduce an artificial CPP expression for the top-
level block to express the constraints that are imposed
by the build-system. For calculating the configurations,
the actual block contents, in this case C code, can be
ignored. We calculate the Presence Condition (PC) for
each #ifdef block, which here is influenced by three
factors (Figure 2): Firstly, by ϕCPP, which encodes the
structure and semantics of the CPP language (level �
variability). Secondly, by ϕKBUILD, the constraints that
are imposed in build-system rules in KBUILD (level �
variability). Thirdly, by ϕKCONFIG, the constraints that arise
from the feature dependencies declared in KCONFIG and
by the selected architecture (level � and � variability).

The algorithm to calculate the configurations basically
iterates over all blocks and employs a SAT solver to find
a configuration that selects the current block. To reduce
the number of SAT queries, blocks that are covered in
already found configurations are skipped. As a further
optimization, the algorithm tries to enable as many blocks
as possible simultaneously, which reduces the number
of resulting configurations. Our algorithm has a worst-
case complexity of n2 SAT calls for n blocks; however, in
practice the number of SAT calls remains in the order of

6Leaving aside “insane” CPP meta-programming techniques based
on recursive #include, which are not used within Linux.

φ
CPPLinux

source

Block 1

Block 2

#ifdef CONFIG_X86
 <...>

#elif CONFIG_ARM
 <...>

#endif

undertaker
establish PC
for Block 1

φ
CPP
∧ ∧

Kconfig
configurations

φ
Kconfig

φ
Kbuild

establish PC
for Block 2

φ
CPP
∧ ∧φ

Kconfig
φ

Kbuild

undertaker

Figure 2: Deriving configurations: For each configuration-
conditional block, we establish their PC to derive a set of con-
figurations that maximize the CC.

n for the vast majority of files. We discuss this algorithm
in earlier work [19] with more detail.

3.3 Implementation: The VAMPYR
We provide the VAMPYR tool as an easy-to-use variability-
aware driver that orchestrates the concepts and tools out-
lined in the previous sections. The general interaction
between the individual tools is depicted in Figure 3. First,
VAMPYR ensures that all variability constraints from CPP,
KBUILD and KCONFIG are available. This formula is
loaded (UNDERTAKER in Figure 3) and used to produce
the configurations, on which the tools for static analysis
are applied.

Note that the resulting configurations only cover vari-
ation points that are included in the source file, which
means that they cannot be loaded directly into the KCON-
FIG configuration tool. Conceptually, we can understand
this partial configuration as a set of variation points on
level � in Figure 1, for which we need to find a sound
configuration on level �. This means that a produced
configuration does not constrain the selection of the re-
maining thousands of configuration options that need to
be set in order to establish a full KCONFIG configuration
file that can be shared among developers. These remain-
ing unspecified configuration options can be set to any
value as long as they do not conflict with the constraints
imposed by the partial configuration.

To derive configurations that can be loaded by KCON-
FIG, we reuse the KCONFIG tool itself to set the remain-
ing unconstrained configuration options to values that
are not in conflict with ϕKCONFIG. With these full con-
figurations, we use the KBUILD build system to apply
the tools for static analysis on the examined file. So far,
we have integrated three different tools for static analy-
sis: GCC, SPARSE, and SPATCH from the COCCINELLE
tool-suite [14, 15].

3.4 Application Scenarios
(a) The Linux maintainer for the bcmring ARM de-
velopment board has received a contributed patch via
email. She first applies the patch to her local git tree, and

5

426 2014 USENIX Annual Technical Conference USENIX Association

PresenceCondition(b1)
&&
PresenceCondition(b2)
&&
...

undertaker

establish
propostional

formulas

KConfig
files

config HOTPLUG_CPU
 bool "Support for ..."
 depends on SMP && ...

Makefilesobj-$(CONFIG_HOTPLUG_CPU) = hotplug.o

Calculate configurations
that maximize the

Configuration Coverage

Kconfig

for each

Partial configurations

#ifdef CONFIG_X86
 <...>

#elif CONFIG_ARM
 <...>

#endif

Linux
Source Code

Scan each configuration
with one or more of:

Kconfig
configuration

sparse
gcc

clang
coccinelle

expand

Figure 3: Workflow of the VAMPYR configuration-aware static-analysis tool driver

then runs the VAMPYR tool on all files that the proposed
change modifies:
$ git am bugfix.diff # Integrate the patch

as new commit
$ vampyr -C gcc --commit HEAD # Examine files of

latest commit

VAMPYR derives a CC-maximizing set for each file modi-
fied by the patch. The resulting configurations are plain
text files in a syntax that is familiar to Linux develop-
ers, but only cover those variation points that are actually
related to the PCs contained in the affected source files.
VAMPYR utilizes the KCONFIG configuration tool to set
all remaining unspecified items to the default values. This
expanded configuration is activated in the source tree (i.e.,
KBUILD updates the force-included autoconf.h and
auto.make files), and GCC, or another static checker,
is called on the examined file.

The issued warnings and errors are collected and pre-
sented to the developer after VAMPYR has inspected all
configurations. The whole process takes less than a
minute to complete on a modest quadcore development
machine. In this case, VAMPYR reveals the integer over-
flow bug that has been presented in Section 2.

(b) The same maintainer implements a nightly quality-
assurance run. After having integrated the submissions of
various contributors, she calls it a day and lets VAMPYR
check the complete source code base on Linux/arm (a
worklist with 11,593 translation units) in a cronjob:
$ vampyr -C gcc -b worklist

In this case, VAMPYR calculates 14,222 configurations
(∼1.2 per file) in less than 4 minutes. The actual analysis,
which includes extracting the variability from KCONFIG
and KBUILD (cf. Section 3.1 and 3.2) and running the
compiler and Linux makefiles, takes about 4.5 hours. We
present and discuss the summarized findings of such a
run in the evaluation (Section 5, Table 2 and 3).

Both application examples show that the approach re-
sults in a straight-forward and easy to use tool that un-
burdens developers from the tedious task of finding (and
testing) the relevant configurations manually.

4 Configuration Coverage
As also reported by Palix and colleagues [15], we assume
that static checkers and bug-finding tools are generally
applied to a single configuration only. This raises the
question of how many conditional blocks are commonly
left uncovered. To be able to answer this question (and
eventually quantify in Section 5 how much VAMPYR can
improve on the situation), we first establish in Section 4.1
a metric for the effective CC achieved by a configuration
or a set of configurations. We then use this metric in
Section 4.2 to calculate the CC of the allyesconfig
standard configuration in Linux. This synthetic configura-
tion enables as many features as possible and is supposed
to cover the maximum amount of code. We use it here
to get an upper bound of the CC that can be achieved by
testing a single configuration only.

4.1 Calculating Configuration Coverage
The definition of the CC depends on the chosen coverage
criteria, including statement coverage (every block is in-
cluded at least once), decision coverage (every block is
included at least once and excluded at least once), and
path coverage (every possible combination of blocks is
included at least once). In this work, we go for statement
coverage and define the CC of a given configuration as
the fraction of the thereby selected blocks divided by the
number of available blocks:

CCS :=
selected blocks
available blocks

(1)

To calculate CCS , we need to determine the number of
selected blocks and the number of available blocks given
by a configuration. To determine the set of selected blocks,
we calculate the PC for each block b (as described in
Section 3.2) to check if the respective block gets enabled
by the configuration. For unconditional parts of the code
(such as the file fork.c, which is included in every
Linux configuration), the PC is a tautology.

Determining the set of available blocks is more com-
plex: Depending on (a) the taken perspective (such as

6

USENIX Association 2014 USENIX Annual Technical Conference 427

a concrete architecture) and (b) the constraints speci-
fied on each configuration level (�–�), many blocks
are only seemingly configurable. To illustrate this effect,
consider the following excerpt from drivers/net/
ethernet/broadcom/tg3.c:
static u32 __devinit tg3_calc_dma_bndry(struct tg3 *

tp, u32 val)
{

int goal;
[...]
#if defined(CONFIG_PPC64) || defined(CONFIG_IA64) ||

defined(CONFIG_PARISC)
goal = BOUNDARY_MULTI_CACHELINE;

#else
[...]
#endif

This code configures architecture-dependent parts of the
Broadcom TG3 network device driver with #ifdef
blocks. Given any concrete architecture (which is the
common perspective in Linux development), these blocks
are not variable: The PCs of the #ifdef blocks will
either result in a tautology (on Linux/IA64, respectively
Linux/PARISC) or a contradiction (on all other architec-
tures) for any KCONFIG selection.

So, on level � for Linux/ia64 and Linux/parisc the
#if part is always selected, whereas for all other archi-
tectures the #else part is chosen – but this only holds
under the assumption, that on level � the tg3.c file it-
self is selected. On Linux/s390, for instance, this file is
singled out by a MAKE-file constraint; hence, the PC of
each block is a contradiction. In line with our terminology
from [20], we call a block with a PC that is a contradic-
tion on the taken perspective, a dead block; a block with
a PC that is a tautology is called an undead block, respec-
tively. Both play an important role with respect to CC:
A dead block cannot be selected by any configuration,
whereas an undead block is implicitly selected by every
configuration.

The Linux/s390 example shows that it generally is not
obvious from the code if a block is dead/undead: Most
of the 12,000 Linux features (CONFIG_ flags) become
a tautology or contradiction because of the constraints
expressed on level � or �. On Linux/x86, for instance, 17
percent of all blocks are only seemingly variable, whereas
on Linux/s390, this holds for 67 percent. One reason for
this high rate is that s390 hardware does not feature the
PCI family of buses, so all PCI-related features, including
many device drivers, become contradictions.

The practical consequence is that dead and undead
blocks have to be singled out for calculating the configura-
tion coverage. We call this refined metric the normalized
configuration coverage (CCN):

CCN :=
selected blocks − undead blocks

all blocks − undead blocks − dead blocks
(2)

In Table 1, the CCN is normalized with respect to the

Architecture
Total
kLOC

in
CPP
blocks

variation
points

(dead/undead rate)

allyes
CCS

allyes
CCN

x86 8,391 4.5% 30,368 (17%) 65.2% 78.6%
hardware 6,417 3.6% 22,152 (22%) 59.7% 76.8%
software 1,974 7.6% 8,216 (4%) 80.2% 82.7%

arm 8,568 4.6% 33,356 (18%) 49.2% 59.9%
hardware 6,629 3.9% 25,140 (20%) 40.8% 51.2%
software 1,938 6.9% 8,216 (11%) 74.8% 83.6%

mips 7,848 4.3% 30,094 (23%) 42.3% 54.5%
hardware 5,896 3.3% 21,878 (29%) 30.1% 42.1%
software 1,952 7.4% 8,216 (7%) 74.8% 79.8%

s390 2,783 5.7% 28,756 (67%) 24.2% 72.1%
hardware 1,034 2.8% 20,540 (86%) 5.1% 37.2%
software 1,748 7.3% 8,216 (18%) 71.8% 86.8%

. . . < 19 further architectures>

Mean µ 6,447 3.8% 29,180 (39%) 43.9% 71.9%
Std. Dev. σ ±1,652 ±1,159 ±11.8% ±12.2%

Table 1: Quantification over variation points across selected ar-
chitectures in Linux v3.2 and the corresponding CCS and CCN
of allyesconfig.

selected architecture in Linux, which impacts what blocks
have to be considered as dead or undead. For a platform
maintainer, for instance, ignoring blocks of a “foreign”
architecture makes perfect sense: Linux is generally com-
piled natively and code parts for other architectures are
likely to not compile anyway.

4.2 The Configuration Coverage
of ‘allyesconfig’ in Linux

Table 1 lists configurability-related source code met-
rics together with the resulting CCS and CCN of the
allyesconfig standard configuration. We have exam-
ined these metrics for 24 out of the 27 Linux architectures.
Table 1 lists an excerpt of this analysis: selected “typical”
architectures (for PCs, embedded systems, mainframes),
together with the mean µ and standard deviation σ over
all 24 analyzed architectures.7 We further discriminate
the numbers between “hardware related” (originated from
the subdirectories drivers, arch, and sound) and
“software related” (all others, especially kernel, mm,
net).

The average Linux architecture consists of 6,447 kLOC
distributed over 8,231 source files, with 3.8% of all code
lines in (real) #ifdef or #else blocks and 29,180 total
variation points (#ifdef blocks, #else blocks, and
configuration-dependent files). There is relatively little
variance between Linux architectures with respect to these

7We could not retrieve results for um, c6x, and tile, which
seem to be fundamentally broken. The complete data tables are
available as an online appendix: http://vamos.cs.fau.de/
usenix2014-annex.pdf

7

428 2014 USENIX Annual Technical Conference USENIX Association

simple source-code metrics, as all architectures share a
large amount of the source base (including the kernel and
device drivers).

For the three rightmost columns, however, the variance
is remarkable. The rate of dead/undead variation points
varies from 17 percent on Linux/x86 to up to 67 percent
on Linux/s390 (µ = 39%). It furthermore is reciprocally
correlated to the CCS of allyesconfig: These num-
bers underline the necessity to normalize the CCS with
respect to the actual viewpoint (here: the architecture).
The normalized configuration coverage CCN is generally
much higher (µ = 71.9, σ = 12.2) – here Linux/s390
(72.1%) is even above the average and close to Linux/x86
(78.6%).

The situation is different on typical embedded plat-
forms, where the CCN of allyesconfig is signifi-
cantly lower: On Linux/arm, the largest and most quickly
growing platform, only 59.9 percent are covered. These
numbers are especially influenced by the relatively low
CCN (51.2%) achieved in the hardware-related parts. We
find a similar situation for Linux/mips, for which only
54.5 percent are covered. We take this as an indicator
for the larger hardware variability typically found on em-
bedded platforms, which manifest in many alternative or
conflicting features on the KCONFIG level and in #else
blocks on the CPP level.

5 Evaluation
In the following, we evaluate the benefit of increasing
the CCN with VAMPYR. The working hypothesis is that
especially subsystems and architectures with a relatively
low CCN of allyesconfig are prone to bugs that in
principle are easy to find (reported by the compiler), but
remain undetected for several years – like the integer
overflow issue from Section 2.

We analyze this hypothesis (i.e., how many additional
bugs can be found with our approach) on two operating
systems, namely Linux version v3.2 and L4/FIASCO,
as well as on BUSYBOX, a versatile user-space imple-
mentation of important system level utilities targeted at
embedded systems. They all use sufficiently similar ver-
sions of KCONFIG, which allows reusing the variability
extractor for ϕKCONFIG for all projects.

In all cases, we calculate a set of configurations for each
file as described in Section 3.3, and apply GCC 4.7 as static
checker for each configuration on all files individually.
As an optimization, the initial starting set contains the
standard configuration allyesconfig.

5.1 Application on Linux
On Linux, we use VAMPYR to generate the configura-
tions for the 24 architectures examined in Section 4.2. In
comparison to allyesconfig, VAMPYR increases the

CCN for every architecture, on average from µ = 71.5
to µ = 84.6 percent. Our Quad-core workstation calcu-
lates all partial configurations for 9,300 source files in
less than 4 minutes. For the sake of comprehensibility,
we limit in the following the in-depth analysis with GCC
as static checker to three architectures. We choose, based
on the observations in Section 4.2, x86, arm, and mips:
We assume Linux/x86 to be the best tested architecture
– because of its maturity, wide-spread application, and
the fact that it has the lowest rate of dead/undead blocks
(see Table 1). Hence, we expect to find relatively fewer
configuration-dependent bugs than in Linux/arm, which
is the largest (in terms of files and code lines) and, driven
by Android, most quickly growing Linux architecture,
with a relatively low CCN . We analyze Linux/mips as
another embedded platform that is less in a state of flux
than Linux/arm, but shows an even lower CCN .

Table 2 depicts the results: Again we list the CCN and
found issues for both the hardware- and software-related
parts of Linux. For the three architectures, we notice an
increase of the CCN by 10 to 36 percent, paid by about
20 percent more GCC invocations compared to a regular
compilation with a single configuration. So on average, a
Linux translation unit requires 1.2 invocations of a static
checker to achieve CC with respect to statement coverage.

However, even though VAMPYR does increase the
CCN , it is not increased to 100 percent. We achieve
the best result for Linux/mips with 91 percent coverage
(allyesconfig: 55%); for the other two architectures
the results are slightly lower. This is caused by (a) defi-
ciencies in the current VAMPYR implementation as well
as (b) bugs in the Linux KCONFIG models. We further
discuss these issues in Section 6.1.

Nevertheless, VAMPYR reveals a high number of ad-
ditional GCC messages that are not found with the
allyesconfig configuration (last column of Table 2):
26 additional messages on Linux/x86, 199 on Linux/arm,
and 91 on Linux/mips.

We take the number of #ifdef blocks per reported is-
sue (bpi) as a normalization metric for code quality. This
confirms our working hypothesis from Section 5: The bpi
of Linux/x86 is 110 , which is the lowest among the ex-
amined architectures. It is about 2.4 times better than the
bpi of 46 revealed for Linux/arm, which is the highest.
Linux/mips is with an bpi of 85 in between. On all ar-
chitectures, the hardware-related parts of the source code
(arch, drivers, sound) contain significantly more
issues than the software-related parts (everything else,
especially kernel, mm, and net) – we can confirm the
frequent observation that hardware-related code contains
significantly more bugs than software-related code [2, 15]
also in the context of variability. This holds in particu-
lar for the quickly growing arm architecture, where the
hardware-related parts show 5.6 times more issues than

8

USENIX Association 2014 USENIX Annual Technical Conference 429

Software Project
allyesconf
CCN

VAMPYR

CCN

Overhead:
increase of GCC

Invocations

GCC

#warnings
VAMPYR

(allyesconfig)

GCC

#errors
VAMPYR

(allyesconfig)

Σ
Issues

#ifdef
blocks per

reported issue
(bpi)

Result:
increase of

GCC messages

Linux/x86 78.6% 88.4% 21.5% 201 (176) 1 (0) 202 110 26 (+15%)
hardware 76.8% 86.5% 21.0% 180 (155) 1 (0) 181 82 26 (+17%)
software 82.7% 92.4% 22.7% 21 (21) 0 (0) 21 351 0 (+0%)

Linux/arm 59.9% 84.4% 22.7% 417 (294) 92 (15) 508 46 199 (+64%)
hardware 51.2% 80.1% 23.7% 380 (262) 92 (15) 471 34 194 (+70%)
software 83.6% 96.3% 19.5% 37 (32) 0 (0) 37 192 5 (+16%)

Linux/mips 54.5% 90.9% 22.0% 220 (157) 29 (1) 249 85 91 (+58%)
hardware 42.1% 88.2% 21.5% 174 (121) 17 (1) 191 72 69 (+57%)
software 79.8% 96.3% 23.2% 46 (36) 12 (0) 58 128 22 (+61%)

L4/FIASCO 99.1% 99.8% see text 20 (5) 1 (0) 21 see text 16 (+320%)

Busybox 74.2% 97.3% 60.3% 44 (35) 0 (0) 44 72 9 (+26%)

Table 2: Results of our VAMPYR tool with GCC 4.7 (-fno-inline-functions-called-once -Wno-unused) as static checker
on Linux v3.2, L4/FIASCO and BUSYBOX.

the software-related parts.
In Table 2 the reported issues are differentiated between

errors and warnings. However, this classification by the
compiler is only seemingly related to the severity of the
issue. While many developers consider warnings as more-
or-less cosmetic issues, they often point to critical bugs,
such as the integer overflow from Section 2. Nevertheless,
by the fact that a high number of warnings is also revealed
by allyesconfig, we have to conclude that at least
some warnings are considered as “false positives”.

To quantify the actual benefit of our approach in this
respect, we have reviewed all messages on Linux/arm
manually to discriminate less critical messages from real
bugs. The results of a conservative classification8 are
depicted in Table 3: 91 out of the 508 reported issues
for Linux/arm have to be considered as real bugs. For
seven bugs, including the issues from Section 2, we have
proposed a patch9 to the upstream developers, which all
got immediately confirmed or accepted. Six of these
seven bugs had been unnoticed for several years.

5.2 Application on L4/Fiasco
In order to show the general applicability, we apply the
VAMPYR tool also to the code base of the L4/FIASCO
µ-kernel. Compared to Linux, L4/FIASCO is relatively
small: It encompasses about 112 kLOC in 755 files (only
counting the core kernel, that is, without user-space pack-
ages). Nevertheless, we identify 1,255 variation points
(1,228 conditional code blocks and 16 conditionally com-
piled source files) in the code base.

8Only messages for which the manual source-code review provides
strong evidence of an actual bug are counted as such. Everything else
is considered to be less critical. We also count some errors (caused by
#error statements) that point to issues in the KCONFIG model and not
in the code as less critical.

9http://vamos.cs.fau.de/usenix2014-annex.pdf

Less critical GCC messages warnings errors
Σ Less critical messages 347 (223) 16 (0)

Manually validated bugs
Undeclared types/identifiers 46 (4)
Access to possibly uninitialized data 22 (20)
Out of bounds array accesses 11 (7) 2 (0)
Bad pointer casts 8 (0)
Format string warnings 1 (0)
Integer overflows 1 (0)
Σ Bugs found 43 (27) 48 (4)

Σ All reported issues 390 (250) 64 (4)

Table 3: Classification of GCC warnings and errors revealed
by the VAMPYR tool on Linux/arm. The numbers in parenthe-
ses indicate messages that are also found when compiling the
configuration allyesconfig

L4/FIASCO employs the KCONFIG infrastructure to
configure 157 features on 4 architectures. Unlike Linux,
the architectures are user-selectable KCONFIG options.
Also, L4/FIASCO does not only use the CPP, but also
uses a transformation process that allows programmers to
declare interface and implementation in the same source
file. This additional processing step produces traditional
header and implementation files, which are preprocessed
by CPP and compiled with GCC. We cope with this by
processing the resulting CPP #ifdef blocks for calculat-
ing the configurations. However, because of the additional
preprocessing step, the metrics of GCC invocations per
source file and bpi do not relate to the results of Linux
and BUSYBOX, so we leave them out in Table 2.

For L4/FIASCO, the VAMPYR tool produces 9 differ-
ent configurations that in total cover 1,228 out of 1,239
#ifdef blocks, which maps to a CCN of 99.8 percent.
Compared to allyesconfig, the number of compiler
messages thereby increased from 5 to 21, among them

9

430 2014 USENIX Annual Technical Conference USENIX Association

the compilation error in ux/main-ux.cpp we have il-
lustrated in Section 2. We have reported this issue to the
L4/FIASCO developers, who confirmed it as a bug.

5.3 Application on Busybox
Another popular software project that makes use of
KCONFIG is the BUSYBOX tool suite. The analyzed ver-
sion 1.20.1 exposes 879 features that allow users to
select exactly the amount of functionality that is neces-
sary for a given use case, implemented by 3,316 #ifdef
blocks and conditionally compiled source files.

For BUSYBOX, VAMPYR increases the number of re-
ported issues from 35 to 44; we have proposed a fix for
one of them to the upstream developers, who have con-
firmed it as a bug and accepted our patch.

6 Discussion
6.1 Threats to Validity – Quality of Results
Is it fair to compare to allyesconfig? In this pa-
per we argue that checking a single configuration is not
enough and evaluate this by comparing our configuration-
aware VAMPYR results against the allyesconfig stan-
dard configuration, which we assume to achieve the best
possible CC for a single configuration.

However, this is not guaranteed, as allyesconfig
is a synthetic configuration generated by the KCONFIG
tool with a simple algorithm: Traverse the feature tree
and select each feature that is not in conflict to an already
selected feature. The outcome is sensitive to the order of
features in the feature tree, hence, does not necessarily
include the possible maximum number of features. Also,
even if we assume a maximum number of features as
the outcome, this does not necessarily imply the largest
possible CC, as we might have missed a feature with a
highly crosscutting implementation (i.e., a feature that
contributes many #ifdef blocks) in favor of another
feature that contributes just a single variation point. How-
ever, features in Linux are generally not very cross cutting:
58 percent of all features in Linux v3.2 are implemented
by a single variation point; only 9 percent contribute more
than 10 variation points, most of which are architecture-
related features that anyway cannot be modified on the
KCONFIG level. So, despite these limitations, we con-
sider allyesconfig as a realistic upper bound of the
CC that could be achieved with a single configuration in
practice.

Why not hundred percent coverage? Even though
VAMPYR increases the CC significantly, we do not get
full coverage. In some cases, the expansion of a partial
configuration by KCONFIG results in a full configura-
tion that contradicts the partial configuration. In order to
achieve correct results (and in contrast to our in retrospect
naïve attempt in [19]), VAMPYR validates the soundness

of each configuration after the expansion process: Con-
figurations that no longer contain the relevant features of
interest are skipped; the thereby induced #ifdef blocks
or files are considered as not covered in Table 2, which
results in rates that are below hundred percent. We see
three major causes for this effect:

(1) One reason for failed expansions are bugs in the
Linux variability descriptions (KCONFIG models). Fea-
ture dependencies are notoriously hard to get right with
KCONFIG, as the KCONFIG tool does not validate the
soundness of the models: In feature dependency expres-
sions, the KCONFIG language provides (via the SELECT
statement) the option to select arbitrary other features;
in this case it is in the responsibility of the developer
to ensure that thereby the configuration remains valid.
In practice, this is not always the case and leads to user-
selectable configurations that are formally invalid (contain
a contradicting feature), but nevertheless “work” for the
user. However, as element of a partial configuration de-
rived by VAMPYR, such a contradicting feature usually
causes an incorrect expansion.

(2) Bugs in the KCONFIG descriptions can furthermore
cause missing of some dead/undead blocks. This directly
leads to a lower CCN , as dead/undead blocks are sub-
stracted in denominator of the CCN (see Equation 2).

(3) Another potential cause for expansion issues is that
the VAMPYR implementation, in particular the model ex-
tractor for ϕKCONFIG, is not yet feature complete. We cur-
rently do not correctly handle the situation when some
feature depends on the value (rather than the mere selec-
tion) of some other string or integer feature. Luckily, the
number of features that employ value tests in their PC is
low in Linux (mips:0.26%, arm:0.28% x86:0.31%;
µ = 0.4%, σ = 0.22). Nevertheless, this can make the
expansion fail, and thus, impact the achieved CC.

Are there false positives/negatives? The expansion is-
sues imply that there is a high probability of false nega-
tives – bugs we miss, because we do not achieve full CC.
Nevertheless, our results show that our approach helps
to discover a significant number of long-time overlooked
bugs in Linux, L4/FIASCO, and BUSYBOX. The point
is that VAMPYR is easy to use and does, by construction,
not produce any false positives. Hence, the “annoyance
factor” is low, which increases the chance of acceptance
by system software developers.

6.2 Higher Coverage Criteria
The chosen coverage criterion also implies the existence
of false negatives (i.e., undetected issues): The current
implementation of VAMPYR achieves statement coverage,
that is, every configuration-conditional block is included
at least once – at the price of 20 percent additional com-
piler invocations. Would using a higher coverage criterion
would reveal more issues?

10

USENIX Association 2014 USENIX Annual Technical Conference 431

We are currently experimenting with a VAMPYR proto-
type that provides decision coverage, that is, every block
is included and excluded at least once. Technically, this is
realized by virtually adding an empty #else block to ev-
ery #if block without an #else part. Over the three an-
alyzed architectures (Linux/x86, Linux/arm, Linux/mips),
the shift from statement to decision coverage increases the
number of reported issues by an additional nine percent
at the price of fifteen percent more compiler invocations.
We consider this as still acceptable for most use-cases.

The next step will be path coverage: every possible
combination of blocks is included at least once. This has
exponential overhead: a source file with n CONFIG flags
requires up to 2n configurations (compiler invocations)
to achieve path coverage. However, we expect the con-
straints from the CPP, KBUILD, and KCONFIG levels to
considerably restrict the number of actually possible con-
figuration. Furthermore, more than 98 percent of all Linux
compilation units employ five or less CONFIG flags.10 So
in practice, also path coverage may be feasible for large
parts of Linux – at least for tasks such as checking a con-
tributed patch (application scenario (a) from Section 3.4),
which we consider as the major use case for VAMPYR.

Checking of a complete architecture with path coverage
is probably infeasible on the average developer’s machine.
Heuristic approaches, such as pairwise testing [13], may
be more promising candidates to achieve higher coverage
at acceptable run times. This is a topic of further research.
The point here is that we intend VAMPYR to be a tool that
developers can use in their regular development cycles, so
the run-time caused by algorithmic complexity (another
“annoyance factor”) has to be limited.

6.3 General Applicability of the Approach
We have evaluated our approach with Linux,
L4/FIASCO, and BUSYBOX and GCC as a static
checker. However, the approach is as well applicable
to other software families and static checkers. To apply
VAMPYR to some piece of configurable software, one
basically needs extractors for the configuration points
and constraints specified on all employed implementation
levels of variability. These levels are generally project-
specific: In Linux, we have the ARCH environment
variable, KCONFIG, KBUILD, and CPP; in L4/FIASCO
we additionally have the custom preprocess level.
Our approach, however, makes it easy to integrate such
custom variability extractors. We also expect a significant
amount of reusability: Almost every system software
project employs CPP to implement variability and the
KCONFIG language is adopted by more and more projects
as a means to describe the intended configurability.

Static checkers are not always warmly welcomed –
many developers are (initially) reluctant to accept their

10The extreme corner-cases of the remaining two percent are
sysctl.c with 59 flags and sched.c with 47 flags.

findings [1]. To convincingly illustrate the issue of confi-
guration-dependent bugs, we therefore have chosen GCC
as our static checker: The compiler is a “least common
denominator” of a bug-finding tool that has to be ac-
cepted by developers. Nevertheless, VAMPYR can be em-
ployed as variability-aware driver for any static checker
that drops in as a compiler replacement. We have also
tested it successfully with COCCINELLE [14, 15] and
SPARSE. With SPARSE, for instance, VAMPYR more than
doubles the issues reported for Linux/arm: from 9,484
(allyesconfig) to 23,964 (VAMPYR). The high num-
ber of issues already reported for allyesconfig, how-
ever, is a strong indicator that the “annoyance factor” of
SPARSE is too high to be accepted as a helpful static
checker by the Linux developers – even though “Check
cleanly with sparse” is an explicit requirement on the
Kernel patch submission checklist.

7 Related Work
Despite these apparent acceptance problems by kernel
developers, automated bug detection by examining the
source code has a long tradition in the systems community.
Many approaches have been suggested to extract rules,
invariants, specifications, or even misleading source-code
comments from the source code or execution traces from
Linux [2, 4, 7, 8, 11, 18]. However, it is remarkable that
all of these papers seem agnostic to the used configu-
ration and do not even mention what configuration has
been analyzed – even though the wide-ranged analysis
of feature implementations in system software by Liebig,
Kästner, and Apel [9] underlines the impressive amount
of CPP-based configurability in today’s system software.
The issue of CC is largely underestimated.

In the verification and validation community, the notion
of CC has been defined in a very similar way to this
work by Maximoff et al. [12] in the context of NASA
spacecrafts. Unlike our work, this work does not create
the configurations from the implementation. Instead, the
CC assesses the quality of a given set of test cases.

Liebig et al. [10] present a good overview over the
current state of the art for variability-aware analysis of
software systems, in which the authors identify two major
approaches to the problem: Either by making all tools
for static analysis configurability-aware, or by improving
the effectiveness of the existing tools by a configurability-
aware driver by applying the tools using a sample set, that
is, a subset of all possible configuration. Our VAMPYR
tool is the latter; there are, however, several research
groups that attempt the first approach: Kästner et al.
[6] propose a technique coined variability aware pars-
ing, which basically integrates the CPP variability into
tools for static analysis and allows variability aware type-
checking across all configurations. Gazzillo and Grimm

11

432 2014 USENIX Annual Technical Conference USENIX Association

[5] propose a generalized and much better performing
configurability-aware parser for C with CPP. Their SU-
PERC basically treats C and CPP together as a single
language and thereby could be used as front-end for the
implementation of variability-aware checkers. However,
for any practical use, both approaches also need further
assistance by a model of all variability constraints from
other implementation levels, otherwise, type-checking in-
valid configurations would cause a very high run time and
result in a tremendous number of false positives. The big
advantage of these approaches is that they achieve path
coverage over the CPP meta program. The disadvantages
are that they only work on the CPP level and that they
cannot be combined with other static checkers. Hence,
we consider our VAMPYR approach to be more flexible.

8 Conclusions
System software is typically configured at compile-time
to tailor it with respect to the supported application or
hardware platform. Linux, for instance, provides in v3.2
more than 12,000 configurable features. This enormous
variability imposes great challenges for software testing
with respect to configuration coverage (CC).

Existing tools for static analyses are configurability-
agnostic: Programmers have to manually derive concrete
configurations to ensure CC. For this, they do not only
have to consider the structure of #ifdef blocks in the
code, but also the thousands of constraints specified in
the build system and feature model. Hence, many easy-
to-find bugs are missed, just because they happen to be
not revealed by a standard configuration – Linux contains
surprisingly much source code that does not even compile.

With our VAMPYR approach and implementation, the
necessary configurations can be derived automatically.
VAMPYR is easy to integrate into existing tool chains
and provides configurability-awareness for arbitrary static
checkers. With GCC as a static checker, we have revealed
hundreds of configuration-dependent issues in Linux,
L4/FIASCO, and BUSYBOX. For Linux/arm, we have
found 60 new bugs, some of which went unnoticed for
six years. We have also found one bug in L4/FIASCO
and nine issues in BUSYBOX. For all three projects, the
upstream developers have confirmed the reported bugs
and accepted our resulting patches.

The tools VAMPYR and UNDERTAKER are available
under GPLv3 at http://vamos.cs.fau.de/. All
raw data is generated by automated experiments to
support scientific reproducibility, and can be exam-
ined at http://vamos.cs.fau.de/jenkins (lo-
gin: public/i4guest). The Linux data and a detailed
description of our patches is furthermore available as
an online-appendix at http://vamos.cs.fau.de/
usenix2014-annex.pdf.

References
[1] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton,

Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak,
and Dawson Engler. “A few billion lines of code later: using
static analysis to find bugs in the real world”. In: CACM 53 (2).

[2] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and
Dawson Engler. “An empirical study of operating systems er-
rors”. In: SOSP ’01.

[3] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. “A Robust Approach for Vari-
ability Extraction from the Linux Build System”. In: SPLC ’12.

[4] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and
Benjamin Chelf. “Bugs as deviant behavior: a general approach
to inferring errors in systems code”. In: SOSP ’01.

[5] Paul Gazzillo and Robert Grimm. “SuperC: parsing all of C by
taming the preprocessor”. In: PLDI ’12.

[6] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel,
Sebastian Erdweg, Klaus Ostermann, and Thorsten Berger.
“Variability-Aware Parsing in the Presence of Lexical Macros
and Conditional Compilation”. In: OOPSLA ’11.

[7] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and
Dawson Engler. “From uncertainty to belief: inferring the speci-
fication within”. In: OSDI ’06.

[8] Zhenmin Li and Yuanyuan Zhou. “PR-Miner: automatically ex-
tracting implicit programming rules and detecting violations in
large software code”. In: ESEC/FSE ’00.

[9] Jörg Liebig, Christian Kästner, and Sven Apel. “Analyzing the
discipline of preprocessor annotations in 30 million lines of C
code”. In: AOSD ’11.

[10] Jörg Liebig, Christian Kästner, Sven Apel, Jens Dörre, and Chris-
tian Lengauer. “Scalable Analysis of Variable Software”. In:
ESEC/FSE ’13.

[11] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. “Learn-
ing from mistakes: a comprehensive study on real world concur-
rency bug characteristics”. In: ASPLOS ’08.

[12] J.R. Maximoff, M.D. Trela, D.R. Kuhn, and R. Kacker. “A
method for analyzing system state-space coverage within a t-wise
testing framework”. In: 4th anual IEEE Systems Conference.

[13] Sebastian Oster, Florian Markert, and Philipp Ritter. “Automated
Incremental Pairwise Testing of Software Product Lines”. In:
SPLC ’10. Vol. 6287.

[14] Yoann Padioleau, Julia L. Lawall, Gilles Muller, and René Ry-
dhof Hansen. “Documenting and Automating Collateral Evolu-
tions in Linux Device Drivers”. In: EuroSys ’08.

[15] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès,
Julia L. Lawall, and Gilles Muller. “Faults in Linux: Ten years
later”. In: ASPLOS ’11.

[16] Henry Spencer and Gehoff Collyer. “#ifdef Considered Harmful,
or Portability Experience With C News”. In: USENEX ATC ’92.

[17] Diomidis Spinellis. “A Tale of Four Kernels”. In: ICSE ’08.

[18] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou.
“/*iComment: Bugs or Bad Comments?*/”. In: SOSP ’07.

[19] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph
Egger, and Julio Sincero. “Configuration Coverage in the Anal-
ysis of Large-Scale System Software”. In: PLOS ’11. DOI: 10.
1145/2039239.2039242.

[20] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang
Schröder-Preikschat. “Feature Consistency in Compile-Time-
Configurable System Software: Facing the Linux 10,000 Fea-
ture Problem”. In: EuroSys ’11. DOI: 10.1145/1966445.
1966451.

12

