
This paper is included in the Proceedings of USENIX ATC ’14: 
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of 
USENIX ATC ’14: 2014 USENIX Annual Technical 

Conference is sponsored by USENIX.

A Modular and Efficient Past State System  
for Berkeley DB

Ross Shaull, NuoDB; Liuba Shrira, Brandeis University;  
Barbara Liskov, MIT/CSAIL

https://www.usenix.org/conference/atc14/technical-sessions/presentation/shaull



USENIX Association  2014 USENIX Annual Technical Conference 157

A Modular and Efficient Past State System for Berkeley DB ∗

Ross Shaull
NuoDB

Liuba Shrira
Brandeis University

Barbara Liskov
MIT/CSAIL

Abstract
Applications often need to analyze past states to predict
trends and support audits. Adding efficient and non-
disruptive support for consistent past-state analysis re-
quires after-the-fact modification of the data store, a sig-
nificant challenge for today’s systems. This paper de-
scribes Retro, a new system for supporting consistent
past state analysis in Berkeley DB. The key novelty of
Retro is an efficient yet simple and robust implementa-
tion method, imposing 4% worst-case overhead. Unlike
prior approaches, Retro protocols, backed by a formal
specification, extend standard transaction protocols in a
modular way, requiring minimal data store modification
(about 250 lines of BDB code).

1 Introduction

Applications need retrospection, the ability to analyze
past states, to provide audits and predict trends. Without
adequate support in the data store, it is hard for devel-
opers to reconstruct consistent past states corresponding
to events of interest. Yet, many data stores lack support
for retrospection because adding a low-impact consistent
past state system to a data store has been challenging us-
ing current approaches.

This paper describes Retro, a system that adds retro-
spection to Berkeley DB (BDB), a popular transactional
key-value database. Our system automatically stores past
states of interest to the application, and allows the ap-
plications to query automatically restored consistent past
states. The queries can take advantage of the application
code base; any read-only application or library program
that runs in BDB can also run retrospectively.

The novel contribution of Retro is an efficient yet sim-
ple and robust implementation method. Retro is very ef-

1This work was partially supported by the National Science Foun-
dation under grants NSF IIS-1251037, NSF CNS-1318798. The work
was accomplished when Ross Shaull was at Brandeis University.

ficient; it does not disrupt BDB performance even when
applications retain the past states at high frequency, im-
posing a minimal 4% performance penalty in the worst
case. Furthermore, Retro extends standard database pro-
tocols in a modular and robust way, based on a simple
past state system specification that serves as a basis for
a formal proof of Retro protocol correctness (presented
in [13]); this is in contrast to prior past state systems
(e.g., [5, 15, 17]), which used more complex and frag-
ile ad-hoc modifications to data store internals to avoid
disrupting database performance. The code implement-
ing Retro protocols composes with standard interfaces in
the database software stack. Because the composition is
modular, the modifications to the database code are min-
imal: our prototype modifies only 250 lines of Berkeley
DB source code.

To preserve transaction performance when saving con-
sistent past states, Retro captures the needed past states
incrementally, using split copy-on-write [15]. It then cre-
ates the past state lookup structures [14] and accumu-
lates the past states and lookup structures in additional
memory that is dedicated to storing past state informa-
tion. Retro writes the past states and lookup structures to
a separate log-structured store, in the background with-
out interfering with database queries. Retro recovery en-
sures the past states and lookup structures remain con-
sistent and durable in the presence of crashes. To query
past states, Retro redirects code to snapshot pages using
dynamic translation structures, without interfering with
database transactions.

Retro accomplishes its tasks by extending BDB update
commit, update recovery, and update writing and reading
protocols in a simple and intuitive way. An extension to
the commit protocol retains the needed past states when
an update transaction commits. Similarly, an extension to
the BDB recovery protocol retains the needed past states
when BDB recovers updates from the transaction log af-
ter a crash, thus relegating past state recovery to database
recovery, an important simplification since recovery pro-
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tocols can be complex.
Retro recovery faces two complications. Care must be

taken to ensure that BDB does not discard the transaction
log before past states become durable, and to ensure that
recovery attempts that fail and restart do not corrupt past
states. These dangers are avoided by enforcing a simple
invariant ensuring that past states become durable before
database updates.

Retro is implemented as a system of concurrent call-
backs running as part of BDB commit, recovery, and
writing and reading protocols. The concurrent callbacks
access shared state, e.g., to track which past states have
been already saved. The callbacks must therefore run in
a thread safe manner, and moreover must be serialized in
a consistent order to ensure consistent past states can be
identified correctly. If Retro callbacks were to block un-
necessarily, this could increase BDB transaction latency.
To avoid this bottleneck, Retro stores its shared state in
specialized data structures that eliminate blocking.

In summary, the contributions of this paper include 1)
a new efficient system for retrospection in Berkeley DB,
implemented using a simple and robust method, avoiding
invasive database modifications. 2) modular past state
protocols justified by a formal specification that extend
standard transaction protocols, 3) design of the modu-
lar snapshot layer that implements the past state pro-
tocols, using specialized data structures that minimize
overheads to BDB, 4) experimental evaluation support-
ing our efficiency claims, and analysis of retrospection
performance for in-memory and on-disk past states.

Retro was designed for BDB but we believe our
method is general and can be applied to other transac-
tional data stores, contributing a step towards making
past state support more widely available to applications.

2 Related Work

Past states can be supported at the level of logical records
or files (e.g., [5, 12]), or low-level pages (e.g. [17]), like
Retro. Without close integration with the data store, past
state systems can impose a high performance penalty to
provide transactionally consistent records, or crash con-
sistent files. Systems that operate below the data store
( e.g., page-level Windows VSS), block update transac-
tions, disrupting performance if snapshots are frequent.
Temporal databases that operate above a database, re-
strict scalability [9].

Integrated past state systems can exploit data store
mechanisms to write consistent past states at low cost.
Postgres [3] and versioning file systems (e.g., [4]) inte-
grate with a no-overwrite system that keeps past records
in place, and copies new records to a new place, reducing
the number of writes. Since past and current state are not
separated, large past state can negatively impact the cost

of current state reads [3]. Read impact can be avoided
by keeping the past state separate. Ganymed [10], a
Postgres based system, copies past records to a sepa-
rate Postgres replica node, using replication middleware.
The replica provide access to historical snapshots using
modified concurrency control and query protocols. Read
impact can also be avoided by exploiting recovery (e.g.
fuzzy checkpoints [3]), but recovery based methods are
too slow for on-line programs.

ImmortalDB [5] supports consistent past records, in-
tegrating with SQL Server. The database data layout is
modified to keep recent versions of past records on the
current state pages, eventually migrating old versions to
separate pages; indexes are modified to support temporal
access. Oracle Total Recall supports integrated histori-
cal record tables, indexed like regular tables. SNAP [15]
supports consistent indexed split page-level snapshots,
integrating with an object store. SFS [17], supports split
page-level snapshots, integrating with a file system. All
above systems integrate past state support using invasive
modifications to the data store internals. VersionFS [7]
adds versioning in a stackable file system. The stackable
architecture supports modular extension, a goal shared
by Retro .

Retro adopts the split snapshot representation in
SNAP [15] and Skippy index [14], extending the prior
work in important ways. The Skippy work provides ef-
ficient multi-level index for split snapshots, without con-
sidering index recovery, concurrency, or implementation
of a complete snapshot system. Retro implements a com-
plete snapshot system, including efficient recovery and
non-blocking concurrency control protocols for Skippy
index and snapshot data. Unlike SNAP, and other imple-
mentations using invasive ad-hoc modifications, Retro
provides an efficient implementation method based on
modular extension of standard transaction protocols. The
modular snapshot protocols, based on a formal snapshot
system model, and their low-cost implementation struc-
tures in BDB are the new contributions of Retro.

3 Programming Model

From the application developer’s perspective, program-
ming with Retro is a straightforward extension to pro-
gramming with BDB using a simple named snapshot ab-
straction (Figure 1).

Retro supports C and SQL (SQLite) BDB APIs. Ap-
plications run transactions that issue update and query
requests to records organized in tables. An applications
may declare a persistent snapshot at transaction bound-
ary at any time by issuing the snapshot now command.
The declaration command commits a transaction, whose
serialization point defines the contents of the snapshot. A
snapshot represents the state of the entire database (e.g.,



USENIX Association  2014 USENIX Annual Technical Conference 159

Current-state queries are unchanged by Retro
results ← select * from ...

Applications may declare snapshots at any time and get back
a snapshot identifier

S ← snapshot now
As of queries are delimited with snapshot identifier

results ← as of snapshot S { select * from ... }

Figure 1: Programming with snapshots

tables, indexes, system catalogs).
After declaration commits, the application is returned

a snapshot identifier which permanently identifies the de-
clared snapshot. A snapshot identifier may be used to
access a snapshot immediately; no delay is required be-
tween declaring and accessing a snapshot. Retro does
not mandate how snapshot identifiers are remembered for
later use, e.g. they can be stored in a table along with a
timestamp. Internally, Retro assigns to snapshot iden-
tifiers consecutive integer names in declaration commit
order.

To make use of the snapshots they declare, applica-
tions run queries as of those snapshots. The application
delimits any read-only query code with as of to instruct
Retro to run the delimited query retrospectively. A query
delimited by as of snapshot S reflects the effects of all the
transactions committed prior to the serialization point of
S, and none of the effects of transactions committed af-
ter S. Inside the as of delimiter, the query itself is writ-
ten just like a normal, current-state query. This makes
it easy to leverage existing programmer knowledge and
codebases when programming with Retro.

Existing current-state BDB code runs unmodified.
Code that declares snapshots and runs retrospection can
be executed alongside the current-state code in the same
database, making it easy to use retrospection from cur-
rent state BDB code on-line where needed.

4 Retro architecture

The relevant components of BDB software stack are de-
picted in Figure 2. The shaded areas show Retro exten-
sions (explained later). A BDB application runs trans-
actions that manipulate logical data records and tables,
issuing update and query requests against the BDB API,
which processes the requests and translates them into re-
quests to the transactional storage manager. The stor-
age manager manages logical data records organized in
pages, stored on durable storage. The pages are the unit
of transfer between durable storage (on disk) and the
page cache (in memory).

When an application requests a data record as part of
some query (e.g., “get record k”), that request is pro-

as of snap now

MVCC

Application

Storage manager

Access method

Database

DB interface

WAL Page cache

DB Disk Retro Disk

Snapshot Layer

Figure 2: Retro modularized in database architecture

cessed by an access method (a binary tree or a hash ta-
ble), a storage manger component that encapsulates the
representation of records in a table. The access method
translates requests to read and write data records into re-
quests to the page cache to read and write data in units
of pages. Pages are cached in the page cache in memory,
and data records are read from and written to the cached
pages.

A request for a page issued to the page cache by an
access method refers to the page by its logical name. A
logical name is a pair ( f ile,number), where file is the
identifier of a database file open in the page cache, and
number is some offset within that file. The logical page
name gets translated to its physical disk address when
page cache performs disk I/O.

The storage manager includes two additional compo-
nent relevant to Retro, concurrency control and recovery,
responsible for transaction serialization and crash consis-
tency, respectively. These components will be described
later when we explain how Retro extends them.

4.1 BDB components extended by Retro

The mechanisms that implement Retro functionality are
modularized within the snapshot layer (SL) (figure 2).
The SL wraps components in the transactional storage
manager, extending BDB behavior to add efficient snap-
shot creation and querying. Snapshots are created and
accessed by extending the page cache and concurrency
control (section 4.4 and section 5). Snapshot recovery
supporting efficient snapshot creation is achieved by ex-
tending recovery (section 6).

Retro does not affect access methods, the logical-to-
physical translation of page names into their disk ad-
dresses, or how the database is organized on disk. These
storage manger components are transparent to Retro.
Retro is concerned with logical page names, and expand-
ing that namespace to support snapshots.

Retro assumes that page cache memory and extra
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storage is allocated for holding snapshots. The extra
page cache memory allows the system to accumulate
snapshots before writing them to disk without contend-
ing with current state transactions. For best perfor-
mance, the extra storage is on separate disks from the
database, to avoid interference. Snapshots have the po-
tential to consume much more storage that the current
state, since (generally speaking) history grows with any
insert, update, or delete, while the current state only
grows when data is inserted. Retro helps use an invest-
ment in additional storage efficiently by being selective
(Retro keeps only declared snapshots) and incremental
(snapshots may share snapshot pages). Currently, Retro
does not allow snapshot deletion. Adopting low-cost
snapshot deletion [16] is a straightforward extension.

4.2 Low-level snapshots
At the level of the storage manager, a snapshot S is a com-
plete and transactionally consistent collection of snap-
shot pages. The collection is complete because it con-
tains all the data and metadata pages in BDB, including
index and catalog pages. The collection is transactionally
consistent because the snapshot pages reflect the serial-
ization point of the snapshot declaration command, mak-
ing snapshot pages consistent with one another. These
properties allow any new or existing read-only code that
could run in the database when snapshot S was declared,
to run as of a snapshot S.

The page-level Retro snapshot abstraction makes it
possible to run retrospective queries without changing
access methods, indices, and other storage system code
that relies on page layout and naming. The same name
used to denote a page in the current state is used during
retrospection to denote a snapshot version of that page.
This means that snapshot pages that refer to each other by
name (e.g., index pages) can be used normally by storage
system code.

For convenience, we denote the version of a page P
as of a snapshot S using P@S. This is purely notational;
when BDB requests a page P while querying restrospec-
tively as of S, it requests P using the same page name as
it would if it were requesting P as part of a current-state
query. Section 4.4 describes this mechanism in detail.

4.3 Snapshot overwrite sequence
Retro creates snapshots using split copy-on-write [15]
and Skippy index [14]. When a snapshot is declared,
all snapshot pages are shared with the current database
pages. When a BDB transaction updates a page that is
shared with a snapshot, Retro saves the snapshot page
in memory, updates the snapshot indexing metadata, and
eventually writes pages and metadata to the Retro disk.

We use the notion of Snapshot Overwrite Sequence
(OWS) to reason about what Retro protocols need to do,
i.e. as a correctness specification.

Definition: Let H be a serial committed trans-
action execution history. The snapshot over-
write sequence of H (OWS(H)) is a mark up
of H that tags every snapshot declaration and
every commit that updates a page shared with
a snapshot.

OWS(H) captures the points in the execution sequence
where snapshot pages and index metadata must be cre-
ated. There is a straightforward formal proof of correct-
ness of Retro protocols based on OWS [13], omitted for
lack of space. OWS answers the following questions:
1) which page versions to save: the page pre-state of
the first update to a page following a snapshot declara-
tion (Sec 5), 2) what state to recover after a crash: a
recovery after a crash immediately following execution
H must recover all pages and metadata created by oper-
ations tagged in OWS(H) (Sec 6), 3) where to get the
page P@S requested by a retrospective query running
after H: from Retro, if there is a tagged commit updating
P following the declaration of S in H, or otherwise from
the database (Sec 7).

For example, consider the following OWS(H):

T 1(S1)T 2(wR)T 3(S2)T 4(wRwQ)
T 5(wRwQ)T 6(S3)T 7(wRwP)

Retro saves pre-states in T 2 (R), T 4 (R,Q), and T 7 (R,P)
but not T 5 since its updates to R and Q are not the
first modifications to a page following the declaration of
snapshot S2. For a crash following H, Retro recovers all
the pre-states and indexing state created in T 1 to T 4, T 6
and T 7. A retrospective query as off snapshot 3, when
issued after H, gets P@3 from Retro, but when issued
before T 7, gets P@3 from the database.

4.4 Logical page virtualization
Retro allows retrospective queries to execute concur-
rently with current state queries and updates in the same
page cache, allowing current state programs to directly
query past states. The key idea behind the execution ar-
chitecture for retrospection is to translate the BDB log-
ical page names to the names of snapshot pages when a
query runs retrospectively, using logical page virtualiza-
tion in the snapshot layer (SL). The name translation is
transparent to BDB, enabling storage system code using
logical page names to run on both the current state and
snapshots.

Figure 3 depicts the retrospective query execution
path. Retro stores the snapshot pages in a file called
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Figure 3: Retrospective query execution

Pagelog located on the Retro disk. This file is opened
in the page cache like any other database file. A snap-
shot page P@S that has been overwritten since S was
declared will be copied to Pagelog. For brevity, we refer
to the offset in Pagelog where P@S is stored as P′; the
actual offset P′ has no relationship to the logical name of
P in the current state.

The logical page virtualization is implemented by a
translation component. The translation component inter-
cepts page requests from access methods and translates
logical database page names into logical snapshot page
names if the code issuing the request is running retro-
spectively. The as of primitive provided by the Retro
interface extension identifies the snapshot from which a
requested page should be read.

The translation component keeps track of translations
from logical names (e.g., page P in a database file Table)
to pre-states in Pagelog (e.g., P′ in Pagelog) for any
declared snapshot. After translating (Table,P)@S to
(Pagelog,P′), the translated name is passed to the page
cache, which reads and caches it like any other page. The
contents of the snapshot page (Pagelog,P′) are returned
to the access method as though it were the current-state
contents of the page named (Table,P), with the access
method and application none the wiser that the requested
page was transparently switched with a snapshot page.
If the retrospectively accessed page named (Table,P) is
still shared with the database, the name translation in SL
will be identity function, and the logical name (Table,P)
will be requested from the cache.
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Figure 4: Snapshot representation

BDB programs that read and write the current state
are unaffected by Retro. When the application performs
a query without specifying as of, Retro does not en-
gage page name translation, and the logical page name is
passed unchanged to the page cache. Because different
versions of the same page have distinct logical names,
they can coexist in the cache.

4.5 Retro snapshot representation
Retro adapts the split snapshot representation [15, 16] to
organize snapshot data (pre-states) and metadata (indices
for page name translation) . Split snapshots are created
at the page level, and stored separately (“split”) from the
database (e.g., on a separate disk). By splitting snapshots
from the database, the approach does not affect how the
database organizes data, and partially isolates database
I/O performance from snapshot-related I/O.

Figure 4 depicts the organization of Retro data and
metadata. When an update U tagged in the OWS com-
mits a modification to a page P, Retro saves in memory
the the pre-state of P created by U . For every saved pre-
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state, Retro also updates snapshot metadata in memory
to note the snapshots to which the pre-state of P belongs.
Snapshot metadata includes Maplog, which maps from
logical page names as of a declared snapshot to the lo-
cation of pre-states in Pagelog; SavedAfter, which tells if
a snapshot shares a particular page with the current state
by tracking for every database page the latest snapshot
for which a pre-state of that page was saved; and Start,
which associates every declared snapshot with the first
Maplog entry created for that snapshot.

Snapshot data and metadata are stored on disk. The
on-disk representation in Figure 4 corresponds to the ex-
ample transaction history in Sec 4.3. Section 6 explains
how Retro writes snapshot data and metadata to disk in
efficient and recoverable manner.

Snapshot Page Tables Snapshot page tables (SPTs)
are in-memory tables used to implement snapshot page
translation during retrospection (section 4.4). SPT en-
tries map the logical page names in the database to the
logical names of snapshot pages that can be either pre-
states in Pagelog, or pages shared with the database. Re-
solving the snapshot page name P@S to the logical name
of a page in Pagelog requires looking up P in SPT(S). In
Figure 4, SPT(S1) and SPT(S2) share Q′ since there was
no update to Q between S1 and S2. In SPT(S3), Q points
to the database because Q has yet been modified since S3
was declared.

Maplog, Start, and SavedAfter Keeping SPTs in
memory for every declared snapshot would be costly, so
instead Retro reconstructs SPTs from the saved meta-
data. When a retrospective query is run as of S, Retro
builds SPT(S) by scanning Maplog for the first occur-
rence of a mapping for each page; these first-encountered
mappings correspond to the pre-states saved from update
tagged in the OWS. Retro scans Maplog from Start (S)
since earlier mappings correspond to pre-states saved be-
fore S was declared. A scan will not encounter mappings
for snapshot pages that are still shared with the database.
Retro can determine this, without scanning to the end of
Maplog, from the data structure SavedAfter.

E.g., in figure 4, SavedAfter shows pages P and R were
last saved after S3 was declared, but the snapshot after
which Q was last saved is S2.

Naively scanning Maplog can be expensive, because
mappings for pages for which pre-states are frequently
saved (due to update skew) increase the length of a
Maplog scan. An efficient indexing technique to com-
bat the impact of update skew called Skippy, is described
in [14].

An SPT built for a retrospective query Q running as
of snapshot S needs to be kept up to date as Retro saves

snapshot pages. The techniques used to accomplish this
are discussed in [13].

5 Extending MVCC

BDB serializes transactions using a popular multi-
version page-level concurrency control protocol
(MVCC) that enables concurrent transaction reads
and updates by keeping multiple versions of pages in
memory. Every transaction T “sees” a consistent view
of the database, called an isolation snapshot, consisting
of the versions of pages which were most-recently
committed before T began. If T updates a page, the new
page version becomes visible to other transaction after T
commits. MVCC versions pages in the page cache [1, 8]
in the storage manager.
Retro extends MVCC, creating persistent snapshots out
of isolation snapshots. To avoid confusion, we refer to
the persistent snapshots created by Retro as Psnaps and
the volatile isolation snapshots created by MVCC as Vs-
naps.

MVCC mechanisms When an application requests a
page P for update (via an access method) as part of trans-
action T , a private copy of P is created in the cache and
associated with T . When T commits, P is marked with a
number called the commit LSN of T (Sec 6), identifying
the last transaction that updated P. The versions of P are
linked together in a list called the version chain.
When an application requests to read a page P (via an
access method) as part of transaction T , the page cache
searches the version chain for the latest version commit-
ted before T began. If the page cache has no versions
of a page P, P is read from the disk. To avoid overflow-
ing the cache, MVCC garbage collects page versions on
each version chain that are no longer visible to any run-
ning transactions. Every transaction has an associated
Vsnap, and Vsnaps of multiple transactions may coexist
in the same cache.

5.1 Persisting snapshots

To persist a Psnap S, Retro needs to save the latest ver-
sion of every page committed before S was declared, and
eventually write it to Pagelog on the Retro disk.

Retro saves pages from S using page-level copy-on-
write in the page cache. It relies on MVCC to create, in
memory, the needed page copies in Vsnaps of transac-
tions that update pages following a snapshot declaration,
and uses SavedAfter data structure to identify the needed
versions among these copies. SavedAfter relates every
logical page name to the latest snapshot after which a
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version of it was last saved. When a transaction T com-
mits, Retro checks SavedAfter to see if any page P up-
dated by T is the first update to be committed since the
latest-declared snapshot S, and if so, saves the pre-state
of P created by T and updates SavedAfter.

Retro writes the saved pre-states efficiently using
asynchronous I/O. However, pre-states which are no
longer visible in any Vsnap are candidates for MVCC
garbage collection. So, Retro must maintain the follow-
ing invariant to ensure that pre-states needed for a de-
clared Psnap can be written to Pagelog:

Before-GC invariant: any pre-state from an
update in the OWS is saved for Pagelog before
MVCC garbage collects it.

Retro maintains this invariant by writing the pre-states
in the Vsnap of a transaction T lazily after T commits,
postponing garbage collection of the pre-states for a short
time if necessary. Since MVCC garbage collection also
happens lazily when page replacement is needed, the de-
lay has minimal impact.

6 Extending Recovery

Snapshot recovery is greatly simplified by leveraging the
native BDB recovery mechanism. When BDB recovery
replays the updates of transactions that committed before
the crash, Retro saves the intermittent page versions that
correspond to the pre-states of updates tagged in OWS,
mimicking snapshot creation during normal execution.
This way, if BDB creates intermittent page versions iden-
tical to the ones created during normal execution, when
recovering a history H, Retro will create snapshot pages
and metadata defined by OWS(H).

During recovery, BDB produces the same intermedi-
ate versions that were produced by the earlier execu-
tion as long as the page versions read from disk after
the crash are the same versions used by original updates.
Care must be taken to ensure that snapshots are correctly
recovered. BDB may discard the update records from
the log after updates are written to the database. Shap-
shots could be lost if updates records are discarded pre-
maturely. Moreover, if BDB recovery crashes while up-
dating the database pages on disk, then when recovery
restarts, it may encounter disk page versions different
from those needed by OWS, causing snapshot pages to
be lost.

Retro avoids the complications by enforcing the fol-
lowing simple write-ordering invariant, called the write-
ahead snapshot invariant, during normal operation and
during recovery:

Write-ahead snapshot (WAS) invariant: The pre-
state of P (and associated snapshot metadata) from
an update in OWS(H) must be written to the Retro
disk before the version of P created by that or any
later update in H is written to the database disk.

WAS invariant guarantees snapshot pages and metadata
become durable before database pages needed to recover
them become overwritten.

During replay (like in normal execution), Retro con-
sults snapshot metadata e.g., SavedAfter, to check if the
pre-state needs to be saved. Snapshot metadata therefore,
must be recovered the database. Retro simplifies meta-
data recovery by storing all metadata (Start, Maplog, and
SavedAfter) in BDB transactional data structures, and
updating metadata using regular transactions, Retro re-
lies on BDB to recover metadata.

It would be costly to write snapshot data using a
database transaction, since it is large compared to snap-
shot metadata. Instead snapshot data is written using
regular writes. So, the Retro recovery protocol enforces
a second write-ordering invariant to make it possible to
clean up partially-written snapshot data after a crash and
correctly detect whether a particular pre-state was writ-
ten to the Retro disk before the crash:

Snapshot-data-before-metadata invariant: Be-
fore Retro commits the mapping for pre-state P′, it
writes P′ to Pagelog.

The Retro write invariants, enforced during normal oper-
ation and recovery, and the two stages of Retro recovery
(metadata and replay), guarantee that for every BDB re-
covery of transaction history H, Retro will correctly re-
cover snapshot data and metadata defined by OWS(H),
even in the presence of repeated BDB recoveries.

6.1 BDB recovery
BDB follows the write-ahead logging (WAL) protocol
to ensure recoverability after a crash. The WAL pro-
tocol requires that the database write a record of up-
dates made by a transaction T in a durable log before
T commits. Each update is represented by a log record
which contains (at least) the information required to re-
peat the update; this is called a REDO record. We assume
that log records are not coalesced across transactions;
i.e., every (committed) page update has a corresponding
REDO record. Log records are ordered and identified by
a monotonically-increasing log sequence number (LSN).
Transaction commit is recorded in the log using a commit
record. The transaction commit record LSN determines
the transaction serialization order.

Periodically, the database performs checkpoints. A
checkpoint C writes page versions committed prior to
some chosen checkpoint LSN (LSNC) to the database
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disk, and then records the checkpoint LSN in the log. To
simplify the description, we assume the database only
performs writes during a checkpoint. Retro, however,
supports general database write policies (i.e. writes due
to cache pressure) not described here, for lack of space.

We assume the database follows a no-STEAL writing
policy [6]. This means that the database never writes
uncommitted updates to disk. The recovery, therefore,
only needs to REDO updates that were committed but
not yet written since the last checkpoint; a database with
a STEAL writing policy must also undo changes to pages
which were not yet committed before the crash. Large
memories render STEAL policy less important.

Checkpoints bound recovery time; the database does
not need to recover updates that have been written to the
database disk. The database is free to garbage collect the
log entries prior to LSNC, and begins recovery from LSNC
(to be more precise, the database starts recovery at, and
can garbage collect log entries older than, the LSN of the
oldest transaction that began before LSNC and committed
after LSNC).

After a crash, BDB enters recovery upon being
restarted. The database cannot re-enter normal opera-
tion until recovery has completed. During recovery, the
database replays committed updates by applying REDO
records from the WAL in LSN order since the last check-
point. A successful recovery ends with a checkpoint; af-
ter recovery, the on-disk state of the database reflects the
history of transactions that committed prior to the crash.

6.2 Snapshot recovery details

Retro expects to be invoked when BDB recovery ap-
plies REDO records. To identify updates tagged in OWS
Retro must order updates relative to snapshot declara-
tions. Retro records snapshot declarations in the log
during normal execution, using a special log record (a
snaprec). Retro expects to be invoked when recovery
encounters snaprecs so that Retro can handle them (i.e.
re-declaring the snapshot if needed).

Because BDB uses page-level concurrency control
(i.e., two overlapping transactions may not both commit
an update to the same page), we know that REDO records
for a page P will be applied in transaction commit order.
Retro invocations from update replay and snapshot dec-
larations therefore run in transaction commit order, mak-
ing it easy to identify updates tagged in OWS.

Algorithm 1 shows how the write-ordering invariants
are enforced during a checkpoint. Whenever the database
initiates a checkpoint, Retro takes control and finishes
writing any snapshot data that had not yet been trickled
to disk, and then updates snapshot metadata atomically
using a database transaction. Finally, Retro returns con-
trol to the database, allowing the checkpoint to proceed

Algorithm 1 Retro extension to database checkpoint
1: Pause database checkpoint
2: Write unwritten snapshot data to disk
3: Transactionally update snapshot metadata created

since the last database checkpoint
4: Allow database checkpoint to proceed normally

normally.
Retro allows snapshot data to be trickled during nor-

mal operating periods (snapshot data is large and grows
in proportion to the number of updates, so it is imprac-
tical to buffer all snapshot data created between check-
points). After a crash, some pre-states may be on the
Retro disk that have no corresponding snapshot metadata
but the reverse can never be true due to snapshot-data-
before-metadata write invariant. This means that when
Retro recovery begins, any snapshot data written since
the last checkpoint can be deleted by deleting any pre-
states that are not referenced from snapshot metadata.

Algorithm 2 shows the two stages of Retro recov-
ery. Stage 1 of Retro recovery resets snapshot data and
metadata to a consistent state; then, Stage 2 runs along-
side BDB recovery, saving a needed pre-state (if it has
not been saved already). Database recovery ends with a
checkpoint, the completion of which marks the comple-
tion of a successful recovery. Retro enforces the write
invariants WAS and snapshot-metadata-before-data dur-
ing this checkpoint, just like during normal operation.
So, the checkpoint that terminates a successful database
recovery for history H also marks the end of Retro recov-
ery, at which point the on-disk state of Retro will reflect
OWS(H).

Retro needs to suppress duplicate re-creation of snap-
shots in repeated recovery. Retro will know to correctly
suppress re-creation of snapshots because after Stage 1,
snapshot metadata and data will consistently reflect the
latest snapshot that Retro has declared and the last pre-
state it has saved before the crash. In Stage 2 therefore,
Line 10 will suppress a duplicate snapshot declaration
(A later snapshot is already present in Start). Line 17
will suppress duplicate saving of a pre-state (SavedAfter
indicates the pre-state has been already saved).

We have considered a simplified writing policy that
only writes database pages and Retro metadata at check-
point time. Retro also supports more flexible writing
policies. In particular, if the database is forced to write
database pages between checkpoints due to cache pres-
sure, Retro can still enforce its writing invariants by writ-
ing the pre-states of the pages forced from the cache
(and making durable the associated snapshot metadata),
and recover correctly if there is a crash before the next
checkpoint. Suppression will still work correctly in this
case because it is applied per-page based on a lookup in
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Algorithm 2 Retro recovery
1: Recover snapshot metadata � begin Stage 1
2: Delete unreferenced pre-states from Pagelog
3: Slatest := latest snapshot id in Start � begin Stage 2
4: Normal database recovery begins replay
5: repeat
6: if Recovery requests page P for updating from

the cache then
7: Make a copy of the pre-state of P in the cache
8: end if
9: if Recovery encounters a snaprec for snapshot S

then
10: if S > Slatest then
11: Declare S
12: Slatest := S
13: end if
14: end if
15: if Recovery encounters a commit record for

transaction T then
16: for all Pre-states P created by T do
17: if SavedA f ter(P) < Slatest then
18: Save P for Slatest
19: end if
20: end for
21: end if
22: until REDO recovery is complete
23: Checkpoint database � Retro will enforce the WAS

invariant

SavedAfter, just like during normal operation.

7 Implementation Issues

Retro protocol extensions are implemented as a set of
callbacks invoked from BDB transaction commit, recov-
ery, and buffer cache protocols. There are two concerns
in the way of an efficient implementation of the protocol
extensions. Extensions that run concurrently, accessing
shared mutable state, must be thread safe, and must be
serialized in transaction order to correctly save and ac-
cess snapshots. However, the implementation needs to
avoid blocking transactions to synchronize extensions.
Second, although storing Retro metadata in transactional
structures simplifies snapshot recovery, frequent updates
to metadata are costly. So, the implementation needs to
reduce the cost of metadata updates.

7.1 Latest Snapshot
Extensions that declare snapshots, and save pre-states
and metadata, invoked at commit, need to read and up-
date the latest snapshot id. These extensions need to be
serialized in commit order to correctly assign snapshot

ids (numbered sequentially in declaration commit order),
and to correctly identify updates tagged in OWS (is this
the first update to P following the latest snapshot decla-
ration?).

Extensions that create persistent data (e.g. save pre-
states) must run after the invoking transaction commits
(i.e. records its commit record in the log). The problem
arises because concurrent transaction threads that block
to write their commit records, get unblocked by BDB in
arbitrary order (possibly after BDB runs a group com-
mit), thus reordering the execution of extensions.

An extension must therefore determine the latest snap-
shot declaration preceding its transaction regardless of
extension execution order. Instead of tracking the latest
snapshot in a shared counter, Retro solves the problem
by tracking recent snapshot declarations in a data struc-
ture called the SnapshotList. Entries for transactions that
have completed the log write and therefore were assigned
a commit LSN are sorted by their commit LSN. Retro
uses the SnapshotList to assign snapshot ids sequentially
in transaction commit LSN order regardless of extension
execution order. An extension can determine the last-
declared snapshot Slast for its invoking transaction T us-
ing the SnapshotList. It simply searches for the snapshot
declaration with the highest LSN preceding the commit
LSN of T.

7.2 SavedAfter cache

After saving a pre-state, Retro needs to update
SavedAfter, to note it has been saved. Updating
SavedAfter is expensive because it is a transactional
data structure, so we describe a specialized write cache
called the SavedAfter cache (SAC) that allows defer-
ring updates to SavedAfter and consistent checking of
SavedAfer.

In the Retro recovery protocol, Retro metadata is re-
covered first, before the application database, which
means that the log into which SavedAfter updates are
recorded must be separate from the BDB transaction log.
As a consequence, when the commit extension needs to
update SavedAfter(P), updating the durable SavedAfter
metadata structure would require a second commit and
log write, in addition to the commit of the application’s
transaction. We have measured the impact of commit-
ting an update to SavedAfter after saving a pre-state in
commit extension and unsurprisingly, it has a significant
impact on transaction throughput and latency.

To reduce the impact, we introduce an in-memory
cache, called the SavedAfter cache (SAC), to store up-
dates to SavedAfter on cache pages. Updates are prop-
agated from SAC to SavedAfter when Retro data and
metadata are flushed to the Retro disk. SAC therefore
eliminates the SaveAfter update cost from the transac-
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tion commit path, allowing multiple SavedAfter updates
to be combined into a into a single transaction, and mul-
tiple updates to the same entry (e.g., SavedAfter?) to be
absorbed.

Because the entries in SAC may be newer than those
in SavedAfter, Retro must check SAC when looking up
SavedAfter(P). Just as with SavedAfter, the SAC is a
frequently-accessed data structure. However, SAC is not
a source of extra contention in the system, because it
leverages MVCC page-level locking and low-level con-
currency mechanisms in the page cache.

SAC is implemented by extending the BDB page
cache structures. A page P cached in the BDB page
cache is preceded by a page header that contains meta
information about the page such as its name, the commit
LSN of the last transaction to update the page, the linked
list of pages that form the version chain (VC) for this
page, maintained by MVCC, and other internal metadata.
SAC(P) is stored on the header for cached page P (re-
quiring that every page header be enlarged by the size of
a snapshot id).

SAC(P) is initialized from SavedAfterCache(P) when
there is a cache miss and P is read from disk. When
MVCC creates a new version of page P in the cache for
an update to P, SAC of the new version is initialized by
the commit extension of the transaction that commits the
update. When checking whether to save the pre-state, the
commit extension uses the SAC value on the pre-state. If
the pre-state of P needs to be saved for snapshot S, the
SAC on the new version of P will be set to S. Otherwise,
the SAC on the new version of P will be copied from the
pre-state of P.

7.3 SAC and Retrospection
Retro runs a retrospective query as MVCC transaction
T. An extension invoked from T observes the Vsnap of
T. Consider a retrospective query T as off snapshot S,
serialized after transaction execution H. A page transla-
tion extension, invoked when T accesses a page P, will
observe a consistent SAC(P) value as of the begin LSN
of T, reflecting all tagged update commits and effects of
their associated extensions that precede T in OWS(H). If
the SAC value indicates P@S is shared with the database,
(i.e. it was shared when T began) the translation will cor-
rectly direct the access to the version of P from Vsnap of
T. Otherwise the translation will redirect the access to
P@S saved by Retro, as required by OWS specification.

8 Performance Evaluation

Our simple study evaluates the performance of retrospec-
tion, the new feature, and Retro overheads to BDB trans-
actions. The results confirm the low overhead of Retro

to BDB. The results also show a slowdown for running
Retro transactions (i.e., transactions that use snapshots);
reducing these overheads is an area for future research.

The Retro prototype extends BDB version 5.3.21. The
prototype has just over 5000 lines of C code. The modifi-
cations to BDB to integrate Retro are minimal: under 250
LOC were modified or added to BDB source code. The
implementation includes the complete design for the C
API used in the evaluation. We are in the process of com-
pleting the SQLite API. Preliminary results using SQLite
API confirm the results from the C API.

The hardware platform is a quad-core Intel Xeon CPU
at 2.66ghz with 4 gb of physical RAM and 2 Seagate
Cheetah 15,500 RPM SAS hard drives, running DE-
BIAN GNU/Linux version 2.6.32. BDB stores database
files in the file system, formatted with ext3. BDB uses
default page size of 4K. Disk level prefetching is dis-
abled, to emphasize the cost of random disk I/O for
Pagelog. Our platform only supports two disks, so we
use one for the database, Pagelog, and metadata, and
one for the (separate) database and metadata logs (BDB
database and log must be on separate disks since other-
wise BDB (without Retro) transaction throughput drops
to zero during a checkpoint). This is sub-optimal con-
figuration for Retro, since Pagelog could impact BDB
reads and writes. Our experiments use in-memory work-
ing sets for the database, insulating database reads from
Pagelog I/O. Moreover, since Retro trickles snapshots to
disk between checkpoints (unless noted otherwise), this
is not a problem for database writes in our experiments.

All measurements are reported as the average of 10
runs (non-negligible standard deviations are depicted).

8.1 Retrospection

Page name translation. We evaluate the performance
of Retro transactions using a simple read query Q that
fetches 2048 random records (each 108 bytes in size)
from a table cached in memory. We report slow-down,
the measured time-to-completion relative to running Q
in-memory in unmodified BDB. The workload maxi-
mizes the CPU overhead of Retro transactions since Q
performs no computation.

The CPU overhead of page name translation comes
from looking up the page in SavedAfter (the current state
page is not cached, no SAC) or SAC and, if the snapshot
page has been already saved as a pre-state, looking up
the location of that pre-state in SPT.

Figure 5 shows that a slow-down when accessing
pages shared with the current state is 1.6x (“Retro(Q)
cur”) using SAC. This overhead is similar in magnitude
and origin to the one that was found due to the buffer pool
indirection and latching for tree lookups in Shore [2].
The slow-down when accessing snapshot pages saved in
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Figure 5: CPU costs

Component Cost
SPT(S) get 0.55us
SavedAfter get 47us
SAC get 0.06 us
SPT(S) put 11us
Pagelog get 3.62 ms

Figure 6: Translation costs

Pagelog (“Retro(Q) old”) is about a 2.7x, due to addi-
tional access to SPT, including lookup and insertion of
mappings into the SPT by scanning Maplog. The slow-
down when accessing Pagelog is higher when the pages
accessed by retrospection do not have a current state ver-
sion cached in memory (no SAC), and therefore a costlier
lookup in SavedAfter is needed. The dominant cost how-
ever is accessing Pagelog.

The absolute costs of translation components are
shown in Table 6. Insert into the SPT is costly, more
so than lookup. The SPT is implemented using a simple
hash table that is not optimized for resizing, and resizing
is frequent during Maplog scan. Maplog in-memory scan
is costly. Maplog is composed of many small mappings
that must be individually searched. Maplog is not shown
in the table because it does not have a clear per request
cost. The total contribution of costs from Maplog resem-
bles total contribution of SPT insert. Optimizing access
to SPT and Pagelog is an area of future work.

Snapshot page I/O. I/O from the Pagelog has differ-
ent performance characteristics than I/O from the cur-
rent state database. Copy-on-write declusters snapshot
pages, resulting in a different spatial layout from the
current state. A sequential query incurring sequential
disk I/O costs in the current state can perform poorly
when running retrospectively, incurring random disk I/O
costs, similar to I/O in a log structured file system [11]).
Large memories and SSDs can eliminate the decluster-
ing penalty, and we plan to use SSD for Retro in future
work. Nevertheless, for large volumes of snapshots, the
SSD solution may not be practical. Since declustering
effect for sequential queries is well understood, here we
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Figure 7: I/O-bound retro query costs

focus on random queries to expose an additional source
of Pagelog performance difference not directly related to
declustering. When the update workload is non-uniform
(skewed), pages from the same snapshot may be very
far apart. By modeling the skew in the update work-
load, we can characterize the I/O overhead of random
queries run retrospectively. We use a standard model of
skewed workload: “80/20” means 80% of the updates go
to 20% of the database, “50/50” means the workloads
is not skewed. The portion of Pagelog corresponding to
any snapshot fits on a single disk; the seek impact may
actually be mitigated if Pagelog is spread over multiple
disks.

Figure 7 compares the cost of I/O for Retro(Q) for
different update skews to the cost of I/O for Q in BDB.
The experiment runs with cold caches. The query for
this experiment is identical to the “Retro(Q) old” query
depicted in figure 5, except that the cache starts cold (we
report “slow-down” due to Retro as a ratio; the absolute
latencies for I/O-bound queries were 3 to 4 orders higher
than in the CPU-bound experiments). We include break-
down for snapshot data and metadata. The full analysis
of Skippy index appears in [14].

The skew impact persists independently of table size.
We run the experiment with 100MB table and a 1GB
table (figure 7). We scaled up the number of random
records read in the query for the larger table so that in
both cases the query reads 1% of the table. For both the
small and large tables, there is a similar trend of increas-
ing cost of Retro(Q) relative to Q as skew increases. The
impact of skew appears higher in the larger database, but
this is due to the decreased hit ratio in the larger query.
In the large table Q had a 7% hit ratio in the leaf pages
of the table, as opposed to 14% in the small table (the
cache starts cold, a single page read pre-fetches multiple
records, and given a constant page size, the likelihood of
a subsequent hit on the pre-fetched page decreases as the
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table size increases because a smaller fraction of table
records are clustered on each page).

8.2 Overhead to BDB

Retro adds no direct overhead to BDB queries. To up-
dates, Retro adds commit time CPU overhead (SAC must
be checked and possibly updated for each update), and
possibly synchronous I/O (to log a snapshot declaration
record). Enforcing the Before-GC invariant (section 5)
requires writing pre-states in the background but does not
delay commits. Enforcing the WAS invariant (Sec 6) can
increase checkpoint latency due to snapshot I/O. Trick-
ling snapshots between checkpoints avoids the check-
point delay. Writing snapshots to a different disk avoids
contention between Retro and the current state during
checkpoints altogether. Our system has two disks: one
is used for the transaction log, so Pagelog and current
state share a disk.

We run a simple micro benchmark to test the over-
head to update transactions running in memory incurred
by saving snapshot pre-states in-memory and writing all
snapshot data and metadata to disk during checkpoints.
We ran the random update transaction described in sec-
tion 8.1 in Retro, and unmodified BDB. With Retro, the
system declares a snapshot after each update transaction,
saving pre-states for the pages modified by 1000 random
updates on each transaction commit, thus maximizing
the number of snapshot pages that must be saved. We cal-
culate throughput from the time-to-completion and the
number of completed update transactions. We observe
an overhead of about 4% to update throughput in our
workload from Retro, confirming previous results [15]
concerning the low impact of the split snapshot writes.

9 Conclusion

We described Retro, a new efficient system for retrospec-
tion in Berkeley DB, implemented using a new simple
and robust method that avoids invasive database modi-
fications. Our approach is adapted to BDB. However,
because WAL, MVCC and buffer cache are standard pro-
tocols, we believe the approach is more general and we
are investigating other extensions in on-going work. The
key challenges going forward are optimizing the perfor-
mance of retrospective queries and supporting SSDs.
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