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Abstract
WiFi’s physical layer has increased in speed from
802.11b’s 11 Mbps to the Gbps rates of emerging
802.11ac. Despite these gains, WiFi’s inefficient MAC
layer limits achievable end-to-end throughput. The culprit
is 802.11’s mandatory idle period before each medium
acquisition, which has come to dwarf the duration of a
packet’s transmission. This overhead is especially punish-
ing for TCP traffic, whose every two data packets elicit
a short TCP ACK. Even frame aggregation and block
link-layer ACKs (introduced in 802.11n) leave signifi-
cant medium acquisition overhead for TCP ACKs. In
this paper, we propose TCP/HACK (Hierarchical AC-
Knowledgment), a system that applies cross-layer opti-
mization to TCP traffic on WiFi networks by carrying
TCP ACKs within WiFi’s link-layer acknowledgments.
By eliminating all medium acquisitions for TCP ACKs
in unidirectional TCP flows, TCP/HACK significantly
improves medium utilization, and thus significantly in-
creases achievable capacity for TCP workloads. Our mea-
surements of a real-time, line-speed implementation for
802.11a on the SoRa software-defined radio platform and
simulations of 802.11n networks at scale demonstrate that
TCP/HACK significantly improves TCP throughput on
WiFi networks.

1 INTRODUCTION

In today’s WiFi wireless networks, each time a sender
wishes to transmit, it must first sense the medium to be
idle for a randomly chosen interval. These random de-
lays desynchronize would-be concurrent senders. To use
a concrete example, Enhanced Distributed Channel Ac-
cess (EDCA) in 802.11n [1] enforces an average idle
period of 110.5 µs before a frame’s transmission, whereas
a 1500-byte payload itself lasts only 80 µs at 150 Mbps.
Each frame’s link-layer acknowledgment (LL ACK) con-
sumes further channel capacity. As the physical-layer
bit-rate increases but the pre-transmission idle period re-
mains the same, this inefficiency only worsens. If a 600
Mbps 802.11n sender sent single frames in this fashion,
it would only achieve 9% of the theoretical channel ca-
pacity. Moreover, WiFi senders back off exponentially
after a failed transmission, and so incur even longer mean
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pre-transmission idle periods under contention, further
reducing medium efficiency.

In an effort to amortize the significant overhead of
medium acquisition over multiple data frames, 802.11n’s
MAC protocol batches multiple data frames into a single
aggregate MAC protocol data unit (A-MPDU), and in-
curs only a single medium acquisition for each such batch.
802.11n further aggregates the LL ACKs for the data pack-
ets in a received A-MPDU into a single LL Block ACK.
While batching helps one sender, TCP traffic is inherently
bidirectional: a TCP receiver typically transmits a single
TCP ACK packet for every pair of TCP data packets it
receives. Not only do TCP ACKs incur further expensive
medium acquisitions by the TCP receiver—they run the
risk of colliding with the TCP data sender’s transmissions
as well.

WiFi’s data frames elicit LL ACKs that the receiver
sends without contending for the medium, as other would-
be senders defer for an ACK frame’s duration after hear-
ing a data frame. We observe that this LL ACK is an ideal
vessel for carrying TCP ACK information on the reverse
path without incurring a costly medium acquisition. We
name this overall cross-layer approach—in which a single
transmission of feedback by a lower-layer protocol addi-
tionally carries feedback from a higher-layer protocol—
Hierarchical ACKnowledgment (HACK). Though apply-
ing HACK to carry TCP ACKs in LL ACKs is conceptu-
ally quite simple, a robust design to do so must address
several systems challenges. In this paper, we describe and
evaluate such a design, TCP-over-HACK (TCP/HACK).
Our contributions in this work include:

• We offer an analysis of the capacity of the 802.11n
MAC protocol for TCP traffic as function of bit-rate,
and the throughput gains theoretically achievable by
avoiding medium acquisitions for TCP ACK packets.

• We describe TCP/HACK, a scheme that increases the
WiFi MAC’s efficiency by encapsulating TCP ACK
information in WiFi LL ACKs. TCP/HACK fully sup-
ports 802.11n’s batching of data packets and use of LL
Block ACKs.

• We show how to efficiently encode the full range of
TCP ACK information (e.g., timestamp options, re-
ceiver window changes) within LL ACKs.

• We identify potential pathological interactions between
TCP’s reliability and congestion control mechanisms
and WiFi’s LL reliability protocol that would limit
system throughput, and ensure that TCP/HACK avoids
such interactions, without any changes to any node’s
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TCP implementation.
• We offer an interface between the network device driver

software and the network interface card (NIC) hard-
ware that minimizes complexity in the NIC while al-
lowing prompt sending of TCP ACK information in
WiFi LL ACKs generated in response to WiFi data
packets.

• Through an evaluation in simulation of up to 10 com-
peting TCP flows on a 150 Mbps 802.11n network, we
illustrate that TCP/HACK improves aggregate through-
put up to 22% over TCP on “stock” 802.11n.

• Through an evaluation of a prototype online, wire-
speed implementation of TCP/HACK for 802.11a on
the SoRa software-defined radio platform, we illustrate
that TCP/HACK improves aggregate throughput up to
32% over TCP on “stock” 802.11a.

2 PROBLEM AND DESIGN GOALS

There are two distinct facets to improving the efficiency
of the WiFi MAC layer for TCP transfers at fast bit-rates.
First, we must understand the overhead of medium acqui-
sition in WiFi 802.11a and 802.11n networks. How inef-
ficient is the status quo, and what potential performance
gains can one achieve by reducing the number of medium
acquisitions? Second, we must articulate goals for our
design to ensure that it meets the practical challenges of
carrying feedback from a higher-layer protocol in a lower-
layer one, as we propose to do in HACK. Such challenges
arise because of the vagaries of wireless links (e.g., fre-
quent packet losses on links with poor signal-to-noise
ratios), the potential for pathological interactions between
TCP and the WiFi MAC protocol when optimizing across
layers, and the constraints of real-world protocol stacks,
network device drivers, and NICs. We now consider these
two facets—medium acquisition overhead and practical
design goals—in turn.

2.1 WiFi MAC Overhead
Consider a typical WiFi use scenario, where a single
802.11a or 802.11n client downloads a large file from a
remote TCP sender. We assume throughout that the TCP
receiver uses delayed ACK, and thus generates one TCP
ACK packet for every two TCP data packets it receives.1

In Figures 1(a) and 1(b), the curves labeled “TCP
802.11{a,n}” show analytical predictions of the through-
put a single TCP downloader achieves as a function of
physical-layer bit-rate on lossless 802.11a and 802.11n
networks, respectively. These analytical predictions are
based on the parameters of the 802.11a and -n MACs. A
detailed derivation of the capacity of the 802.11n MAC

1Note that this assumption is the best case for the efficiency of the
status quo WiFi MAC—were delayed ACK not used, a TCP receiver
would generate twice as many ACK packets, and the WiFi MAC would
incur significantly more medium acquisitions.
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Figure 1: Theoretical goodput for 802.11a (a) and
802.11n (b) rates. In (b), theoretical TCP/HACK achieves
an 8% improvement on average over TCP/802.11n for
physical rates lower than 100 Mbps.

layer may be found in [6]; we do not repeat it here. The
calculation for 802.11a is similar. (Figures 1(a) and 1(b)
also show the improved throughput achieved by HACK,
our modified 802.11 MAC protocol that carries TCP
ACKs in link-layer ACKs, which we describe in Sec-
tion 3.)

Note that for “stock” 802.11a and -n, the achievable
TCP throughput is a progressively smaller fraction of the
physical layer bit-rate as the latter increases. Time spent
on non-payload overhead for each medium acquisition is
to blame. In 802.11a, these overheads include the dura-
tions of DIFS and the contention window (both before a
data frame’s transmission), the data frame’s preamble, the
SIFS interval between data frame and LL ACK, and the
LL ACK itself.2

As noted earlier, 802.11n aggregates data frames into
A-MPDUs so as to amortize medium acquisition over-
head over many frames, and combines multiple LL ACKs
into Block ACKs in response. The results in Figure 1(b)
include the application of these techniques, and show
that while they reduce 802.11a’s overhead, TCP still suf-
fers progressively greater throughput limitations vs. the
physical-layer rate because of the overhead of medium
acquisitions for TCP ACKs.

2.2 Design Goals
To work robustly in practice, TCP/HACK must meet sev-
eral demands that arise from the constraints of a modern
wireless host’s networking software and hardware, some
of which are particularly unforgiving.

Hard real-time deadlines A WiFi receiver must reply
to a data packet with an LL ACK within SIFS, an interval
defined in the 802.11a specification (for example) as 16
µs. That deadline is of course far too short to meet in
host software, so WiFi NICs validate received frames and
generate LL ACKs in hardware. TCP/HACK must comply
with these same LL ACK deadlines imposed by today’s

2802.11n’s parameter names and values differ slightly (e.g., AIFS in-
stead of DIFS); the overall scheme of per-medium acquisition overhead
does not.
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WiFi MAC. But if TCP/HACK is to enclose TCP ACK
information in LL ACKs, the host TCP implementation
cannot possibly generate a TCP ACK for a newly received
TCP data packet within SIFS. To accommodate typical
host protocol stack processing delays, TCP/HACK must
allow the TCP ACK for a newly received TCP data packet
to be enclosed within the LL ACK for a different TCP
packet received later. Yet it mustn’t unduly delay the
return of an ACK to the TCP sender (see “cross-layer
nuances” below).

Efficient encoding of general TCP ACK information
The WiFi MAC reserves time on the wireless medium
for a LL ACK to return after a data packet, so that other
senders’ transmissions do not collide with the LL ACK.
It is important that TCP/HACK encode TCP ACKs in LL
ACKs efficiently, to minimize the period of medium occu-
pancy for these lengthened LL ACKs. The encoding for
TCP ACKs must be compact yet allow the full generality
of information that may potentially be found in a TCP
ACK, (e.g., TCP timestamp options, changes in receiver’s
advertised window, &c.) all of which is important to the
correct and efficient operation of TCP.

Simplicity of NIC modifications TCP/HACK should
not require any in-NIC intelligence about TCP packet
headers or other TCP protocol details. Both at clients and
APs, all TCP-aware processing must occur in the host
software. We set this goal to minimize the complexity
and thus the cost of the NIC, but also because we would
like HACK to generalize to other higher layers than TCP
such as SCTP [10] or DCCP [5]: if the NIC treats the
feedback to be appended to an LL ACK as opaque bits
that it needn’t understand, then HACK should generalize
in this way.

No changes to TCP TCP changes are difficult to stan-
dardize and difficult to deploy, as many widely used
OSes ship with a single closed-source TCP implemen-
tation. Both at clients and APs, HACK-related function-
ality should be confined to the WiFi NIC’s device driver
(which is bound to the NIC’s hardware design—i.e., NIC
hardware that supported HACK would routinely ship with
a driver supporting HACK).

Avoid pathological cross-layer interactions Finally,
it is important to note that TCP relies on a stream of
TCP ACKs reaching the sender to maintain steady packet
transmissions by the sender (and thus high throughput).
TCP/HACK must not disrupt the timely return of correct
TCP ACKs to the sender.

3 HACK DESIGN

We first offer an overview of TCP/HACK’s design. We
then explore nuances of the cross-layer interactions be-
tween TCP and 802.11n, which motivate refinements to

TCP/HACK that improve robustness and performance.
Finally, we consider the constraints of real-world systems
software and NIC hardware, as well as of lossy wireless
links, and flesh out the design of TCP/HACK into a fully
practical system.

In the interest of brevity, we describe the design of
TCP/HACK in the context of an 802.11 client acting as
a TCP receiver while downloading via an 802.11 AP.
Throughout, we refer to this downloader as the “client.”
Note, however, that TCP/HACK is a fully symmetric
design—both the design and our implementation of it
also work on TCP uploads by an 802.11 client.

3.1 HACK in Overview
Let us first consider how TCP/HACK works in the sim-
pler case of 802.11a, without batching of packets into
A-MPDUs. When a regular TCP client receives a TCP
data packet, its network stack generates a TCP ACK and
enqueues it for transmission by the WiFi NIC.

Under TCP/HACK, a client does not immediately en-
queue a TCP ACK for transmission. Instead, the client
compresses each TCP ACK and appends them to a com-
pressed frame that it builds. When the next data packet
from the AP arrives, the client encapsulates the com-
pressed TCP ACK frame within the returning LL ACK,
effectively avoiding all medium acquisitions for the corre-
sponding TCP ACKs. The AP recognizes an “augmented”
LL ACK, which it decompresses, reconstitutes the en-
coded TCP ACKs, and forwards them upstream.

Now let us consider 802.11n, where data packets can
be aggregated into a single batched A-MPDU, and link-
layer ACKs take the form of a Block ACK that includes a
bitmap indicating which packets from the A-MPDU were
received. On “stock” 802.11n during a TCP download the
normal repeating pattern will then be:
1. one A-MPDU from AP to client containing TCP data
2. one Block ACK from client to AP
3. one A-MPDU from client to AP containing TCP ACKs
4. one Block ACK from AP to client
To eliminate medium acquisitions for TCP ACKs in
802.11n, we would like a TCP/HACK client to encap-
sulate all the TCP ACKs generated in step 3 in the Block
ACK sent in step 2, and thus avoid step 4 entirely. In prac-
tice, the arrival of an A-MPDU containing a batch of TCP
data packets will cause the client’s OS to generate a burst
of TCP ACK packets in step 3 after the Block ACK has
departed for that A-MPDU. These TCP ACKs arrive at
the client’s transmit queue where they are compressed and
concatenated, waiting for the arrival of the next A-MPDU
from the AP. The client will then append this compressed
frame to the Block ACK it sends the AP in step 2.

Although the description above is for downloads, the
design is in fact symmetric; we envisage TCP/HACK as
especially useful for wireless backup to LAN-attached
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Figure 2: Interaction between A-MPDUs, Block ACKs
and encapsulated HACK packets

storage, such as a Time Capsule.

3.2 Cross-Layer Nuances
We now refine our design to handle the subtle cross-layer
interactions that arise between TCP and 802.11.

In principle, we would like to encapsulate TCP ACKs
on the link-layer ACKs of the TCP packets they acknowl-
edge. For example, if a batch containing TCP packets
1-64 arrives, the client would like to piggyback the TCP
ACKs for packets 1-64 on the Block ACK for that batch.
However, the 16µs SIFS interval between receiving data
and sending the link-layer ACK or Block ACK is too
short for the host’s TCP stack to turn around the TCP
ACKs, compress them, and DMA them to the NIC. For
HACK to be practical, the compressed ACKs will have
to wait until the next data arrives, and piggyback on its
ACK or Block ACK. It turns out that this significantly
complicates the dynamics of TCP/HACK and we will
explore the consequences.

Figure 2 illustrates this process3. In response to a batch
containing TCP packets 1 and 2, TCP ACKs 1 and 2
arrive at the client transmit queue too late to be carried
on that batch’s Block ACK. Instead, the TCP ACKs are
compressed but not yet sent. When the next batch carrying
TCP packets 3 and 4 arrives, its Block ACK can now carry
the compressed frame with TCP ACKs 1 and 2. The AP
then reconstitutes the full TCP ACKs and passes them up
the network stack.

So long as TCP data packets continue to arrive, there
is a steady stream of Block ACKs on which to piggyback
compressed TCP ACK frames: all TCP ACKs are carried

3For simplicity it assumes that delayed TCP ACKs are disabled

as HACK packets and no vanilla TCP ACK packets need
to be sent. But what happens if no further data packets
arrive? The client cannot retain the TCP ACKs for too
long, or it will cause the TCP sender to time out and
retransmit. Thus, after some time period, the client must
send uncompressed vanilla TCP ACKs in the normal way.
In Figure 2, TCP ACKs 3 and 4 meet this fate, and are in
turn Block-ACKed.

Figure 1 summarizes the theoretical upper bound on
TCP/HACK throughput on 802.11a (Figure 1(a)) and
802.11n (Figure 1(b)). The curves assume that the sender
transmits the largest possible A-MPDUs,4 that HACK
manages to encapsulate all TCP ACKs in TCP Block
ACKs, and that the compression is performed using
the algorithm in Section 3.3. As the bit-rate increases,
TCP/HACK significantly improves capacity, with a 20%
improvement seen at 600 Mbps on 802.11n. In reality,
the improvement can actually exceed that shown in the
figure, as TCP/HACK can get closer to its bound than
vanilla TCP can. This is due to collisions between TCP
data packets and vanilla TCP ACK packets, a problem
HACK sidesteps.

To HACK or not to HACK?

To maximize the benefits, TCP/HACK packets should
be used whenever possible. But TCP ACKs must not
be delayed when no more TCP data packets will arrive.
How long should the client retain these TCP ACKs before
giving up and sending them natively?

There are several reasons no more packets may arrive,
including that the sender has stopped sending, but with
802.11n, the principal reason is the adverse effect of A-
MPDUs on TCP’s ACK clock. On a busy AP or during
slow start, it is common for the entire TCP congestion
window to be queued at the AP and then to be sent to the
client in a single A-MPDU. An entire congestion window
of TCP ACKs is generated and compressed, and these now
sit at the client, waiting for the arrival of another incoming
data packet so they can be send on its Block ACK. As the
congestion window is full, this next packet never arrives
and the connection stalls until TCP’s retransmit timer fires.
On 802.11a, which lacks aggregation, we don’t often see
this problem, but it is normal during slow start when
802.11n batching is used. We consider the following three
different designs to address these concerns:
Explicit Timer A naive approach would be to have
TCP/HACK time out and fall back to sending regular
ACKs after a delay. In practice there is no good delay
value that can be chosen, since the client cannot know the
RTT and congestion window at the TCP sender, how the
sender’s packets will be spaced throughout the RTT, nor

4A-MPDU length is limited either by the 64 KByte A-MPDU bound
or at lower bitrates by 802.11n’s 4 ms transmit opportunity limit.
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if the AP will suddenly start sending to another client.
Opportunistic HACK A more adaptive approach is not
to explicitly delay TCP ACKs at all, but rather be oppor-
tunistic. When the wireless link is the bottleneck, the next
downstream data batch will contend with the upstream
TCP ACK batch. If the downstream batch wins, HACK
can be used, but otherwise vanilla TCP ACKs will be sent.
Such a design may often squander the opportunity to use
HACK, but it has the virtue of seeming simple—until
one considers the complexity of the NIC-network driver
interface needed to implement it.
The MORE DATA Bit In Figure 2, initially there are four
data packets queued at the AP. When the AP forms the
first batch containing TCP data packets 1 and 2, it already
knows more data will be sent to that client, as it already
has packets 3 and 4 in its queue. So long as the AP has
more packets queued than will fit in a batch, it knows
that it is safe for the client to save up compressed ACKs
waiting for the next batch. The AP simply tells the client
that there is more data coming by setting the MORE DATA
bit in the 802.11 header of the A-MPDU.5 When the client
sees this flag, it latches this state and will not transmit
any more non-encapsulated TCP ACKs until the next data
packet arrives, when it can use HACK to send them.

3.3 HACK in Practice
In the preceding section, we have presented a concep-
tual description of TCP/HACK, but several questions
concerning the practicality of this conceptual design re-
main unanswered. First, how realizable is TCP/HACK
given current systems and hardware? In particular, how
should TCP/HACK’s functionality be divided between
a station’s network interface card (NIC) hardware and
NIC device driver? Finally, what manner of compression
should TCP/HACK employ to reliably encode the TCP
ACKs?

3.3.1 Driver and NIC Functionality

We realize TCP/HACK (including the MORE DATA mech-
anism) with very few changes to a station’s 802.11 NIC.
The main strategy is to implement the bulk of TCP/HACK
within the NIC’s driver, as we demonstrate using the ex-
ample shown in Figure 2. Our discussion is in the context
of a modern Linux wireless driver, such as the Atheros
ath9k driver.6

AP (data transmission) The only modification needed
to the AP when transmitting data packets is to set the
MORE DATA flag when there are more packets remaining
in the transmit queue for the same client.

5This bit exists in stock 802.11 to assist with power saving. HACK
uses this bit irrespective of whether power saving is enabled.

6http://wireless.kernel.org/en/users/Drivers/ath9k
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of the next frame.

Client The client’s driver needs to determine when it
can use TCP/HACK and when it must send TCP ACKs
normally. In Figure 2, on receiving packets 1 and 2, the
client’s NIC also passes the MORE DATA state to the
driver. The client TCP stack acknowledges the data, gen-
erating TCP ACKs 1 and 2, and puts them in the transmit
queue at point 1 .

Figure 3 shows what happens at points 1 and 2 from
Figure 2 in more detail. If the driver is not in the MORE
DATA state, it simply enqueues these ACKs normally.
However, if MORE DATA is set, it compresses the arriving
TCP ACKs and creates corresponding buffer descriptors.
A separate buffer descriptor chain per destination address
is needed to match compressed TCP ACKs with Block
ACKs for that destination.

At point 2 the driver DMAs the buffer descriptor
chain to the NIC. The NIC maintains this table of com-
pressed TCP ACK descriptors separately from normal
transmission descriptors. Finally, the driver sets a flag in
the NIC to indicate that TCP/HACK is ready.

Figure 4 shows what happens when the next batch from
the AP arrives at the client. If the TCP/HACK flag indi-
cates “ready,” the NIC uses the corresponding descriptors
to DMA the compressed TCP ACK frames to the card.
It concatenates these frames, and appends them to the
returning Block ACK at point 3 . Recall that the NIC
normally fires an interrupt when it receives data packets.
In this case, the interrupt must also indicate whether the
NIC succeeded in sending the compressed ACKs.

This design also copes with the race condition where
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the batch carrying packets 3 and 4 arrives with the MORE
DATA flag not set before the driver has succeeded in con-
veying compressed TCP ACKs 1 and 2 to the NIC. In
this case, the TCP/HACK “ready” check will fail. The
NIC sends a normal Block ACK and signals to the driver
a TCP/HACK failure in the receive interrupt. The driver
now is free to re-enqueue the TCP ACKs on the transmit
queue for normal transmission.

AP (ACK reception) Finally, the AP needs to recog-
nize and decompress the “augmented” Block ACKs. The
task of recognition falls to the AP’s NIC, which extracts
the compressed TCP ACK frame from the received Block
ACK, adds it to the transmit complete report and inter-
rupts to indicate transmit complete. The driver extracts
the compressed TCP ACK frame, decompresses and re-
constitutes the TCP ACKs, and forwards them upstream.

3.3.2 Compression

A critical component of the design is choosing a compres-
sion method for TCP ACKs. As 802.11a and -n transmit
LL ACKs at one of the slower basic rates, e.g. 6 Mbps,
it is desirable to minimize the size of the TCP ACK in-
formation appended to LL ACKs. Moreover, the 802.11a
and -n MAC protocols’ DIFS and AIFS intervals protect
“stock” LL ACKs from collisions. Ideally, the compressed
ACK information that HACK appends to LL ACKs should
be short enough to fit within DIFS and AIFS, to avoid
risking a collision.7 We would like to leverage the redun-
dancy within TCP and IP headers across consecutive TCP
ACKs. Since most of the TCP/IP header fields remain
static for a particular flow, they can be cached at the com-
pression and decompression endpoints. To encode TCP
and IP header fields reliably, TCP/HACK uses Robust
Header Compression (ROHC) [8] to efficiently condense
TCP/IP segments. ROHC supports the most popular TCP
options like Timestamps and Selective Acknowledgments
(SACK), and defines the notion of contexts, each with a
particular identifier (CID). A context for TCP/HACK’s
purposes maps nicely to a particular TCP flow. In addi-
tion to caching static fields like the TCP/IP five-tuple at
the endpoints, ROHC losslessly compresses the dynamic
fields like the TCP Sequence and ACK numbers.

TCP/HACK-specific ROHC optimizations Since
TCP/HACK applies ROHC in a specific context, we
make the following simplifications:
1. We do not explicitly send Initialize-Refresh (IR) pack-

ets from the TCP client to the AP. To initialize a new
7In our simulations in Section 4.3, we find that 98.5% of the LL

ACKs carrying ROHC-compressed TCP ACKs fit within AIFS for best-
effort traffic. For the few that don’t fit, the sender may either split the
compressed TCP ACKs across multiple LL ACKs (ensuring each LL
ACK is fully protected by AIFS) or it may send them all on a single LL
ACK (risking a collision with a hidden terminal). Our simulator does
the latter; there are no hidden terminals in the scenarios we simulate.
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Figure 4: Client-side TCP/HACK receiving a batched
frame from the air and including compressed TCP ACK
frames in the corresponding link-layer acknowledgment.

context, the client can simply send uncompressed TCP
ACKs outside of the TCP/HACK mechanism. The AP
will consequently store the necessary state for the new
context and assign it the correct CID.

2. The client and AP need not exchange any messages to
agree upon a new CID for an emergent flow. Instead
CIDs are computed independently at each endpoint.
The client’s driver on receiving a TCP ACK for a new
flow computes the MD5 [9] hash over the ACK’s 5-
tuple and selects the lowest byte as the CID.

3. Compressed TCP ACK packets encapsulated within
link-layer ACKs require a new mechanism to deal with
losses outside of sending explicit ROHC feedback pack-
ets. We describe how TCP/HACK handles losses in
Section 3.4.

With ROHC, a driver can shrink a TCP ACK to about 4
bytes, or even 3 bytes if the associated flow transmits a
constant payload size (e.g. for large file downloads) [8].

3.4 Avoiding Cross-Layer Pathologies
The protocol we have described so far works well in
a lossless environment. When applying HACK in low
signal-to-noise ratio (SNR) regimes, decoding failures
will cause packet drops. Any of the various packets sent
by TCP/HACK may be dropped: TCP data packets, TCP
ACKs, LL HACKs that contain LL Block ACKs and
TCP ACK information, LL ACKs, &c. Under such losses,
several concerns arise. To decompress headers correctly,
ROHC requires that compression state at sender and re-
ceiver remain synchronized. Packet losses may cause loss
of synchronization of this state, and in turn cause CRC
failures on decompressed TCP ACK packets. Such loss of
synchronization must not be persistent. We now describe
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Figure 5: Coping with loss of (a) Block ACKs and (b)
single LL ACKs by retaining TCP ACK state.

to restore lost synchronization quickly, to preserve the
flow of TCP ACKs to the TCP sender.

Loss of LL ACK. First, consider the scenarios in Fig-
ures 5(a) and 5(b), where a Block ACK and single LL
ACK carrying compressed TCP ACK information cannot
be decoded, respectively. In both these scenarios, to de-
liver compressed TCP ACK(s) reliably, the client must
retain them until it determines that its LL ACK (whether
a Block ACK or a single LL ACK) has reached the AP.
There is no such explicit indication from the AP, however.
The client must enclose the same compressed TCP ACKs
in all LL ACKs it sends to the AP until an implicit indi-
cation from the AP that the AP received the client’s LL
ACK. When the client has sent a Block ACK in response
to an A-MPDU, as in Figure 5(a), receipt by the client of
any subsequent A-MPDU (whether containing retransmit-
ted MPDUs or not) indicates that the AP has received the
client’s Block ACK—if the AP has not done so, it must
instead send a Block ACK Request. Alternatively, when
the client has sent a single LL ACK in response to a single
MPDU, as in Figure 5(b), the client can be certain that the
AP has received its LL ACK upon receiving an MPDU
with a greater MAC-layer sequence number—if the AP
has not done so, it must instead retransmit the MPDU
with the same MAC-layer sequence number. In both these
cases, once the client has implicitly determined that its LL
ACK has been received by the AP, it can safely discard
any compressed TCP ACK information it has previously
sent to the AP within that LL ACK.

Loss of retransmission. Since the ACKs themselves are
not acknowledged, the ambiguity shown in Figure 6 can
arise. The client cannot tell from the Block ACK request
for 4 that the Block ACK for 5 and 6 was actually received.
Thus it appends the compressed ACKs for 1,2 and 3 to
the Block ACK response. Note that we cannot use the
starting sequence number in the Block ACK Request as a
signal that we have moved on to new data here because

AP Client
4 5 6✘

Block ACK 5, 6 +

compressed TCP

ACKs 1, 2, 3

4 7 8✘ ✘ ✘
Block ACK request 4

1 2 3 Compressed
TCP ACKs

Block ACK +

compressed TCP

ACKs 1, 2, 3

1 2 3 Compressed
TCP ACKs

(not cleared)Duplicates: Failure
to decompress

Figure 6: Retaining state: gap in sequence space.
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4 5 6

Block ACK 5, 6 +

compressed TCP

ACKs 1, 2, 3

1 2 3 Compressed
TCP ACKs

TCP ACKs

4, 5, 6

no more data

✘

Figure 7: Flushing state: HACK-to-TCP ACK transition.

in this case it points to a gap in the sequence space, even
though the rest of the aggregate is new.

The AP has already received and decompressed these
ACKs, so its state is incorrect for decoding their retrans-
mission. ROHC already has a mechanism to cope with
duplicates—it has a master sequence number that in-
creases monotonically. The lower 4 bits are normally
included in each compressed packet. This is not sufficient
for the first compressed TCP ACK packet carried in a
Block ACK as an A-MPDU can carry 64 packets. We ex-
tend this first master sequence number to 8 bits, allowing
the AP to discard duplicate compressed TCP ACKs and
get back in sync.

Lost Block ACK, No More Data. Another corner case
arises in Figure 7 when a Block ACK with compressed
ACKs is lost, and the client needs to send vanilla TCP
ACK packets because the last batch was not marked
MORE DATA. Here, the client clears any compressed
TCP ACKs it has retained, and sends the next TCP ACK
packet with a higher sequence number. TCP ACKs are
cumulative and the upstream server will deal with the
newer TCP ACK correctly even though there is a gap in
received TCP ACK numbers.

Repeated loss of Block ACK. Finally, what happens
when a Block ACK with compressed TCP ACKs is lost
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Figure 8: SYNC bit for retaining state.

repeatedly? Under normal 802.11n operation, the AP will
continue to send Block ACK requests until it hits the retry
limit, when it will give up and send the next batch of data.
The client does not know that the AP has failed to receive
the compressed TCP ACKs and, when it sees new data, it
would normally discard the previously retained TCP ACK
state. In this case, the AP explicitly notifies the client that
it has moved on by setting a SYNC bit in the next batch’s
header. Upon seeing this bit set, the client doesn’t discard
the compressed TCP ACKs but rather appends them to
the next Block ACK, as shown in Figure 8.

4 EVALUATION

We evaluate TCP/HACK through a combination of sim-
ulation in ns-3 and experiments with a real-world imple-
mentation for the SoRa software-defined radio platform.
We simulate TCP/HACK for 802.11n in ns-3, while our
SoRa implementation is for 802.11a, as the public SoRa
release does not support 802.11n.

4.1 SoRa Implementation
We implemented TCP/HACK including the MORE DATA
bit and ROHC compression for the SoRa user-level phys-
ical layer on Windows 7. Hardware limitations of our
SoRa radio boards require us to run 802.11a in the 2.4
GHz band, but this does not affect protocol behavior.

One quirk of the SoRa platform bears mention. We
have found that SoRa receivers sometimes return 802.11
link-layer ACKs later than the 802.11 specification’s ACK
timeout interval, causing spurious link-layer retransmits
and backoffs. To avoid this performance hit, we increased
the 802.11 ACK timeout to accommodate SoRa’s late
LL ACKs. The net effect of these delayed LL ACKs is
that at 54 Mbps, our SoRa implementation only achieves
87% of the theoretical throughput across all protocols. We
confirmed though simulation that this change does not
significantly affect the relative benefit of TCP/HACK over
regular 802.11a, but the absolute performance numbers
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Figure 9: TCP throughput with stock 802.11a (T), TCP
with HACK (H), and UDP (U) with stock 802.11a, with 1
and 2 clients.

are slightly lower.
Testbed Our three wireless nodes each have four-core
Intel Core i7 CPUs, between 8–24 GB of RAM, and a
PCI Express SoRa radio control board. One acts as the
AP and the other two act as clients. We operate the SoRa
interfaces in ad hoc mode to eliminate periodic beacon
transmission. We run experiments on 802.11g channel 14
(2.484 GHz) in an open-plan office environment. We use
iperf to generate TCP data streams with a 1500 byte MTU
and send at 54 Mbps, the highest 802.11a rate.

4.2 SoRa Results
Besides demonstrating a successful implementation as
evidence of TCP/HACK’s practicality, we wish to answer
several questions experimentally:

• Are TCP/HACK’s capacity benefits in line with theo-
retical predictions?

• When an AP sends TCP flows to two clients, does TCP
over 802.11a suffer collisions between clients’ TCP
ACKs, and if so, does TCP/HACK offer a performance
benefit partly by eliminating such collisions?

• Do TCP/HACK’s benefits come only from eliminating
channel acquisitions and collisions, or are there other
overheads that TCP/HACK eliminates?

Baseline Comparison Figure 9 compares the application-
level throughput achieved by TCP/802.11a and
TCP/HACK for bulk downloads, with UDP/802.11a
for comparison. Each bar shows a different experiment:
sending to one or both clients, using TCP over HACK,
TCP over stock 802.11a or, as a control experiment,
unidirectional UDP, which gives an upper bound on
usable capacity. The data is the mean over five different
120-second runs; error bars show standard deviation.

Client 1’s throughput is slightly less than Client 2’s be-
cause it suffers a greater packet loss rate, even when only
one flow is active. UDP’s unidirectional data minimizes



USENIX Association  2014 USENIX Annual Technical Conference 367

medium acquisitions, and achieves the greatest through-
put possible on SoRa with link-layer ACKs enabled. In
an ideal 802.11 MAC, UDP would achieve 30.2 Mbps;
on SoRa, UDP averages 26.5 Mbps across the three ex-
periments. SoRa’s link-layer ACK delays alone reduce
the attainable throughput to 28.1 Mbps, and our UDP
measurements approach that figure.

If TCP/HACK encapsulated all TCP ACKs in LL
ACKs, it would achieve almost the same throughput as
UDP (though UDP’s packet headers are smaller). In prac-
tice, TCP/HACK’s single-client throughput of 25.0 Mbps
(mean of C1 and C2) is very close to the UDP bench-
mark. TCP/802.11a only achieves 19.4 Mbps in this sce-
nario. TCP/HACK improves performance by 29% and
32.2% in the one- and two-client cases respectively. Both
TCP/HACK and TCP/802.11a are fair.

UDP/ TCP/ TCP/
802.11a HACK 802.11a

Client 1 no retries 99% 97% 87%
1 or more 1% 3% 13%

Client 2 no retries 99% 98% 88%
1 or more 1% 2% 12%

Both no retries 99% 98% 86%
1 or more 1% 2% 14%

Table 1: Percentage of frames successfully sent on the
first attempt (no retries) and after one or more retries,
when the AP is sending to Client 1 and Client 2 alone,
and both clients at the same time, using UDP/802.11a,
TCP/HACK, and TCP/802.11a.

Where do TCP/HACK’s savings come from?

We note with interest that TCP/HACK improves through-
put more than predicted analytically in Section 2.1. That
prediction focused solely on saving medium acquisitions
for TCP ACKs. In Table 1 we show the percentage of
frames received after the first transmission, and the per-
centage that required one or more retransmissions. We
see that TCP/802.11a experiences far more link-layer re-
transmissions than TCP/HACK or UDP/802.11a. These
retransmissions occur because of collisions between TCP
ACKs sent by clients and TCP data packets sent by the
AP. TCP/HACK obviates most (but not all) of these TCP
ACKs, and so significantly reduces the number of retrans-
missions needed. TCP/HACK not only eliminates costly
channel acquisition overheads, but by encapsulating TCP
ACKs in LL ACKs, also incurs fewer collisions.

ACK ACK ACKC ACKC Comp.
count bytes count bytes ratio

TCP/802.11a 9060 471120 0 0 (1)
TCP/HACK 10 520 9050 39478 12

Table 2: Conventional and compressed ACK counts, and
compression rates of ROHC-compressed ACKs.

To understand other contributing factors in more detail,
we ran an experiment where the AP transmits 25 Mbytes
of data to a client using TCP/802.11 and TCP/HACK. By
fixing the amount of work we can compare both protocols
in time. The first two columns of Table 2 show the number
of TCP ACKs sent as well as how many bytes were in
those ACKs. The next two columns show the same figures
for compressed ACKs, and the last column shows the
compression rates ROHC acheives.

Reducing the number of transferred bytes is beneficial,
but TCP ACKs are treated as regular data when sending
over 802.11 wireless links and are sent at 54 Mbit/s in
our experiments. LL ACKs, however, use the more robust
24 Mbit/s rate. To factor this in, we investigate how saved
bytes translate into saved transmission time, together with
TCP/HACK’s impact on channel acquisition time and
retransmission time.

TCP Acquire LL ACK
ACK ROHC Channel overhead

TCP/802.11a 70 ms 0 1093 ms 456 ms
TCP/HACK 0.08 ms 13.1 ms 1.17 ms 0.46 ms

Table 3: TCP ACK time overhead breakdown for
TCP/802.11 and TCP/HACK.

Table 3 shows time taken to send TCP ACKs (TCP
ACK), time to send compressed TCP ACKs (ROHC),
time spent waiting for channel before transmitting TCP
ACKs (Channel) and extra time waiting for LL ACKs (LL
ACK overhead). From the table, we see that most savings
come from channel acquisition and LL ACK overhead.

Ideally LL ACKs are returned immediately after a SIFS
time, but this is not always the case in the real 802.11 im-
plementations. On SoRa we observe 37 µs on average
of additional LL ACK overhead, while on two differ-
ent commercially-available wireless NICs (the Atheros
AR9300 and the Intel 5300) we measure 10.4-13.4 µs of
LL ACK overhead, on average. While TCP/HACK ben-
efits more from saving ACK overhead on SoRa than on
the commercial cards, the benefit on commercial wireless
hardware is still large. TCP/HACK not only eliminates
channel overheads, it also reduces collisions and any ad-
ditional LL ACK overheads incurred by the device.

SoRa and ns-3 Cross-Validation

To cross-validate our SoRa implementation against the ns-
3 simulator, we simulated 802.11a in ns-3 with the same
packet loss rate as that observed on SoRa (12% and 2%
for TCP/802.11a and TCP/HACK, respectively). Since
ns-3 returns LL ACKs immediately after SIFS, whereas
SoRa incurs additional delay, ns-3 running TCP/802.11a
achieves 22.4 Mbit/s vs. SoRa’s 19.6 Mbit/s. After post-
processing to eliminate SoRa’s added LL ACK delay, we
observe SoRa throughput of 22 Mbit/s, which matches
simulation. Similarly, when simulating TCP/HACK in
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ns-3, we get 28 Mbit/s vs. SoRa’s 25.5 Mbit/s. After ac-
counting for SoRa’s extra LL ACK delay, SoRa achieves
27.7 Mbit/s, which matches simulation.

4.3 Simulation Results
We now examine how TCP/HACK interacts with frame
aggregation, with a larger number of clients than possi-
ble in our testbed. To this end, we implement A-MPDU
support and TCP/HACK in ns-3. We evaluate both the op-
portunistic and MORE DATA variants of HACK described
in Section 3.2 to verify that the the latter outperforms the
former as hypothesized.

We simulate multiple WiFi clients scattered randomly
within a circle of 10-meter radius centered on the AP.
Our aim is to model the scenario where several clients
connect via 802.11n WiFi to a server located nearby on a
high-speed LAN. We present results modeling an 802.11n
single-antenna setup using data packet and link-layer
ACK bit-rates of 150 Mbps and 24 Mbps, respectively.
The wired link between the server and the AP has a la-
tency of one millisecond and a bit-rate of 500 Mbps.

To glean the benefits of the MORE DATA scheme, we
would like AP’s transmit queue to contain at least 126
packets per flow. We choose this number so that the AP
may buffer of up to three batches of 42 packets per client,
accounting for some variability in the A-MPDU size in
the presence of TCP retransmissions. To avoid adverse
“buffer bloat” effects [3], the transmit queue should not
be too large in the case of one flow, but rather grow as the
number of flows increases. A large buffer in our system
would cause an excessive loss of packets when slow start
overflows the buffer, with or without TCP/HACK. With
ten clients, the AP’s transmit queue would be 1260, which
is reasonable since Linux drivers usually use buffer sizes
of 1000 packets.
TCP/HACK vs. TCP/802.11n To determine the benefit
of TCP/HACK and its constituent parts, we compute the
aggregate goodput for TCP flows sending 1460 byte pack-
ets, averaged across five simulated runs per experiment.
To mitigate phase effects with multiple clients, we stagger
the starts of clients’ downloads. As such, we compute
the aggregate goodput over the steady-state portion of the
runs, once all the clients have more or less exited slow
start.

Figure 10 shows that UDP maintains a roughly con-
stant goodput as the number of downloading clients
varies, as expected. As a unidirectional protocol, UDP’s
performance is minimally affected by the number of
clients competing for the link. In contrast, the goodput of
TCP/802.11n decreases slightly as the number of down-
loading clients increases. Although the AP elicits TCP
ACK packets from clients in turn, there is still a chance
that two or more clients’ TCP ACKs can collide, or that
a TCP ACK can collide with a data packet from the AP.
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Figure 10: TCP goodput for different transmission
schemes with 1–10 clients, and UDP for comparison.

These collisions account for the lower measured goodput
than that predicted in Section 2.1.

We note with surprise that Opportunistic TCP/HACK
does not significantly outperform TCP/802.11n: this most
naı̈ve implementation of HACK sends few compressed
TCP ACKs in LL ACKs, and mostly regular TCP ACKs.
It therefore does not achieve a TCP goodput closer to the
physical rate.

Role of MORE DATA Bits We now turn our attention to
the bars labeled “TCP/HACK More Data” in Figure 10.
We observe that the MORE DATA variant of TCP/HACK
achieves the most pronounced throughput gain over un-
modified 802.11n. While simple, the MORE DATA mech-
anism is crucial to TCP/HACK’s success in reducing
medium acquisitions, and gives rise to goodput improve-
ments between 15% for one client and 22% for ten clients
at the physical rate of 150 Mbps.

Lossy Environment We next evaluate TCP/HACK un-
der different SNR regimes. In addition to providing a
wider spectrum of comparison between TCP/HACK and
TCP/802.11n, these experiments will verify whether the
HACK protocol with the properties described in Sec-
tion 3.4 can indeed avoid any decompression CRC fail-
ures, or stalls due to recurring TCP timeouts.

We begin with a setup similar to that described above,
and then place a single client at varying distances from the
AP in order to simulate a decreasing set of SNRs. In lieu
of simulating bit rate adaptation explicitly, at each partic-
ular distance we simulate a download of a 100 MB file at
a rate selected from a range of 802.11n high throughput
rates. This range corresponds to rates which are achiev-
able using a 40 MHz channel, 400 ns guard interval and
one antenna. The corresponding LL ACK rates are chosen
from the set of basic rates (6, 12 and 24 Mbps) accord-
ing to the rules outlined in the 802.11n specification. To
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Figure 11: Envelope of average TCP goodput for
TCP/HACK and TCP/802.11n under different SNR
regimes and physical rates. The lower graph shows
TCP/HACK’s percent improvements over TCP/802.11n.

emulate a real system, we applied the 4 ms transmit op-
portunity limit to all transmissions, therefore limiting the
size of A-MPDU packets for experiments using lower
physical rates. At each distance/physical rate combina-
tion, we computed the average TCP goodput (including
slow start) over five runs.

Figure 11 shows the average TCP goodput for
TCP/HACK and TCP/802.11n. It plots a separate dashed
curve per 802.11n physical rate for TCP/HACK. We use
these curves to compute the envelope (in black), which
indicates the best goodput achievable by an ideal bit rate
adaptation algorithm. Similarly we plot the correspond-
ing envelope for regular TCP/802.11n (the separate rate
curves for TCP/802.11n are not shown).

Our simulations indicate that TCP/HACK functions
correctly in a lossy environment and does not elicit any
decompression CRC failures. Moreover, TCP/HACK im-
proves TCP goodput by an average of 12.6% across the
range of SNR values. Figure 11 shows that as the physical
rate drops, the relative improvement increases slightly for
the cases where the transmit opportunity limit reduces the
number of packets a station can possibly transmit in an ag-
gregate. Recall that 802.11n uses aggregation to amortize
medium access costs, therefore we expect a better good-
put gain for TCP/HACK over regular TCP at these rates.
Similarly, as the physical rate increases past 90 Mbps,
the overall improvement increases slightly to about 14%,
because the 802.11n medium access delays now consume
a larger portion of the transmission time relative to data.
Analytical Predictions vs. Simulations How well does
the average TCP goodput measured in simulation match
that computed analytically in Section 2.1? We extract the
highest achievable goodput at each physical rate for both
TCP/802.11 and TCP/HACK from the prior experiment,
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Figure 12: Theoretical and simulated TCP goodputs vs
802.11n physical rates.

and plot these and the analytical predictions in Figure 12.
As we expect, simulated goodputs are lower than the cor-
responding analytical predictions—the predictions do not
model 802.11n collisions or retries, nor do they take into
account TCP’s retransmissions and congestion control.

Note, however, that the goodput improvement
TCP/HACK offers over TCP/802.11n exceeds that pre-
dicted analytically. Since TCP/802.11n suffers more from
collisions than TCP/HACK, its throughput suffers cor-
respondingly more. TCP/HACK greatly reduces the col-
lision rate by eliminating medium acquisitions for TCP
ACK packets. At 150 Mbps, TCP/HACK offers a simu-
lated goodput improvement of 14%, vs. the 7% improve-
ment predicted analytically.

5 DISCUSSION

Both batching using A-MPDUs and TCP/HACK help to
reduce the time wasted on unnecessary WiFi medium
acquistions. TCP/HACK relies on the MORE DATA bit
to know when it is safe to compress ACKs and wait
for another packet on whose LL ACK to piggyback. A-
MPDUs require sufficient packets in the AP’s queue to
gain efficiencies. With sufficient buffering at the AP and a
large window, both work well. In such cases the wireless
medium is busy, and efficiency is important. TCP/HACK
can significantly reduce collisions when there are multiple
senders by turning bidirectional TCP flows into unidirec-
tional ones, reducing the number of contending hosts.
However, if the traffic patterns are such that queues do not
build in the AP or clients, there won’t be enough packets
to fill A-MPDUs or any remaining packets in the queue to
allow the MORE DATA bit to be set. Neither mechanism
will work well in this case. Similarly, if an AP has very
many clients, it may not buffer enough packets for each
client for either mechanism to work well.

Longer batches improve utilization, but monopolize
the medium for longer. 802.11e allows the AP to reduce
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medium acquisition latency by specifying a shorter max-
imum batch duration through the transmit opportunity
limit. In such cases, we would expect TCP/HACK to help
claw back some of the efficiency loss caused by limiting
the maximum batch duration.

Sending a TCP timestamp option in the last TCP ACK
of a batch would generalize the MORE DATA mechanism.
The TCP sender would echo it, and the client could use
receipt of the echo as an implicit ACK-of-ACK. When
the client hasn’t yet received a timestamp echo, it can
reasonably expect further data to arrive, and thus delay
sending TCP ACKs. We leave this for future work.

6 RELATED WORK

One approach to amortizing medium acquisition over-
head across more data is narrow-band channelization.
Since the effective data rate on each subband is much
lower than that of wide-band 802.11, the time required
for MAC-layer contention becomes smaller relative to
the packet transmission time on a single subband, thus
more effectively amortizing medium acquisition over-
head across multiple packet transmissions. FICA [11] and
WiFi-NC [2] take this approach. Both require redesigns
of the physical and MAC layers. TCP/HACK is comple-
mentary: combining the two systems should yield greater
medium efficiency than either system achieves alone.

WiFi-Nano [6] shortens the 802.11 contention slot time
to 800 ns. TCP/HACK is again complementary: while
WiFi-Nano reduces medium acquisition overhead, our
proposal eliminates many medium acquisitions entirely.

Maranello [4] is a link-layer design for 802.11 wireless
networks that incorporates sub-frame granularity check-
sums into link-layer acknowledgments, allowing the com-
municating pair to undertake partial packet recovery on
corrupted frames. Unlike TCP/HACK, Han et al. imple-
ment Maranello partially on the firmware processor of a
commodity 802.11 NIC, thus requiring access to the as-
sembly source code of the firmware processor. While
Maranello does not share the same networking goals
as TCP/HACK, it does share systems context in terms
of the hardware and software available to both designs.
Like Maranello, TCP/HACK is realizable with very few
changes to the NIC itself.

Of prior work in reducing channel acquisition over-
head, Pang et al. [7] most closely resembles TCP/HACK,
proposing that a client use a MAC-layer ACK to signal
successful reception of TCP data. However, the designs
they propose are only capable of communicating to the
AP when a client observes a TCP ACK for the same data
packet just received. The authors do not mention the pos-
sibility of the generation of a TCP ACK with a lower
ACK number after a loss, and the link-layer feedback
mechanism they propose is incapable of communicating
any information to the AP other than “cumulative ACK

for the data packet just sent to the client” or “no ACK
for the data packet just sent to the client.” As a result,
these designs prevent the delivery of duplicate ACKs to
the TCP sender, and prevent the use of fast retransmit,
leaving only inefficient TCP timeouts. Furthermore, this
work took place before the introduction of 802.11n, and
as a result, does not consider the interaction with frame
aggregation or block ACKs.

7 CONCLUSION

In this paper, we have described the design and imple-
mentation of TCP/HACK, a cross-layer acknowledgment
design for TCP and the 802.11 MAC that eliminates most
of the expensive medium acquisitions that TCP ACK
packets require, significantly increasing TCP flows’ wire-
less throughput. TCP/HACK improves throughput further
when used with frame aggregation, yet offers significant
throughput improvements without it. While frame aggre-
gation and other previous approaches reduce the cost of
individual medium acquisitions [11, 2, 6], TCP/HACK
eschews many medium acquisitions entirely. It is thus
complementary to these prior approaches. Our evalua-
tions in simulation and in a real-world implementation
confirm TCP/HACK’s throughput improvements.
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