
This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

FlexECC: Partially Relaxing ECC of MLC SSD
for Better Cache Performance

Ping Huang, Virginia Commonwealth University and Huazhong University of
Science and Technology; Pradeep Subedi, Virginia Commonwealth University;

Xubin He, Virginia Commonwealth University; Shuang He and Ke Zhou,
Huazhong University of Science and Technology

https://www.usenix.org/conference/atc14/technical-sessions/presentation/huang

USENIX Association 	 2014 USENIX Annual Technical Conference  489

FlexECC: Partially Relaxing ECC of MLC SSD for Better Cache Performance

Ping Huang‡§, Pradeep Subedi‡, Xubin He‡ , Shuang He§, Ke Zhou§

‡Virginia Commonwealth University, USA
§ Wuhan National Laboratory for Optoelectronics

Huazhong University of Science and Technology, China
{phuang,subedip,xhe2}@vcu.edu, hshopeful@gmail.com,k.zhou@hust.edu.cn

Abstract

The ever-growing capacity and continuously-dropping
price have enabled flash-based MLC SSDs to be widely
deployed as large non-volatile cache for storage systems.
As MLC SSDs become increasingly denser and larger-
capacity, more complex and complicated Error Correc-
tion Code (ECC) schemes are required to fight against
the decreasing raw reliability associated with shrinking
cells. However, sophisticated ECCs could impose ex-
cessive overhead on page decoding latency and thus hurt
performance. In fact, we could avoid employing expen-
sive ECC schemes inside SSDs which are utilized at the
cache layer. We propose FlexECC, a specifically de-
signed MLC SSD architecture for the purpose of better
cache performance without compromising system relia-
bility and consistency. With the help of an upper-layer
cache manager classifying and passing down block ac-
cess hints, FlexECC chooses to apply either regular ECC
or lightweight Error Detection Code (EDC) for blocks.
To reduce performance penalty caused by retrieving
backend copies for corrupted blocks from the next-level
store, FlexECC periodically schedules a scrubbing pro-
cess to verify the integrity of blocks protected by EDC
and replenish corrupted ones into the cache in advance.
Experimental results of a proof-of-concept FlexECC im-
plementation show that compared to SSDs armed with
regular ECC schemes, FlexECC improves cache perfor-
mance by up to 30.8% for representative workloads and
63.5% for read-intensive workloads due to reduced read
latency and garbage collection overhead. In addition,
FlexECC also retains its performance advantages even
under various faulty conditions without sacrificing sys-
tem resiliency.

1 Introduction

As system architects have always been pursuing to
build and/or optimize storage systems in both high-

performance and cost-effective ways, NAND flash-based
Solid State Drives (SSD) have been intensively re-
searched to be efficiently utilized in various storage sys-
tems during the past decade due to their highly desirable
characteristics (e.g., high performance and low power
consumption) [5, 35, 34, 39]. Compared to rotating hard
disk drives (HDD), SSDs provide one order of magnitude
higher performance while consuming much less power to
finish running the same workloads[13, 20].

However, because of the relatively high cost per
GB [30, 12] and limited lifetime concerns [2, 26, 19],
NAND flash-based SSDs are nowadays particularly
widely utilized as a cache in front of storage systems
comprised of HDDs, aiming to exploit their comple-
mentary advantages [36, 4, 18]. For instance, SSDs
have already been utilized as front-end caches in storage
products, including EMC’s VFCache [1], Apple’s Fu-
sion Drive and Fusion’s ioControlT M Hybrid Storage and
deployed in various scenarios including networked envi-
ronment [22], cloud infrastructures [27, 4].

The enabling factors of SSD’s wide deployment as a
large non-volatile cache are primarily attributed to their
steadily-expanding capacity and the resultant affordable
cost, which in turn are essentially driven by technology
scaling and the employment of Multi Level Cell (MLC),
i.e, scientists have pushed two or even more bits into
each diminishingly-sized flash memory cell. Researchers
have suggested a variety of ways to improve SSD cache
performance according to flash peculiarities, including
dividing the cache space into read and write caches [21]
and designing effective cache algorithms [42]. However,
technology scaling has also caused many concerns [15].
For example, recent research findings have revealed that
increasing an additional bit in a storing cell would re-
duce chip’s lifetime by 5-10%, and shrink throughput
and increase latency by 55% and 2.3x on average, re-
spectively [16]. These problems could become an imped-
iment to further improving their performance as a cache
which is supposed to provide high performance.

490  2014 USENIX Annual Technical Conference	 USENIX Association

Each NAND flash memory cell is a floating gate
transistor that is able to preserve electrons. Bits in-
formation stored in each flash memory cell are repre-
sented and differentiated by the different voltage lev-
els of the trapped charges. The reliability-impacting
factors such as programming inaccuracy, electron de-
trapping, cell-to-cell interference [33, 32] are becom-
ing increasingly severe when cells are pushed to store
more bits, causing flash memory to exhibit an climb-
ing high raw bit error rate (RBER) [15, 16], which ren-
ders them not suitable for practical usage. For example,
the RBER of MLC flash memory is around 10−6, while
manufacturers usually rate the uncorrectable bit error
rate (UBER) in their data sheets to be 10−11 [29, 10]. To
bridge the reliability gap, sector-level or page-level Er-
ror Correcting Codes are synergistically implemented in
flash memory controllers to achieve a practically accept-
able UBER. However, as flash storage gets denser, we
have witnessed the deployed ECCs are becoming more
and more advanced and complicated [7], from Ham-
ming Code to Bose-Chaudhuri-Hocquenghem (BCH)
and Reed-Solomon codes [10] to Low Density Parity-
check (LDPC) [49]. Therefore, the ECC implementation
complexity has correspondingly increased significantly,
causing prolonged encoding and decoding latencies. For
instance, the decoding latency of a BCH tolerating 12
bit errors for an 8KB page are around 180µs and 17µs
in contrast to 90µs and 10µs in a BCH tolerating 6 bit
errors, with software [21] and hardware [41] implemen-
tation respectively, which accounts for a significant per-
centage of the page access latency.

Fortunately, in cache-oriented MLC flash-based SSDs,
the need for expensive error correcting codes could be
obviated. The reason is that in occurrences of errors,
accesses to corrupted blocks can be serviced by their
backup copies in the next layer and most of the time ac-
cesses can be completed faster because of the absence of
excessive decoding overhead. Based on this observation,
in this paper, we advocate a novel cache-oriented SSD ar-
chitecture called FlexECC, a cross-layer design targeting
specifically for MLC SSDs exhibiting high RBER and
employing expensive ECC schemes. FlexECC achieves
better cache performance by flexibly and selectively ap-
plying either regular ECC or light EDC [21] to flash
pages according to their consistency and reliability re-
quirements. Specifically, taking advantage of the in-
formation conveyed by the frontend cache manager via
proposed interfaces (Section 3.3), FlexECC can eas-
ily identify the storage requirements of different pages
and accordingly apply the appropriate protection or cor-
rection schemes via programmable flash memory con-
troller. When writing fresh data which have no backup
copies in the next storage layer, FlexECC adopts nor-
mal error correction code (specifically, BCH in our de-

sign), otherwise it applies simple and fast error detec-
tion code (EDC) (specifically, cyclic redundancy code
or CRC in our design). Due to the differences in de-
coding latencies between BCH and CRC (Section 2.2),
read accesses to CRC-protected pages would be signif-
icantly speeded up, enhancing the cache performance.
The more CRC-protected pages in the cache device, the
greater cache performance FlexECC provides. Further-
more, in order to mitigate the performance impacts of
fetching data from the underlying layer for corrupted
pages in the critical path, FlexECC schedules a scrub-
bing process to verify the integrity of CRC-protected
pages and populates corrupted pages in advance. Evalua-
tion results with both representative and synthetic work-
loads have shown that FlexECC is able to improve cache
performance by an impressive degree without sacrificing
consistency and reliability relative to normal ECC-armed
MLC flash-based SSD.

Our main contributions in this work are two-fold.
First, to the best of our knowledge, the proposed Flex-
ECC is the first work to selectively replace ECC with
EDC to improve SSD cache performance without com-
promising cache consistency and reliability. This bears
important implications for future-generation MLC SSDs
which require more advanced error correction codes and
incur high decoding latencies to read operations. We
are not making trade-offs between performance and re-
liability or consistency [25, 32], instead, we aim to im-
prove performance while maintaining the same level of
resilience by leveraging the characteristics of cache sys-
tems. Second, we have implemented a proof-of-concept
prototype of FlexECC and conducted extensive evalua-
tions to show that FlexECC is able to improve perfor-
mance over conventional SSDs for a variety of work-
loads, even under various faulty conditions.

The remainder of this paper proceeds as follows. We
discuss the background and our motivation in Section 2.
Following that, we elaborate on the details of FlexECC
in Section 3. We conduct experiments to evaluate Flex-
ECC in Section 4, followed by a discussion of related
work in Section 5. Conclusions of this work are given in
Section 6.

2 Background and Motivation

2.1 Flash Memory Reliability
Flash memory cells are floating gate transistors which
hold electrons to represent information. Each flash mem-
ory cell can be designated to represent one bit infor-
mation (SLC), two bits (MLC) or three bit (TLC). The
represented storage state is differentiated by the volt-
age level of trapped charges. Programming or writing
flash memory cell is the process of injecting electrons

USENIX Association 	 2014 USENIX Annual Technical Conference  491

into the cell to the level corresponding to the desired
state, and reading is the process of sensing out the rep-
resented voltage level and comparing it with preset ref-
erence levels to determine its value. By its very nature,
the trapped charges are constantly in a moving state and
can shift to their neighboring cells (i.e., current leakage)
over time, causing voltage shifting [32, 25] and therefore
data corruption. Moreover, as flash memory cells expe-
rience more program and erase operations, their charge-
trapping ability degrades and as a result are more prone
to errors [33]. The occurring probability of these errors
are called raw bit error rate (RBER). SLC flash memory
typically exhibits two orders of magnitude better RBER
than MLC [14, 10], because MLC flash memory has
much shorter differential voltage window between adja-
cent voltage thresholds than SLC, which causes it more
difficult for MLC to differentiate the statuses.

In design practice, flash-based SSDs typically imple-
ment ECCs in memory controllers [21] to meet reliabil-
ity and endurance requirements, causing a performance-
reliability trade-off in the design space. ECC is a kind of
information encoding scheme which can tolerate a spec-
ified number of bit errors (called error correction capa-
bility t) by augmenting a certain amount of redundant in-
formation to the original message of length k, which typ-
ically equals to the page size in flash memory. Corrupted
message can be reconstructed via decoding as long as the
number of bit corruptions are within the ECC correction
capability. Considering the wide adoption of BCH code
in commercial SSDs, we base our discussions on BCH in
the remaining sections. The bit error rate after applying
ECC is called uncorrectable bit error rate (UBER). As-
sume an ECC scheme has an error corruption capability
of t and the length of an encoded message is N, then the
relationship between UBER (PUBER) and RBER (PRBER)
is given by Equation 1.

PUBER =
∑

N
n=t+1

(N
n

)
∗(PRBER)

n∗(1−PRBER)
N−n

N
(1)

Intuitively, to guarantee the same level of UBER (e.g.,
10−11), we can either increase ECC correction capabil-
ity or decrease RBER. For example, more precise In-
cremental Step Pulse Programming control (i.e., using
smaller �Vpp [44, 43]) produces smaller RBER and us-
ing more powerful ECC schemes also guarantees tar-
get reliability [6, 9]. However, as flash geometries be-
come increasingly smaller (3x- and 2x-nm regimes) and
denser [11], those techniques are no longer necessarily as
effective as before, which is evidenced by the continuous
increases in error correction requirements, program time
and read time observed between different flash process
generations [7]. When flash storage becomes denser,
the noise margin narrows, necessitating very small �Vpp

to program pages and thus causing prolonged program-
ming process and imposing significant overhead on per-
formance [33, 32]. On the other end, implementing more
powerful ECC schemes on denser flash memory could be
prohibitively expensive or even unrealistic for the follow-
ing reasons. First, correction logic becomes complex,
costly and occupies more silicon area and the resultant
decoding latency increases correspondingly. Second, it
increases power dissipation, whose side effects counter-
act ECC’s efforts to improve reliability. Third, the page
spare area may no longer have enough space for the ex-
panding redundant information.

2.2 Replacing ECC with EDC for Cache

It has been observed in previous research [33, 25] that
most of the occurred errors in flash memory are retention
errors, i.e., errors caused by loss of charges over time,
and flash memory exhibits reasonably high reliability at
its early usage. In contrast to permanent storage, cached
data are transient and live for a short lifespan, typically
ranging from seconds or hours to days rather than months
or years [48]. Therefore, the corruption probability of
cached data is comparatively low. Moreover, even if cor-
ruptions do occur to cached data, corrupted data blocks
can still be serviced by back-end storage as long as the
blocks have been flushed down beforehand, at the cost of
accessing disk or RAID storage systems.

Based on the above analysis, we are motivated to se-
lectively relax ECC correction capability of certain cache
blocks (i.e., the blocks which have consistent backup
copies) to avoid decoding overhead for better perfor-
mance. We only reserve error detection capability us-
ing lightweight EDC for ECC-relaxed blocks. Given the
low corruption probability of short-living cached data
and the significant discrepancy between ECC decoding
latency and EDC verification overhead (to be discussed
shortly), it is reasonable to expect performance improve-
ment coming out of ECC-relaxed cache architectures
while maintaining system reliability.

In the remainder of this section, we conduct theoretical
performance analysis on ECC and EDC to demonstrate
the potential performance gains that could be obtained by
replacing ECC with EDC. Due to their popularity, we use
primitive binary BCH [40, 41] for default ECC and CRC
for default EDC. CRC, short for cyclic redundancy code,
is an error-detecting code commonly used in digital net-
works and storage devices to detect accidental changes
to raw data. The detection capability of CRC is charac-
terized by how many concurrent bit errors it is able to
detect. Binary BCH code has a form of (n,k, t), where
n is the codeword length equal to 2m − 1 for some pos-
itive integer m, t is the correction capability indicating
the maximum bit errors BCH is able to tolerate, and k is

492  2014 USENIX Annual Technical Conference	 USENIX Association

the length of the original message. The BCH arithmetic
operations are based on Galois field GF(2m) [24]. For
fairness, we configure BCH to be able to tolerate t bit
errors and CRC to detect t bit errors for each flash page1.

Encoding: Encoding operation is associated with ev-
ery write operation in flash to calculate redundant bits
which are then written to the flash page’s spare area to-
gether with page data. CRC and BCH share the same
simple encoding procedure. To encode a page message
M(x), both CRC and BCH divide the original message
by a polynomial generator G(x) whose degree is depen-
dent on t. The resultant remainder R(x) is the redundant
information. Equation 2 gives the encoding calculation.
Therefore, the encoding latencies of both CRC and BCH
are approximately the same and equal to the time taken
by a polynomial multiplication [8]. In other words, CRC
and BCH incur the same additional latency to write op-
erations.

M(x)
G(x)

= Q(x)+
R(x)
G(x)

(2)

Decoding/Detecting: A decoding/detecting process
accompanies every flash page read operation. After read-
ing out each page content, the flash memory controller
verifies the integrity of the page content according to the
adopted protection scheme. In contrast to the similar en-
coding procedure, BCH decoding is far different from
CRC detection. CRC detection process is quite straight-
forward. Suppose the read page content is M(x)′. CRC
performs the same arithmetic operation as in Equation 2
and checks whether the new remainder is identical to the
previous one or not. Essentially, it is equivalent to ver-
ifying Equation 3. If Equation 3 holds true, then it is
assumed no error occurs, otherwise the message is con-
sidered corrupted, so CRC detection process consumes
the same time as CRC encoding.

M(x)′ −R(x)
G(x)

−Q(x) = 0 (3)

BCH decoding is much more complicated and in-
volves three steps, syndrome computations, finding
error-location polynomial and error correction. The
first step is to compute 2t syndrome components
S1,S2, · · · ,S2t , each of which is essentially a polynomial
calculation. Then, based on the 2t syndromes, the second
step uses Berlekamp-Massey algorithm to calculate the
error-location polynomial σ(x) = 1+σ1(x)+σ2(x2)+
· · ·+ σt(xt). Finally, the third step solves the roots of
σ(x) = 0 by using exhaustive Chien Search algorithm
and outputs an error vector indicating the error positions.
It should be noted that after obtaining the 2t syndromes,
if all of them are evaluated to zeros, the message is con-
sidered error-free and the decoding process terminates

immediately. Specific details about BCH code can be
found in [24].

According to [24], a polynomial calculation takes
(n− 1) additions and (n− 1) multiplications, syndrome
computations take (n− 1)t additions and nt multiplica-
tions, finding error-location polynomial takes 2t2 addi-
tions and 2t2 multiplications, and error correction takes
nt additions and nt multiplication. Suppose Ta and Tm are
the time needed by per addition and per multiplication,
respectively. Then the achievable speedups of replacing
BCH with CRC for decoding a correct message (Scorrect)
and a corrupted message (Serror) are given by Equation 4
and Equation 5, respectively.

Scorrect =
(n−1)× t ×Ta +n× t ×Tm

(n−1)× (Ta +Tm)
(4)

Serror =
(2t2 +2nt − t)×Ta +(2t2 +2nt)×Tm

(n−1)× (Ta +Tm)
(5)

Suppose Tm = Ta, i.e., the time taken to perform an
addition is equal to that of a multiplication2, typically
one clock cycle, then Scorrect and Serror become (2n−1)t

2(n−1)

and 4nt+4t2−t
2(n−1) , which in turn approximately approach t

and 2t, respectively, when n � t.
In summary, we have demonstrated that by using CRC

instead of BCH, we are able to reduce the latencies of
decoding uncorrupted and corrupted message by t and
2t times, respectively. Given the increasing value of t
and the associated decoding latency in MLC SSDs, the
extent of decoding latency reduction will increase corre-
spondingly and potentially translate to more significant
performance improvement.

In real implementations, BCH can be either realized
in software or hardware. In this paper, we assume hard-
ware implementation, since typically the memory con-
troller inside SSDs employs electrical circuit to perform
BCH encoding and decoding for high performance pur-
pose. BCH hardware implementation presents trade-offs
among chip area, cost and latency [41, 40]. Different
implementation configurations would cause different la-
tencies. The more circuits are deployed, the less latency
it incurs, but the more energy it consumes. In our evalua-
tions, according to the hardware implementation in [41],
we use 10µs as the decoding latency of a BCH tolerating
6 bit errors out of a flash page. Based on this latency,
we use the above analysis to derive other parameters as
shown in Table 2 in Section 4.1.

3 FlexECC Design and Implementation

In this section, we elaborate on the design and imple-
mentation details of FlexECC. We first give an overview

USENIX Association 	 2014 USENIX Annual Technical Conference  493

of FlexECC, followed by a basic description of the cache
manager in which we collect and pass down the block
access information. Then we present the proposed ex-
tended interfaces via which access information is passed
down to facilitate the underlying device’s internal man-
agement. Following that, we describe the scrubbing pro-
cess which is a precautional technique to suppress the
performance overhead associated with accesses to erro-
neous pages. Moving on, we briefly discuss the garbage
collection process in FlexECC with a focus on the dif-
ferences relative to conventional SSDs. Finally, we give
a holistic discussion on how the incoming requests are
handled by FlexECC.

3.1 System Overview

As discussed previously, the idea of FlexECC is quite
simple. It essentially comes down to two critical prob-
lems. The first problem is how to characterize block
access behaviors and relay the collected information to
the underlying device. The second problem is how the
cache device can take advantage of the collected infor-
mation to improve its performance. For the first prob-
lem, FlexECC augments a cache monitor into an ordi-
nary cache manager. The monitor observes the cache be-
haviors and infers the storage requirements of the corre-
sponding blocks which are are supposed to be stored in
the cache layer. For the second problem, FlexECC em-
ploys a Programmable Memory Controller (PMC) inside
the cache device to dynamically allocate CRC-protected
or BCH-encoded pages to accommodate the incoming
page writes according to their storage requirements.

Figure 1 shows a holistically architectural view of
FlexECC. As depicted in the picture, the upper part is
a modified cache manager which is able to collect block
access information and send the information down to the
SSD cache device to facilitate its internal management.
In the middle is the SSD cache device with two added
components including a hardware PMC and a software
scrubber. In the bottom is the underlying storage sys-
tem comprised of HDDs. In addition to constructing a
basic hybrid storage system, the cache manager is aug-
mented with the functionality of tracking and tagging
block accesses to SSD. The collected information can
be passed down to SSD via extending cross-layer inter-
faces, which has been proposed and evidenced by the
techniques employed in previous researches including
Shepherding I/O [17], DSS [28] and FlashTier [37]. The
SSD cache device internally employs a Programmable
Memory Controller (PMC) [21] which is able to program
pages3to be either BCH-encoded or CRC-protected and
allocate different types of pages to accommodate incom-
ing requests according to their respective requirements,
which is in spirit similar to the fast and slow pages allo-

cation policy described in [16]. The PMC divides the
entire cache space into two different regions, namely,
CRC-region and BCH-region. Moreover, FlexECC ac-
tively initiates a scrubber process to verify the integrity of
CRC-protected pages and prepares to populate corrupted
ones from underlying storage before they are accessed.
In addition, the SSD FTL is slightly modified, with each
FTL entry having several added tags to provide auxiliary
information, for example, in what code scheme (BCH or
CRC) the page is protected, etc.

PMC FTL

scrubber

Cache Manager
Host side

SSD Cache Layer

Disk Storage SystemDisk 1

BCH CRC

Dirty Write
Host Read

Flush Read
Clean Write

Disk 2 Disk n

Figure 1: System Architecture.

3.2 Cache Manager
In our context, a cache manager interposes above the
disk device driver in the operating system to send re-
quests to either the flash device or the disk system di-
rectly, as it is with FlashTier [37]. It transparently con-
structs and manages an SSD-HDD hybrid storage sys-
tem in which SSD acts as an inclusive cache layer above
the disk system. The cache manager dictates which
data blocks are written to the SSD cache through the
adopted cache replacement policy, like Least-Recently-
Used (LRU) or First-In-First-Out (FIFO). It supports two
cache modes: Write-through and Write-back. In Write-
through mode, on every write to the SSD cache, the
cache manager also persists the data to the disk system
before it reports write completion, which guarantees con-
sistence at any time. In Write-back mode, the cache man-
ager may write to the SSD cache without updating the
disk system, causing dirty data in the cache. Cached
blocks are flushed to the disk system for persistence at
a configurable rate, e.g., every 5 minutes. For a write re-
quest, when there is no enough space, the cache manager
evicts a victim block according to the replacement policy
to make room for the incoming write. For a read request,
the cache manager first consults the SSD. If it is not
present in the cache, the cache manager fetches the data

494  2014 USENIX Annual Technical Conference	 USENIX Association

from the underlying disk system and populates it into the
cache. By default, we assume Write-back mode in the
discussion of FlexECC, because Write-through is an ex-
treme scenario in which the whole cache space could be
safely CRC-protected. We implement the cache man-
ager based on FlashCache [37]. Specifically, we monitor
every triggering event that causes read or write operation
to the SSD cache, and forward the information to SSD
via extended access interfaces.

3.3 Extended Interfaces

Extending existing interfaces between neighboring lay-
ers to communicate useful information for various pur-
poses has been proposed in previous literature [28, 38].
Such extensions can be conveniently realized via lever-
aging the reserved or unused bits in the communication
protocols, e.g., SCSI protocol. In FlexECC, we use a
similar approach to pass information about cache behav-
iors to SSD to help its internal management. We propose
four extended access interfaces to capture different rea-
sons that cause accesses to the SSD, namely Dirty Write,
Host Read, Clean Write and Flush Read, which are indi-
cated in Figure 1. These interfaces are defined from the
perspective of the SSD cache device. We discuss each of
them as follows:

Dirty Write: a request to write a fresh data block
which has no backup copy in the disk system and thus re-
quires high reliability guarantee. New content generated
by upper-level applications are written into the cache de-
vice using this interface. In response to this operation,
the programmable memory controller designates BCH-
encoded pages to store the content.

Clean Write: a write request to write a clean data
block which has consistent backup copy in the back-end
storage. Block migrations originating from disk to cache,
e.g., due to a miss or populating corrupted pages, are ac-
complished through this interface. In response to this op-
eration, the programmable memory controller designates
CRC-protected pages to store the content.

Host Read: This interface is used to satisfy data reads
issued by applications. It corresponds to cache read hit.
Host Read data can be either BCH-encoded or CRC-
encoded, depending on its state when it is requested.

Flush Read: a read caused by flushing dirty data back
to the disk system due to releasing cache space or period-
ical time-out flushing down. Internally, FlexECC moni-
tors this operation and marks associated flash pages as
eligible to be free from BCH-encoded. During garbage
collection, the marked pages contained in victim blocks
are relocated to clean blocks using Clean Write interface.

In FlexECC, a data block could be in four states,
which are named HOST, BCH, CRC, and HDD, indicat-
ing when the block is in host memory, in a BCH-encoded

Host

BCH CRC

HDD

host read flush read
dirty write clean write
GC write

SSD Cache Device

Figure 2: Page Content State Transition Diagram. The
page content can be in the host memory (HOST), pro-
tected by BCH code (BCH), protected by CRC code
(CRC) or in the back-end storage (HDD). Read and write
are defined in respect to the cache device.

page, in a CRC-protected page and in back-end storage,
respectively. However, it should be noted that these four
states are not necessarily exclusive to one another. For
example, the same block can be in HDD and CRC states
simultaneously. The data block changes its state in re-
sponse to the operations applied to it. Figure 2 shows
the page state transition diagram with respect to the in-
terface operations. The GC write represented by dashed
arrow denotes the state transition of marked data pages
(by Flush Read) from BCH to CRC during garbage col-
lection.

3.4 Disk Scrubber

While CRC can guarantee the minimum reliability, due
to CRC’s inability to correct errors, corruptions occurred
to CRC-encoded pages may incur extraordinarily large
overhead, since accesses to corrupted pages have to be
satisfied by the back-end storage whose performance is
typically one order of magnitude slower than that of
the cache. To prevent such overhead severely impact-
ing performance, FlexECC regularly schedules a Scrub-
ber [31] process to verify the integrity of CRC-encoded
pages. The Scrubber is a two-step process. The first step
is a lightweight step which iteratively scans the CRC-
protected pages to verify their checksums. If any incon-
sistency is detected, the corresponding page is marked as
corrupted. The second step is to initiate a data migra-
tion process to replenish those corrupted pages found in
the first step. Depending on when the corrupted pages
are accessed, they could be forced to be fetched from
back-end storage on the access path to them, which could
cause significant performance overhead, or they could be
prefetched by Scrubber into the cache before they are
actually accessed. To minimize performance impacts,

USENIX Association 	 2014 USENIX Annual Technical Conference  495

we leverage the idleness in the workloads to launch the
scrubber process. Specifically, when the observed inter-
request interval Tinter is longer than a configured multiple
m of the time Tcrc taken by CRC verification, the Scrub-
ber performs the first step; when Tinter is longer than
the estimated time Tdisk taken by fetching a block from
the underlying disk system, the Scrubber performs the
second step to prefetch �Tinter/Tdisk� blocks. Migrated
blocks are written to the SSD cache via Clean Write in-
terface. In our evaluation, we set m to be 10, Tcrc equal
to the CRC encoding latency and Tdisk to be the average
disk access latency 1.5ms [37].

3.5 Garbage Collection
In SSDs, garbage collection (GC) process is executed to
reclaim flash space by erasing victim blocks and may
bring about significant performance impacts because of
its interference with normal activities [16, 37]. The GC
overhead mainly comes from consolidating valid pages
from victim blocks to clean blocks and erasing victim
blocks. FlexECC employs a slightly modified greedy al-
gorithm to perform GC. As it is with the normal greedy
algorithm [2], FlexECC also selects the block which
has the highest cleaning efficiency, i.e, the block con-
tains the most invalid pages within it, as the victim
block. When migrating the valid pages, CRC-protected
pages are relocated to CRC-protected pages, while BCH-
encoded pages which have been previously marked out
by Flush Read are rewritten to elsewhere using Clean
Write (the “GC write” operation in Figure 2) and the
remaining BCH-encoded pages are again relocated to
BCH-encoded pages. Due to the discrepancies in de-
coding latency between CRC-protected pages and BCH-
encoded pages, the GC process in FlexECC consumes
less time than that in conventional SSD. The more CRC-
protected pages there are in the victim block, the shorter
the GC process would be. The shortened GC process
helps improving the overall performance.

3.6 Putting Them All Together
Summarizing the above discussions, we are able to ar-
rive at the conclusion of how a request is handled by
FlexECC. First, FlexECC determines the type (read or
write) of the arriving request, and then determines which
code scheme is applied to the target page. Reading un-
corrupted CRC-protected page is straightforward, while
reading corrupted CRC-protected page has to be satis-
fied by visiting the underlying disk if the page has not
been brought in the cache beforehand by the Scrubber.
A clean write is destinated to a CRC-protected page,
and a dirty write is destinated to a BCH-encoded page.
Equation 6 and Equation 7 give the estimated read la-

tency Tr and write latency Tw, respectively. In the equa-
tions, Rcrc, Rbch and Rdisk denote the latencies of read-
ing a CRC-protected page, reading a BCH-encoded page
and reading a block from disk, respectively. Similarly,
Wcrc and Wbch denote the write latencies of writing a
CRC-protected page and writing a BCH-encoded page,
respectively. ξ is the corruption probability of a flash
page which is relevant to the flash memory RBER, soft-
ware errors, etc. η is the probability of reading a CRC-
protected page and γ is the probability of writing a CRC-
protected page. The values of η and γ are dependent on
the cache manager configuration (e.g., replacement pol-
icy, flushing interval, etc.) and the features of workloads.

Tr = (1−ξ)(ηRcrc +(1−η)Rbch)+ξ Rdisk (6)

Tw = γWcrc +(1− γ)Wbch (7)

4 Experimental Evaluation

4.1 Evaluation Methodology

To verify the effectiveness of FlexECC, we have imple-
mented a prototype and conducted comprehensive eval-
uations. The evaluations consist of two steps. First,
we add a monitor into the Flashcache [37] to track the
cache block behaviors. The monitor outputs block ac-
cess traces having the interface operations defined in
Section 3.3. Then we use those traces to drive Flex-
ECC which is implemented based on an SSD simula-
tor [2]. We use Filebench [23] to generate four repre-
sentative workloads, Fileserver, Webserver, Mailserver,
OLTP and two micro-workloads, R 75 and R 90, both
of which are read-intensive workloads having 75% and
90% reads, respectively. Each of the workloads runs for
30 minutes on a Flashcache-created hybrid storage sys-
tem comprising of a 1TB disk as the back-end storage
and a 250GB PCI-e SSD as a cache. The cache space
and working set sizes are set to 30GB and 360GB, re-
spectively. The write-back cache mode and LRU re-
placement algorithm are used. Table 1 summarizes the
traces characteristics.4 We assume protection granular-
ity is page-based and the ECC redundancy information
is stored in the spare region of each page. Table 2 lists
the main relevant operational latencies. We simulate an
8-chip 60GB SSD with 15% overprovisioning space and
set ioscale to 100 to slow down replaying those too-
intensive traces(they are collected on a PCI-E SSD). In
addition, we enable the copy-back operation when per-
forming garbage collection within the SSD.

496  2014 USENIX Annual Technical Conference	 USENIX Association

Table 1: Trace Characteristics
File Web Mail OLTP R 75 R 90

READ 15.2% 17.8% 21.9% 8.6% 75% 90%
WRITE 84.8% 82.2% 78.1% 91.4% 25% 10%

Table 2: Operational Latencies
Page Read 25µs CRC Encoding 0.8µs
Page Write 200µs CRC Decoding 0.8µs
Block Erase 1.5ms BCH Encoding 0.8µs

BCH Correct Dec. 5µs BCH Corrupted Dec. 10µs

4.2 Performance Comparison
In this section, we report the workloads average request
response time to demonstrate the overall performance
improvement of FlexECC over conventional SSD which
is armed with regular BCH schemes. In the figures, these
two kinds of devices are denoted as FlexECC and BCH-
SSD, respectively. Figure 3 shows the comparison re-
sults. As it is clearly shown in Figure 3, FlexECC con-
sistently improves the performance across all the tested
workloads relative to the traditional SSD armed with reg-
ular BCH scheme. Specifically, FlexECC improves per-
formance by 30.2%, 30.1%, 30.8%, 28.5%, 49% and
63.5% for FileServer, MailServer, WebServer, OLTP,
R 75 and R 90, respectively. Generally, read-intensive
workloads benefit more from FlexECC than other work-
loads primarily due to the reduced page decoding latency
associated with every CRC-encoded page reading, which
is evidenced by the fact that the average read response
time has been reduced by averagely around 35% and the
shortened garbage collection process, which is further
investigated in the next subsection. Unsurprisingly, the
write response time exhibits only marginal improvement
because the CRC encoding overhead is equal to that of
BCH encoding. Figure 4 shows the response time CDF
comparisons for workloads FileServer, MailServer, Web-
Server, OLTP. It is observed from the figures that each
workload has a certain percentage of requests (covered
by the visible red line) that have smaller response time
in FlexECC than in BCH-SSD. Those percentages are
nearly equal to the read percentages of the workloads
(see Table 1), demonstrating the read requests serving
have been speeded up.

It is worth noting that the overall performance im-
provement is a combined outcome, which means even
though we are only able to achieve about 25% perfor-
mance gain for individual page decoding by replacing
BCH with CRC, we have seen more than 30% perfor-
mance improvement for the workloads. The reason is
that the shortened page reading and reduced garbage col-
lection can also alleviate resource contention (e.g., re-
duce request queuing time) and thus further improves

performance.

File Mail Web OLTP R_75 R_90
0

100

200

300

Workloads

Av
er

ag
e

R
es

po
ns

e
Ti

m
e(

us
)

BCH-SSD

FlexECC

Figure 3: Workloads Average Response Time.

4.3 Garbage Collection
Garbage collection (GC) in SSDs affects performance
because it may interfere with ongoing workloads. It
spends time in reading out validate pages in victims
blocks, writing them to clean blocks and erasing victim
blocks. Generally, The shorter time the garbage collec-
tion process takes, the less negative impacts it imposes on
performance. In our current FlexECC implementation,
we use the greedy algorithm for selecting victim blocks.
The victim blocks may contain CRC-protected pages and
BCH-encoded pages. The more CRC-encoded blocks
FlexECC garbage collects, the faster it migrates valid
pages to clean blocks. Figure 5 shows the total clean-
ing time comparison. From the figure, we notice that
compared to BCH-SSD, FlexECC reduces an impres-
sive amount of total cleaning time, up to 21.8%, 21.8%,
21.7%, 21.7% and 17.8% for FileServer, MailServer,
WebServer, OLTP, and R 75, respectively, even though
they have recycled the same number of victim blocks,
which are 208829, 215556, 218868, 197455 and 36189,
respectively. It is worth noting that the workload R 90 is
not shown in that figure because its total cleaning time
is 0. Unlike the average response time, read-intensive
workloads do not exhibit the most cleaning time sav-
ings because there are fewer page migrations due to the
lack of workload writes and associated erasures. Table 3
gives more explanations on the performance gains and
garbage collection time reduction, by listing the number
of reading BCH-encoded pages (BCH READ), reading
CRC-protected pages (CRC READ) from the requests
and moving CRC-protected pages (CRC MOVED),
transforming BCH-encoded to CRC-protected pages
(BCH2CRC) during GC. From the table, we note that
read-intensive workloads’ performance gains are mainly
attributed to the reduced decoding latency rather than
saved cleaning time.

USENIX Association 	 2014 USENIX Annual Technical Conference  497

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

Response Time(ms)

Cu
mu

lat
ive

 D
ist

rib
ut

ion
 F

un
cti

on
(C

DF
)

File Response Time CDF

FlexECC
BCH-SSD

(a) File CDF

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

Response Time(ms)

Cu
mu

lat
ive

 D
ist

rib
ut

ion
 F

un
cti

on
(C

DF
)

Mail Response Time CDF

FlexECC
BCH-SSD

(b) Mail CDF

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

Response Time(ms)

Cu
mu

lat
ive

 D
ist

rib
ut

ion
 F

un
cti

on
(C

DF
)

Web Response Time CDF

FlexECC
BCH-SSD

(c) Web CDF

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

Response Time(ms)

Cu
mu

lat
ive

 D
ist

rib
ut

ion
 F

un
cti

on
(C

DF
)

OLTP CDF

FlexECC
BCH-SSD

(d) OLTP CDF

Figure 4: Workloads Response Time Cumulative Distribution Function (CDF) Comparison.

Table 3: FlexECC Page Statistics
File Mail Web OLTP R 75 R 90

BCH READ 1,517,326 2,420,758 1,899,771 760,480 272,948 8,874,561
CRC READ 5,191 12,303 6,435 1,265 7,247,563 146,982

CRC MOVED 3,720,833 3,741,430 3,725,016 3,716,391 1,420,582 0
BCH2CRC 48,501 93,955 57,188 46,688 726 0

File Mail Web OLTP R_75
0

500

1000

1500

2000

2500

Workloads

To
ta

l C
le

an
in

g
Ti

m
e(

se
c)

BCH-SSD

FlexECC

Figure 5: Total Cleaning Time Comparison.

4.4 Performance Under Faulty Conditions

In this section, we compare the performance under faulty
conditions. For simplicity but without loss of generality,
we introduce errors to flash pages according to specific
raw bit error rates (RBER). In more detail, given a spe-
cific RBER, we assume that the every 1

RBER th bit is cor-
rupted and the page contains this corrupted bit is consid-
ered erroneous. Corruptions could occur to both CRC-
pages and BCH-pages. We also assume faulty pages only
impact reads, because writes are inherently indirected at
the FTL layer and thus bypass faulty pages. If the cor-
rupted pages is CRC-protected, then reading it must be
serviced by accessing the underlying disk, otherwise it is
assumed to be corrected via BCH decoding.

Figure 6 shows the normalized average response
time relative to BCH-SSD without errors for Fileserver

0

0.2

0.4

0.6

0.8

1

Different Faulty Conditions With Various RBER

BCH-SSD FlexECC

10^-91X10X100X1000X

Figure 6: File Performance Under Faulty Conditions.

workload. As demonstrated in the figure, even un-
der faulty conditions, FlexECC still outperforms BCH-
SSD in error-free conditions, achieving an average 20%
improvement. This is because the performance gains
brought by partially replacing BCH-encoded with CRC-
protected pages and the Scrubber prefetching dwarf the
overhead associated with handling accesses to corrupted
pages. The statistics in Table 4 gives an in-depth expla-
nation regarding the behind reasons. It lists the statistics
for FileServer, R 75 and R 90 workloads. We can make
the following observations. First, for write-intensive
workloads (i.e., Fileserver) there is almost no disk ac-
cesses. That’s because write requests postpone the vis-
its to corrupted pages and thus increase their probabil-
ity of being prefetched by Scrubber. For read-intensive

498  2014 USENIX Annual Technical Conference	 USENIX Association

Table 4: Corruption Related Statistics When RBER=10−7

Workloads File R 75 R 90 Notes
Corruptions 4107 4107 4107 # of corruptions introduced during running
Disk Access 0 8 7 # of disk accesses

Prefetched 2720 3917 4024 # of corrupted pages prefetched by scrubber
BCH Decoded 195 34 10 # of corrected pages via BCH decoding

workloads, there are disk accesses happening, because
the corrupted pages would be visited with a high proba-
bility. Second, the number of disk access is rather small,
because most corrupted pages have been prefetched in
advance, which illustrates the Scrubber is efficient in
leveraging workload idleness. Third, the high numbers
of prefetched pages of R 75 and R 90 are attributed to
the fact that they contain a high percentage of CRC-
pages, which is also evidenced by the dominance of
CRC READ and CRC MOVED in Table 3. It should be
noted that the sum of Disk Access, Prefetched and BCH
Decoded is not equal to Corruptions, since there could
be corrupted pages that have not yet been prefetched or
corrected.

5 Related Work

Flash-based SSDs have been extensively researched as a
cache due to their widespread deployment in HDD-SSD
hybrid storage systems. Kgil et al. [21] propose to par-
tition the NAND flash cache space into read and write
caches and employ a programmable flash memory con-
troller to improve performance and reliability. They also
utilize CRC within the cache device, but in a comple-
mentary way to reduce BCH’s false positives, as opposed
to our replacement of BCH for clean pages. Yang et
al. [45] propose to improve SSD cache endurance via re-
ducing media writes and erases. Koller et al. [22] present
a study discussing write policies and consistency prob-
lems of SSD cache deployed in networked environment.
More recently, Holland et al. [18] explore the design
space of flash as a cache in the storage client side instead
of server side and make several interesting findings. Al-
brecht et al. [4] present Janus, a cloud-scale distributed
file system that is actively-used in Google Inc. In their
paper, they formulate and solve an optimization problem
to determine the flash cache allocation to workloads ac-
cording to their respective cacheability and conclude that
flash storage is a cost-effective complement to disks in
data centers. These works all use flash-based SSD as a
cache without taking into account synergistic optimiza-
tions. Our proposed FlexECC expands the design space
from a new dimension and could be integrated into these
systems to further improve the cache performance.

As flash technology scales, the reliability issue associ-

ated with increasing flash memory bit error rate and the
required error correction code have specially received re-
search interests. Mielke et al. [29] conduct a comprehen-
sive study of bit error rate of MLC SSDs from different
manufacturers. Grupp et al. [15] observe a trend of de-
creasing performance and reliability. Observing ECC is
under-utilized most of the time, especially when SSDs
are in their early usage stage, Pan et al. [33] propose
to speed up writes and tolerate more defective cells by
fully exploiting ECC’s capability. Taking advantage of
the retention time gap between specification and actual
requirements, Liu el al. [25] propose to improve write
performance and/or reduce ECC overhead by relaxing
retention time. Wu et al. [44] propose to adaptively use
different ECCs according to workloads to avoid consis-
tently using strong ECC. Similarly, Cai et al. [6] suggest
a technique called Correct and Refresh to avoid using
strong ECC. Their idea is to periodically refresh charges
in memory cells to reduce the dominant retention errors
due to loss of charges. The prolonged ECC decoding la-
tency problem associated with advanced ECC schemes in
modern SSDs has recently been observed by Zhao [49].
In their work, they suggest effective methods to reduce
the decoding latency of LDPC codes. While each of
these works tries to make a preferential trade-off toward
performance, reliability, or cost when designing ECC
schemes for flash memory, our work differs from them
in that FlexECC is cache-oriented and can safely get rid
of ECC for clean flash pages.

Relaxing ECC for performance and/or energy pur-
poses has also been explored in the memory systems.
Yoon et al. [46, 47] suggest a two-tiered error protec-
tion mechanism for last-level cache. The tier-1 code is
located with the protected cache line and only provides
error detection, while the tier-2 code is stored on off-chip
DRAM. In this scheme, the ECC consumes limited on-
chip SRAM resource, but is able to provide arbitrarily
strong tier-2 protection. Based on the observations that
in low-power operating mode different cache lines ex-
hibit different reliability characteristics, Alameldeen et
al. [3] propose a variable-strength ECC scheme, in which
cache lines having zero or single error are protected by
fast and simple ECC, while cache lines having multiple
errors are protected by stronger ECC.

The most relevant work to FlexECC is SSC [37] in

USENIX Association 	 2014 USENIX Annual Technical Conference  499

that SSC also proposes a cache-oriented SSD architec-
ture and extends interfaces between applications and the
device. However, the performance improvement of SSC
mainly comes from the elimination of page migrations
during garbage collection, while FlexECC benefits from
reduced decoding latency. A potential shortcoming of
SSC is that it might exhibit a high miss rate if the silently
evicted pages are requested again in the future. By con-
trast, FlexECC only directs accesses to corrupted blocks
to beneath storage system. Moreover, in FlexECC, every
page read benefits from the reduced decoding latency. It
should be interesting to quantitatively compare FlexECC
with SSC, as planned in our future work.

6 Conclusions and Future Work

This paper presents FlexECC, a novel high-performance
cache-oriented MLC SSD. It flexibly applies BCH or
CRC to incoming page writes according to their stor-
age requirement information which is conveyed down by
an upper-level cache manager. We have given a theo-
retic analysis on the decoding latency of BCH and CRC
and found the gap in their decoding latencies. Experi-
mental results with a variety of workloads have shown
that FlexECC is capable of improving the overall cache
performance by an impressive extent and save the total
amount of cleaning time, without compromising relia-
bility and consistency. As part of the future work, we
plan to further improve FlexECC’s cache performance
by leveraging the space that is otherwise consumed by
ECC redundant information as additional effective cache
space. In addition, we also plan to investigate the en-
ergy savings by replacing off-the-shelf SSD caches with
FlexECC, especially in a cloud environment. We believe
in light of the trend of increasing flash memory RBER
and widespread use of MLC SSD as caches, it could be
significantly beneficial to deploy FlexECC in practical
systems.

Acknowledgment

We would like to thank the anonymous reviewers for
their valuable feedbacks and constructive suggestions.
This research is partially supported by the U.S. Na-
tional Science Foundation (NSF) under Grant Nos. CCF-
1102605, CCF-1102624, and CNS-1218960, and the Na-
tional Basic Research Program (973 Program) of China
under Grant No.2011CB302305, the National Natural
Science Foundation of China under Grant No. 61232004.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding
agencies.

References
[1] Introduction to EMC VFCache. White paper.

http://www.emc.com/collateral/hardware/white-papers/h10502-
vfcache-intro-wp.pdf, February 2012.

[2] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., AND
DAVIS, J. D. Design Tradeoffs for SSD Performance. In Pro-
ceedings of the USENIX ATC (2008).

[3] ALAMELDEEN, A. R., WAGNER, I., CHISHTI, Z., WU, W.,
WILKERSON, C., AND LU, S.-L. Energy-Efficient Cache De-
sign Using Variable-Strength Error-Correcting Codes. In Pro-
ceedings of ISCA (2011).

[4] ALBRECHT, C., MERCHANT, A., STOKELY, M., WALIJI, M.,
LABELLE, F., COEHLO, N., SHI, X., AND SCHROCK, C. E.
Janus: Optimal Flash Provisioning for Cloud Storage Workloads.
In Proceedings of the 2013 USENIX Annual Technical Confer-
ence(USENIX ATC) (2013).

[5] BADAM, A., AND PAI, V. S. SSDAlloc: Hybrid SSD/RAM
Memory Management Made Easy. In Proceedings of NSDI
(2011).

[6] CAI, Y., YALCIN, G., MUTLU, O., HARATSCH, E. F.,
CRISTAL, A., UNSAL, O. S., AND MAI, K. Flash Correct-and-
Refresh: Retention-Aware Error Management for Increased Flash
Memory Lifetime. In Proceedings of the 30th IEEE International
Conference on Computer Design(ICCD) (2012).

[7] CHIEN, A. A., AND KARAMCHETI, V. Moore’s Law: The First
Ending and a New Beginning. IEEE Computer Magazine 46, 12
(December 2013), 48–53.

[8] CHO, J., AND SUNG, W. Efficient Software-Based Encoding and
Decoding of BCH Codes. IEEE Transations on Computers 58, 7
(July 2009), 878–889.

[9] CHOI, H., LIU, W., AND SUNG, W. VLSI Implementation of
BCH Error Correction for Multilevel Cell NAND Flash Memory.
IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 18, 5 (April 2010), 843–847.

[10] C.ZAMBELLI, M.INDACO, M.FABIANO, CARLO, S.,
P.PRINETTO, P.OLIVO, AND D.BERTOZZI. A Cross-Layer
Approach for New Reliability-Performance Trade-Offs in
MLC NAND Flash Memories. In Proceedings of the Design
Automation & Test in Europe Conference & Exhibition(DATE)
(2012).

[11] DEAL, E. Trends in NAND Flash Memory Error Correction.
Cyclic Design White Paper (2009).

[12] DENG, Y., LU, L., ZOU, Q., HUANG, S., AND ZHOU, J. Mod-
eling the Aging Process of Flash Storage by Leveraging Semantic
I/O. Future Generation Comp. Syst. 32 (March 2014), 338–344.

[13] DENG, Y., AND ZHOU, J. Architectures and Optimization Meth-
ods of Flash Memory Based Storage Systems. Journal of Systems
Architecture 57, 2 (February 2011), 214–227.

[14] GRUPP, L. M., CAULFIELD, A. M., COBURN, J., AND SWAN-
SON, S. Characterizing Flash Memory: Anomalies, Observa-
tions, and Applications. In Proceedings of MICRO (2009).

[15] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The Bleak Fu-
ture of NAND Flash Memory. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies(FAST) (2012).

[16] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The Harey
Tortoise: Managing Heterogeneous Write Performance in SSDs.
In Proceedings of the 2013 USENIX Annual Technical Confer-
ence(USENIX) (2013).

[17] GUNAWI, H. S., PRABHAKARAN, V., KRISHNAN, S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Improving
File System Reliability with I/O Shepherding. In Proceedings of
SOSP (2007).

500  2014 USENIX Annual Technical Conference	 USENIX Association

[18] HOLLAND, D. A., ANGELINO, E., WALD, G., AND SELTZER,
M. I. Flash Caching on the Storage Client. In Proceedings of the
USENIX ATC (2013).

[19] HUANG, P., WU, G., HE, X., AND XIAO, W. An Aggressive
Worn-out Flash Block Management Scheme to Alleviate SSD
Performance Degradation. In Proceedings of Eurosys (2014).

[20] HUANG, P., ZHOU, K., WANG, H., AND LI, C. BVSSD: Build
Built-in Versioning Flash-based Solid State Drives. In Proceed-
ings of SYSTOR (2012).

[21] KGIL, T., ROBERTS, D., AND MUDGE, T. Improving NAND
Flash Based Disk Caches. In Proceedings of the 35th Annual In-
ternational Symposium on Computer Architecture(ISCA) (2008).

[22] KOLLER, R., MARMOL, L., RANGASWAMI, R., SUNDARARA-
MAN, S., TALAGALA, N., AND ZHAO, M. Write Policies for
Host-side Flash Caches. In Proceedings of the 11th USENIX Con-
ference on File and Storage Technologies (FAST) (2013).

[23] LEE, E., BAHN, H., , AND NOH, S. H. Unioning of the Buffer
Cache and Journaling Layers with Non-volatile Memory. In Pro-
ceedings of FAST (2013).

[24] LIN, S., AND COSTELLO, D. J. Error Control Coding(2nd Edi-
tion). Prentice Hall,Inc., 2004.

[25] LIU, R.-S., YANG, C.-L., AND WU, W. Optimizing NAND
Flash-Based SSDs via Retention Relaxation. In Proceedings of
FAST (2012).

[26] LU, Y., SHU, J., AND ZHENG, W. Extending the Lifetime of
Flash-based Storage through Reducing Write Amplification from
File Systems. In Proceedings of FAST (2013).

[27] LUO, T., MA, S., LEE, R., ZHANG, X., LIU, D., AND ZHOU,
L. S-CAVE: Effective SSD Caching to Improve Virtual Ma-
chine Storage Performance. In Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation
Techniques(PACT) (2013).

[28] MESNIER, M., CHEN, F., LUO, T., AND AKERS, J. B. Dif-
ferentiated Storage Services. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles(SOSP) (2011).

[29] MIELKE, N., MARQUART, T., WU, N., KESSENICH, J., , BEL-
GAL, H., SCHARES, E., AND TRIVEDI, F. Bit Error Rate in
NAND Flash Memories. In Proceedings of IEEE International
Reliability Physics Symposium(IRPS) (2008).

[30] NARAYANAN, D., THERESKA, E., DONNELLY, A., ELNIKETY,
S., AND ROWSTRON, A. Migrating Server Storage to SSDs:
Analysis of Tradeoffs. In Proceedings of the 4th ACM European
conference on Computer systems(Eurosys) (2009).

[31] OPREA, A., AND JUELS, A. A Clean-Slate Look at Disk Scrub-
bing. In Proceedings of the 8th USENIX conference on File and
storage technologies(FAST) (2010).

[32] PAN, Y., DONG, G., WU, Q., AND ZHANG, T. Quasi-
Nonvolatile SSD: Trading Flash Memory Nonvolatility to Im-
prove Storage System Performance for Enterprise Applications.
In Proceedings of the 18th IEEE International Symposium on
High Performance Computer Architecture(HPCA) (2012).

[33] PAN, Y., DONG, G., AND ZHANG, T. Exploiting Memory De-
vice Wear-Out Dynamics to Improve NAND Flash Memory Sys-
tem Performance. In Proceedings of the 9th USENIX Conference
on File and Stroage Technologies(FAST) (2011).

[34] PARK, S., AND SHEN, K. FIOS: A Fair, Efficient Flash I/O
Scheduler. In Proceedings of FAST (2012).

[35] PRITCHETT, T., AND THOTTETHODI, M. SieveStore: A Highly-
Selective, Ensemble-level Disk Cache for Cost-Performance. In
Proceedings of ISCA (2010).

[36] REN, J., AND YANG, Q. I-CASH: Intelligently Coupled Array
of SSDs and HDDs. In Proceedings of HPCA (2011).

[37] SAXENA, M., SWIFT, M. M., AND ZHANG, Y. FlashTier: a
Lightweight, Consistent and Durable Storage Cache. In Proceed-
ings of Eurosys (2012).

[38] SAXENA, M., ZHANG, Y., SWIFT, M. M., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Getting Real: Lessons in
Transitioning Research Simulations into Hardware Systems. In
Proceedings of FAST (2013).

[39] SHEN, K., AND PARK, S. FlashFQ: A Fair Queueing I/O Sched-
uler for Flash-Based SSDs. In Proceedings of the 2013 USENIX
Annual Technical Conference(USENIX ATC) (2013).

[40] STRUKOV, D. The Area and Latency Tradeoffs of Binary Bit-
parallel BCH Decoders for Prospective Nanoelectronic Memo-
ries. In Proceedings of Fortieth Asilomar Conference on Signals,
Systems and Computers(ACSSC) (2006).

[41] SUN, F., ROSE, K., AND ZHANG, T. On the Use of Strong BCH
Codes for Improving Multilevel NAND Flash Memory Storage
Capacity. In Proceedings of the IEEE Workshop on Signal Pro-
cessing Systems(SiPS): Design and Implementation (2006).

[42] UNGUREANU, C., DEBNATH, B., RAGO, S., AND ARANYA, A.
TBF: A Memory-Efficient Replacement Policy for Flash-based
Caches. In Proceedings of the IEEE 29th International Confer-
ence on Data Engineering (ICDE) (2013).

[43] WU, G., AND HE, X. Reducing SSD Read Latency via NAND
Flash Program and Erase Suspension. In Proceedings of the 10th

USENIX conference on File and Storage Technologies(FAST)
(2012).

[44] WU, G., HE, X., XIE, N., AND ZHANG, T. DiffECC: Improv-
ing SSD Read Performance Using Differentiated Error Correc-
tion Coding Schemes. In Proceedings of the 18th IEEE Interna-
tional Symposium on Modeling, Analysis & Simulation of Com-
puter and Telecommunication Systems(MASCOTS) (2010).

[45] YANG, J., PLASSON, N., GILLIS, G., TALAGALA, N., SUN-
DARARAMAN, S., AND WOOD, R. HEC: Improving Endurance
of High Performance Flash-based Cache Devices. In Proceed-
ings of the 6th Annual International Systems and Storage Confer-
ence(SYSTOR) (2013).

[46] YOON, D. H., AND EREZ, M. Flexible Cache Error Protection
using an ECC FIFO. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis(SC)
(2009).

[47] YOON, D. H., AND EREZ, M. Memory Mapped ECC: Low-
Cost Error Protection for Last Level Caches. In Proceedings of
the 36th Annual International Symposium on Computer Architec-
ture(ISCA) (2009).

[48] ZHANG, Y., SOUNDARARAJAN, G., STORER, M. W.,
BAIRAVASUNDARAM, L. N., SUBBIAH, S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Warming
up Storage-Level Caches with Bonfire. In Proceedings of FAST
(2013).

[49] ZHAO, K., ZHAO, W., SUN, H., ZHANG, T., ZHANG, X., AND
ZHENG, N. LDPC-in-SSD: Making Advanced Error Correction
Codes Work Effectively in Solid State Drives. In Proceedings of
FAST (2013).

Notes
1In context of cache, single bit detection capability of EDC can

typically fulfill the purpose, so our analyzed speedup is conservative.
2We have investigated Tm = λTa with varying λ (λ > 1) as well and

have reached the similar conclusion.
3In reality, it is more common to use a block as the granularity. For

simplicity, we assume page granularity.
4The characteristics are different from [23], because Flashcache has

bypassed non-4KB and large (more than 128KB) sequential requests
directly to HDD. All trace requests are 4KB in size.

