
This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

Missive: Fast Application Launch From an
Untrusted Buffer Cache

Jon Howell, Jeremy Elson, Bryan Parno, and John R. Douceur,
Microsoft Research

https://www.usenix.org/conference/atc14/technical-sessions/presentation/howell

USENIX Association 2014 USENIX Annual Technical Conference 145

Missive: Fast Application Launch From an Untrusted Buffer Cache

Jon Howell, Jeremy Elson, Bryan Parno, John R. Douceur
Microsoft Research, Redmond, WA

Abstract
The Embassies system [18] turns the web browser

model inside out: the client is ultra-minimal, and hence
strongly isolates pages and apps; every app carries its
own libraries and provides itself OS-like services. A typ-
ical Embassies app is 100 MiB of binary code. We have
found that the first reaction most people have upon learn-
ing of this design is: how can big apps start quickly in
such a harsh, mutually-untrusting environment?

The key is the observation that, with appropriate sys-
tem organization, the performance enhancements of a
shared buffer cache can be supplied by an untrusted com-
ponent. The benefits of sharing depend on availability
of commonality; this paper measures a hundred diverse
applications to show that applications indeed exhibit suf-
ficient commonality to enable fast start, reducing startup
data from 64MiB to 1MiB. Exploiting that commonal-
ity requires careful packaging and appropriate applica-
tion of conventional deduplication and incremental start
techniques. These enable an untrusted client-side cache
to rapidly assemble an app image and transfer it—via
IP—to the bootstrapping process. The result is proof that
big apps really can start in a few hundred milliseconds
from a shared but untrusted buffer cache.

1 Introduction
When a user installs a new desktop application, he

accepts the risk that the new app may compromise any
other app he uses. In contrast, web sites he visits are re-
sponsible for managing their own servers; a visit to a new
site doesn’t present a threat to the servers that run other
sites he uses. A site manager is better equipped than her
users to make security decisions about her server, and the
server’s isolation gives her the autonomy to effect those
decisions.

This benefit should accrue to the web as a whole, ex-
cept that the client side is bloated and vulnerable; thus
clicking a web link can be as risky as installing a desk-
top app. The Embassies project [18] proposed refactor-
ing the web client interface to isolate client-side apps as
effectively as servers are isolated in multitenant data cen-
ters, so that the site manager becomes autonomously re-
sponsible for her client code, too. We call this model the
“pico-datacenter” – the client becomes a hosting site for
mutually distrustful applications, providing no semantics

other than a VM-like container, IP and the thinnest UI in-
terface (each app paints raw pixels on its part of screen).

The Embassies design aims to mimic the relationships
among software components found in a shared data cen-
ter: each vendor enjoys strong isolation, retaining auton-
omy even as it communicates with other vendors. This
isolation promises to protect Embassies from the bloat
that afflicts prior client models; but it demands a truly
minimal host.

Unlike Embassies’ pure shared-nothing model,
though, existing web clients extract substantial per-
formance benefits from sharing. The host operating
system’s buffer cache and the browser’s HTTP object
cache share content across sites. The lumbering 100 MiB
browser process itself is shared, since it need not restart
for each new site the user visits. Many people’s first
reaction to the Embassies proposal is alarm at the idea
of shipping such big apps around; surely it must lead to
unbearably slow app launch times?

Surprisingly, such big apps can be started nearly as
quickly as a conventional web page. It is one thing to
make an abstract argument that it should be possible; the
aim of this paper is to decisively demonstrate so. This
paper shows that ideal isolation does not funamentally
conflict with good application-launch performance.

We construct a content cache that is untrusted (as un-
trusted as a random neighboring tenant in a shared data-
center), and yet enables mutually distrustful sites to share
content and reap the benefit of fast app launch, while us-
ing end-to-end cryptographic checks to protect their own
integrity. Essentially, we show that the OS buffer cache
and browser object cache can be evicted from the trusted
computing base (TCB) and replaced with an untrusted
cache that delivers similar performance benefits.

For the untrusted cache to be effective, there must be
commonality to exploit; we must demonstrate the perfor-
mance equivalent of many applications sharing a com-
mon browser infrastructure. This paper

• demonstrates that a hundred diverse applications ex-
hibit great commonality, enabling efficient transfers
and fast launches

• shows an integrated pipeline that packages, trans-
fers, caches, and launches large application images
in a secure manner.

• characterizes the sensitivity of performance to

146 2014 USENIX Annual Technical Conference USENIX Association

pipeline parameters, and
• demonstrates hot- and warm- app launch times

comparable to that of a conventional OS buffer
cache and shared library mechanisms (in which
apps are mutually trusting).

Missive is best motivated by the extreme minimality of
Embassies [18], but it applies more broadly. Other client
app delivery systems such as Tahoma [10], Xax [17],
Native Client [43], and Drawbridge [33] ship VMs or
large binary programs, and an untrusted cache would re-
duce their TCBs. VM images in any context are big, and
launch times can be slow [4, 24]. Fast launch is particu-
larly relevant for security applications that spawn a VM
per user [32] or per connection attempt [41].

2 Context
We focus on Missive’s applicability to the Embassies

client application environment [18], since it takes host
minimality to the extreme, making a shared cache partic-
ularly challenging.

2.1 Embassies Overview
With Embassies, apps are strongly isolated, communi-

cating with other apps and with the outside world only
via IP. The intent is to create an environment analo-
gous to the server app environment, where each vendor
is completely isolated from other vendors and exercises
full control over its own software stack: If a server app
is compromised, it is because the vendor chose a poor
library, misconfigured a firewall, or failed to patch its
software. No careless or ignorant user decision can be
blamed. By analogy, on an Embassies client, the user’s
decision to open a new app cannot compromise any other
app on the client, since the apps are as isolated as two
tenants on a hosting server. The simple communication
semantics of IP make it clear how a vendor protects it-
self: if a vendor’s software selection and administration
can protect its server-side software from attacks arriving
over the Internet, then the same follows for its Embassies
client software.

The Embassies model deviates from the server-side
model in a few respects. For example, it offers apps raw,
pixel-level access to the display for interactivity. How-
ever, the most important distinction is the workload; typ-
ical server software multiplexes many users over one in-
stallation of long-lived code and database. In contrast, at
the client, we expect the user to frequently switch context
between apps and to often launch altogether new apps
(analogous to clicking on links in a conventional web
browser). Worse, these apps are likely to be large: Rather
than a skinny JavaScript atop a big shared browser or a
small executable atop a dozen shared libraries, each app
is more like a standalone Virtual Machine (VM) image.
However, in pursuit of strong isolation, the Embassies

client platform aims for minimality, which obstructs con-
ventional performance optimizations that tightly couple
sharing of libraries and caches.

Indeed, the Embassies client omits facilities for a
buffer cache or wide area transfer (MIME, HTTP, or
even TCP). Missive fills that gap, showing how mutually-
untrusting applications can cooperate to exploit the shar-
ing opportunities that lead to good performance.

2.2 Embassies App Start
Figure 1 shows how an app starts on an Embassies

client. First, some invoking app A, perhaps one in which
the user has clicked a link, identifies a public key that
represents the target app B; it also fetches B’s signed boot
block. It is app A’s responsibility (not the client kernel’s)
to verify that it has found the correct principal (here it
uses DNSSEC).

Second, in steps 2 through 5, the kernel receives the
signed boot block, checks the signature, associates a
fresh process with the signature’s public key (B), and be-
gins executing the boot block in the new process. This is
the only phase whose shape is imposed by the Embassies
TCB.

Third, in steps 7 through 10, the untrusted cache gath-
ers the metadata and data required to assemble the image
for App B. None of these interactions require integrity
other than to avoid wasting the cache’s time.

Finally, the cache sends the entire image in a single
IPv6 jumbo packet into App B’s process. App B then
verifies the image’s integrity, for example, by checking
the image’s hash against a hash value included in the boot
block. Finally, App B transfers control to the code in the
image.

For communication between apps and to the greater
Internet, the client kernel provides only an untrusted IP
channel. The mapping of name to app key, fetching of
boot block, and fetching of image content are all built
from the IP primitive, making it easy to reason about iso-
lation.

The client kernel provides no storage; instead, it is as-
sumed that some anonymous vendor (e.g., Seagate) pro-
vides an untrusted, insecure storage app. The client ker-
nel does provide each application with a single secret
specific to the host and the app’s identity:

Kapp = PRFKhost
(IDapp).

That secret is only available to processes started from a
suitably-signed boot block. The secret enables the app to
convert untrusted storage into secure storage via encryp-
tion and cryptographic integrity checks, while requiring
the client kernel to store no per-app state.

These are all of the primitives Embassies offers for the
app-start process. Missive’s mission is to provide high
performance app starts from only these primitives. One

2

USENIX Association 2014 USENIX Annual Technical Conference 147

server/CDN/p2p

App A App B Cache App

open("App B")

BootBlockB
Signature()

(2) instantiate

(1) fetch boot

block

(7) acquire

metadata

(10) assemble

image

(8) load common

content

(9) fetch novel

content

(11) map image

into App B

(12) verify image

Embassies kernel

DNSsec server

BootBlockB

ImageB
ImB

(6) request file

Hash(ImageB)

(5) start process

at boot block

(4) create

process B

(3) check

signature

(13) execute image

Figure 1: App start process. To launch a new process for App B, App A fetches a signed boot block for B, the kernel verifies
the signature, the cache assembles the required full application image, and sends it to App B to execute. Dashed lines show control
flow. Heavy grey arrows show data flow. All data flows, other than the boot block passing through the kernel, are via IP.

package transmit launch

at client cache in app process

complete
zarfile

startup
zarfile

developer's
file system

startup
zarfile

at origin server

commonality

Figure 2: System diagram. The developer’s files that comprise the app image are packaged into a “zarfile”. The client cache
fetches the part of the zarfile required for app start, and the zarfile is delivered into an isolated process to launch the app.

naı̈ve approach would appoint a distinguished app ven-
dor to supply the trusted cache, but then to enjoy the per-
formance benefit of a shared cache, apps must trust the
cache vendor; it becomes an implicit part of the TCB.
Instead, Missive’s architecture lets every app exploit a
single shared cache, without trusting that cache.1

3 System Design
Missive comprises three steps (Figure 2): The pack-

aging step collects binary libraries and data files from a
developer’s machine into an image, called a zarfile. Files
are placed in the zarfile to expose sharing opportunities.
The transmission protocol transmits zarfiles across the
network; it is designed to minimize round trips, exploit
commonality to minimize bandwidth, and enable incre-
mental access. The launch procedure transfers a zarfile
from an untrusted cache into the booting app’s process,
with a focus on minimizing the startup latency.

3.1 Packaging
An Embassies app is completely specified by its ven-

dor. Thus, the vendor can configure the app on a devel-
opment machine using any available framework or tool.

1Missive does not prevent side channels: by probing the cache’s
response time, one app can learn about content accessed by others.

She might install required framework components, such
as a Python math library; she might carefully select a spe-
cific version of a subpackage (such as an audio rendering
library); and she might even hand-patch a component or
configuration file to fix a security vulnerability.

Once all of the components are in place, the vendor
runs the packaging tool, which enumerates the set of files
that comprise the app, including the app executable, data
files, libraries, and library OS components [17, 20, 33].
This is the complete application image. The tool also
captures a dynamic run of the application, identifying the
subset of the complete image necessary to bring the app
to a usable interactive state; this is the startup set. The
startup set is captured at sub-file granularity so that it
skips chaff such as symbols.

By identifying the startup set, Missive enables the de-
veloper to reduce the size (and increase the speed) of the
initial app transfer. After app launch, the remaining com-
ponents may be fetched from the complete image on de-
mand, or preemptively in the background, so that they
will be available when the client is disconnected.

Missive’s zarfile is a simple tar-like format. It specifies
a master index, string and data-chunk lookup tables, file
stat metadata, and file contents.

Below, we elaborate on the challenges involved in im-

3

148 2014 USENIX Annual Technical Conference USENIX Association

age capture and ensuring zarfile stability. The capture
process also honors memory layout constraints designed
for fast app start as described in §3.3.3.
3.1.1 Image Capture

Some tuning is required to extract a minimally-sized
image from a conventional POSIX development system.
For example, we found that the Gnome system-wide icon
cache may be 50 MB, but a single app may access only a
few kilobytes of icons from it; our packaging tool strips
the icon cache apart to avoid the waste. Similar tech-
niques could be applied (although we have not yet done
so) to strip unneeded code from shared libraries. (On the
other hand, leaving libraries untuned may enhance com-
monality; see §4.)
3.1.2 Image Stability

As §4 discusses in detail, a critical component of Mis-
sive’s good performance is detecting common content
shared between indifferent apps. To facilitate this detec-
tion, Missive’s packaging tool is aware of the block size
used during transmission (§3.2), and it strives to ensure
that small changes in file selection, file content, or file
length will produce zarfiles in which most blocks have
the same content and location.
Block Content Stability. In typical file-size distribu-
tions almost all files are small files, but a few large files
comprise almost all the bytes [2, 12, 36], and our file set
is no exception (Figure 3). The tail of tiny files makes
it impractical to give every small file its own block;
padding would expand the image by 2 − 10× (§5.2),
wasting too much physical memory.

Instead, Missive’s packager aligns large files—those
bigger than a block—on block boundaries to maximize
commonality detection, and it uses small files to fill in
the gaps left at the end of large files. While some extra
space still remains, in practice, the overhead of padding
in a zarfile is generally below 2% (§5.2). In wide-area
transit, the wasted bytes are compressed away, while the
effect on disk is negligible. In memory, the bytes are
moved cheaply by reference, so overall, the layout has
little performance penalty.

The benefit of this layout is that it makes it likely that,
if two zarfiles share many large input files, then they con-
tain proportionally many identical blocks. Furthermore,
a change in a small file affects only the block whose tail
it occupies. Thus, for each file different between two im-
ages, the zarfiles differ by � file len

block size� blocks.
In summary, the packaging tool ensures that two sim-

ilar zarfiles share almost all of their aligned blocks.
Therefore, launching an app similar to one already
cached requires transmitting bytes proportional only to
the amount the images differ.
Block Position Stability. The block-aligned layout pol-
icy described above is close to what we want, but it leaves

32 B 1 KB 32 KB 1 MB 32 MB

0.0
0.2
0.4
0.6
0.8
1.0

cu
m

. f
ra

c.
 fi

le
s

>
x

by
te

s

most files < 2-8 KB

32 B 1 KB 32 KB 1 MB 32 MB
file size

0.0
0.2
0.4
0.6
0.8
1.0

cu
m

. f
ra

c.
 b

yt
es

in
 fi

le
s
>
x

by
te

s

most bytes in files > 1-9 MB

Posix-complete
Embassies-initial
Posix-initial

Figure 3: File size distribution. All of our experimental data
sets (details in §4.1) obey the typical distribution: almost all
files are small, and almost all bytes belong to the few big files.

three problems. First, a change in the size of a big file or
the set of small files may cascade, changing all of the
tail-gap assignments for the small files. Second, per-
turbing the file order perturbs all of the Merkle hashes
in the transmission phase (§3.2), foiling opportunities to
share Merkle subtrees.

Third, and most importantly, since we strive so enthu-
siastically for minimality, we cannot assume the kernel
supports a gather-send operation. Yet we still wish
to extract maximum performance. Absent gather, if two
zarfiles share most of their blocks, but those blocks are
reordered, construction will require the cache to copy
all of the blocks into the correct offset in the outgoing
message. For our parameters, the copying alone can add
100–150 ms to startup latency. When we provide posi-
tion stability, the cache exploits it in the warm case by
assembling the first zarfile in a buffer with some slack
memory at the end. Then, when a request for the second
zarfile arrives, the cache need only patch the blocks that
differ from the first zarfile.

To foster position stability, we refine Missive’s place-
ment algorithm to produce zarfiles that not only share
blocks with common content, but whose common blocks
will appear at common offsets. Let t be the total size of
the input files, i.e., the minimum size of the output. Let
u be the nearest power of two greater than t, and l be the
nearest power of two less than t. Pick a random seed,
and hash each input file f along with seed, producing
hf = hash(f ||seed). If hf mod u < t, then the file’s
preferred placement is hf mod u; otherwise, the pre-
ferred placement is hf mod l. We truncate all preferred
placements to block boundaries to produce, for each file,
a preferred block-aligned location in the range [0, t). For
each file, we evaluate the placement expression with ten
seeds to produce a prioritized list of preferred locations.

4

USENIX Association 2014 USENIX Annual Technical Conference 149

leaf hashes

interior hashes

root hash

metadata

file size
flags

data
block

data
block

[3] [4] [5]

[1] [2]

[0]

file hash

Figure 4: Image file protocol representation. Each arrow
represents an input to a hash operation. The Missive transmis-
sion protocol represents a zarfile with a conventional Merkle
tree, plus the metadata required to define the tree’s dimensions.
After learning the metadata, the receiver can query hashes and
data blocks in any order, and verify them incrementally.

The input files are placed into the zarfile greedily, by
descending file size. If a file collides with a prior place-
ment, we try its lower-priority placements. If no pre-
ferred placements work, the file is dumped into a left-
over bucket. After every file’s preferred placements have
been attempted, the leftover files are placed into gaps or
concatenated to the end of the file.

Intuitively, the algorithm ensures that: (a) A change to
a small file will, due to the greedy placement order, make
small changes to the overall zarfile, since most bytes have
already been placed by the time the change impacts the
algorithm. (b) A change to a large file perturbs the al-
gorithm early, but only affects that file and those later
files whose placement depend on a collision created or
eliminated by the change. This contrasts with the basic
greedy algorithm where any change affects every later
placement decision. Conversely, a change to a large file
that preserves its length will not perturb the basic algo-
rithm, but will perturb the position-stable algorithm.

3.2 Transmission
Once the zarfile is defined, it must be fetched to the

client; this occurs using well-understood techniques: To
preserve the integrity of the vendor’s app image spec-
ification, zarfiles are specified by content. To exploit
commonality, the content is specified by hashing blocks;
blocks already cached at the receiver because they’re
common with other apps do not require transmission.
Finally, to enable the app to fetch subsets of the zarfile
(such as fetching the startup set from inside the com-
plete zarfile), the block hashes are arranged into a Merkle
tree [27]. The file is self-certified [16] by the file hash,
i.e., a hash of the Merkle tree root and the file metadata
(Figure 4). The metadata consists of the file length and a
flag indicating whether the file contents should be inter-
preted as a directory.

The Missive transmission protocol is packet-based and
incrementally self-verifying (Figure 5). In the first round,
the receiver asks for a file by its file hash, and receives

file hash:
size:

hashes:

data:

0fd7e3...
0x371b000
[0]: bf3e08...
[3]: 33c92a...
...
[0x0 -- 0x10000)
5A415246...

file hash:
size:

0fd7e3...
0x371b000

file hash:
hashes?

data?

0fd7e3...
[0,3,...]
[0x0 -- 0x10000)

file hash:
size?

0fd7e3...

re
ce

iv
e
r

(d
o
w

n
st

re
a
m

 c
a
ch

e
 o

r
la

u
n
ch

in
g
 a

p
p
)

u
n
tr

u
st

e
d
 u

p
st

re
a
m

 c
a
ch

e

Figure 5: Transmission protocol. The meaning of each reply
packet is independent of the query that spawned it, and each
reply contains enough information to verify its contents.

the file metadata; because of the structure of the file hash,
it can immediately verify the reply. The receiver deter-
mines the data flow, so in each later round, the receiver
may request any subset of the Merkle node hashes by
their tree indices, and may request any byte range of the
file contents.

A bandwidth-constrained receiver may learn the tree
one level at a time to avoid fetching even the Merkle
hashes of subtrees it already knows; each layer can be
incrementally verified. A receiver desiring to minimize
round trips will instead ask for all the required leaf
hashes in one step, plus any Merkle siblings required to
compute all the required interior nodes. Section 5.1 an-
alyzes the trade-off. Our implementation uses the latter
algorithm.

Once the leaf hashes are known, the receiver can fetch
actual file data, verifying that the data is sane at block
granularity. We use a 4 KiB block size, which has rea-
sonable overheads (§5.2).

Because the protocol is receiver-directed, it adapts to
diverse scenarios. The receiver chooses which and how
much hash and file data arrive in each reply, and hence
adapts to networks with varying MTU. It detects integrity
failures immediately for metadata and Merkle hashes,
and after receiving each block’s worth of file data, so it
can quickly reject faulty senders. The receiver selects
whether to compress file data, based on whether network
bandwidth or receiver CPU is scarcer. When an app re-
ceives transmissions from a cache on the same host, we
use UDP to keep the boot block tiny; in a cache receiving
transmissions across the network we use TCP to tolerate
latency and congestion.

3.3 Launch
When a new application starts, it consists of a tiny bi-

nary boot block running in an isolated process (§2.2).

5

150 2014 USENIX Annual Technical Conference USENIX Association

The boot block contacts a cache on the local machine
and asks for its application image by file hash, request-
ing the required range of bytes. Since the cache is not
trusted, the boot block can locate the cache by broadcast.
Thus the boot block is quite simple and only understands
a subset of the Missive protocol; it leaves the work of
fetching the image to the cache, though it may provide a
URL or other hint as to where the image may be found.

Launch is optimized to minimize latency, which
comes from data transfer, verification time, and appli-
cation start overheads.
3.3.1 Data Transfer Latency

In a conventional buffer cache, data transfer is very
fast: the application names a few dozen files to map, and
the OS page-remaps those files from the buffer cache to
the process’ address space. In the context of Embassies,
Missive’s untrusted cache achieves a similar effect by
transmitting the entire image in a single IPv6 jumbo
frame. The Embassies client kernel implements large lo-
cal transmissions with page remapping, while preserving
IP’s predictable by-value semantics.

The untrusted cache can only exploit this performance
boost if it can prepare the image for transmission effi-
ciently (§3.1.2).
3.3.2 Verification Latency

Since the buffer cache is untrusted, the boot block
must verify the image the cache provides before it starts
executing the image. This verification is on the critical
path. The boot block’s contents are public, so it initially
has no secret key with which to perform verification.
Thus, the boot block includes a hash value, e.g., from
SHA-256, to verify the integrity of the image it receives
from the cache.

Unfortunately, secure hashes are costly. To reduce
the cost of verification in the common case, the boot
block substitutes the computation of a hash with a Mes-
sage Authentication Code (MAC), a faster message sum-
mary that requires the sender and receiver share a se-
cret. Initially, the boot block does not have such a se-
cret, so on its first execution, it verifies the image based
on its hash. Once the hash verifies, the boot block com-
putes a MAC over the same data, using Kapp, the app-
specific secret key provided by the client kernel (§2.2).
The boot block stores the MAC in untrusted storage (e.g.,
with the cache), since the use of a secret key makes the
MAC neither private nor subject to integrity attack by the
untrusted store. Standard techniques (not implemented
here) can prevent attacks on data freshness [25, 31].

On subsequent starts, the boot block queries the cache
for the MAC it previously computed. If the MAC is
present, the boot block verifies the image’s integrity with
the MAC, skipping the hash altogether, resulting in a
faster startup. We use VMAC [23], a MAC ten times

faster than SHA-1. On our experimental hardware (§5),
SHA-1 costs 3.9 ms/MiB (σ = 0.1%), whereas VMAC
is 0.29 ms/MiB (σ = 1.0%).

We aim to reduce user-perceived startup latency, and
both hash and MAC computations are embarrassingly
parallelizable. Thus our boot block exploits all available
cores to trade a wide burst of computation for reduced
latency.

Another way to reduce the verification latency is to
overlap it with later steps: the host could provide ad-
ditional primitives to allow speculative execution [29]
while the verification process continues (not imple-
mented here). Embassies discards this option because
it adds additional host complexity.
3.3.3 App Start Latency

Once the image has been transferred and verified, the
app begins executing. Several factors affect how quickly
the app is ready for user interaction.
Page Alignment. In our implementation, the bulk of the
image consists of shared libraries. Libraries expect to
load at 4 KiB memory-page boundaries. Missive’s block
alignment policy ensures page alignment for large files.
When a boot block requests the zarfile from the cache,
it specifies a padding header that compensates for the IP
header and host packet buffer offsets, making the first
byte of the zarfile fall on a page boundary. Correcting
these alignment issues forestalls runtime memcpy opera-
tions that otherwise impair startup latency.
ELF Section Layout. The ELF standard adds additional
complications: ELF-format files have a non-trivial map-
ping between on-disk structure and in-memory structure.
Typically, an ELF file has a large text segment, then a
smaller initialized data segment that is expected to ap-
pear at an offset in memory different than its offset from
the text segment in the file. The ELF file also specifies
an uninitialized data (bss) memory region with no corre-
sponding data in the file, as well as file regions (such as
debugging symbols) that are not mapped into memory.

Missive addresses this complexity as follows: at image
capture time, it records how regions of the library file are
mapped into memory. The text segment is recorded in
the zarfile in an oversized region adequate to hold the fi-
nal in-memory layout. The data segment is recorded in a
separate region. At runtime, the data segment is copied
into place at the appropriate offset, and the bss segment
is zeroed. This arrangement lets the library run directly
from the launched image, eliminating the bulk of mem-
ory copy operations. The cost of the empty space in the
image is tolerable, as zero-filled regions compress nicely
for wide-area transfer.

6

USENIX Association 2014 USENIX Annual Technical Conference 151

4 Image Commonality
To deliver on the promise of fast launch of big, inde-

pendent applications, Missive assumes that most applica-
tions actually share a fair amount of common infrastruc-
ture. Broadly, we conjecture that most apps will exhibit
commonality with at least some other apps, because there
will be only a few popular app-building frameworks.
Over time, some will fork and others will ebb. This
evolution will look less like today’s Web client, where
standards make it difficult to fork away from HTML and
JavaScript, and more like frameworks on servers, where
Django and Rails evolve competitively. This intuition
does suggest increased variability, but not unbounded
schisms.

4.1 Characteristics of Our Data Sets
We evaluate this conjectured application commonal-

ity by examining the commonality within three data sets
drawn from two application populations.

First, we study a population of 100 interactive desk-
top applications from Ubuntu Linux 12.04. We selected
them using Linux “best-of” application lists [15, 42] rep-
resenting a wide variety of domains (e.g., web browsing,
vector illustration, word processing, video editing, mu-
sic composition, software development, chemical analy-
sis) built using various languages (C, C++, Java, Mono,
Python, Perl, Tcl) and GUI frameworks (Gnome, KDE,
Qt, Tk, Swing).

From this population, we first constructed the POSIX-
complete data set: for each application, we constructed
a zarfile containing every file the application might touch
while running. We used Ubuntu’s package management
system to find this list: we queried the package man-
ager for all packages that are dependencies of the appli-
cation’s base package. (Such dependencies are declared
manually by Ubuntu’s package maintainers.) We then re-
cursively found sub-dependencies, eventually enumerat-
ing the entire dependency tree for each application. Each
application’s zarfile contained the union of all files in all
packages in its dependency tree.

The second data set, POSIX-startup, is drawn from
the same population. However, instead of the complete
zarfiles, we measured only the portion that is accessed
while the app launches to the point of interactivity, as
captured by strace. This provides a more accurate pic-
ture of the time a user might be expected to wait to use
an app after launching it.

The third data set, Embassies-startup, consists of
eight apps we adapted from the POSIX world to run in
Embassies to validate that the minimal client kernel re-
ally can support rich apps. These include Midori/Webkit
(an HTML renderer), Abiword (a word processor), Gnu-
meric (a spreadsheet), Gimp (a raster image editor, like
Photoshop), Inkscape (a vector image editor, like Illus-

Figure 6: Zarfile size distribution. The distribution of image
sizes used to test commonality across images. The -startup sets
have medians of 54 and 66 MiB. The complete set images range
68 MiB–1.0 GiB.

trator), Marble (an interactive globe, like Google Earth),
Gnucash (an accounting app, like Quicken), and Hyper-
oid (a video game). These are the types of real rich appli-
cations we would like to see deployed in the Embassies
model. These apps use some common and some dis-
tinct components: most use X windows as a rasterizer,
for example, but some use the Qt graphical toolkit, while
others use Gtk. Porting the apps to Embassies entails
packaging them into images that encompass executable
libraries and runtime data.

While the Embassies-startup population loses fidelity
because it is much smaller than the POSIX apps, it more
accurately represents the anticipated ecosystem in that
each app image is a real binary that launches in Em-
bassies. The POSIX data sets are less accurate; for exam-
ple, they omit about 10 MiB of functionality associated
with the Embassies POSIX emulation, TCP stack, and X
rasterizer.

The agreement between measurements of the POSIX-
startup and the Embassies-startup sets suggests that the
POSIX-startup set is a reasonable approximation of what
the apps would look like if ported to Embassies, and
hence we can use this larger set of apps to evaluate such a
world. The introduction of the POSIX-complete set lets
us reason about the cost of transmitting complete app im-
ages for offline use.

Figure 6 shows the distribution of image sizes in each
data set.

4.2 Commonality Measurements
To measure commonality, we simulated the transmis-

sion of each data set to a client machine assuming that
some apps are already cached there. Our hypothesis
is that applications share enough common infrastructure
(and, thus, common zarfile blocks) that installation of a
new application will require significantly less data trans-
fer when other applications are already cached. The
block size was 4 KiB.

The results for POSIX-complete are shown in the
CDFs in Figure 7a. The bottom curve shows the worst
case: transfer of a single zarfile to an empty cache. It is

7

152 2014 USENIX Annual Technical Conference USENIX Association

Figure 7: Content commonality across zarfiles generated
for Posix applications. Cumulative distribution function of
the required transfer size to install the n+1st zarfile on a Mis-
sive system where n zarfiles are already cached. The block size
is 4 KiB. 7a (top) shows complete applications with all depen-
dencies. With 100 apps, the cache reduces the median transfer
size from 181.6 MiB to 12.2 MiB. Little incremental benefit is
gained beyond 50 cached zarfiles. 7b (bottom) shows results
for the portions of the zarfiles required for application start.
The cache reduces median transfer size by nearly 98%; typi-
cal apps in the startup set exhibit more commonality than the
complete zarfiles.

nearly equivalent to the zarfile size distribution (modulo
duplicated blocks), ranging from 64.8 MiB to 1.3 GiB
(median 181.6 MiB). The top curve shows the best case:
transfer of a single zarfile when all other 99 zarfiles are
cached. The number of unique bytes requiring transfer
was reduced to an average of only 6.7% of the original,
to a median of 12.2 MiB.

The middle curves in Figure 7a show intermediate
cases when some (n = 6, 12, 25, and 50) of the 100
zarfiles are cached before the transfer of one additional
zarfile. In each simulated transfer, we first populated the
cache with n zarfiles selected uniformly at random from
the

(
100
n

)
possibilities, then selected one to transfer ran-

domly from among the 100− n that remained. The sim-
ulation suggests virtually all of the cache’s benefit is re-
alized with 50 zarfiles cached.

Figure 7b shows the same experiment performed on
the POSIX-startup data set. These zarfile subsets were
about 36% the size of the full zarfiles, ranging in size
from 3.2 MiB to 543.1 MiB (median 65.6 MiB). But
the reduced set isn’t just smaller: it also exhibits far

Figure 8: Content commonality across zarfiles generated
for Embassies applications. Cumulative distribution function
of the required transfer size to install the n + 1st zarfile on a
Missive system where n zarfiles are already cached.

more commonality between applications. When all but
one were cached, retrieval of the final zarfile required a
transfer of between 8.0 KiB and 121.3 MiB (median 1.3
MiB)—a reduction to just 2% of the median transfer with
a cold cache. To give these numbers context, a typical
app that had not been previously installed could start in
less than two seconds on a 6 Mbps cable connection.

Figure 8 shows the same analysis for the 8 apps in
the Embassies-startup data set. With seven apps cached,
transfer time for installation of the eighth was reduced
to about 34% of its size. This is roughly comparable to
the efficacy of caching for Posix apps with a cache that
size. This suggests that in a larger Embassies ecosystem,
efficacy of caching will approach the 98% seen in our
Posix study.

This simulation does have inaccuracies. It overes-
timates the available commonality in a real Missive
ecosystem because all the applications we tested are from
the Posix world, none from Windows or Mac. In ad-
dition, where two of our apps share a framework, they
use the same version. However, it also underestimates
the opportunity for efficient transfer: in an ecosystem
that exploits Missive, libraries and frameworks may be
repackaged to make their components easier to share;
here, no such optimization has been performed. The ex-
periment also understates the benefits of apps that share
nearly identical stacks, such as multiple apps built on an
HTML renderer.

4.3 Block Size Selection
Block size is an important parameter in Missive.

Larger blocks produce less metadata, while smaller
blocks might expose more commonality across zarfiles,
depending on the distribution of the variations. Figure 9
shows our analysis of Missive’s sensitivity to block size
for the Posix-complete dataset. We filled the cache with
99 of the zarfiles and simulated the transfer time required

8

USENIX Association 2014 USENIX Annual Technical Conference 153

Figure 9: Sensitivity of commonality-discovery to block
size. Cumulative distribution function of the required trans-
fer size to install the 100th zarfile on a Missive system where
the other 99 are already cached. The size of the blocks hashed
is varied. Computing hashes for smaller blocks results in sig-
nificantly more discovery of commonality across zarfiles and
much smaller transfers. Simulation uses the POSIX-complete
dataset.

to install the 100th. With a block size of 1 MiB, that fi-
nal zarfile required a transfer of between 34.0 MiB and
1.1 GiB (median 102.5 MiB). 64 KiB blocks reduced the
median transfer size to 45.3 MiB and 4 KiB blocks re-
duced it further to 12.2 MiB. The increase in metadata is
clearly worth reducing the block size to 4 KiB.

4.4 App Patching
One important special case of commonality is patch-

ing: replacing an image already present at the client with
a similar one. Note that patching is a domain-specific
application of compression, and hence is amenable to
specialized optimization. Chrome’s Courgette tool pro-
duces binary patches ten times smaller than a structure-
oblivious binary diff [1].

Missive is designed to extract commonality implicitly
across apps, without the receiver identifying a source
version, but such specialized tools layer nicely on top
of Missive: If an app wants to patch itself, it can iden-
tify a previous version against which the patch should be
applied, and which is available locally. In that case, a
specialized tool like Courgette can be executed either by
the app or by the untrusted cache to generate new content
from an efficient patch and supply it to the shared cache,
ready for future app launches.

5 Evaluation
We analyze the choice of Merkle degree, evaluate the

overheads due to Missive’s packaging strategy, and mea-
sure the overall performance on app startup time. All
measurements were collected on an HP z420 worksta-
tion with a four core 3.6GHz Intel Xeon E5-1620 CPU
and 4GB of RAM.

Figure 10: Ideal Merkle tree degree is a function of
bandwidth-delay product. On networks with high
bandwidth-delay, the receiver might as well request many in-
termediate hashes rather than spend an RTT hoping to reuse
the hashes of an existing subtree.

5.1 Selection of Merkle Tree Degree
Merkle trees enable a receiver to verify and begin us-

ing a partial image before the entire image is transferred
and verified [3]. A smaller benefit is that the receiver can
skip gathering a subtree of Merkle hashes if the root of
that subtree is already cached.

A small-degree tree exposes more such opportunities,
but those bandwidth savings come at the cost of round
trips. Thus the ideal tree degree is determined by the
bandwidth-delay product [21] of the network transport
(Figure 10). For example, on a 1.92 Mbps, 10 ms con-
nection (star), receiving 100 192-bit hash records is as
cheap as an RTT, thus the optimal tree degree is 100.

We configured our Merkle tree with degree two be-
cause it was easy. This value only makes sense for slow
networks, but receivers on faster networks can emulate
higher degree by requesting multiple layers in each RTT.

5.2 Overheads
The image file format is structured to create oppor-

tunities for commonality exploitation, but that structure
can introduce overheads. The most important overhead
is the alignment-inducing padding, but in practice, our
measurements show that it remains below a few percent
(Figure 11).

The padding overhead is affected by the choice of
block size (Figure 12): larger blocks incur more padding,
but increasing the block size also marks more files as
“small”, packing them into the tail of partially-used
blocks. It turns out padding is worst at 64 KiB: smaller
blocks generate less padding per “large” file, and larger
blocks reduce the number of “large” files that generate
padding. Regardless of block size, the padding never be-
comes a significant overhead.

Packing small files into block tails hides opportunities

9

154 2014 USENIX Annual Technical Conference USENIX Association

Figure 11: Image file format overheads run 1-2%. The im-
age file format incurs about a percent overhead for metadata
such as file stat metadata and a name index. Padding varies
depending on the distribution of file lengths, but it remains be-
low a few percent. Note the y axis begins at 97%. Images
constructed with 4 KiB blocks.

0 1% 2% 3% 4% 5%

percent of image wasted as padding0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fra
ct

io
n

of
 im

ag
es

Embassies-startup, 4 KB blocks
Embassies-startup, 64 KB blocks
Embassies-startup, 1 MB blocks
POSIX-startup, 4 KB blocks
POSIX-startup, 64 KB blocks
POSIX-startup, 1 MB blocks
POSIX-complete, 4 KB blocks
POSIX-complete, 64 KB blocks
POSIX-complete, 1 MB blocks

Figure 12: Padding overhead is insensitive to block size.

for sharing; is it necessary? Yes: although there are few
bytes in small files (Figure 3), giving each file its own
block introduces considerable overhead that grows with
block size (Figure 13).

5.3 The Bottom Line: Startup Latency
Ultimately, we aim to demonstrate that, by judiciously

coupling image transmission and buffer cache, Missive
achieves interactive performance without a trusted file
system or buffer cache infrastructure. To that end, we
measure end-to-end network transmission and applica-
tion launch times.
5.3.1 Launch Time

Besides fast transmission, Missive should add mini-
mal additional time moving an app from the trusted cache
into an executable condition in a new process; this is its
buffer-cache-like function.

Figure 14 shows time to launch Gimp and several
Midori-based apps, for which we have good internal
probe points and can measure startup time all the way
to the point of user interactivity. It contrasts launch-
ing inside Embassies with starting the same content on
Linux. The “hot” start represents the primary function
of a buffer cache: bringing a machine-resident app into
memory for prompt execution. Missive’s hot start is
about 100 ms or less overhead.

1 10 100

ratio of image sizes0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fra
ct

io
n

of
 im

ag
es

Embassies-startup, 4 KB blocks
Embassies-startup, 64 KB blocks
Embassies-startup, 1 MB blocks
POSIX-startup, 4 KB blocks
POSIX-startup, 64 KB blocks
POSIX-startup, 1 MB blocks
POSIX-complete, 4 KB blocks
POSIX-complete, 64 KB blocks

Figure 13: Small-file packing is necessary. Giving small
files their own blocks maximizes sharing opportunity, but the
file distribution includes so many small files that doing so gen-
erates significantly more padding than the actual file content.
The smallest block sizes have median bloat of 2–28%.

Figure 14: Missive’s launch is comparable to POSIX buffer
cache. In the hot case, the app’s blocks are in the untrusted
cache; the primary overhead is the MAC verification (§3.3.2).
In the warm case, missing app blocks are fetched from a fast
server; the primary overheads are the slower hash and the
memcpys required to assemble the image (§3.1.2).

A 100 ms delay may seem expensive [26], but three
factors mitigate it. First, it only affects the launch of a
new binary; navigation among pages or activities within
a site’s application are unaffected. Second, once a site’s
binary is running, the vendor controls both ends; it is
free to deploy SPDY [30] or the next innovation anytime.
Third, we have only performed black-box optimizations;
application-specific tuning could dramatically reduce the
amount of data needed for startup to the first point of
interactivity.

In the “warm” start case, the cache contains a copy of
the Midori browser with a vulnerable version of libpng.
We measure the time to start an app using a similar
stack (exploiting that local commonality) with a patched
libpng. Since the network overhead is a function of con-
tent size (studied in Figures 7 and 8), this experiment
uses a local network connection to focus attention on the

10

USENIX Association 2014 USENIX Annual Technical Conference 155

Figure 15: Contrasting just launch time across the broader
Posix-initial data set, the median Missive app takes about 50 ms
longer, most of which is verification time. (Verification times
are sorted with the corresponding app, not cumulatively.)

system’s inherent sources of latency. In the warm start
case, Missive’s cache requires about 150 ms to assemble
the outgoing zarfile from cached blocks, and the receiver
pays as much again to verify the zarfile with a hash.

Figure 15 measures the broader Posix-startup data set,
but more shallowly, in that it only captures the cost of
mapping the executables into memory. For this hot start
experiment, we had a Linux process mmap every file in
the data set and read the rest; we contrasted that to Mis-
sive’s launch step, which pulls one zarfile into its mem-
ory. In both cases, the test apparatus touched every mem-
ory page. The median Linux time is 17 ms. Most of Mis-
sive’s 66 ms is the cost of integrity verification. Although
the cost is 4× higher in relative terms, the overall burden
is not overwhelming compared to the overall start time
of typical applications, which this experiment excludes.

While Missive is not completely without cost, in the
hot case where it can use VMAC (§3.3.2), it hovers
very close to the performance of a native, trusted buffer
cache.

6 Related Work
Numerous systems have proposed content-addressable

techniques for identifying and routing content, as well as
reducing bandwidth [5, 7, 11, 14, 28, 39]. We briefly
touch on some of the most related efforts below.

Tolia et al. proposed a content-oriented data trans-
fer service with the aim of decoupling application-level
content negotiation from data transfer, hence enabling
greater innovation in transfer protocols [38]. Like Mis-
sive, they divide objects into chunks identified by hash,
allowing caches to identify shared content across appli-
cations. The receiver drives the data transfers by specify-
ing chunks of interest. Since Tolia et al. focus on issues
related to data transfer, they do not consider, as Missive
does, how to identify and package app-related files, they
assume the local content cache is trusted, and they do
not address the final step of rapidly transferring the app

image into a booting process and verifying it.
Van Jacobson et al. and Trossen et al. have proposed

building efficient commonality-exploiting data transfer
by addressing content at the network layer [19, 40]. Rhea
et al. use content hashes to reduce the bandwidth needed
for Web traffic [34]. Spring and Wetherall also use hash-
based matching to perform data deduplication at the IP
layer [35].

Tangwongsan et al. propose a multi-resolution hand-
print for selecting a content chunk size that optimally ex-
ploits data redundancy in files [37].

Multiple projects (e.g., the Collective [6] and Inter-
net Suspend/Resume [22]) proposed distributing appli-
cations as full VMs, both to simplify management and to
minimize cross-application conflicts. On the server side,
SnowFlock [24] proposed a data-center-wide VM fork
operation for instantiating a single VM on hundreds of
machines. To minimize launch latency, they developed
several techniques for lazily replicating only the active
working set of the VM being forked. Unlike Missive,
these projects assume a trusted local cache.

The deduplicating transport of Missive is constructed
of fairly conventional techniques. We considered using
BitTorrent [8] or other deduplicating transports [13, 28].
Using a custom transport protocol, however, admits three
advantages: its use of Merkle trees enables immediate
use of partially-loaded images, it is optimized around
the untrusted cache’s extreme latency constraints, and its
simplicity enables the same protocol to function well in
the wide-area and be implemented in a tiny boot block.

The most crucial abstract idea in Missive is the separa-
tion of sharing content for performance from sharing by
reference; this distinction was significantly inspired by
the Slinky system [9].

7 Conclusion
By virtue of the protocol that boot blocks use to share

it, Missive’s untrusted cache supplants functions nor-
mally supplied by a host’s (very trusted) buffer cache.
It coordinates memory as a cache for disk, and disk as
a cache for the network. It rapidly assembles an ap-
plication’s image from parts both unique and common
with other apps. It exposes sharing in a way that the
underlying memory page manager can exploit for per-
formance, while preserving for apps the abstraction of
private copies; but because naming is by content, the iso-
lation is much stronger than in the conventional use of a
buffer cache.

References
[1] ADAMS, S. Smaller is faster (and safer too). http:

//blog.chromium.org/2009/07/smaller-
is-faster-and-safer-too.html, July 2009.

[2] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R.,

11

156 2014 USENIX Annual Technical Conference USENIX Association

AND LORCH, J. R. A five-year study of file-system meta-
data. Trans. Storage 3, 3 (Oct. 2007).

[3] BAKKER, A. Merkle hash torrent extension. http://
www.bittorrent.org/beps/bep_0030.html,
Mar. 2009.

[4] BAUMANN, A., LEE, D., FONSECA, P., LORCH, J. R.,
BOND, B., OLINSKY, R., AND HUNT, G. C. Compos-
ing OS extensions safely and efficiently with Bascule. In
EuroSys (to appear) (2013).

[5] BRESSOUD, T. C., KOZUCH, M., HELFRICH, C., AND
SATYANARAYANAN, M. OpenCAS: A flexible architec-
ture for content addressable storage. In Workshop on
Scalable File Systems and Storage Technologies (Sept.
2004).

[6] CHANDRA, R., ZELDOVICH, N., SAPUNTZAKIS, C. P.,
AND LAM, M. S. The Collective: A cache-based system
management architecture. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI) (May 2005).

[7] COHEN, B. Incentives build robustness in BitTorrent. In
Proceedings of the Workshop on Economics of Peer-to-
Peer Systems (June 2003).

[8] COHEN, B. Incentives build robustness in BitTorrent. In
Workshop on Economics of Peer-to-Peer systems (2003),
vol. 6, pp. 68–72.

[9] COLLBERG, C., HARTMAN, J. H., BABU, S., AND
UDUPA, S. K. Slinky: static linking reloaded. In USENIX
ATC (2005).

[10] COX, R. S., GRIBBLE, S. D., LEVY, H. M., AND
HANSEN, J. G. A safety-oriented platform for Web ap-
plications. In IEEE Symp. on Security & Privacy (2006).

[11] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS,
R., AND STOICA, I. Wide-area cooperative storage with
CFS. In Proceedings of the ACM Symposium on Operat-
ing Systems Principles (SOSP) (Oct. 2001).

[12] DOUCEUR, J. R., AND BOLOSKY, W. J. A large-scale
study of file-system contents. In SIGMETRICS (1999).

[13] DOUCEUR, J. R., ELSON, J., HOWELL, J., AND
LORCH, J. R. The Utility Coprocessor: Massively par-
allel computation from the coffee shop. In USENIX ATC
(2010).

[14] DRUSCHEL, P., AND ROWSTRON, A. PAST: A large-
scale, persistent peerto-peer storage utility. In Proceed-
ings of the HotOS Workshop (May 2001).

[15] FARSHAD. Best 60 linux applications for year
2011. http://www.addictivetips.com/
ubuntu-linux-tips/best-60-linux-
applications-for-year-2011-editors-
pick/, Jan. 2012.

[16] FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. Fast
and secure distributed read-only file system. In OSDI
(2000).

[17] HOWELL, J., DOUCEUR, J. R., ELSON, J., AND
LORCH, J. R. Leveraging legacy code to deploy desk-
top applications on the web. In OSDI (2008).

[18] HOWELL, J., PARNO, B., AND DOUCEUR, J. Em-
bassies: Radically refactoring the web. In NSDI (to ap-
pear) (2013).

[19] JACOBSON, V., SMETTERS, D. K., THORNTON, J. D.,
PLASS, M. F., BRIGGS, N. H., AND BRAYNARD, R. L.
Networking named content. In 5th international confer-
ence on Emerging networking experiments and technolo-
gies (CoNEXT) (2009).

[20] KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R.,
NO, H. M. B., HUNT, R., MAZIÈRES, D., PINCK-
NEY, T., GRIMM, R., JANNOTTI, J., AND MACKENZIE,
K. Application performance and flexibility on Exokernel
systems. In SOSP (1997).

[21] KATABI, D., HANDLEY, M., AND ROHRS, C. Conges-
tion control for high bandwidth-delay product networks.
In SIGCOMM (2002).

[22] KOZUCH, M., AND SATYANARAYANAN, M. Internet
suspend/resume. In Proceedings of the IEEE Workshop
on Mobile Computing Systems and Applications (June
2002).

[23] KROVETZ, T., AND DAI, W. VMAC: Message
authentication code using universal hashing. Inter-
net Draft: http://http://fastcrypto.org/
vmac/draft-krovetz-vmac-01.txt, Apr. 2007.

[24] LAGAR-CAVILLA, H. A., WHITNEY, J. A., SCAN-
NELL, A., PATCHIN, P., RUMBLE, S. M., DE LARA,
E., BRUDNO, M., AND SATYANARAYANAN, M.
SnowFlock: Rapid virtual machine cloning for cloud
computing. In EuroSys (Apr. 2013).

[25] LEVIN, D., DOUCEUR, J. R., LORCH, J. R., AND
MOSCIBRODA, T. TrInc: Small trusted hardware for
large distributed systems. In NSDI (2009).

[26] LINDEN, G. Make data useful, 2006. http://www.
gduchamp.com/media/StanfordDataMining.
2006-11-28.pdf.

[27] MERKLE, R. C. A certified digital signature. In CRYPTO
(1989), pp. 218–238.

[28] MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES,
D. A low-bandwidth network file system. In SOSP
(2001).

[29] NIGHTINGALE, E. B., CHEN, P. M., AND FLINN, J.
Speculative execution in a distributed file system. In
SOSP (2005).

[30] PADHYE, J., AND NIELSEN, H. F. A comparison of
SPDY and HTTP performance. Tech. Rep. MSR-TR-
2012-102, Microsoft Research, July 2012.

[31] PARNO, B., LORCH, J. R., DOUCEUR, J. R., MICKENS,
J., AND MCCUNE, J. M. Memoir: Practical state con-
tinuity for protected modules. In Symposium on Security
and Privacy (2011).

[32] PARNO, B., MCCUNE, J. M., WENDLANDT, D., AN-
DERSEN, D. G., AND PERRIG, A. CLAMP: Practical
prevention of large-scale data leaks. In Symposium on
Security and Privacy (2009).

[33] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J.,
OLINSKY, R., AND HUNT, G. C. Rethinking the Library
OS from the Top Down. In ASPLOS (2011).

[34] RHEA, S. C., LIANG, K., AND BREWER., E. Value-
based web caching. In Proceedings of the World Wide
Web Conference (May 2003).

[35] SPRING, N. T., AND WETHERALL, D. A protocol-
independent technique for eliminating redundant network
traffic. In Proceedings of ACM SIGCOMM (Sept. 2000).

[36] TANENBAUM, A. S., HERDER, J. N., AND BOS, H.
File size distribution on UNIX systems: then and now.
SIGOPS Oper. Syst. Rev. 40, 1 (Jan. 2006), 100–104.

[37] TANGWONGSAN, K., PUCHA, H., ANDERSEN, D. G.,
AND KAMINSKY, M. Efficient similarity estimation for
systems exploiting data redundancy. In Proceedings of
IEEE INFOCOM (Mar. 2010).

[38] TOLIA, N., KAMINSKY, M., ANDERSEN, D. G., AND
PATIL, S. An architecture for internet data transfer. In
Proceedings of USENIX NSDI (May 2006).

[39] TOLIA, N., KOZUCH, M., SATYANARAYANAN, M.,
KARP, B., PERRIG, A., AND BRESSOUD, T. Oppor-
tunistic use of content addressable storage for distributed
file systems. In Proceedings of the USENIX Annual Tech-
nical Conference (June 2003).

[40] TROSSEN, D., SARELA, M., AND SOLLINS, K. Argu-
ments for an information-centric internetworking archi-
tecture. SIGCOMM Comput. Commun. Rev. 40, 2 (Apr.
2010), 26–33.

[41] VRABLE, M., MA, J., CHEN, J., MOORE, D., VAN-
DEKIEFT, E., SNOEREN, A. C., VOELKER, G. M., AND
SAVAGE, S. Scalability, fidelity and containment in the
Potemkin virtual honeyfarm. In SOSP (2005).

[42] WHEATLEY, R. Top 100 of the best (useful) opensource
applications. http://www.ubuntulinuxhelp.
com/top-100-of-the-best-useful-
opensource-applications/, Feb. 2008.

[43] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH,
R., ORMANDY, T., OKASAKA, S., NARULA, N., AND
FULLAGAR, N. Native Client: A sandbox for portable,
untrusted x86 native code. In Symposium on Security &
Privacy (2009).

12

