
USENIX Association  2013 USENIX Annual Technical Conference (USENIX ATC ’13) 219

DeepDive: Transparently Identifying and Managing Performance

Interference in Virtualized Environments
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Abstract

We describe the design and implementation of Deep-

Dive, a system for transparently identifying and man-

aging performance interference between virtual ma-

chines (VMs) co-located on the same physical ma-

chine in Infrastructure-as-a-Service cloud environments.

DeepDive successfully addresses several important chal-

lenges, including the lack of performance information

from applications, and the large overhead of detailed in-

terference analysis. We first show that it is possible to

use easily-obtainable, low-level metrics to clearly dis-

cern when interference is occurring and what resource

is causing it. Next, using realistic workloads, we show

that DeepDive quickly learns about interference across

co-located VMs. Finally, we show DeepDive’s ability

to deal efficiently with interference when it is detected,

by using a low-overhead approach to identifying a VM

placement that alleviates interference.

1 Introduction

Many enterprises and individuals have been offload-

ing their workloads to Infrastructure-as-a-Service (IaaS)

providers, such as Amazon and Rackspace. A key en-

abling factor in the expansion of cloud computing is vir-

tualization technology. IaaS providers use virtualization

to (1) package each customer’s application into one or

more virtual machines (VMs), (2) isolate misbehaving

applications, (3) lower operating costs by multiplexing

their physical machines (PMs) across many VMs, and

(4) simplify VM placement and migration across PMs.

Despite the benefits of virtualization, including its abil-

ity to slice a PM well in terms of CPU and memory space

allocation, performance isolation is far from perfect in

these environments. Specifically, a challenging problem

for providers is identifying (and managing) performance

interference between the VMs that are co-located at each

PM. For example, two VMs may thrash in the shared

hardware cache when running together, but fit nicely in

it when each is running in isolation. As another exam-

ple, two VMs, each with sequential disk I/O when run-

ning in isolation, may produce a random access pattern

on a shared disk when running together. To make things

worse, technology trends point to manycore PMs with

hundreds or even thousands of cores. On these PMs, the

chance of experiencing interference will increase.

Interference can severely diminish the trust of cus-

tomers in the cloud’s ability to deliver predictable per-

formance. Thus, interference might become a stumbling

block in attracting performance-sensitive customers.

Effectively dealing with interference is challenging

for many reasons. First, the IaaS provider is oblivi-

ous to its customers’ applications and workloads, and

it cannot easily determine that interference is occurring.

Moreover, the IaaS provider cannot rely on applications

to report their performance levels (and therefore know

when interference is occurring), because this might over-

burden application developers who moreover cannot be

trusted. This challenge speaks against non-transparent

approaches [12, 18, 25, 26, 27, 33, 37]. Second, interfer-

ence is complex in nature and may be due to any server

component (e.g., shared hardware cache, memory, I/O).

An effective solution has to account for all components.

Further, interference might only manifest when the co-

located VMs are concurrently competing for hardware

resources. The existing approaches for predicting per-

formance degradation [12, 18, 25, 26, 37] are not appli-

cable, as they require the provider to have access to the

co-located VMs for long periods prior to deployment. In-

terference detection must be a quicker, online activity. Fi-

nally, the sheer volume of new VMs deployed daily at a

large public provider may cause scalability issues.

Given these challenges, we propose DeepDive, a sys-

tem for transparently and efficiently identifying and man-

aging interference in IaaS providers. We contribute:

1. A method for transparently obtaining the ground truth

about interference, including a black-box detection of ap-

plication behavior and the ability to pinpoint the culprit

resource for interference using only low-level metrics.

2. A warning system that reduces the overhead of de-

tailed interference analysis by learning about normal,

non-interfering behaviors.

3. A technique for leveraging global information to in-

crease scalability that uses the behavior of VMs running

the same workload on other PMs.

4. A mechanism for transparently and cheaply migrating

the culprit VM, by using a simple synthetic benchmark

to mimic the low-level behavior of a VM and its impact

on other VMs before actual migration.

5. Results using realistic workloads that show: i) Deep-

Dive transparently infers performance loss with high ac-

curacy (less than 5% error on average), identifies inter-
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Figure 1: Measured performance of a service running on EC2

under a fixed workload and resource configuration. Perfor-

mance is periodically affected by co-located VMs.

ference, and pinpoints the culprit resource; ii) it is highly

accurate (no false negatives) and has low overhead (few

profiling machines); and iii) it makes quick (less than a

minute) and accurate VM placement decisions.

To our knowledge, DeepDive is the first end-to-end

system that transparently and efficiently handles interfer-

ence on any major server resource, including I/O. Its de-

ployment would have two key benefits. First, it would

enable cloud providers to meet their service-level objec-

tives using fewer resources, which would increase user

satisfaction and reduce energy costs. Second, the smarter

VM placement would enable cloud customers to pur-

chase fewer resources from the provider.

2 Background and Motivation

Virtualization software chronically lacks effective perfor-

mance isolation, especially in the context of hardware

caches and I/O components. For instance, recent ef-

forts [15] reveal that interference may cause same-type

VMs (e.g., those offering the same amount of virtual

resources) to exhibit significantly different performance

over time. This impact can be seen in our experiment

using Cassandra [8] (a key-value store) running on Ama-

zon EC2. We deploy one Cassandra VM and monitor

its performance under a fixed workload and resource al-

location during a three-day period. As shown in Fig-

ure 1, although both the workload and virtual resources

remain the same, Cassandra faces many periods of sig-

nificantly degraded performance. We attribute the perfor-

mance losses to interference as we tightly control the ex-

periment, except of course for the virtualization platform

and the PM, where interference can occur.

Faced with such losses, users might compensate by

overprovisioning their VMs [26, 27, 33], which increases

their costs. However, overprovisioning is not a panacea,

especially for “scale out” applications that dynamically

increase the number of running VMs while keeping the

instances affected by interference in the active set. As a

result, many (potential) customers still find interference

as a barrier to migrating their loads to the cloud [6].

VM2
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Figure 2: DeepDive overview, showing how it detects and mit-

igates the effect of interference on VM2.

3 Approach

DeepDive operates in parallel with applications, seeking

to provide application performance that is comparable

to, or ideally the same as, that observed in an isolated

environment. Figure 2 highlights DeepDive’s main com-

ponents and the way they interact. DeepDive transpar-

ently deals with interference by inspecting low-level met-

rics, including hardware performance counters and read-

ily available hypervisor (VMM) statistics about each VM.

To reduce the overhead of interference detection and mit-

igation, DeepDive introduces two interference analyses

that differ in their accuracy and overhead.

DeepDive first relies on a warning system running in

the VMM to conduct early interference analysis. This

analysis is fast, and incurs negligible overhead as we can

collect the required statistics without affecting the appli-

cations currently running on the PM1. DeepDive places

these statistics in a multi-dimensional space, where the

interference and non-interference cases cluster into eas-

ily separable regions.

Figure 3 depicts the decision-making process in the

warning system by illustrating the important cases in the

multi-dimensional space (shown here only using two di-

mensions for clarity). One option is for the current mea-

surements to fall within a cluster of acceptable behav-

iors (Figure 3(a)). If that is not the case but other VMs

running this workload are behaving similarly (e.g., due

to a change in the client-induced workload), again there

is no need to perform further interference analysis (Fig-

ure 3(b)). Further investigation is required only if the cur-

rent measurement is substantially different (i.e., by more

than an automatically-determined threshold) from both

the existing behaviors as well as other VMs running the

same workload (Figure 3(c)).

While the warning system reduces DeepDive’s over-

head, it is not perfectly accurate and cannot pinpoint the

source of interference. DeepDive thus relies on an inter-

ference analyzer to perform a highly reliable but expen-

sive analysis, when necessary. Only when the warning

1We use the terms “PM”, “server”, and “machine” interchangeably.
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Name Description Name Description

cpu_unhalted Clock cycles when not halted resource_stalls Cycles during which resource stalls occur

inst_retired Number of instructions retired bus_tran_any Number of completed bus transactions

l1d_repl Cache lines allocated in the L1 data cache bus_trans_ifetch Number of instruction fetch transactions

l2_ifetch L2 cacheable instruction fetches bus_tran_brd Burst read bus transactions

l2_lines_in Number of allocated lines in L2 bus_req_out Outstanding cacheable data read bus re-

quests duration

mem_load Retired loads br_miss_pred Number of mispredicted branches retired

iostat Tdisk presents all the idle CPU cycles while the system had an outstanding disk I/O request.

netstat Tnet presents all the idle CPU cycles while the system had a packet in the Snd/Rcv queue.

Table 1: Low-level metrics used to differentiate normal VM behaviors from interference. The iostat and netstat tools can be

used to approximate I/O-related stalls associated with different VMs, using VM introspection tools like XenAccess.

Existing measurements Current measurements

(c): interference suspected(b): no interference     

(workload change)
(a): no interference

VM on 

this 

machine

Figure 3: The warning system uses previously collected data

and current global measurements, to decide whether DeepDive

should further investigate interference.

system suspects that one or more VMs are subjected to

interference, DeepDive invokes the analyzer to conduct

the exhaustive interference analysis.

The analyzer clones the VM on-demand and executes

it in a sandboxed environment. By using a proxy to du-

plicate client requests, the cloned VM is subjected to

the same workload as the VM co-located with other ten-

ants. The analyzer then uses the low-level measurements

to estimate the performance of the original and cloned

VMs. The estimates should be similar – different by less

than an operator-defined threshold percentage – in the

absence of interference. This VM cloning, workload du-

plication, and comparison approach has been studied ex-

tensively in [33, 36]. The approach provides the ground

truth, and enables DeepDive to pinpoint the dominant

sources (server components) of interference. The ana-

lyzer uses the classic cycles per instruction (CPI) model

to transparently identify these sources. Researchers have

used this model to detect performance issues other than

interference, e.g. [9]. We augment it with system-level

metrics that extend the CPI stack to include I/O.

In the absence of interference, the analyzer updates

the repository of VM behaviors with this new informa-

tion. If interference does exist, the analyzer forwards its

findings to the VM-placement manager to determine a

preferable (e.g., minimal) change in VM placement that

will eliminate or at least reduce interference. The default

behavior is to migrate the most aggressive VM, in terms

of its use of the resource that is causing interference.

The VM-placement manager tries to find a PM that

will be the best match (e.g., non-interference causing)

for the VM at hand. It does so by running a synthetic

benchmark that mimics the behavior of the VM for a

short time on another PM (with other VMs present), and

evaluates whether interference reappears. If it does not,

DeepDive can migrate the VM to that PM. If it does, the

VM-placement manager tries a different PM.

3.1 The warning system

The warning system prevents unnecessary interference

analyzer invocations by differentiating workload changes

from interference. It does so based on the metrics listed

in Table 1, which represent the major PM resources

(cores, memory, disk, and network interface), and have

been enough for our experiments to date. Vasić et

al. [33] considered a larger set of metrics, but found it

to be overkill. Nevertheless, one can automatically deter-

mine whether a metric should be considered; Vasić et al.

solved a similar feature selection problem [33].

The system uses both local and global information to

infer if interference may be happening. It first locally

tries to match the current values of the metrics against

the previously learned set of normal behaviors. If it can-

not find a match, it globally checks whether other VMs

running the same code are experiencing similar behavior.

More precisely, when first faced with a VM, the warn-

ing system has no information about it and activates the

interference analyzer. The analyzer then provides the

warning system with: i) a set of normal VM behaviors S
that are obtained in isolation, and form the ground truth,

and ii) a vector of metric classification thresholds MT

used to filter out the workload noise from actual inter-

ference. Note that these classification thresholds are dif-

ferent from the operator-defined performance threshold

for acceptable performance degradations (Section 3.2),

and are set automatically by the clustering algorithm (de-

scribed below). From this point on, the warning system

continuously collects the metrics and tries to retrieve a

match from the set of normal VM behaviors, respecting

the acceptable metric deviations MT .

Like any other statistical method, the warning system

can only identify performance anomalies (interference)

3
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Figure 4: Metric values when running under different workload and interference scenarios.

if they are exceptional. Fortunately, our measurements

performed on a real-world platform (Figure 1) suggest

that anomalies are indeed exceptional in practice. Even if

performance anomalies were common for an application,

i.e. they cannot be used to detect that the application

is undergoing interference, DeepDive would eventually

learn so via invocations of the interference analyzer.

To prevent VM load changes unrelated to interference

from causing analyzer invocations, we normalize the met-

rics with respect to the amount of work performed (the

number of instructions retired). We find that the metrics’

normalized values are persistent across a wide range of

load intensities. This finding is critically valuable, since

cloud loads frequently fluctuate over time.

Local information. To demonstrate experimentally

that the warning system can differentiate normal from

interference behaviors, we use typical cloud workloads

under different quantitative and qualitative load changes,

and interference conditions. Specifically, in Figure 4,

we extensively experiment with the Data Serving, Web

Search, and Data Analytics workloads from Cloud-

Suite [20]. (More details about these workloads appear

in Section 4.) Although we collect the dozen or so met-

rics listed in Table 1, the figure includes only three of

them for clarity. The figure presents normalized metric

values relating to the first-level cache (L1), the second-

level cache (L2), and main memory. Each point in the

graphs depicts a different experimental setting, including

various load intensities, and different key and word pop-

ularities for Data Serving and Web Search, respectively.

In the absence of interference, the data points cluster on

one side of the space. Once we inject differently mod-

ulated interference effects, the normalized metric values

experience significant deviation, which allows the warn-

ing system to detect new interference conditions. (We

detail the interfering VM in Section 4.1.)

Global information. To further reduce the number

of invocations of the analyzer, the warning system lever-

ages the fact that cloud applications regularly execute the

same code on many (perhaps dozens or even thousands

of) VMs. This enables the warning system to diagnose if

the observed deviations come from interference or appli-
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Figure 5: Metric values for Data Analytics. Observing multi-

ple VMs prevents unneeded invocations of the analyzer.

cation behavior changes. If the VMs executing the same

code, spread across multiple PMs, observe similar metric

value deviations at about the same time, it is highly likely

that the application is subjected to workload changes and

further interference analysis is not necessary. Further-

more, DeepDive considers several metrics, which further

reduces the chance that multiple VMs reporting similar

behavior is a consequence of interference.

To illustrate the use of global information, we perform

a set of experiments with our Data Analytics workload

running across nine PMs in our cluster. We inject vary-

ing amounts of network interference into the cluster by

progressively co-locating more interfering VMs that run

a network-intensive benchmark (iperf ). This scenario

stresses the warning system because interference man-

ifests only when the mappers and reducers (from the

Hadoop MapReduce-like framework) have to fetch data

remotely. Figure 5 plots some of the normalized metrics

(relating to network and core utilization) obtained from

each of the PM’s local warning systems. The metrics cor-

responding to the PMs where we run the interfering VMs

clearly deviate from the remaining VMs’ behaviors. The

figure hence demonstrates that DeepDive: i) deals with

I/O-related interference, and ii) can further minimize the

profiling overhead by merely observing the behavior of

VMs running the same workload on different PMs.

DeepDive’s ability to use global information relies on

the assumption that it knows which VMs are running the

same application. This is a reasonable assumption, since

VMs can be rented in a pre-configured state. Moreover,

cloud providers often provide load balancing functional-
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ity that tenants explicitly request from the cloud provider

for groups of VMs that execute the same code.

False positives and false negatives. False positives

occur when the warning system unnecessarily invokes

the analyzer under non-interference conditions. For in-

stance, changes in a VM’s working set or qualitative

workload changes (e.g., the request mix substantially

shifts) may lead to substantial statistical variation. Al-

though false positives may sporadically lead to unnec-

essary analyzer invocations, they are mostly benign and

only marginally affect DeepDive’s overhead. We have

verified this empirically by running extensive experi-

ments under realistic workload conditions.

On the other hand, if the warning system confuses in-

terference with normal workload changes – a false neg-

ative – the impact is more severe. Fortunately, our sen-

sitivity analysis demonstrates that the vector of metric

thresholds MT determined by a standard clustering tech-

nique (described below) prevents false negatives, while

still maintaining high warning system efficiency. More-

over, cloud providers might periodically (e.g., at a fre-

quency driven by VM priority) invoke the analyzer to re-

duce a potential non-zero false negative rate.

Clearly, the challenge here is to define metric thresh-

olds MT that properly separate representative VM be-

haviors from noise, while also properly identifying inter-

ference. If the thresholds are too strict, even minor de-

viation from prior VM behaviors would cause the warn-

ing system to fire. On the other hand, excessively loose

thresholds might let interference proceed undetected. We

leverage the expectation-maximization clustering algo-

rithm [21] to produce interference-free clusters in N-

dimensional space, where N is the number of metrics that

DeepDive uses. In producing the clusters, the algorithm

also defines the metric thresholds. DeepDive improves

the clustering by providing a set of constraints [10, 11]

along with the collected VM behaviors – when diagnos-

ing a VM’s behavior with interference, the analyzer also

prevents the algorithm from assigning this behavior to an

interference-free cluster. This has a positive effect on the

detection rate, as we have verified empirically.

Shortly after a VM’s deployment, the metric space is

empty or sparsely populated. To create the interference-

free clusters, the warning system operates in a conserva-

tive mode – every drop in VM performance above the

performance threshold causes invocation of the analyzer.

This is how DeepDive ensures that no interference goes

undetected, and accelerates learning of the interference-

detecting metric thresholds.

3.2 The interference analyzer

If the warning system suspects that one or more VMs

may be facing interference, it invokes the analyzer to con-

firm. To do so, the analyzer uses VM cloning, workload

duplication, and VM performance comparison. If inter-

ference is indeed present, the analyzer also determines

which resource is the most likely to be causing the inter-

ference (e.g., shared cache, I/O).

Identifying the ground truth. DeepDive uses the

same approach to determine VM performance in the ab-

sence of interference as DejaVu [33]. Though we do

not claim any novelty in this approach, we summarize

it here for completeness. DeepDive clones the VM un-

der test in a sandboxed environment that uses non-work-

conserving schedulers to tightly control the resource al-

location. The amount of time to complete VM cloning

depends on the amount of state in the VM, but is typi-

cally small compared to the frequency of invocation of

the analyzer. DeepDive relies on a proxy that intercepts

the clients’ traffic to: 1) duplicate and send copies of the

requests to the sandboxed environment, and 2) forward

the traffic to/from the production VM to avoid negatively

impacting the applications running inside that VM. Deep-

Dive can then compare the metrics in isolation and in pro-

duction. Others [33, 36] have studied this approach and

its challenges (including how to tackle non-determinism)

extensively, so we do not repeat this study here.

Performance analysis. Given the statistics from the

production and sandboxed environments, DeepDive uses

the analyzer’s performance model to transparently esti-

mate the performance degradation that a VM is experi-

encing due to interference. Given this model, DeepDive

can opt for VM migration if the degradation is substan-

tial, or refrain from any action otherwise.

Since we do not expect the VMs to assess and com-

municate their performance levels, the key question here

is knowing when the VM’s performance is degraded by

simply looking at low-level metrics. The analyzer con-

trasts the instructions retired rate in production with that

in isolation (in the sandbox) to approximate how much

the shared resources contribute to the overall degradation:

Degradation = Instproduction/Instisolation.

Once the analyzer estimates the degradation, it may

proceed in one of two ways. If the degradation is below

the operator-defined performance threshold, the analyzer

notifies the warning system about the false alarm. This

extends the warning system’s set of acceptable VM be-

haviors with the new metrics’ values. If the degradation

exceeds the threshold, the analyzer forwards the results

of its analysis to the VM placement manager, which may

migrate the VM to a more appropriate PM.

Importantly, [7, 19] have shown that the number of

instructions retired is not always a reliable performance

metric in multithreaded applications, since spin-based

synchronization may cause timing and thread interleav-

ing variations. This is not a serious problem for Deep-

Dive for two reasons. First, the computed degrada-

tion need not be accurate with respect to absolute per-

5
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Figure 6: Breakdown of stalled cycles in production and isolation. Our analysis reveals the sources of interference.

formance; rather, it simply needs to properly identify

anomalies. Second, if these inaccuracies become a prob-

lem in practice, we can leverage prior efforts that exclude

spinning instructions, or augment the measurements to

account only for the useful computation [19]. Multi-

threading has not been a problem for us so far.

Identifying dominant sources of interference. If the

amount of performance loss requires invocation of the

VM-placement manager, the analyzer pinpoints the re-

sources that are likely the culprits using CPI analysis aug-

mented with system-level metrics (to capture I/O). The

augmented CPI “stack” captures the amount of work the

VM is doing, while identifying where it is spending time.

Intuitively, interference causes the VM to suffer more

stall cycles, and perform less useful work.

Our root cause analysis hence estimates a breakdown

of the various run-time stall components of the server:

Toverall = Tcore + Toff_core︸ ︷︷ ︸
CPI analysis using hardware counters

+

+Tdisk + Tnet︸ ︷︷ ︸
using system-level statistics

where Tcore represents the time running instructions on

the core (and hitting in private caches), Toff_core repre-

sents the stalled cycles due to memory accesses (includ-

ing shared caches), Tdisk represents the time waiting for

disk, and Tnet represents network-related stalls. We in-

fer these values from the metrics in Table 1. The met-

rics are clearly architecture-dependent, but sufficiently

generic for DeepDive not to be tied to any particular ar-

chitecture, as shown in our longer technical report [28].

We estimate the resources’ individual contributions to

the performance degradation via the discrepancies in the

metrics obtained in isolation and production:

Factorresource =
T production

resource − T isolation
resource

T production
overall

To validate this performance model, we run a set of ex-

periments with the Data Serving, Web Search, and Data

Analytics workloads. Figure 6 contrasts the various re-

source stalls in the production environment (which is un-

dergoing interference) and in isolation (in the sandbox).

Each experiment carefully tunes the interference, so as to

move it from the last level cache (Scenario A) to the front

side bus (Scenario B) to the I/O subsystem (Scenario C).

We then invoke the analyzer to estimate the amount of

performance loss, and identify the resources that primar-

ily contribute to it. We mark the resources identified by

the analyzer with arrows in the figure. We observe that

the analyzer correctly identifies the culprit resources as

their growing (degrading) factors clearly dominate over

the remaining resources.

3.3 The VM-placement manager

If the analyzer detects interference on a PM, DeepDive

runs the VM-placement manager to determine a new VM

placement. The manager can implement multiple poli-

cies for selecting which VM to migrate: it may select

the VM that is suffering the most from interference, or

it may select the VM using the culprit resource most ag-

gressively. Although we view the placement policy as

orthogonal to this work, we design a simple policy to

evaluate our placement manager. Upon identifying a re-

source that is the source of interference, the placement

manager selects the VM that is most aggressive in using

the resource, and then migrates it if an appropriate des-

tination PM exists. To ensure better performance isola-

tion, DeepDive repeats this process until the interference

is sufficiently reduced, or ideally eliminated altogether.

The remaining challenge is ensuring that a VM migra-

tion will not cause even worse interference on the destina-

tion PM. A naive placement manager might speculatively

migrate the selected VMs in the hope that this will not

cause further interference on the destination PMs. How-

ever, this could result in numerous and expensive VM

migrations (especially for applications with large mem-

ory and/or persistent state), as well as prolonged periods

of severe performance degradation. DeepDive therefore

anticipates the resulting interference conditions on the

destination PM prior to actual VM migration.

Toward this end, DeepDive uses a novel synthetic

benchmark that can mimic the behavior of an arbitrary

VM. The key goal is that an actual VM and its synthetic

counterpart should exhibit similar interference character-

istics, when co-located with other VMs running on a

PM. The benchmark models the working set size, data

6
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locality, instruction mix, level of parallelism, and disk

and network throughput of a VM. In more detail, it is

a collection of loops that exercise the different PM re-

sources to match the metric values collected from an ac-

tual VM. The resources can be exercised locally to a PM,

except for the network interface. For this resource, the

benchmark spawns a thread that acts as a communica-

tion partner for a benchmark running on another PM. The

loops execute numbers of iterations given as inputs to

the benchmark. Thus, creating the benchmark involved

learning the set of input values that best approximates

any set of metric values. We used a standard regression

algorithm for this training. Though the training phase

may take a long time (a few days in our experiments),

this training is done offline and only once for each server

type. Choosing a particular configuration, after the train-

ing phase, takes only a few seconds. Although, one can

use existing, more sophisticated workload synthesizers;

we find this extra sophistication unnecessary.

The placement manager uses the benchmark to evalu-

ate potential migrations. Specifically, given a set of met-

ric values to reproduce, it runs the benchmark (with the

proper learned inputs) in a VM on all candidate PMs con-

currently. The runs take less than a minute in our exper-

iments. With metric data collected from these runs, the

manager picks the best destination PM for the migration.

3.4 Discussion

Can DeepDive tackle interference due to an oversub-

scribed network? Currently, DeepDive can tackle in-

terference at the network interface, but requires a well-

provisioned connection to the sandbox to determine the

impact of network oversubscription. This is not a ma-

jor constraint, since the number of PMs required for the

sandbox is small, as we demonstrate in the next section.

Can DeepDive deal with non-determinism? Deep-

Dive can tolerate deviations coming from different

sources, such as OS-level non-determinism (e.g., peri-

odic flushing of dirty pages). DeepDive views such non-

deterministic events as noise, as they are typically too

short and infrequent. Nevertheless, if they are persistent

across multiple monitoring epochs, DeepDive is able to

recognize this and label the behavior as normal.

Can DeepDive deal with oscillating interference

conditions? While we have not focused on possible in-

terference oscillations in this work, interference might

vary over time. This would require us to repeat the in-

terference analysis to ensure better guarantees on inter-

ference detection. In fact, we could install a simple con-

troller that would react only upon detections that are per-

sistent across multiple epochs.

Can DeepDive deal with heterogeneity? Our experi-

ence so far has been with homogeneous PMs. This is rea-

sonable since cloud providers typically use disjoint sets

of homogeneous PMs for simpler management. Never-

theless, DeepDive can deal with heterogeneity by group-

ing the low-level metrics by PM type, performing the CPI

analysis according to PM type, and training a synthetic

benchmark for each PM type.

Can DeepDive degrade performance while evaluat-

ing a placement scenario? We run our benchmark only

for tens of seconds until we collect the necessary metrics.

We think that this is acceptable compared to the impact

of a full migration. Furthermore, the cloud operator can

prioritize and explicitly avoid certain PMs.

Can DeepDive deal with false negatives? One might

be able to design an adversarial workload that would re-

semble interference conditions. Section 3.1 discusses

how DeepDive tackles false negatives.

Can DeepDive be ported to different architectures?

One of the authors ported DeepDive to a NUMA (non-

uniform memory access) server with two quad-core Core

i7-based processors. The port took just a few days to

complete – we provide more details in our report [28].

4 Evaluation

4.1 Experimental infrastructure

Servers and clients. We run our production and sand-

boxed environments on up to 10 servers with Intel Xeon

X5472 processors. The servers have eight 3-GHz cores,

with 12 MB of L2 cache shared across each pair of cores.

The servers also feature 8 GB of DRAM, two 250-GB

7200rpm disks, and one 1-Gb network port.

The servers run the Xen VMM.We configure the VMs

to run on virtual CPUs that are pinned to separate cores

(we assign two cores per VM). We allocate enough mem-

ory for each VM to avoid swapping to disk.

The clients run on a separate machine with four 12-

core AMD Opteron 6234 processors running at 2.4 GHz,

132 GB of DRAM, and two 1-Gb network ports.

Cloud workloads. We use diverse, representative

cloud workloads from CloudSuite [20]. Our Data Serv-

ing workload consists of one instance of Cassandra [8].

To experiment with different loads, we instrument clients

from the Yahoo! Cloud Service Benchmark [14] to vary

both the key popularities and the read/write ratio.

Our Web Search workload involves a single index

serving node (available from the Nutch open-source

project [2]) that holds a 2GB index. To experiment with

different loads, we instrument the Faban client emula-

tor [3] to vary word popularities and the number of client

sessions (driven by the traces described below).

OurData Analyticsworkload uses Hadoop [4] to run a

modified Bayes classification example from the Mahout

package [1] across 35 GB of Wikipedia data. The cluster

consists of nine VMs configured with 2 GB of memory

7
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Figure 7: Detection and false positive rates while replaying the HotMail traces. DeepDive always detected the injected interference.

The false positive rate quickly decreases as DeepDive learns more about normal behaviors.

and two dedicated cores, and the master which is provi-

sioned with 8GB of RAM and four cores.

Real-world traces. To evaluate DeepDive under dy-

namic workloads, we use real load intensity traces to

drive the execution of our cloud workloads. Specifically,

we use traces fromMicrosoft’s HotMail from September,

2009. The traces represent the aggregated load across

thousands of servers, averaged over 1-hour periods. We

ensure that the maximum number of active client ses-

sions is within the servers’ maximum capabilities.

In addition to load traces, we injected interference con-

ditions mimicking a real cloud platform. Specifically, we

rented four Amazon EC2 instances and let our Data Serv-

ing workload run for a three-day period. During this

period, we continuously measured the performance re-

ported by our client emulator. Whenever the client re-

ported performance degradation of at least 20%, we la-

beled these performance crises as interference. We later

use the time slots corresponding to the cloud’s perfor-

mance crises to drive our stress workloads (described be-

low) on a co-located VM while replaying the traces. We

further quantify the cloud’s performance crises and use

this information to drive the inputs of our stress work-

loads so as to cause similar performance degradation

with respect to the particular VM we are stressing.

Using the clients’ measured performance (e.g., re-

sponse time), we evaluate DeepDive’s ability to identify

interference conditions. The clients label a certain per-

formance loss as due to interference only if the amount

of loss is larger than 20%. In Section 4.3, we demon-

strate that DeepDive is capable of dealing with arbitrary

interference conditions.

Interfering workloads. We evaluate DeepDive with

three interfering workloads. Our memory-stress work-

load is inspired by the stress test from Mars et al. [26].

It aggressively exercises shared resources, like last-level

caches and the memory controller. The workload takes

the desired working set size as an input. We use iperf as

our network-stressworkload. It takes the desired network

throughput as an input, and creates bi-directional UDP

data streams to exercise network resources accordingly.

Finally, we designed a simple disk-stress workload that

copies files from one source to another, while respecting

the maximum transfer rate defined as an input.

4.2 How accurate is the warning system?

To demonstrate the effectiveness of the warning system,

we clear the set of VM behaviors before each experiment.

This forces the the warning system to rely solely on the

information it obtained from the analyzer in the previous

steps, as described in Section 3. Figures 7(a) to 7(c) plot

the detection rate and the false positive rate of DeepDive

while running our workloads. The detection rate mea-

sures DeepDive’s consistency in identifying interference,

whereas the false positive rate reflects scenarios where

the warning system unnecessarily invoked the analyzer.

In these experiments, we use memory-stress to generate

interference, and vary the working set size to reproduce

interference amounts that we obtained from our experi-

ments on Amazon EC2. Because this workload primarily

affects memory-related metrics that vary at a fine grain,

this is the most challenging scenario for DeepDive to sep-

arate normal from interference conditions.

The figures show that DeepDive reliably identifies the

interference, each time VM performance is substantially

affected by the co-located VMs. Besides the detection

rate, the number of analyzer invocations is important, as

it determines DeepDive’s overhead. On the first day after

deployment, DeepDive shows a fairly high false positive

rate, as it is still learning the normal behaviors. Starting

from the second day, this rate drops to near-zero, as the

warning system recognizes behaviors it has seen earlier.

We did not observe false negatives in our experiments.

Importantly, recall that false positives do not result in

unnecessary VM migrations, since the interference ana-

lyzer will realize that these metric deviations correspond

to workload changes, rather than interference.

4.3 How accurate is the analyzer?

We now run experiments to demonstrate that DeepDive

accurately estimates performance degradation under var-

ious interference conditions. We use client emulators for

our workloads that continuously report average perfor-
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Figure 8: DeepDive accurately and transparently estimates performance loss from the metrics’ values.
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Figure 9: The synthetic benchmark accurately reproduces the performance loss of its real counterpart.

mance, enabling us to compare the client-reported degra-

dations with those estimated by the analyzer.

We run the experiments at the maximum-possible re-

quest rate. We allow the servers to warm up for several

minutes and start reporting stable performance. At this

point, we launch the stress workloads on a co-located

VM to inject interference. Given our workloads, and

the server components they primarily exercise, we co-

locate: i) memory-stress with Data Serving, ii) network-

stress with Data Analytics, and iii) disk-stress with Web

Search. We vary the interference intensity by varying: i)

the working set size of memory-stress from 6 MB to 512

MB, ii) the throughput of network-stress from 50 Mbps

to 700 Mbps, and iii) the file transfer rate of disk-stress

from 1 MB/s to 10 MB/s. Our goal is to select the stress

workloads’ inputs so as to replicate the cloud’s perfor-

mance losses seen in our experiments on Amazon EC2.

Figure 8 plots both the estimated and client-reported

latency degradations for Data Serving and Web Search,

and task completion time degradations for Data Ana-

lytics, reported by the interference-suffering VM. Each

group of bars represents a different amount of interfer-

ence, yielding performance degradation roughly from 5%

to 50%. We observe that the analyzer’s CPI analysis can

faithfully approximate the degradation across the inter-

ference levels. In particular, we observe that the ana-

lyzer estimates the degradation within 10% accuracy in

the worst case, and less than 5% on average.

4.4 How robust is DeepDive’s placement?

Here we evaluate the ability of DeepDive’s synthetic

benchmark to mimic the behavior of a VM in two ways.

First, we monitor the performance degradation that both

the monitored VM and its synthetic representation expe-

rience when co-located with our stress test workloads. If

they match, the synthetic benchmark can successfully be

used to quickly test if a migrated VM would no longer

suffer interference. To evaluate the synthetic clone’s ac-

curacy under different interference conditions, we lever-

age our three stress workloads to tune interference in-

tensities. Figures 9(a) to 9(c) contrast the performance

loss reported by the real VM and its synthetic represen-

tation, while the real VM runs different cloud applica-

tions. We see that the synthetic benchmark can closely

approximate the performance loss of a real VM – the me-

dian and average estimation error of our synthetic bench-

mark across all our experiments were 8% and 10%, re-

spectively. These results can be improved, especially if

representative interference conditions are considered dur-

ing the training of the synthetic benchmark.

Next, we show how the placement manager migrates

an aggressive VM that is the culprit for interference to a

destination PM so as to minimize the resulting interfer-

ence. In response to detecting an interference-inducing

VM (memory-stress), DeepDive runs the synthetic repre-

sentation of this aggressive VM on three PM candidates,

each of which is running one of our workloads. Based

on these runs, the placement manager selects the desti-

nation PM on which the analyzer reports the least inter-

ference. Figure 10 plots the resulting performance loss

at that PM relative to the best (but impractical) scenario

where the placement manager learns the interference ef-

fects on the destination PM by actually performing VM

migration. During the experiment, we also record the re-

sulting performance loss for all the possible placements,

allowing us to: i) compute the average performance loss,

9
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Figure 10: The placement manager properly predicts interfer-

ence on the possible destination PMs.

and ii) label the placement with the highest performance

loss as the worst. We observe from the figure that Deep-

Dive finds the best destination PM relying on its syn-

thetic benchmark to estimate the interference. This result

is important, because it shows that we can entirely elim-

inate expensive and yet worthless (for placement) VM

migration that could cause performance loss elsewhere.

4.5 What is the overhead of DeepDive?

DeepDive imposes a small per-VM memory overhead.

For example, even when a VM is experiencing interfer-

ence every hour, DeepDive requires less than 5KB to

record the VM’s behavior for the whole day. Storing this

information into a repository is not an issue, as there are

many works on high-performance NoSQL datastores.

We next explore DeepDive’s profiling overhead, i.e.

the amount of time and the number of machines re-

quired by the interference analyzer. We have conducted

our evaluation using both live experiments with the

Data Serving workload (it invokes the analyzer most fre-

quently) and simulations. Running live experiments in

our testbed helps us understand how often DeepDive trig-

gers the analyzer in dynamic, realistic environments, and

gives us an idea of the overall profiling overhead. Using

this information, we drive simulations to analyze the scal-

ing properties of DeepDive when applied to large-scale

datacenters with high VM-arrival rates.

Using real experiments, Figure 11 plots the accumu-

lated profiling time for a VM undergoing interference

for both DeepDive and a baseline approach. The base-

line triggers the analyzer every time performance varies

more than a threshold (5%, 10%, and 20%). Triggering

the analyzer too frequently renders the baseline unscal-

able and infeasible in practice. On the other hand, Deep-

Dive relies on its warning system and its observed VM

behaviors to prevent unnecessary VM profiling. The fig-

ure shows that DeepDive’s overhead accumulates to only

twenty minutes of profiling over 3 days. In fact, after the

first day, no more profiling is needed.

To extrapolate from these results, we next drive our

simulator to trigger the analyzer exactly at the points in
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Figure 11: DeepDive’s profiling overhead is low, and dimin-

ishes as it learns more about the VM behaviors.

time that were previously recorded by our live experi-

ment. We also used Matlab to model DeepDive’s pro-

filer as a simple queue: i) the VM arrival rate follows a

Poisson process (we also experiment with a lognormal

distribution of VM arrivals below), ii) the service time is

replicated from the live experiments, and ii) the datacen-

ter handles 1000 new (incoming) VMs every day.

Figure 12(a) presents DeepDive’s reaction time as a

function of the percentage of VMs undergoing interfer-

ence. The figure plots the reaction time as long as the

system is stable (mean service time < mean inter-arrival

time), and the waiting time is acceptable (less than 10

minutes). As expected, the mean reaction time decreases

as DeepDive uses more profiling servers. Most impor-

tantly, the figure demonstrates a desirable scaling behav-

ior. For instance, only four profiling servers provide reac-

tion time within four minutes, even under an aggressive

rate of 20% of VMs undergoing interference.

These results assume that each VM runs a different

workload, thus preventing DeepDive from being able to

leverage global information. We design another set of

experiments where VM reoccurrence follows a typical

Zipf distribution – a few cloud tenants execute their work-

loads on a large number of VMs (available global in-

formation), and the remaining tenants run their deploy-

ments on a handful of VMs ("the long tail"). Figure

12(b) shows that leveraging global information signifi-

cantly improves DeepDive’s reaction time and allows it

to reduce the number of profiling servers required (by 2x

in these experiments).

To mimic various deployment scenarios, we vary the

power-law tail index (from light- to heavy-tailed, using

the α parameter) while using four profiling servers. Fig-

ure 12(c) plots the mean reaction time as a function of in-

terference. While leveraging global information is most

effective under the “light tail” conditions (α=1), it sub-
stantially improves DeepDive’s reaction time for all the

scenarios we considered.

To demonstrate DeepDive’s scaling under more bursty

workloads, we repeat the same set of experiments under a

lognormal VM-arrival distribution, again assuming 1000

new VMs per day. The results (available in [28]) show
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Figure 12: Reaction time for 1000 new VMs per day. Curves stop where the system becomes unstable or excessively slow.

that fewer than 10 profiling machines are required, even

under an extreme new-VM arrival scenario.

5 Related Work

Interference analysis. Most of the prior efforts on an-

alyzing interference focus on on-chip contention and/or

require application feedback. Recent efforts [12, 18, 25,

26, 37] demonstrate that an analysis of the sensitivity

of workloads to co-located applications may accurately

predict the degradation due to interference. In public

clouds however, applications are not available prior to

their deployment and often run for a long time, so cloud

providers cannot easily perform this analysis. Thus,

DeepDive does not rely on prior knowledge of applica-

tions or their interactions.

To speedup interference analysis, Paragon [16] uses

a few stress experiments with each new application and

a recommendation system to identify the best place-

ment for the application with respect to interference. In

contrast, DeepDive collects low-level metrics (the aug-

mented CPI stack) from production VMs without stress

tests. Moreover, because it was implemented in a virtual-

ized environment, DeepDive can easily rely on VM mi-

gration for changing placements when workloads change

and interference reoccurs.

Concurrently with our work, Zhang et al. [35] pro-

posed CPI2, a method for detecting and eliminating CPU

interference on shared clusters. Our approach differs be-

cause: i) DeepDive uses CPI, not only to detect interfer-

ence, but also to pinpoint its root cause, ii) DeepDive

extends CPI analysis by including I/O, and iii) DeepDive

leverages its synthetic benchmark to estimate the poten-

tial impact of a migrated VM on alternative PMs.

Focusing on IaaS clouds and long-running workloads,

DejaVu [33] relies on comparing the performance of a

production VM and a replica of it that runs in a sand-

box to detect interference. If interference is present, De-

jaVu overprovisions virtual resources to mitigate its ef-

fects. Unfortunately, DejaVu relies on user/application

assistance to identify interference and cannot pinpoint

its cause. Moreover, overprovisioning is an inefficient

approach for tackling interference.

Workload profiling and characterization. Sample-

based profiling tools, like Magpie [23] and Pinpoint [13],

produce workload models and automatically manage fail-

ures in distributed systems. Although these tools are

useful for understanding workload (mis)behaviors, they

are not useful in virtualized environments where cloud

providers do not have access to the applications running

inside VMs. Without requiring such access, DeepDive

can pinpoint the main source of VM interference, and

migrate VMs to reduce or even eliminate it.

Synthetic benchmarks. Given their easy develop-

ment, synthetic benchmarks are often used to mimic

behaviors of a specific application on different hard-

ware platforms. Even more conveniently, tunable bench-

marks can closely approximate a large portion of an ar-

bitrary application’s behavior by merely determining a

suitable set of input parameters [32]. Several recent ef-

forts [22, 29, 30, 31] have also demonstrated that one

can reproduce any application’s behavior using a lim-

ited number of the application’s characteristics, such as

the memory access pattern and instruction dependencies.

These previous efforts inspired the design of our syn-

thetic VM benchmark. Importantly, we are the first to

use such a benchmark to manage interference.

Recently, Bubble-Up [26], Paragon [16], and Bob-

tail [34] proposed test benchmarks for placing VMs or

applications. Bubble-Up uses a benchmark to exercise

the memory system and characterize the effect it has on a

co-located application. Similarly, Paragon uses multiple

benchmarks to identify sources of interference and their

impact on a co-located application. Bobtail employs a

simple test program to determine whether the VMs al-

ready running on a PM are CPU-intensive. In contrast

to these systems, our simple benchmark reproduces the

behavior of each VM that DeepDive intends to migrate,

and considers all resources that can cause interference,

including disk and network I/O.

Performance modeling. Recent efforts have tried

to predict performance by relying on regression mod-

els. For example, Lee et al. [24] combine processor,

contention, and penalty models to estimate performance

in multiprocessors. Similarly, Deng et al. [17] rely

on hardware performance counters to model the perfor-
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mance (and power consumption) of the memory subsys-

tem. These works are orthogonal to DeepDive, since it

does not try to predict performance per se, but rather to

pinpoint the resource that is causing the interference. Fur-

thermore, our framework is not tied to a specific architec-

ture, and focuses on all key shared system resources.

6 Conclusion

Cloud services are becoming increasingly popular. A

key challenge that cloud service providers face is how to

identify and eliminate performance interference between

VMs running on the same PM. This paper proposed and

evaluated DeepDive, a system for transparently and ef-

ficiently identifying and managing interference. Deep-

Dive quickly identifies that a VM may be suffering in-

terference by monitoring and clustering low-level met-

rics, e.g. hardware performance counters. If interference

is suspected, DeepDive compares the metrics produced

by the VM running in production and in isolation. If in-

terference is confirmed, DeepDive starts a low-overhead

search for a PM to which the VM can be migrated.
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