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Abstract
We present Mantis, a framework for predicting the per-
formance of Android applications on given inputs auto-
matically, accurately, and efficiently. A key insight under-
lying Mantis is that program execution runs often con-
tain features that correlate with performance and are au-
tomatically computable efficiently. Mantis synergistically
combines techniques from program analysis and machine
learning. It constructs concise performance models by
choosing from many program execution features only a
handful that are most correlated with the program’s exe-
cution time yet can be evaluated efficiently from the pro-
gram’s input. We apply program slicing to accurately es-
timate the evaluation cost of a feature and automatically
generate executable code snippets for efficiently evaluat-
ing features. Our evaluation shows that Mantis predicts
the execution time of six Android apps with estimation er-
ror in the range of 2.2-11.9% by executing predictor code
costing at most 1.3% of their execution time on Galaxy
Nexus.

1 Introduction
Predicting the performance of programs on smartphones
has many applications ranging from notifying estimated
completion time to users, to better scheduling and re-
source management, to computation offloading [13, 14,
18]. The importance of these applications—and of pro-
gram performance prediction—will only grow as smart-
phone systems become increasingly complex and flexible.

Many techniques have been proposed for predicting
program performance. A key aspect of such techniques
is what features, which characterize the program’s input
and environment, are used to model the program’s perfor-
mance. Most existing performance prediction techniques
can be classified into two broad categories with regard to
this aspect: automatic but domain-specific [7, 16, 21] or
general-purpose but requiring user guidance [10, 17].

For techniques in the first category, features are cho-
sen once and for all by experts, limiting the applicability
of these techniques to programs in a specific domain. For
example, to predict the performance of SQL query plans,
a feature chosen once and for all could be the count of

database operators occurring in the plan [16]. Techniques
in the second category are general-purpose but require
users to specify what program-specific features to use for
each given program in order to predict its performance on
different inputs. For instance, to predict the performance
of a sorting program, such a technique may require users
to specify the feature that denotes the number of input el-
ements to be sorted. For techniques in either category, it is
not sufficient merely to specify the relevant features: one
must also manually provide a way to compute the value
of each such feature from a given input and environment,
e.g., by parsing an input file to sort and counting the num-
ber of items therein.

In this paper, we present Mantis, a new framework to
predict online the performance of general-purpose byte-
code programs on given inputs automatically, accurately,
and efficiently. By being simultaneously general-purpose
and automatic, our framework gains the benefits of both
categories of existing performance prediction techniques
without suffering the drawbacks of either. Since it uses
neither domain nor expert knowledge to obtain relevant
features, our framework casts a wide net and extracts a
broad set of features from the given program itself to se-
lect relevant features using machine learning as done in
our prior work [25]. During an offline stage, we execute
an instrumented version of the program on a set of train-
ing inputs to compute values for those features; we use
the training data set to construct a prediction model for
online evaluation as new inputs arrive. The instrumented
program tracks various features including the decisions
made by each conditional in the program (branch counts),
the number of times each loop in the program iterates
(loop counts), the number of times each method is called
(method call counts), and the values that are assumed by
each program variable (variable values).

It is tempting to exploit features that are evaluated at
late stages of program execution as such features may be
strongly correlated with execution time. A drawback of
naïvely using such features for predicting program perfor-
mance, however, is that it takes as long to evaluate them as
to execute almost the entire program. Our efficiency goal
requires our framework to not only find features that are
strongly correlated with execution time, but to also evalu-
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Figure 1: The Mantis offline stage.

ate those features significantly faster than running the pro-
gram to completion.

To exploit such late-evaluated features, we use a pro-
gram analysis technique called program slicing [44, 46].
Given a feature, slicing computes the set of all state-
ments in the program that may affect the value of the fea-
ture. Precise slicing could prune large portions of the pro-
gram that are irrelevant to the evaluation of features. Our
slices are stand-alone executable programs; thus, execut-
ing them on program inputs provides both the evaluation
cost and the value of the corresponding feature. Our appli-
cation of slicing is novel; in the past, slicing has primarily
been applied to program debugging and understanding.

We have implemented Mantis for Android applications
and applied it to six CPU-intensive applications (Encryp-
tor, Path Routing, Spam Filter, Chess Engine, Ringtone
Maker, and Face Detection) on three smartphone hard-
ware platforms (Galaxy Nexus, Galaxy S2, and Galaxy
S3). We demonstrate experimentally that, with Galaxy
Nexus, Mantis can predict the execution time of these pro-
grams with estimation error in the range of 2.2-11.9%, by
executing slices that cost at most 1.3% of the total execu-
tion time of these programs. The results for Galaxy S2 and
Galaxy S3 are similar. We also show that the predictors are
accurate thanks to Android’s scheduling policy even when
the ambient CPU load on the smartphones increases.

We summarize the key contributions of our work:

• We propose a novel framework that automatically
generates performance predictors using program-
execution features with program slicing and machine
learning.

• We have implemented our framework for Android-
smartphone applications and show empirically that it
can predict the execution time of various applications
accurately and efficiently.

The rest of the paper is organized as follows. We
present the architecture of our framework in Section 2.

Sections 3 and 4 describe our feature instrumentation and
performance-model generation, respectively. Section 5
describes predictor code generation using program slic-
ing. In Section 6 we present our system implementation
and evaluation results. Finally, we discuss related work in
Section 7 and conclude in Section 8.

2 Architecture
In Mantis, we take a new white-box approach to automati-
cally generate system performance predictors. Unlike tra-
ditional approaches, we extract information from the exe-
cution of the program, which is likely to contain key fea-
tures for performance prediction. This approach poses the
following two key challenges:

• What are good program features for performance
prediction? Among many features, which ones are
relevant to performance metrics? How do we model
performance with relevant features?

• How do we compute features cheaply? How do we
automatically generate code to compute feature val-
ues for prediction?

Mantis addresses the above challenges by synergisti-
cally combining techniques from program analysis and
machine learning.

Mantis has an offline stage and an online stage. The
offline stage, depicted in Figure 1, consists of four com-
ponents: a feature instrumentor, a profiler, a performance-
model generator, and a predictor code generator.

The feature instrumentor (Section 3), takes as input
the program whose performance is to be predicted, and
a set of feature instrumentation schemes. A scheme spec-
ifies a broad class of program features that are potentially
correlated with the program’s execution time. Examples
of schemes include a feature for counting the number of
times each conditional in the program evaluates to true, a
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feature for the average of all values taken by each integer-
typed variable in the program, etc. The feature instrumen-
tor instruments the program to collect the values of fea-
tures (f1, ..., fM ) as per the schemes.

Next, the profiler takes the instrumented program and
a set of user-supplied program inputs (I1, ..., IN ). It runs
the instrumented program on each of these inputs and
produces, for each input Ii, a vector of feature values
(vi1, ..., viM ). It also runs the original program on the
given inputs and measures the performance metric (e.g.,
execution time (ti)) of the program on that input.

The performance-model generator (Section 4) performs
sparse nonlinear regression on the feature values and ex-
ecution times obtained by the profiler, and produces a
function (λ) that approximates the program’s execution
time using a subset of features (fi1, ..., fiK). In practice,
only a tiny fraction of all M available features is chosen
(K � M ) since most features exhibit little variability
on different program inputs, are not correlated or only
weakly correlated with execution time, or are equivalent
in value to the chosen features and therefore redundant.

As a final step, the predictor code generator (Section 5)
produces for each of the chosen features a code snippet
from the instrumented program. Since our requirement
is to efficiently predict the program’s execution time on
given inputs, we need a way to efficiently evaluate each of
the chosen features (fi1, ..., fiK) from program inputs.

We apply program slicing to extract a small code snip-
pet that computes the value of each chosen feature. A
precise slicer would prune large portions of the original
program that are irrelevant to evaluating a given feature
and thereby provide an efficient way to evaluate the fea-
ture. In practice, however, our framework must be able to
tolerate imprecision. Besides, independent of the slicer’s
precision, certain features will be inherently expensive to
evaluate: e.g., features whose value is computed upon pro-
gram termination, rather than derived from the program’s
input. We define a feature as expensive to evaluate if the
execution time of its slice exceeds a threshold (TH) ex-
pressed as a fraction of program execution time. If any of
the chosen features (fi1, ..., fiK) is expensive, then via the
feedback loop in Figure 1 (at the bottom), our framework
re-runs the model generator, this time without providing it
with the rejected features. The process is repeated until the
model generator produces a set of features, all of which
are deemed inexpensive by the slicer. In summary, the
output of the offline stage of our framework is a predic-
tor, which consists of a function (λ) over the final chosen
features that approximates the program’s execution time,
along with a feature evaluator for the chosen features.

The online stage is straightforward: it takes a program
input from which the program’s performance must be pre-
dicted and runs the predictor module, which executes the
feature evaluator on that input to compute feature values,

and uses those values to compute λ as the estimated exe-
cution time of the program on that input.

3 Feature Instrumentation
We now present details on the four instrumentation
schemes we consider: branch counts, loop counts,
method-call counts, and variable values. Our overall
framework, however, generalizes to all schemes that can
be implemented by the insertion of simple tracking-
statements into binaries or source.
Branch Counts: This scheme generates, for each condi-
tional occurring in the program, two features: one count-
ing the number of times the branch evaluates to true in an
execution, and the other counting the number of times it
evaluates to false. Consider the following simple example:

i f ( b == t rue ) {
/ * heavy c o m p u t a t i o n * / }

The execution time of this example would be strongly
correlated with each of the two features generated by this
scheme for condition (b == true). In this case, the two
features are mutually-redundant and our performance-
model generator could use either feature for the same cost.
But the following example illustrates the need for having
both features:

f o r ( i n t i = 0 ; i < n ; i ++) {
i f ( a [ i ] == 2) {

/ * l i g h t c o m p u t a t i o n * / }
e l s e {

/ * heavy c o m p u t a t i o n * / }
}

Picking the wrong branch of a conditional to count could
result in a weakly correlated feature, penalizing prediction
accuracy. The false-branch count is highly correlated with
execution time, but the true-branch count is not.
Loop Counts: This scheme generates, for each loop oc-
curring in the program, a feature counting the number of
times it iterates in an execution. Clearly, each such feature
is potentially correlated with execution time.
Method Call Counts: This scheme generates a feature
counting the number of calls to each procedure. In case of
recursive calls of methods, this feature is likely to corre-
late with execution time.
Variable Values: This scheme generates, for each state-
ment that writes to a variable of primitive type in the pro-
gram, two features tracking the sum and average of all val-
ues written to the variable in an execution. One can also
instrument versions of variable values in program execu-
tion to capture which variables are static and what value
changes each variable has. However, this creates too many
feature values and we resort to the simpler scheme.

We instrument variable values for a few reasons. First,
often the variable values obtained from input parameters
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and configurations are changing infrequently, and these
values tend to affect program execution by changing con-
trol flow. Second, since we cannot instrument all func-
tions (e.g., system call handlers), the values of parameters
to such functions may be correlated with their execution-
time contribution; in a sense, variable values enable us
to perform black-box prediction for the components of
a program’s execution trace that we cannot analyze. The
following example illustrates this case:

i n t t ime = s e t f r o m a r g s ( a r g s ) ;
Thread . s l e e p ( t ime ) ;

Similarly, variable value features can be equivalent to
other types of features but significantly cheaper to com-
pute. For example, consider the following Java program
snippet:

void main ( S t r i n g [ ] a r g s ) {
i n t n = I n t e g e r . p a r s e I n t ( a r g s [ 0 ] ) ;
f o r ( i n t i = 0 ; i < n ; i ++) { . . . }

}

This program’s execution time depends on the number of
times the loop iterates, but the value of n can be used to
estimate that number without executing the loop in the
feature evaluator.
Other Features: We also considered the first k values
(versions) of each variable. Our intuition is that often the
variable values obtained from input parameters and con-
figurations are changing infrequently, and these values
tend to affect program execution by changing control flow.
We rejected this feature since the sum and average metric
captures infrequently-changing variable values well, and
tracking k versions incurs higher instrumentation over-
heads. There might be other features that are helpful to
prediction; exploring such features is future work.

4 Performance Modeling
Our feature instrumentation schemes generate a large
number of features (albeit linear in the size of the pro-
gram for the schemes we consider). Most of these fea-
tures, however, are not expected to be useful for the per-
formance prediction. In practice we expect a small num-
ber of these features to suffice in explaining the program’s
execution time well, and thereby seek a compact perfor-
mance model, that is, a function of (nonlinear combina-
tions of) just a few features that accurately approximates
execution time. Unfortunately, we do not know a priori
this handful of features and their nonlinear combinations
that predict execution time well.

For a given program, our feature instrumentation pro-
filer outputs a data set with N samples as tuples of
{ti,vi}Ni=1, where ti ∈ R denotes the ith observation of
execution time, and vi denotes the ith observation of the
vector of M features.

Least square regression is widely used for finding the
best-fitting λ(v, β) to a given set of responses ti by mini-
mizing the sum of the squares of the residuals [23]. How-
ever, least square regression tends to overfit the data and
create complex models with poor interpretability. This
does not serve our purpose since we have a lot of features
but desire only a small subset of them to contribute to the
model.

Another challenge we faced was that linear regression
with feature selection would not capture all interesting be-
haviors by practical programs. Many such programs have
non-linear, e.g., polynomial, logarithmic, or polylogarith-
mic complexity. So we were interested in non-linear mod-
els, which can be inefficient for the large number of fea-
tures we had to contend with.

Regression with best subset selection finds for each
K ∈ {1, 2, . . . ,M} the subset of size K that gives
the smallest Residual Sum of Squares (RSS). However,
it is a discrete optimization problem and is known to
be NP-hard [23]. In recent years a number of approxi-
mate algorithms have been proposed as efficient alterna-
tives for simultaneous feature selection and model fitting.
Widely used among them are LASSO (Least Absolute
Shrinkage and Selection Operator) [43] and FoBa [48],
an adaptive forward-backward greedy algorithm. The for-
mer, LASSO, is based on model regularization, penaliz-
ing low-selectivity, high-complexity models. It is a con-
vex optimization problem, so efficiently solvable [15,27].
The latter, FoBa, is an iterative greedy pursuit algorithm:
during each iteration, only a small number of features are
actually involved in model fitting, adding or removing the
chosen features at each iteration to reduce the RSS. As
shown FoBa has nice theoretical properties and efficient
inference algorithms [48].

For our system, we chose the SPORE-FoBa algorithm,
which we proposed [25], to build a predictive model from
collected features. In our work, we showed that SPORE-
FoBa outperforms LASSO and FoBa. The FoBa compo-
nent of the algorithm helps cut down the number of in-
teresting features first, and the SPORE component builds
a fixed-degree (d) polynomial of all selected features, on
which it then applies sparse, polynomial regression to
build the model. For example, using a degree-2 polyno-
mial with feature vector v = [x1 x2], we expand out
(1 + x1 + x2)

2 to get terms 1, x1, x2, x2
1, x1x2, x2

2,
and use them as basis functions to construct the following
function for regression:

f(v) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x1x2 + β5x

2
2.

The resulting model can capture polynomial or sub-
polynomial program complexities well thanks to Taylor
expansion, which characterizes the vast majority of prac-
tical programs.

For a program whose execution time may dynamically
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change over time as the workload changes, our perfor-
mance model should evolve accordingly. The model can
evolve in two ways: 1) the set of (non-linear) feature terms
used in the model change; 2) with a fixed set of feature
terms, their coefficients β′

js change. For a relatively sta-
ble program, we expect the former changes much less fre-
quently than the latter. Using methods based on Stochas-
tic Gradient Descent [9], it is feasible to update the set of
feature terms and their coefficients β′

js online upon every
execution time being collected.

5 Predictor Code Generation
The function output by the performance model generator
is intended to efficiently predict the program’s execution
time on given program inputs. This requires a way to ef-
ficiently evaluate the features that appear in the function
on those inputs. Many existing techniques rely on users to
provide feature evaluators. A key contribution of our ap-
proach is the use of static program slicing [44, 46] to au-
tomatically extract from the (instrumented) program effi-
cient feature evaluators in the form of executable slices—
stand-alone executable programs whose sole goal is to
evaluate the features. This section explains the rationale
underlying our feature slicing (Section 5.1), describes the
challenges of slicing and our approach to addressing them
(Section 5.2), and provides the design of our slicer (Sec-
tion 5.3).

5.1 Rationale
Given a program and a slicing criterion (p, v), where v
is a program variable in scope at program point p, a slice
is an executable sub-program of the given program that
yields the same value of v at p as the given program, on
all inputs. The goal of static slicing is to yield as small a
sub-program as possible. It involves computing data and
control dependencies for the slicing criterion, and exclud-
ing parts of the program upon which the slicing criterion
is neither data- nor control-dependent.

In the absence of user intervention or slicing, a naïve
approach to evaluate features would be to simply exe-
cute the (instrumented) program until all features of in-
terest have been evaluated. This approach, however, can
be grossly inefficient. Besides, our framework relies on
feature evaluators to obtain the cost of each feature, so
that it can iteratively reject costly features from the perfor-
mance model. Thus, the naïve approach to evaluate fea-
tures could grossly overestimate the cost of cheap fea-
tures. We illustrate these problems with the naïve ap-
proach using two examples.

Example 1: A Java program may read a system property
lazily, late in its execution, and depending upon its value
decide whether or not to perform an expensive computa-
tion:

. . . ; / / e x p e n s i v e c o m p u t a t i o n S1
S t r i n g s = System . g e t P r o p e r t y ( . . . ) ;
i f ( s . e q u a l s ( . . . ) ) {

f _ t r u e ++; / / f e a t u r e i n s t r u m e n t a t i o n
. . . ; / / e x p e n s i v e c o m p u t a t i o n S2

}

In this case, feature f_true generated by our framework
to track the number of times the above branch evaluates
to true will be highly predictive of the execution time.
However, the naïve approach for evaluating this feature
will always perform the expensive computation denoted
by S1. In contrast, slicing this program with slicing crite-
rion (p_exit, f_true), where p_exit is the exit point
of the program, will produce a feature evaluator that ex-
cludes S1 (and S2), assuming the value of f_true is
truly independent of computation S1 and the slicer is pre-
cise enough.
Example 2: This example illustrates a case in which the
computation relevant to evaluating a feature is interleaved
with computation that is expensive but irrelevant to eval-
uating the feature. The following program opens an in-
put text file, reads each line in the file, and performs an
expensive computation on it (denoted by the call to the
process method):

Reader r = new Reader ( new F i l e ( name ) ) ;
S t r i n g s ;
whi le ( ( s = r . r e a d L i n e ( ) ) != n u l l ) {

f _ l o o p ++; / / f e a t u r e i n s t .
p r o c e s s ( s ) ; / / e x p e n s i v e c o m p u t a t i o n

}

Assuming the number of lines in the input file is strongly
correlated with the program’s execution time, the only
highly predictive feature available to our framework
is f_loop, which tracks the number of iterations of
the loop. The naïve approach to evaluate this feature
will perform the expensive computation denoted by the
process method in each iteration, even if the number of
times the loop iterates is independent of it. Slicing this
program with slicing criterion (p_exit, f_loop), on
the other hand, can yield a slice that excludes the calls
to process(s).

The above two examples illustrate cases where the fea-
ture is fundamentally cheap to evaluate but slicing is re-
quired because the program is written in a manner that
intertwines its evaluation with unrelated expensive com-
putation.

5.2 Slicer Challenges
There are several key challenges to effective static slic-
ing. Next we discuss these challenges and the approaches
we take to address them. Three of these are posed by pro-
gram artifacts—procedures, the heap, and concurrency—
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and the fourth is posed by our requirement that the slices
be executable.

Inter-procedural Analysis: The slicer must compute
data and control dependencies efficiently and precisely. In
particular, it must propagate these dependencies context-
sensitively, that is, only along inter-procedurally realiz-
able program paths—doing otherwise could result in in-
ferring false dependencies and, ultimately, grossly impre-
cise slices. Our slicer uses existing precise and efficient
inter-procedural algorithms from the literature [24, 33].

Alias Analysis: False data dependencies (and thereby
false control dependencies as well) can also arise due
to aliasing, i.e., two or more expressions pointing to
the same memory location. Alias analysis is expensive.
The use of an imprecise alias analysis by the slicer can
lead to false dependencies. Static slicing needs may-alias
information—analysis identifying expressions that may
be aliases in at least some executions—to conservatively
compute all data dependencies. In particular, it must gen-
erate a data dependency from an instance field write u.f
(or an array element write u[i]) to a read v.f (or v[i])
in the program if u and v may-alias. Additionally, static
slicing can also use must-alias information if available
(expressions that are always aliases in all executions), to
kill dependencies that no longer hold as a result of in-
stance field and array element writes in the program. Our
slicer uses a flow- and context-insensitive may-alias anal-
ysis with object allocation site heap abstraction [29].

Concurrency Analysis: Multi-threaded programs pose
an additional challenge to static slicing due to the possi-
bility of inter-thread data dependencies: reads of instance
fields, array elements, and static fields (i.e., global vari-
ables) are not just data-dependent on writes in the same
thread, but also on writes in other threads. Precise static
slicing requires a precise static race detector to compute
such data dependencies. Our may-alias analysis, how-
ever, suffices for our purpose (a race detector would per-
form additional analyses like thread-escape analysis, may-
happen-in-parallel analysis, etc.)

Executable Slices: We require slices to be executable. In
contrast, most of the literature on program slicing focuses
on its application to program debugging, with the goal
of highlighting a small set of statements to help the pro-
grammer debug a particular problem (e.g., Sirdharan et
al. [40]). As a result, their slices do not need to be exe-
cutable. Ensuring that the generated slices are executable
requires extensive engineering so that the run-time does
not complain about malformed slices, e.g., the first state-
ment of each constructor must be a call to the super con-
structor even though the body of that super constructor is
sliced away, method signatures must not be altered, etc.

5.3 Slicer Design
Our slicer combines several existing algorithms to pro-
duce executable slices. The slicer operates on a three-
address-like intermediate representation of the bytecode
of the given program.
Computing System Dependence Graph: For each
method reachable from the program’s root method (e.g.,
main) by our call-graph analysis, we build a Program
Dependence Graph (PDG) [24], whose nodes are state-
ments in the body of the method and whose edges repre-
sent intra-procedural data/control dependencies between
them. For uniform treatment of memory locations in sub-
sequent steps of the slicer, this step also performs a mod-
ref analysis1 and creates additional nodes in each PDG de-
noting implicit arguments for heap locations and globals
possibly read in the method, and return results for those
possibly modified in the method.

The PDGs constructed for all methods are stitched into
a System Dependence Graph (SDG) [24], which repre-
sents inter-procedural data/control dependencies. This in-
volves creating extra edges (so-called linkage-entry and
linkage-exit edges) linking actual to formal arguments and
formal to actual return results, respectively.

In building PDGs, we handle Java native methods,
which are built with JNI calls, specially. We implement
simple stubs to represent these native methods for the
static analysis. We examine the code of the native method
and write a stub that has the same dependencies between
the arguments of the method, the return value of the
method, and the class variables used inside the method as
does the native method itself. We currently perform this
step manually. Once a stub for a method is written, the
stub can be reused for further analyses.
Augmenting System Dependence Graph: This step uses
the algorithm by Reps, Horwitz, Sagiv, and Rosay [33]
to augment the SDG with summary edges, which are
edges summarizing the data/control dependencies of each
method in terms of its formal arguments and return re-
sults.
Two-Pass Reachability: The above two steps are more
computationally expensive but are performed once and for
all for a given program, independent of the slicing crite-
rion. This step takes as input a slicing criterion and the
augmented SDG, and produces as output the set of all
statements on which the slicing criterion may depend. It
uses the two-pass backward reachability algorithm pro-
posed by Horwitz, Reps, and Binkley [24] on the aug-
mented SDG.
Translation: As a final step, we translate the slicer code
based on intermediate representation to bytecode.
Extra Steps for Executable Slices: A set of program

1This finds all expressions that a method may modify-ref erence di-
rectly, or via some method it transitively calls.
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Figure 2: Mantis prototype toolchain.

statements identified by the described algorithm may not
meet Java language requirements. This problem needs to
be resolved to create executable slices.

First, we need to handle accesses to static fields and
heap locations (instance fields and array elements). There-
fore, when building an SDG, we identify all such accesses
in a method and create formal-in vertices for those read
and formal-out for those written along with correspond-
ing actual-in and actual-out vertices. Second, there may
be uninitialized parameters if they are not included in a
slice. We opt to keep method signatures, hence we initial-
ize them with default values. Third, there are methods not
reachable from a main method but rather called from the
VM directly (e.g., class initializers). These methods will
not be included in a slice by the algorithm but still may
affect the slicing criterion. Therefore, we do not slice out
such code. Fourth, when a new object creation is in a slice,
the corresponding constructor invocation may not. To ad-
dress this, we create a control dependency between ob-
ject creations and corresponding constructor invocations
to ensure that they are also in the slice. Fifth, a construc-
tor of a class except the Object class must include a call
to a constructor of its parent class. Hence we include such
calls when they are missing in a slice. Sixth, the first pa-
rameter of an instance method call is a reference to the
associated object. Therefore if such a call site is in a slice,
the first parameter has to be in the slice too and we ensure
this.

6 Evaluation
We have built a prototype of Mantis implementing the in-
strumentor, profiler, model generator and predictor code
generator (Figure 2). The prototype is built to work with
Android application binaries. We implemented the feature
instrumentor using Javassist [2], which is a Java byte-
code rewriting library. The profiler is built using scripts
to run the instrumented program on the test inputs and
then the results are used by the model generator, which

is written in Octave [4] scripts. Finally, we implemented
our predictor code generator in Java and Datalog by ex-
tending JChord [3], a static and dynamic Java program-
analysis tool. JChord uses the Joeq Java compiler frame-
work to convert the bytecode of the input Java program,
one class file at a time, into a three-address-like interme-
diate code called quadcode, which is more suitable for
analysis. The predictor code generator produces the Joeq
quadcode slice, which is the smallest subprogram that
could obtain the selected features. Each quad instruction
is translated to a corresponding set of Jasmin [1] assem-
bly code, and then the Jasmin compiler generates the final
Java bytecode.

We have applied the prototype to Android applications.
Before Android applications are translated to Dalvik Ex-
ecutables (DEX), their Java source code is first compiled
into Java bytecode. Mantis works with this bytecode and
translates it to DEX to run on the device. Mantis could
work with DEX directly, as soon as a translator from DEX
to Joeq becomes available.

6.1 Experimental Setup
We run our experiments with a machine to run the instru-
mentor, model generator, and predictor code generator,
as well as a smartphone to run the original and instru-
mented codes for profiling and generated predictor codes
for slicing evaluation. The machine runs Ubuntu 11.10 64-
bit with a 3.1GHz quad-core CPU, and 8GB of RAM. The
smartphone is a Galaxy Nexus running Android 4.1.2 with
dual-core 1.2Ghz CPU and 1GB RAM. All experiments
were done using Java SE 64-bit 1.6.0_30.

The selected applications — Encryptor, Path Routing,
Spam Filter, Chess Engine, Ringtone Maker and Face De-
tection — cover a broad range of CPU-intensive Android-
application functionalities. Their execution times are sen-
sitive to inputs, so challenging to model. Below we de-
scribe the applications and the input dataset we used for
experiments in detail.

We evaluate Mantis on 1,000 randomly generated in-
puts for each application. These inputs achieve 95-100%
basic-block coverage, only missing exception handling.
We train our predictor on 100 inputs, and use the rest to
test the predictor model. For each platform, we run Man-
tis to generate predictors and measure the prediction error
and running time. The threshold is set to 5%, which means
a generated predictor is accepted only if the predictor run-
ning time is less than 5% of the original program’s com-
pletion time.

Encryptor: This encrypts a file using a matrix as a key.
Inputs are the file and the matrix key. We use 1,000 files,
each with its own matrix key. File size ranges from 10 KB
to 8000 KB, and keys are 200× 200 square matrices.

Path Routing: This computes the shortest path from one
point to another on a map (as in navigation and game ap-
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Application Prediction Prediction No. of detected No. of chosen
error (%) time (%) features features

Encryptor 3.6 0.18 28 2
Path Routing 4.2 1.34 68 1

Spam Filter 2.8 0.51 55 1
Chess Engine 11.9 1.03 1084 2

Ringtone Maker 2.2 0.20 74 1
Face Detection 4.9 0.62 107 2

Table 1: Prediction error, prediction time, the total number of features initially detected and the number of chosen
features.

Application Selected features Generated model
Encryptor Matrix-key size (f1), Loop count of encryption (f2) c0f1

2f2 + c1f1
2 + c2f2 + c3

Path Routing Build map loop count (f1) c0f1
2 + c1f1 + c2

Spam Filter Inner loop count of sorting (f1) c0f1 + c1
Chess Engine No. of game-tree leaves (f1), No. of chess pieces (f2) c0f1

3 + c1f1f2 + c2f2
2 + c3

Ringtone Maker Cut interval length (f1) c0f1 + c1
Face Detection Width of image (f1), Height of image (f2) c0f1f2 + c1f2

2 + c2

Table 2: Selected features and generated prediction models.

plications). We use 1,000 maps, each with 100-200 loca-
tions, and random paths among them. We queried a route
for a single random pair of locations for each map.

Spam Filter: This application filters spam messages
based on a collective database. At initialization, it col-
lects the phone numbers of spam senders from several
online databases and sorts them. Then it removes white-
listed numbers (from the user’s phonebook) and builds
a database. Subsequently, messages from senders in the
database are blocked. We test Mantis with the initializa-
tion step; filtering has constant duration. We use 1,000
databases, each with 2,500 to 20,000 phone numbers.

Chess Engine: This is the decision part of a chess ap-
plication. Similarly to many game applications, it receives
the configuration of chess pieces as input and determines
the best move using the Minimax algorithm. We set the
game-tree depth to three. We use 1,000 randomly gener-
ated chess-piece configurations, each with up to 32 chess
pieces.

Ringtone maker: This generates customized ringtones.
Its input is a wav-format file and a time interval within the
file. The application extracts that interval from the audio
file and generates a new mp3 ringtone. We use 1,000 wav
files, ranging from 1 to 10 minutes, and intervals start-
ing at random positions and of lengths between 10 and 30
seconds.

Face Detection: This detects faces in an image by using
the OpenCV library. It outputs a copy of the image, out-
lining faces with a red box. We use 1,000 images, of sizes
between 100× 100 and 900× 3000 pixels.

6.2 Experiment Results
Accurate and Efficient Prediction: We first evaluate the
accuracy and efficiency of Mantis prediction. Table 1 re-
ports the prediction error and predictor running time of
Mantis-generated predictors, the total number of features
initially detected, and the number of features actually cho-
sen to build the prediction model for each application. The
“prediction error” column measures the accuracy of our
prediction. Let A(i) and E(i) denote the actual and pre-
dicted execution times, respectively, computed on input i.
Then, this column denotes the prediction error of our ap-
proach as the average value of |A(i) − E(i)|/A(i) over
all inputs i. The “prediction time” measures how long the
predictor runs compared to the original program. Let P (i)
denote the time to execute the predictor. This column de-
notes the average value of P (i)/A(i) over all inputs i.

Mantis achieves accuracy with prediction error within
5% in most cases, while each predictor runs around 1%
of the original application’s execution time, which is well
under the 5% limit we assigned to Mantis.

We also show the effect of the number of training sam-
ples on prediction errors in Figure 3. For four applications,
the curve of their prediction error plateaus before 50 in-
put samples for training. For Chess Engine and Encryp-
tor, the curve plateaus around 100 input samples for train-
ing. Since there is little to gain after the curve plateaus,
we only use 100 input samples for training Mantis. Even
for bigger input datasets of 10,000 samples, we only need
about 100 input samples for training to obtain similar pre-
diction accuracy.

Mantis generated interpretable and intuitive prediction
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Figure 3: Prediction errors varying the number of input
samples. The y-axis is truncated to 20 for clarity.

models by only choosing one or two among the many de-
tected features unlike non-parametric methods. Table 2
shows the selected features and the generated polyno-
mial prediction model for each application. In the model,
cn represents a constant real coefficient generated by the
model generator and fn represents the selected feature.
The selected features are important factors in execution
time, and they often interact in a non-linear way, which
Mantis captures accurately. For example, for Encryptor,
Mantis uses non-linear feature terms (f2

1 f2, f2
1 ) to predict

the execution time accurately.
Now we explain why Chess Engine has a higher error

rate. Its execution time is related to the number of leaf
nodes in the game tree. However, this feature can only be
obtained late in the application execution and is dependent
on almost all code that comes before it. Therefore, Mantis
rejects this feature because it is too expensive. Note that
we set the limit of predictor execution time to be 5% of
the original application time. As the expensive feature is
not usable, Mantis chooses alternative features: the num-
ber of nodes in the second level of the game tree and the
number of chess pieces left; these features can capture the
behavior of the number of leaf nodes in the game tree. Al-
though they can only give a rough estimate of the number
of leaf nodes in the game tree, the prediction error is still
around only 12%.
Benefit of Non-linear Terms on Prediction Accuracy:
Table 3 shows the prediction error rates of the models built
by Mantis and Mantis-linear. Mantis-linear uses only lin-
ear terms (fi’s) for model generation. For Encryptor, Path
Routing, and Face Detection, non-linear terms improve
prediction accuracy significantly since Mantis-linear does
not capture the interaction between features.
Benefit of Slicing on Prediction Time: Next we discuss
how slicing improves the prediction time. In Table 4, we
compare the prediction times of Mantis-generated pre-

Application Mantis pred. Mantis-linear
error (%) pred. error (%)

Encryptor 3.6 6.6
Path Routing 4.2 13.8

Spam Filter 2.8 2.8
Chess Engine 11.9 13.2

Ringtone Maker 2.2 2.2
Face Detection 4.9 52.7

Table 3: Prediction error of Mantis and Mantis-linear.
Mantis-linear uses only linear terms (fi’s) for model gen-
eration.

Application Mantis pred. PE pred.
time (%) time (%)

Encryptor 0.20 100.08
Path Routing 1.30 17.76

Spam Filter 0.50 99.39
Chess Engine 1.03 69.63

Ringtone Maker 0.20 0.04
Face Detection 0.61 0.17

Table 4: Prediction time of Mantis and PE.

dictors with those of predictors built with partial execu-
tion. Partial Execution (PE) runs the instrumented pro-
gram only until the point where we obtain the chosen fea-
ture values.

Mantis reduces the prediction time significantly for En-
cryptor, Path Routing, Spam Filter, and Chess Engine. For
these applications, PE predictors need to run a large piece
of code, which includes code that is unrelated to the cho-
sen features until their values are obtained.

Spam Filter and Encryptor are the worst cases for PE
since the last updates of the chosen feature values oc-
cur near the end of their execution. In contrast, Ring-
tone Maker and Face Detection can obtain the chosen
feature values cheaply even without slicing. This is be-
cause the values for the chosen features can be obtained at
the very beginning in the application’s execution. In fact,
the Mantis-generated predictors of these applications take
longer than PE because the generated code is less opti-
mized than the code generated directly by the compiler.
Benefit of Slicing on Prediction Accuracy: To show the
effect of slicing on prediction accuracy under a predic-
tion time limit, we compare our results with those ob-
tained using bounded execution. Bounded Execution (BE)
gathers features by running an instrumented application
for only a short period of time, which is the same as the
time a Mantis-generated predictor would run. It then uses
these gathered features with the Mantis model generator
to build a prediction model.

As shown in Table 5, the prediction error rates of the
models built by BE are much higher than those of the
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Galaxy S2 Galaxy S3
Application Prediction Prediction Prediction Prediction

error (%) time (%) error (%) time (%)
Encryptor 4.6 0.35 3.4 0.08

Path Routing 4.1 3.07 4.2 1.28
Spam Filter 5.4 1.52 2.2 0.52

Chess Engine 9.7 1.42 13.2 1.38
Ringtone Maker 3.7 0.51 4.8 0.20

Face Detection 5.1 1.28 5.0 0.69

Table 6: Prediction error and time of Mantis running with Galaxy S2 and Galaxy S3.

Application Mantis pred. BE pred.
error (%) error (%)

Encryptor 3.6 56.0
Path Routing 4.2 64.0

Spam Filter 2.8 36.2
Chess Engine 11.9 26.1

Ringtone Maker 2.2 2.2
Face Detection 4.9 4.9

Table 5: Prediction error of Mantis and BE.

models built by Mantis. This is because BE cannot exploit
as many features as Mantis. For Spam Filter and Encryp-
tor, no usable feature can be obtained by BE; thus, BE
creates a prediction model with only a constant term for
each of the two applications.
Prediction on Different Hardware Platforms: Next we
evaluate whether Mantis generates accurate and efficient
predictors on three different hardware platforms. Table 6
shows the results of Mantis with two additional smart-
phones: Galaxy S2 and Galaxy S3. Galaxy S2 has a dual-
core 1.2Ghz CPU and 1GB RAM, running Android 4.0.3.
Galaxy S3 has a quad-core 1.4Ghz CPU and 1GB RAM,
running Android 4.0.4. As shown in the table, Mantis
achieves low prediction errors and short prediction times
with Galaxy S2 and Galaxy S3 as well. For each applica-
tion, Mantis builds a model similar to the one generated
for Galaxy Nexus. The chosen features for each device are
the same as or equivalent (e.g., there can be multiple in-
strumented variables with the same value) to the chosen
features for Galaxy Nexus, while the model coefficients
are changed to match the speed of each device. The re-
sult shows that Mantis generates predictors robustly with
different hardware platforms.
Prediction under Background Load: Finally, we eval-
uate how the predictors perform under changing envi-
ronmental loads. Table 7 shows how much effect CPU-
intensive loads have on the performance of Mantis predic-
tors for Galaxy Nexus. The application execution times
under the background CPU-intensive load are compared
to the predicted execution times of Mantis predictors gen-

Pred. error (%) for
the x% background CPU load

Application x=0 x=50 x=75 x=99
Encryptor 3.6 7.5 10.5 21.3

Path Routing 4.2 5.3 5.8 6.7
Spam Filter 2.8 4.7 5.2 5.8

Chess Engine 11.9 13.5 15.3 15.8
Ringtone Maker 2.2 2.3 3.0 3.1

Face Detection 4.9 5.3 5.6 5.8

Table 7: Prediction error of Mantis-generated predictors
for Galaxy Nexus under background CPU-intensive loads.

erated with an idle smartphone. The background load is
generated by the SysBench package [5], which consists
of a configurable number of events that compute prime
numbers. For our evaluation, the load is configured to ini-
tially have a steady 50%, 75%, or 99% CPU usage. The
test applications run in the foreground.

As shown in the table, in most cases background load
has only a moderate effect on the accuracy of Mantis pre-
dictors. This is mainly due to Android’s scheduling pol-
icy, which gives a higher priority to the process that is
actively running on the screen, or foreground, compared
with the other processes running in the background. We
observed that when an application was started and brought
to the foreground, the Android system secured enough
CPU time for the process to run smoothly by reducing
the CPU occupancy of the background load.

However, the prediction error for Encryptor increases
as the CPU load increases. Unlike the other applications,
Encryptor creates a larger number of heap objects and
calls Garbage Collection (GC) more often. We also ob-
served that GC slows down under the heavy load, result-
ing in a slowdown of Encryptor’s total execution time.
This in turn makes it difficult for the Mantis predictor to
predict the Encryptor execution time accurately under a
heavy load. An extension of Mantis is to include environ-
mental factors (e.g., the background CPU load) as features
in Mantis prediction models.
Mantis Offline Stage Processing Time: Table 8 presents
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Application Profiling Model gen. Slicing Test Total Iterations
Encryptor 2373 18 117 391 2900 3

Path Routing 363 28 114 14 519 3
Spam Filter 135 10 66 3 214 2

Chess Engine 6624 10229 6016 23142 46011 83
Ringtone Maker 2074 19 4565 2 6659 1

Face Detection 1437 13 6412 179 8041 4

Table 8: Mantis offline stage processing time (in seconds).

Mantis offline stage processing (profiling, model genera-
tion, slicing, and testing) time for all input training data.
The total time is the sum of times of all steps. The last col-
umn shows how many times Mantis ran the model genera-
tion and slicing part due to rejected features. For the appli-
cations excluding Chess Engine, the total time is less than
a few hours, the profiling part dominates, and the number
of iterations in the feedback loop is small. Chess Engine’s
offline processing time takes 12.8 hours because of many
rejected features. We leave speeding up this process as fu-
ture work.
Summary: We have demonstrated that our prototype im-
plemenation of Mantis generates good predictors for our
test programs that estimate running time with high accu-
racy and very low cost. We have also compared our ap-
proach to simpler, intuitive approaches based on Partial
Execution and Bounded Execution, showing that Mantis
does significantly better in almost all cases, and as well
in the few cases where Partial Execution happened upon
good prediction features. Finally, we showed that Mantis
predictors are accurate on three different hardware plat-
forms and are little affected by variability in background
CPU load.

7 Related Work
Much research has been devoted to modeling system be-
havior as a means of prediction for databases [16, 21],
cluster computing [8, 39], networking [12, 31, 41], pro-
gram optimization [26, 42], etc.

Prediction of basic program characteristics, execu-
tion time, or even resource consumption, has been used
broadly to improve scheduling, provisioning, and opti-
mization. Example domains include prediction of library
and benchmark performance [28, 45], database query
execution-time and resource prediction [16, 21], perfor-
mance prediction for streaming applications based on
control flow characterization [6], violations of Service-
Level Agreements (SLAs) for cloud and web services [8,
39], and load balancing for network monitoring infras-
tructures [7]. Such work demonstrates significant ben-
efits from prediction, but focuses on problem domains
that have identifiable features (e.g., operator counts in
database queries, or network packet header values) based

on expert knowledge, use domain-specific feature extrac-
tion that may not apply to general-purpose programs, or
require high correlation between simple features (e.g., in-
put size) and execution time.

Delving further into extraction of non-trivial features,
research has explored extracting predictors from execu-
tion traces to model program complexity [17], to improve
hardware simulation specificity [37, 38], and to find bugs
cooperatively [32]. There has also been research on multi-
component systems (e.g., content-distribution networks)
where the whole system may not be observable in one
place. For example, extracting component dependencies
(web objects in a distributed web service) can be use-
ful for what-if analysis to predict how changing network
configuration will impact user-perceived or global perfor-
mance [12, 31, 41].

A large body of work has targeted worst-case behav-
ior prediction, either focusing on identifying the inputs
that cause it, or on estimating a tight upper bound [22,30,
35, 36, 47] in embedded and/or real-time systems. Such
efforts are helped by the fact that, by construction, the
systems are more amenable to such analysis, for instance
thanks to finite bounds on loop sizes. Other work focuses
on modeling algorithmic complexity [17], simulation to
derive worst-case running time [34], and symbolic exe-
cution and abstract evaluation to derive either worst-case
inputs for a program [11], or asymptotic bounds on worst-
case complexity [19, 20]. In contrast, our goal is to auto-
matically generate an online, accurate predictor of the per-
formance of particular invocations of a general-purpose
program.

Finally, Mantis’s machine learning algorithm for pre-
diction is based on our earlier work [25]. In the prior work,
we computed program features manually. In this work,
we introduce program slicing to compute features cheaply
and generate predictors automatically, apply our whole
system to Android smartphone applications on multiple
hardware platforms, and evaluate the benefits of slicing
thoroughly.

8 Conclusion
In this paper, we presented Mantis, a framework that auto-
matically generates program performance predictors that
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can estimate performance accurately and efficiently. Man-
tis combines program slicing and sparse regression in a
novel way. The key insight is that we can extract informa-
tion from program executions, even when it occurs late in
execution, cheaply by using program slicing and gener-
ate efficient feature evaluators in the form of executable
slices. Our evaluation shows that Mantis can automati-
cally generate predictors that estimate execution time ac-
curately and efficiently for smartphone applications. As
future work, we plan to explore how to extend Mantis to
predict other metrics like resource consumption and eval-
uate Mantis for diverse applications.
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