
Dynamic Reconfiguration of Primary/Backup Clusters

Alexander Shraer Benjamin Reed
Yahoo! Research

{shralex, breed}@yahoo-inc.com

Dahlia Malkhi
Microsoft Research

dalia@microsoft.com

Flavio Junqueira
Yahoo! Research

fpj@yahoo-inc.com

Abstract
Dynamically changing (reconfiguring) the member-

ship of a replicated distributed system while preserving
data consistency and system availability is a challenging
problem. In this paper, we show that reconfiguration can
be simplified by taking advantage of certain properties
commonly provided by Primary/Backup systems. We
describe a new reconfiguration protocol, recently imple-
mented in Apache Zookeeper. It fully automates configu-
ration changes and minimizes any interruption in service
to clients while maintaining data consistency. By lever-
aging the properties already provided by Zookeeper our
protocol is considerably simpler than state of the art.

1 Introduction

The ability to reconfigure systems is critical to cope with
the dynamics of deployed applications. Servers per-
manently crash or become obsolete, user load fluctu-
ates over time, new features impose different constraints;
these are all reasons to reconfigure an application to use
a different group of servers, and to shift roles and bal-
ance within a service. We refer to this ability of a system
to dynamically adapt to a changing set of machines or
processes as elasticity.

Cloud computing has intensified the need for elastic
long lived distributed systems. For example, some appli-
cations such as sports and shopping are seasonal with
heavy workload bursts during championship games or
peak shopping days. Such workloads mean that elastic-
ity is not a matter of slowly growing a cluster; it may
mean that a cluster grows by an order of magnitude only
to shrink by the same order of magnitude shortly after.

Unfortunately, at the back-end of today’s cloud ser-
vices, one frequently finds a coordination service which
itself is not elastic, such as ZooKeeper [12]. Companies
such as Facebook, LinkedIn, Netflix, Twitter, Yahoo!,
and many others, use Zookeeper to track failures and
configuration changes of distributed applications; appli-
cation developers just need to react to events sent to
them by the coordination service. However, Zookeeper
users have been asking repeatedly since 2008 to facil-
itate reconfiguration of the service itself, and thus far,

the road to elasticity has been error prone and hazardous:
Presently, servers cannot be added to or removed from
a running ZooKeeper cluster and similarly no other con-
figuration parameter (such as server roles, network ad-
dresses and ports, or the quorum system) can be changed
dynamically. A cluster can be taken down, reconfigured,
and restarted, but (as we explain further in Section 2) this
process is manually intensive, error prone and hard to ex-
ecute correctly even for expert ZooKeeper users. Data
corruption and split-brain1 caused by misconfiguration
of Zookeeper has happened in production2. In fact, con-
figuration errors are a primary cause of failures in pro-
duction systems [22]. Furthermore, service interruptions
are currently inevitable during reconfigurations. These
negative side-effects cause operators to avoid reconfigu-
rations as much as possible. In fact, operators often pre-
fer to over-provision a Zookeeper cluster than to recon-
figure it with changing load. Over-provisioning (such as
adding many more replicas) wastes resources and adds
to the management overhead.

Our work provides a reconfiguration capability using
ZooKeeper as our primary case-study. Our experience
with ZooKeeper in production over the past years has
lead us to the following requirements: first, ZooKeeper
is a mature product that we do not want to destabilize; a
solution to the dynamic reconfiguration problem should
not require major changes, such as limiting concurrency
or introducing additional system components. Second, as
many Zookeeper-based systems are online, service dis-
ruptions during a reconfiguration should be minimized
and happen only in rare circumstances. Third, even if
there are failures during reconfiguration, data integrity,
consistency or service availability must not be compro-
mised, for instance, split-brain or loss of service due to
partial configuration propagation should never be possi-
ble. Finally, we must support a vast number of clients
who seamlessly migrate between configurations.

We use the Zookeeper service itself for reconfigura-
tion, but we ruled out several straw-man approaches.
First, we could have used an external coordination ser-

1In a split-brain scenario, servers form multiple groups, each inde-
pendently processing client requests, hence causing contradictory state
changes to occur.

2http://search-hadoop.com/m/ek5ej2dOQsB

1

vice, such as another ZooKeeper cluster, to coordinate
the reconfiguration, but this would simply push the re-
configuration problems to another system and add extra
management complexity. Another naı̈ve solution would
be to store configuration information as a replicated ob-
ject in Zookeeper. When a ZooKeeper server instance
comes up, it looks at its replica of the state to obtain the
configuration from the designated object. While this so-
lution is simple and elegant, it is prone to inconsisten-
cies. Some replicas may be behind others, which means
they could have different configuration states. In a fixed
configuration, a consistent view of the system can be ob-
tained by contacting a quorum of the servers. A reconfig-
uration, however, changes the set of servers and therefore
guaranteeing a consistent view requires additional care.
Consequently, reading the configuration from an object
in Zookeeper may lead to unavailability or, even worse,
corrupt data and split-brain.

Indeed, dynamically reconfiguring a replicated dis-
tributed system while preserving data consistency and
system availability is a challenging problem. We
found, however, that high-level properties provided by
Zookeeper simplify this task. Specifically, ZooKeeper
employs a primary/backup replication scheme where a
single dynamically elected primary executes all opera-
tions that change the state of the service and broadcasts
state-updates to backups. This method of operation re-
quires that replicas apply state changes according to the
order of primaries over time, guaranteeing a property
called primary order [13]. Interestingly, this property is
preserved by many other primary/backup systems, such
as Chubby [5], GFS [8], Boxwood [19], PacificA [21]
and Chain-Replication [20] (see Section 6). These sys-
tems, however, resort to an external service for reconfig-
uration. In this work we show that leveraging primary
order simplifies reconfiguration. By exploiting primary
order we are able to implement reconfiguration without
using an external service and with minimal changes to
ZooKeeper (in fact, reconfigurations are pipelined with
other operations and treated similarly) while guarantee-
ing minimal disruption to the operation of a running sys-
tem. We believe that our methods may be applied to effi-
ciently reconfigure any Primary/Backup system satisfy-
ing primary order.

Previous reconfiguration approaches, such as the one
proposed by Lamport [15], may violate primary order,
cause service disruption during reconfiguration, as well
as impose a bound on the concurrent processing of all
operations due to uncertainty created by the ability to
reconfigure (see Section 2). Similar to our approach,
FRAPPE [4] imposes no such bounds, but requires roll-
back support and complex management of speculative
execution paths, not needed in our solution.

Our reconfiguration protocol also encompasses the

clients. As the service configuration changes, clients
should stay connected to the service. Literature rarely
mentions the client side of reconfiguration, usually stat-
ing the need for a name-service (such as DNS), which
is of course necessary. However, its also crucial to
re-balance client connections across new configuration
servers and at the same time prevent unnecessary client
migration which may overload servers, severely de-
grading performance. We propose a probabilistic load-
balancing scheme to move as few clients as possible
and still maintain an even distribution of clients across
servers. When clients detect a change, they each ap-
ply a migration policy in a distributed fashion to decide
whether to move to a new server, and if so, which server
they should move to.

In summary, this paper makes the following contribu-
tions:

• An observation that primary order allows for simple
and efficient dynamic reconfiguration.
• A new reconfiguration protocol for Primary/Backup

replication systems preserving primary order. Un-
like all previous reconfiguration protocols, our new
algorithm does not limit concurrency, does not re-
quire client operations to be stopped during recon-
figurations, and does not incur a complicated man-
agement overhead or any added complexity to nor-
mal client operation.
• A decentralized, client-driven protocol that re-

balances client connections across servers in the
presence of service reconfiguration. The protocol
achieves a proven uniform distribution of clients
across servers while minimizing client migration.
• Implementation of our reconfiguration and load-

balancing protocols in Zookeeper (being con-
tributed to Zookeeper codebase) and analysis of
their performance.

2 Background

This section provides the necessary background on
ZooKeeper, its way of implementing the primary/backup
approach, and the challenges of reconfiguration.

Zookeeper. Zookeeper totally orders all writes to its
database. In addition, to enable some of the most com-
mon use-cases, it executes requests of every client in
FIFO order. Zookeeper uses a primary/backup scheme
in which the primary executes all write operations and
broadcasts state changes to the backups using an atomic
broadcast protocol called Zab [13]. ZooKeeper replicas
process read requests locally. Figure 1 shows a write op-
eration received by a primary. The primary executes the
write and broadcasts a state change that corresponds to
the result of the execution to the backups. Zab uses quo-

2

Primary BackupBackup

w
w

cc

12

33

Figure 1: The processing of a write request by a primary. 1.
a backup receives the request, w; 2. the backup forwards w to
the primary; 3. the primary broadcasts the new state change, c,
that resulted from the execution of w.

rums to commit state changes. As long as a quorum of
servers are available, Zab can broadcast messages and
ZooKeeper remains available.

Primary/Backup replication a la Zab. Zab is very sim-
ilar to Paxos [15], with one crucial difference – the agree-
ment is reached on full history prefixes rather than on in-
dividual operations. This difference allows Zab to pre-
serve primary order, which may be violated by Paxos
(as shown in [13]). We now present an overview of the
protocol executed by the primary. Note that the pro-
tocol in this section is abstract and excludes many de-
tails irrelevant to this paper. The protocol has two parts,
each involving an interaction with a quorum: A startup
procedure, which is performed only once, and through
which a new leader3 determines the latest state of the
system4; and a steady-state procedure for committing up-
dates, which is executed in a loop.

Zab refers to the period of time that a leader is ac-
tive as an epoch. Because there is only one leader active
at a time, these epochs form a sequence, and each new
epoch can be assigned a monotonically increasing inte-
ger called the epoch number. Specifically, each backup
maintains two epoch identifiers: the highest epoch that it
received from any primary in a startup phase, eprepare, and
the highest epoch of a primary whose history it adopted
in steady-state, eaccept.

Startup: A candidate leader b chooses a unique epoch
e and sends a PREPARE message to the backups. A
backup receiving a PREPARE message acts as follows:

• If e ≥ eprepare, it records the newly seen epoch by
setting eprepare to e and then responds with an ACK
message back to the candidate.

• The ACK includes a history prefix H consisting
3For the sake of readers familiar with Zookeeper and its terminol-

ogy, in the context of Zookeeper and Zab we use the term “leader” for
“primary” and “follower” for “backup” (with no difference in mean-
ing).

4Zab contains a preparatory step that optimistically chooses a
candidate-leader that already has the up-to-date history, eliminating the
need to copy the latest history from one of the backups during startup.

of state-updates previously acknowledged by the
backup, as well as the epoch eaccept.

When b collects a quorum of ACK messages, it adopts a
history H received with the highest eaccept value, break-
ing ties by preferring a longer H .

Steady-state: For every client request op, the primary
b applies op to its update historyH and sends an ACCEPT
message to the backups containing e and the adopted his-
tory H; in practice, only a delta-increment of H is sent
each time. When a backup receives an ACCEPT message,
if e ≥ eprepare, it adopts H and sets both eprepare and
eaccept to e. It then sends an acknowledgment back to b.
Once a quorum of followers have acknowledged the AC-
CEPT message, and hence the history prefix, b commits
it by sending a COMMIT message to the backups.

Primary order. Because the primary server broadcasts
state changes, Zab must ensure that they are received
in order. Specifically, if state change c is received by
a backup from a primary, all changes that precede c from
that primary must also have been received by the backup.
Zab refers to this ordering guarantee as local primary or-
der. The local primary order property, however, is not
sufficient to guarantee order when primaries can crash.
It is also necessary that a new primary replacing a previ-
ous primary guarantees that once it broadcasts new up-
dates, it has received all changes of previous primaries
that have been delivered or that will be delivered. The
new primary must guarantee that no state changes from
previous primaries succeed its own state changes in the
order of delivered state changes. Zab refers to this order-
ing guarantee as global primary order.

The term primary order refers to an ordering that satis-
fies both local and global primary orders. While the dis-
cussion above has been in the context of ZooKeeper and
Zab, any primary/backup system in which a primary exe-
cutes operations and broadcasts state changes to backups
will need primary order. The importance of this property
has already been highlighted in [13, 3]. Here, we further
exploit this property to simplify system reconfiguration.

Configurations in Zookeeper. A ZooKeeper deploy-
ment currently uses a static configuration S for both
clients and servers, which comprises a set of servers,
with network address information, and a quorum system.
Each server can be defined as a participant, in which case
it participates in Zab as a primary or as backup, or an ob-
server, which means that it does not participate in Zab
and only learns of state updates once they are commit-
ted. For consistent operation each server needs to have
the same configuration S, and clients need to have a con-
figuration that includes some subset of S.

Performing changes to a ZooKeeper configuration is
currently a tricky task. Suppose, for example, that we are
to add three new servers to a cluster of two servers. The

3

two original members of the cluster hold the latest state,
so we want one of them to be elected leader of the new
cluster. If one of the three new servers is elected leader,
the data stored by the two original members will be lost.
(This could happen if the three new servers start up, form
a quorum, and elect a leader before the two older servers
start up.) Currently, membership changes are done using
a “rolling restart” – a procedure whereby servers are shut
down and restarted in a particular order so that any quo-
rum of the currently running servers includes at least one
server with the latest state. To preserve this invariant,
some reconfigurations (in particular, the ones in which
quorums from the old and the new configurations do not
intersect) require restarting servers multiple times. Ser-
vice interruptions are unavoidable, as all servers must be
restarted at least once. Rolling restart is manually in-
tensive, error prone, and hard to execute correctly even
for expert ZooKeeper users (especially if failures hap-
pen during reconfiguration). Furthermore, this procedure
gives no insight on how clients can discover or react to
membership changes.

The protocol we propose in this paper overcomes such
problems and enables dynamic changes to the configura-
tion without restarting servers or interrupting the service.

Reconfiguring a state-machine. Primary/backup repli-
cation is a special instance of a more general problem,
state-machine replication (SMR). With SMR, all repli-
cas start from the same state and process the same se-
quence of operations. Agreement on each operation in
the sequence is reached using a consensus protocol such
as Paxos [15]. Similarly to our algorithm, most existing
SMR approaches use the state-machine itself to change
system configuration, that is, the reconfiguration is in-
terjected as any other operation in the sequence of state-
machine commands [16]. The details of implementing
this in a real system are complex, as pointed out in a
keynote describing the implementation of Paxos devel-
oped at Google [6]. One of the core difficulties is that
a reconfiguration is very different from other SMR com-
mands, in that it changes the consensus algorithm used
to agree on the subsequent operations in the sequence.

To better understand the issue, notice that in SMR
there is no dependency among operations and thus sep-
arate consensus decisions are made for the different
“slots” in the history sequence. Thus, if operations 1
through 100 are proposed by some server, it is possi-
ble that first operation 1 is committed, then 80, then 20,
and so on. It is also possible that an operation proposed
by a different server is chosen for slot number 2. Sup-
pose now that a server proposes reconfiguration for slot
50. If the proposal achieves a consensus decision, it is
most natural to expect that it changes the set of servers
that need to execute the consensus algorithm on subse-
quent slots (51 and onward). Unfortunately, above we

stated that we already committed slot number 80 using
the current configuration; this could lead to inconsistency
(a split brain scenario). We must therefore delay the con-
sensus decisions on a slot until we know the configura-
tion in which it should be executed, i.e., after all previous
slots have been decided. As a remedy, Lamport proposed
to execute the configuration change α slots in the future,
which then allows the consensus algorithms on slots n
through n + α − 1 to execute simultaneously with slot
n. In this manner, we can maintain a ‘pipeline’ of opera-
tions, albeit bounded by α.

Thus, standard SMR reconfiguration approaches limit
the concurrent processing of all operations, because of
the uncertainty introduced by the ability to reconfigure.
We use a different approach that overcomes this limita-
tion by exploiting primary order. Our reconfiguration al-
gorithm speculatively executes any number of operations
concurrently.

3 Primary/Backup Reconfiguration

We start with a high level description of our reconfig-
uration protocol. In general, in order for the system to
correctly move from a configuration S to a configuration
S′ we must take the following steps [3], illustrated in
Figure 2:

1. persist information about S′ on stable storage at a
quorum of S (more precisely, a consensus decision
must be reached in S regarding the “move” to S′);

2. deactivate S, that is, make sure that no further oper-
ations can be committed in S;

3. identify and transfer all committed (and potentially
committed) state from S to S′, persisting it on stable
storage at a quorum of S′ (a consensus decision in
S′ regarding its initial state).

4. activate S′, so that it can independently operate and
process client operations.

D EA B C

Step 1: Write new
configuration
to stable storage

Step 2: Deactivate
current configuration

Step 3: Transfer
 state

D EA B C

Step 4: Activate new
configuration including
 D and E

Figure 2: The generic approach to reconfiguration: adding
servers D and E to a cluster of three servers A, B and C.

4

Note that steps 1 and 2 are necessary to avoid split
brain. Steps 3 and 4 make sure that no state is lost when
moving to S′. The division into four steps is logical and
somewhat arbitrary – some of these steps are often exe-
cuted together.

In a primary/backup system many of the steps above
can be simplified by taking advantage of properties al-
ready provided by the system. In such systems, the pri-
mary is the only one executing operations, producing
state-updates which are relative to its current state. Thus,
each state-update only makes sense in the context of all
previous updates. For this reason, such systems reach
agreement on the prefix of updates and not on individual
operations. In other words, a new update can be com-
mitted only after all previous updates commit. This does
not, however, limit concurrency: a primary can execute
and send out any number of state-updates speculatively
to the backups, however updates are always committed in
order and an uncommitted suffix of updates may later be
revoked from a backup’s log if the primary fails without
persisting the update to a sufficient number of replicas
(a quorum). Reconfiguration fits this framework well –
we interject a configuration update operation, cop, in the
stream of normal state-updates, which causes a reconfig-
uration after previously scheduled updates are committed
(in state-machine terminology, α = 1). Thus, a reconfig-
uration is persisted to stable storage in the old configura-
tion S just like any other operation in S (this corresponds
to step 1 above). At the same time, there is no need to
explicitly deactivate S – step 2 follows from the specu-
lative nature of the execution. Just like with any other
state-update, the primary may execute any number of
subsequent operations, speculatively assuming that cop
commits. Primary order then makes sure that such op-
erations are committed only after the entire prefix up to
the operation (including the configuration change cop) is
committed, i.e., they can only be committed in the new
configuration as required by step 2.

Since the primary is the only one executing operations,
its local log includes all state changes that may have been
committed; hence, in step 3 there is no need to copy
state from other servers. Moreover, we start state transfer
ahead of time, to avoid delaying the primary’s pipeline.
When processing the reconfiguration operation cop, the
primary only makes sure that state transfer is complete,
namely that a quorum of S′ has persisted all operations
scheduled up to and including cop. Finally, in step 4, the
primary activates S′.

If the primary of S fails during reconfiguration, a can-
didate primary in S must discover possible decisions
made in step 1. If a new configuration S′ is discovered
at this stage, the candidate primary must first take steps
to commit the stream of commands up to (and includ-
ing) the operation proposing S′, and then it must repeat

steps 2–4 in order to transition to S′. Unlike the origi-
nal primary, the new candidate primary needs to perform
a startup-phase in S′ and discover the potential actions
of a previous primary in S′ as well. This presented an
interesting challenge in the Zab realm, since a primary
in Zab usually has the most up-to-date prefix of com-
mands, and enforces it on the backups. However, a new
primary elected from S might have a staler state com-
pared to servers in S′. We must therefore make sure that
no committed updates are lost without introducing sig-
nificant changes to Zab. Below (in Section 3.1), we de-
scribe the solution we chose for this pragmatic issue and
the Activation Property it induces.

We now dive into the details of our protocol. Due to
space limitations, we omit the formal proofs here and
focus on the intuition behind our algorithm.

3.1 Stable primary

We start by discussing the simpler case, where the pri-
mary P of the current configuration S does not fail and
continues to lead the next configuration. Figure 3 depicts
the flow of the protocol.

pre-step: In order to overlap state-transfer with normal
activity, backups in S′ connect to the current primary,
who initializes their state by transferring its currently
committed prefix of updates H . With Zab, such state-
transfer happens automatically once backups connect to
the primary, and they continue receiving from P all sub-
sequent commands (e.g., op1 and op2 in Figure 3), mak-
ing the transition to S′ smooth.

step 1: The primary p schedules cop, the reconfigura-
tion command, at the tail of the normal stream of up-
dates. It sends an ACCEPT message containing cop to all
the backups connected to it (a backup may belong to S
and/or to S′) and waits for acknowledgments. Consensus
on the next configuration is reached once a quorum of S
acknowledges cop.

step 2: The primary does not stall operations it receives
after cop. Instead, they are executed immediately and
scheduled after cop. In principle, all updates following
cop are the responsibility of S′.

step 3: Transfer of commands has already been initiated
in the pre-step; now, p waits for acknowledgement for
cop and the history of commands which precede it from
a quorum of S′.

step 4: Once cop is acknowledged by both S and S′,
the primary commits cop and activates S′ by sending an
ACTIVATE message to backups. Similarly to an ACCEPT,
ACTIVATE includes the primary’s epoch e and processed
by a backup only if e is greater or equal to this backup’s
eprepare.

5

ACK Op1,2

ACK Op1,2
COMMIT

 Op1,2

COMMIT
 Op1,2

COMMIT
 Op1,2

COMMIT
 Op1,2

New configuration
obtains history

P

B1

B2

B3

B4

Primary sends
new configuration

Quorums from previous and new
 configurations acknowledge Op1,

Op2, and COP

Primary activates
new configuration

Current config S = {P, B1, B2}
New configuration S' = {P, B3, B4}

COMMIT COP
ACTIVATE

COMMIT COP
ACTIVATE

COMMIT COP
ACTIVATE

COMMIT COP
ACTIVATE

ACK COP

ACK COP

ACK Op1,2

ACK Op1,2

ACK COP

ACK COPCOP

COP

COP

COP

Op2

Op2

Op2

Op2

Op1

Op1

Op1

Op1

ACK

ACK

H?

H?

H

H

Figure 3: Reconfiguration with a stable primary P .

As mentioned earlier, in order to be compatible with
Zookeeper’s existing mechanism for recovery from
leader failure, we guarantee an additional property:

Activation Property. before ACTIVATE is received by a
quorum of S′, all updates that may have been com-
mitted are persisted to stable storage by a quorum
of S.

To guarantee it, we make a change in step 2:

step 2’: an update scheduled after cop and before the
activation message for S′ is sent can be committed by
a primary in S′ only once a quorum of both S and S′

acknowledge the update (of course, we also require all
preceding updates to be committed). Updates scheduled
after the ACTIVATE message for S′ is sent, need only be
persisted to stable storage by a quorum of S′ in order to
be committed.

Since the current primary is stable, it becomes the pri-
mary of S′, and it may skip the startup-phase of a new
primary (described in Section 2), since in this case it
knows that no updates were committed in S′.

Cascading reconfigurations. Even before ACTIVATE is
sent for a configuration S′, another reconfiguration oper-
ation cop′ proposing a configuration S′′ may be sched-
uled by the primary (see Figure 4 below). For exam-
ple, if we reconfigure to remove a faulty member, and
meanwhile detect another failure, we can evict the addi-
tional member without ever going through the interme-
diate step. We streamline cascading reconfigurations by
skipping the activation of S′.

In the following example, updates u1 through u4 are
sent by the primary speculatively, before any of them
commits, while u5 is scheduled after all previous up-
dates are committed and the activation message for the
last proposed configuration (S′′) is sent out.

last active
configuration: S S’’

ACTIVATE(S’’) is sent

u1 cop(S’) u3 u4cop’(S’’)
updates:

1 3 4 5 6

required
quorums: S S, S’ S, S’ S, S’’ S, S’’

u5
7

S’’

Figure 4: Cascading reconfigurations
Notice that for a given update, only the last active and

the last proposed configuration (at the time this update is
scheduled) are involved in the protocol steps for that up-
date. Once there is a sufficient window of time between
reconfigurations that allows state-transfer to the last pro-
posed configuration to complete, the primary activates
that configuration. We note that currently the described
extension of the protocol to support multiple concurrent
reconfigurations is not being integrated into Zookeeper;
for simplicity, a reconfiguration request is rejected if an-
other reconfiguration is currently in progress. (The issu-
ing client may resubmit the reconfiguration request after
the current reconfiguration operation completes.)

3.2 Primary failure or replacement
Until now, we assumed that the primary does not fail dur-
ing the transition to S′ and continues as the primary of
S′. It remains to ensure that when it is removed or fails,
safety is still guaranteed. First, consider the case that

6

the current primary in S needs to be replaced. There are
many reasons why we may want to replace a primary,
e.g., the current primary may not be in S′, its new role
in S′ might not allow it to continue leading, or even if
the IP address or port it uses for communication with the
backups needs to change as part of the reconfiguration.

Our framework easily accommodates this variation:
The old primary can still execute operations scheduled
after cop and send them out to connected backups but
it does not commit these operations, as these logically
belong in S′. It is the responsibility of a new primary
elected in S′ to commit these operations. As an opti-
mization, we explicitly include in an ACTIVATE message
the identity of a designated, initial primary for S′ (this is
one of the backups in S′, which has acknowledged the
longest prefix of operations, including at least cop). As
before, this primary does not need to execute the startup-
phase in S′ since we know that no primary previously
existed in S′. Obviously, if that default primary fails to
form a quorum, we fall-back to the normal primary elec-
tion in S′.

Likewise, the case of a primary failure after S′ has
been activated is handled as a normal Zab leader re-
election.

An attempted reconfiguration might not even reach a
quorum of backups in S, in which case it may disappear
from the system like any other failed command.

We are left with the interesting case when a primary-
candidate b in S discovers a pending attempt for a con-
sensus on cop(S′) by the previous primary. This can
mean either that cop was already decided, or simply that
some backup in the quorum of b heard cop from p. As
for any other command in the prefix b learns, it must first
commit cop in S (achieving the consensus decision re-
quired in step 1). However, executing cop requires addi-
tional work, and b must follow the reconfiguration steps
to implement it.

The only deviation from the original primary’s proto-
col is that b must follow the startup-phase of a new pri-
mary (Section 2) in both S and S′. In order to do so,
b connects to the servers in S′. When connecting to a
server b′ in S′, b finds out whether b′ knows of the acti-
vation of S′ (or a later configuration). If S′ has been acti-
vated, servers in S′ may know of newer updates unknown
to b, hence b should not attempt to perform state transfer
(otherwise it may cause newer updates to be truncated).
Instead, b restarts primary re-election in S′ (and in partic-
ular connects to an already elected primary in S′ if such
primary exists). Otherwise, b implicitly initiates state-
transfer to b′ (much like its predecessor did). This in-
cludes at least all updates up to cop but may also include
updates scheduled by the previous primary after cop.

This leads us to a subtle issue resulting from our de-
sire to introduce as few changes as possible to the ex-

isting implementation of leader recovery in Zookeeper.
Recall that the stream of updates by the previous primary
may continue past cop, and so backups in S′ may have a
longer history of commands than b. In Zookeeper, con-
necting to b would cause them to truncate their history.
This is exactly why we chose to preserve the Activation
Property. If b succeeds to connect to a quorum of S′

without learning of the activation of S′, we know that
all updates that may have been committed are stored at
a quorum of S. Thus, b will find all such updates once
completing the startup-phase in S; in fact, in Zookeeper
the candidate b is chosen (by preliminary selection) as
the most up-to-date backup in S (that can communicate
with a quorum of S), so it will already have the full pre-
fix and no actual transfer of updates is needed during the
startup-phase.

Finally, note that b might discover more than a single
future reconfiguration while performing its startup-phase
in S. For example, it may see that both S′ and S′′ were
proposed. b may in this case skip S′ and run the startup-
phase in S and S′′, after which it activates S′′.

3.3 Progress guarantees
As in [2], the fault model represents a dynamic inter-
play between the execution of reconfiguration operations
and the “adversary”: The triggering of a reconfiguration
event from S to S′ marks a first transition. Until this
event, a quorum of S is required to remain alive in order
for progress to be guaranteed. After it, both a quorum of
S and of S′ are required to remain alive. The completion
of a reconfiguration is generally not known to the partic-
ipants in the system. In our protocol, it occurs when the
following conditions are met: (a) a quorum of S′ receives
and processes the ACTIVATE message for S′, and (b) all
operations scheduled before S′ is activated by a primary
are committed. The former condition indicates that S′

can independently process new operations, while the lat-
ter indicates that all previous operations, including those
scheduled while the reconfiguration was in progress, are
committed (it is required due to the Activation Property
and step 2’). Neither conditions are externally visible to
a client or operator submitting the reconfiguration com-
mand. However, there is an easy way to make sure that
both condition are met: after the reconfiguration com-
pletes at the client, it can submit a no-op update opera-
tion; once it commits, we know that both conditions (a)
and (b) are satisfied (the no-op update can be automati-
cally submitted by the client-side library). An alternative
way to achieve this is to introduce another round to the
reconfiguration protocol (which, for simplicity and com-
patibility with Zab, we decided to avoid). Either way,
once (a) and (b) are satisfied, the fault model transitions
for the second time: only a quorum of S′ is required to
survive from now on.

7

S S'

10 10 10

Figure 5: A balanced service (10 clients are connected to each
server) about to move to a new configuration S′.

4 Reconfiguring the Clients

Once servers are able to reconfigure themselves we are
left with two problems at the client. First, clients need
to learn about new servers to be able to connect to
them. This is especially important if servers that a client
was using have been removed from the configuration or
failed. Second, we need to rebalance the load on the
servers. ZooKeeper clients use long-lived connections
and only change the server they are connected to if it has
failed. This means that new servers added to a config-
uration will not take on new load until new clients start
or other servers fail. We can solve the first problem us-
ing DNS and by having clients subscribe to configuration
changes (see Section 5) in Zookeeper. For lack of space
here we concentrate on the second problem.

Figure 5 shows a balanced service with configuration
S that is about to move to S′. There are 30 clients in
the system and each of the three servers in S serves 10
of the clients. When we change to S′ we would like
to make sure the new system is also load-balanced. In
this example this means that each server should service 6
clients. We would also like to move as few clients as pos-
sible since session reestablishment puts load on both the
clients and the servers and increases latency for client re-
quests issued while the reestablishment is in process. A
final goal is to accomplish the load balance using only
logic at the clients so as not to burden the servers.

We denote byM the set of servers that are in both con-
figurations, S ∩S′. Machines that are in the old configu-
ration S but not in the new configuration we will labelO,
that is, O = S \M . Machines that are in the new config-
uration S′ but not in the old configuration are labeled N ,
that is, N = S′ \M . Denote the total number of clients
by C. The number of clients connected to server i in S
is denoted by l(i, S).

In general, for a server i ∈ S′, the expected number
of clients that connect to i in S′, E(l(i, S’)) is the number
of clients connected to it in S plus the number of clients
migrating from other servers in S to i (we denote a move
from server j to server i by j → i and a move to any of
the servers in a set G by j → G) minus the number of
clients migrating from i to other servers in S′:

E(l(i, S′)) = l(i, S) +
∑

j∈S∧j 6=i

l(j, S) ∗ Pr(j → i)

− l(i, S)
∑

j∈S′∧j 6=i

Pr(i→ j)

We solve for the probabilities assuming that the load
was uniform across all servers in S and requiring that the
expected load remains uniform in S′ (in the example of
Figure 5, we require that E(l(i, S′)) = 6). Intuitively,
the probability of a client switching to a different server
depends on whether the cluster size increases or shrinks,
and by how much. We have two cases to consider:

Case 1: |S| < |S′| Since the number of servers is in-
creasing, load must move off from all servers. For a
server i ∈ M we get: E(l(i, S′)) = l(i, S) − l(i, S) ∗
Pr(i → N). We can substitute l(i, S) = C/|S| since
load was balanced in S, and E(l(i, S′)) = C/|S′| since
this is what we would like to achieve. This gives:

Rule 1. If |S| < |S′| and a client is connected to M ,
then with probability 1 − |S|/|S′| the client disconnects
from its server and then connects to a random server in
N . That is, the choice among the servers in N is made
uniformly at random.

Notice that clients connected to servers in O should
move only toN as servers inM have too many clients to
begin with.
Rule 2. If |S| < |S′| and a client is connected toO, then
the client moves to a random server in N .

Case 2: |S| ≥ |S′| Since the number of servers decreases
or stays the same, the load on each server in S′ will be
greater or equal to the load on each server in S. Thus, a
server in M will not need to decrease load:
Rule 3. If |S| ≥ |S′| and a client is connected to a server
in M , it should remain connected.

The total collective load in S′ on all servers in M is
the load on M in S plus the expected number of clients
that move to M from O:
|M |C
|S′|

=
|M |C
|S|

+
|O|C
|S|

∗ Pr(i→M |i ∈ O)

We thus get our last rule:

Rule 4. If |S| ≥ |S′| and a client is connected to a server
in O, it moves to a random server in M with probability
|M |(|S|−|S′|)
|S′||O| ; otherwise, moves to a random server inN .

By having each client independently apply these rules,
we achieve uniform load in a distributed fashion.

5 Implementation and Evaluation
We implemented our server and client-side protocols in
Apache Zookeeper. To this end we updated the server-
side library of ZooKeeper (written in Java) as well as
the two client libraries (written in Java and in C). We

8

added a reconfig command to the API that changes the
configuration, a config command that retrieves the cur-
rent configuration and additionally allows users to sub-
scribe for configuration changes and finally the update-
server-list command that triggers the client migration al-
gorithm described in Section 4. We support two recon-
figuration modes. The first is incremental – it allows
adding and removing servers to the current configuration.
The second type of reconfiguration is non-incremental,
which means that the user specifies the new configura-
tion. This method allows changing the quorum system
dynamically. We allow adding and removing servers as
well as changing server roles. We also support dynami-
cally changing the different network addresses and ports
used by the system.

In the remainder of this section we evaluate the impact
of reconfigurations on Zookeeper clients. We focus on
the effect on throughput and latency of normal operations
as well as on load balancing.

We performed our evaluation on a cluster of 50
servers. Each server has one Xeon dual-core 2.13GHz
processor, 4GB of RAM, gigabit ethernet, and two SATA
hard drives. The servers run RHEL 5.3 using the ext3 file
system. We use the 1.6 version of Sun’s JVM.

We used the Java server configured to log to one dedi-
cated disk and take snapshots on another. Our benchmark
client uses the asynchronous Java client API, and each
client is allowed up to 100 outstanding requests. Each
request consists of a read or write of 1K of data (typ-
ical operation size). We focus on read and write opera-
tions as the performance of all the operations that modify
the state is approximately the same, and the performance
of non state modifying operations is approximately the
same. When measuring throughput, clients send counts
of the number of completed operations every 300ms and
we sample every 3s. Finally, note that state-transfer is
always performed ahead of time and a reconfig opera-
tion simply completes it, thus our measurements do not
depend on the size of the Zookeeper database.

Throughput. We first measure the effect of dynamic
reconfigurations on throughput of normal operations. To
this end, we used 250 simultaneous clients executing on
35 machines, up to 11 of which are dedicated to run
Zookeeper servers (typical installations have 3-7 servers,
so 11 is larger than a typical setting). Figure 6 shows the
throughput in a saturated state as it changes over time.
We show measurements for workloads with 100%, 50%,
30% and 15% write operations. The ensemble is initially
composed of 7 servers. The following reconfiguration
events are marked on the figure: (1) a randomly chosen
follower is removed; (2) the follower is added back to the
ensemble; (3) the leader is removed; (4) former leader is
added back to the ensemble as a follower; (5) a randomly

chosen follower is removed, and (6) the follower is added
back to the ensemble.

20000

30000

40000

50000

60000

70000

o
u
gh
p
u
t
(o
p
s/
se
c)

1 2 3 4 5

15% writes

30% writes

50% writes

6

0

10000

00
:0
0

00
:0
9

00
:1
8

00
:2
7

00
:3
6

00
:4
5

00
:5
4

01
:0
3

01
:1
2

01
:2
1

01
:3
0

01
:3
9

01
:4
8

01
:5
7

02
:0
6

02
:1
5

02
:2
4

02
:3
3

02
:4
5

02
:5
4

03
:0
3

Th
ro

Time (mm:ss)

100% writes

Figure 6: Throughput during configuration changes.

Unsurprisingly, removing the leader has the most sig-
nificant effect on throughput. In Zookeeper, any leader
change (e.g., due to the failure of the previous leader)
always renders the system temporarily unavailable, and
a reconfiguration removing the leader is no different in
that respect. Note that in Zookeeper, each follower is
connected only to one leader. Thus, when the leader
changes, followers disconnect from the old leader and
only after a new leader is established can submit fur-
ther operations. While this explains why write opera-
tions cannot be executed in the transition period (and the
throughput drop for a 100% write workload), the rea-
sons for disabling any read activity during leader elec-
tion (which causes the throughput drop for read intensive
workloads) are more subtle. One of the reasons is that
Zookeeper guarantees that all operations complete in the
order they were invoked. Thus, even asynchronous in-
vocations by the same thread have a well defined order
known in advance to the programmer. Keeping this in
mind, consider a read operation that follows a write by
the same client (not necessarily to the same data item).
The read will only be able to complete after the write,
whereas writes await the establishment of a new leader5.

The throughput quickly returns to normal after a leader
crash or removal. Notice that read intensive workloads
are more sensitive to removal and addition of follow-
ers. This is due to the effect of client migration to other
followers for load balancing (we explore load-balancing
further in Section 5.1). Still, the change in through-
put with such reconfigurations is insignificant compared
to normal fluctuations of system throughput. The rea-
son is the in-order completion property of Zookeeper
mentioned above; writes, which are broadcasted by the
leader to followers, determine the throughput of the sys-
tem. More precisely, the network interface of the leader
is the bottleneck. Zookeeper uses a single IP address
for leader-follower communication. The throughput of

5In Zookeeper 3.4, each operation is blocked until every operation
(not necessarily by the same client) previously submitted to the same
follower completes; this is not necessary to guarantee the in-order com-
pletion semantics and may therefore change in the future.

9

the system therefore depends on the number of servers
connected to the leader, not the number of followers in
the ensemble. Note, however, that removing or adding
a server from the cluster using the reconfig command
does not necessarily change the number of connections.
Although a removal excludes a server from participat-
ing in Zab voting it does not necessarily disconnect the
follower from the leader; an administrator might want
to first allow clients to gracefully migrate to other fol-
lowers and only then disconnect a removed follower or
shut it down. In addition, removing a follower is some-
times necessary as an intermediate step when changing
its role in the protocol (for example, in some situations
when converting an observer to a follower). Figure 7 il-
lustrates this point. It shows two executions, with 30%
writes, 250 clients and 11 servers initially in the clus-
ter. There are two reconfiguration events, each removes
multiple servers from the cluster. In one execution, the
removed servers are turned off while in the other (simi-
larly to Figure 6) removed followers maintain their con-
nections to the leader. The graph shows that discon-
necting the servers indeed increases system throughput.
This shows, that over-provisioning a cluster by adding
more replicas (even if those replicas are observers) can
be detrimental to Zookeeper throughput. A better strat-
egy is to reconfigure the system dynamically with chang-
ing load.

24000

26000

28000

30000

32000

34000

ro
u
gh
p
u
t
(o
p
s/
se
c)

(a) remove and shut‐down
running avg. of (a) since last reconfiguration
(b) remove w/o shut‐down
running avg. of (b) since last reconfiguration

1 2

20000

22000

24000

00
:0
0

00
:1
2

00
:2
4

00
:3
6

00
:4
8

01
:0
0

01
:1
2

01
:2
4

01
:3
6

01
:4
8

02
:0
0

02
:1
2

02
:2
4

02
:3
6

02
:4
8

03
:0
0

03
:1
2

03
:2
4

03
:3
6

03
:4
8

04
:0
0

04
:1
2

04
:2
4

04
:3
6

04
:4
8

05
:0
0

05
:1
2

05
:2
4

05
:3
6

05
:4
8

06
:0
0

06
:1
2

06
:2
4

06
:3
6

06
:4
8

07
:0
0

Th
r

Time (mm:ss)

Figure 7: Throughput during configuration changes. Initially
there are 11 servers in the cluster. The workload includes 30%
writes. Configuration changes: (1) four followers are removed,
(2) two additional followers are removed.
Latency. Next, we focus on the effect of reconfigura-
tion on the latency of other requests. We measured the
average latency of write operations performed by a single
client connected to Zookeeper; the writes are submitted
in batches of 100 operations, after all previously submit-
ted writes complete. Initially, the cluster contains seven
replicas and writes have an average latency of 10.8ms6.

We then measured the impact of removing replicas on
latency. A client submits a reconfiguration request to re-

6the average latencies presented here are taken over 150 executions
or the described experiment and lie within 0.3ms of the real average
with 95% confidence

move four randomly chosen followers which is immedi-
ately followed by a second write batch. If we use the
reconfiguration procedure described in Section 3, we get
an average latency again of 10.8ms. However, if we stall
the request pipeline during the reconfiguration, the aver-
age latency increases to 15.2ms.

With three replicas, our average write latency is
10.5ms. The client then requests to add back four repli-
cas, followed by another write batch. Using our approach
write latency is at 11.4ms and jumps to 18.1ms if we stall
the pipeline.

Leader removal. Finally, we investigate the effect of
reconfigurations removing the leader. Note that a server
can never be added to a cluster as leader as we always
prioritize the current leader. Figure 8 shows the advan-
tage of designating a new leader when removing the cur-
rent one, and thus avoiding leader election. It depicts
the average time to recover from a leader crash versus
the average time to regain system availability following
the removal of the leader. The average is taken on 10
executions. We can see that designating a default leader
saves up to 1sec, depending on the cluster size. As cluster
size increases, leader election takes longer while using a
default leader takes constant time regardless of the clus-
ter size. Nevertheless, as the figure shows, cluster size
always affects total leader recovery time, as it includes
synchronizing state with a quorum of followers.

1000

1500

2000

2500

)
u
n
ti
l s
e
rv
ic
e
re
‐i
n
st
at
at
ed

leader crashes

0

500

3 5 7 9

ti
m
e
 (
m
s)

Number of replicas

leader removed

Figure 8: Unavailability following leader removal or crash.

5.1 Load Balancing
In this section, we would like to evaluate our ap-
proach for load balancing clients as part of configura-
tion changes. To this end, we experiment with a clus-
ter of nine servers and 1000 clients. Clients subscribe
to configuration changes using the config command and
update their list of servers using the update-server-list
command when notified of a change. In order to avoid
mass migration of clients at the same time, each client
waits for a random period of time between 0 and 5sec.
The graphs presented below include four reconfiguration
events: (1) remove one random server; (2) remove two
random servers; (3) remove one random server and add
the three previously removed servers, and (4) add the
server removed in step 3.

10

We evaluate load balancing by measuring the mini-
mum and maximum number of clients connected to any
of the servers and compare it to the average (number of
clients divided by the current number of servers). When
the client connections are balanced across the servers, the
minimum and maximum are close to the average, i.e.,
there are no overloaded or under-utilized servers.

Baseline. Our first baseline is the current implementa-
tion of load balancing in Zookeeper. The only measure
of load is currently the number of clients connected to
each server, and Zookeeper is trying to keep the num-
ber of connections the same for all servers. To this end,
each client creates a random permutation of the list of
servers and connects to the first server on its list. If that
server fails, it moves on to the next server on the list and
so on (in round robin). This approach works reasonably
well when system membership is fixed, and can easily
accommodate server removals. It does not, however, pro-
vide means for incorporating a new server added to the
cluster. In order to account for additions in this scheme,
we replace the client’s list with a new list of servers. The
client maintains its connection unless its current server
is not in the new list. Figure 9 shows that load is bal-
anced well as long as we perform removals (steps 1 and
2), however when servers are added in steps 3 and 4 the
newly added servers are under-utilized. In the beginning
of step 3 there are six servers in the system, thus approx-
imately 166 clients are connected to every server. When
we remove a server and add three new ones in step 3,
the clients connected to the removed server migrate to
a random server in the new configuration. Thus, every
server out of the eight servers in the new configuration
gets an expected 21 additional clients (the newly added
servers will only have these clients, as no other clients
disconnect from their servers). In step 4 we add back the
last server, however no clients migrate to this server. Al-
though all clients find out about the change and update
their lists, no client disconnects from its server as it is
still part of the system.

100

150

200

250

f
cl
ie
n
ts
 p
e
r
se
rv
e
r

average

minimum

maximum

3

0

50

n
u
m
b
e
r
o
f

Time (mm:ss)

1 2 4

Figure 9: Baseline load balancing.

To mitigate the problem illustrated in Figure 9 we
could of course disconnect all clients and re-connect

them to randomly chosen servers in the new configu-
ration. This, however, creates excessive migration and
unnecessary loss of throughput. Ideally, we would like
the number of migrating clients to be proportional to the
change in membership. If only a single server is removed
(or added), only clients that were (or should be) con-
nected to that server should need to migrate.

Consistent Hashing. A natural way to achieve such
limited migration, which we use as a second baseline,
is to associate each client with a server using consis-
tent hashing [14]. Client and server identifiers are ran-
domly mapped to points in an m-bit space, which can
be seen as circular (i.e., 0 follows 2m − 1). Each client
is then associated with the server that immediately fol-
lows it in the circle. If a server is removed, only the
clients that are associated with it will need to migrate by
connecting to the next server on the circle. Similarly,
if a new server is added a client migrates to it only if
the new server was inserted between the client and the
server to which it is currently connected. In order to im-
prove load balancing, each server is sometimes hashed k
times (usually k is chosen to be in the order of log(N),
where N is the number of servers). To evaluated the
approach, we implemented it in Zookeeper. Figure 10
shows measurements for k = 1, k = 5 and k = 20.
We used MD5 hashing to create random identifiers for
clients and servers (m = 128). We can see that higher
values of k achieve better load balancing. Note, however,
that load-balancing in consistent hashing is uniform only
with “high probability”, which depends on N and k. In
the case of Zookeeper, where 3-7 servers (N) are usu-
ally used, the values of N and k are not high enough to
achieve reasonable load balancing.

Probabilistic Load Balancing. Finally, Figure 11
shows measurements of load-balancing with the ap-
proach we have implemented in Zookeeper as outlined
in Section 4. Unlike consistent hashing, in this approach
every client makes a probabilistic decision whether and
where to migrate, such that the expected number of
clients per server is the same for every server. As we can
see from the figure the difference in number of clients
between the server with the most clients and the least
clients is very small. Using our simple case-based prob-
abilistic load balancing we are able to achieve very close
to optimal load-balance using logic entirely at the client.

6 Related Work
Primary order is commonly guaranteed by Pri-
mary/Backup replication systems, e.g., Chubby [5],
GFS [8], Boxwood [19], PacificA [21], chain replica-
tion [20], Harp [17] and Echo [11]. Although Paxos
does not guarantee primary order [13], some systems

11

150

200

250

300

350

400

450
cl
ie
n
ts
 p
e
r
se
rv
e
r

average

minimum

maximum

1
3

0

50

100

00
:0
0

00
:0
5

00
:0
9

00
:1
3

00
:1
7

00
:2
2

00
:2
6

00
:3
0

00
:3
4

00
:3
9

00
:4
3

00
:4
7

00
:5
1

00
:5
5

01
:0
0

01
:0
4

01
:0
8

01
:1
2

01
:1
7

01
:2
1

01
:2
5

01
:2
9

01
:3
3

01
:3
8n
u
m
b
e
r
o
f

Time (mm:ss)

2
4

100

150

200

250

o
f
cl
ie
n
ts
 p
er
 s
e
rv
e
r

average
minimum
maximum

0

50

00
:0
0

00
:0
5

00
:1
1

00
:1
8

00
:2
4

00
:2
8

00
:3
3

00
:3
8

00
:4
3

00
:4
8

00
:5
2

00
:5
7

01
:0
2

01
:0
7

01
:1
2

01
:1
7

01
:2
2

01
:2
7

01
:3
2

01
:3
7

01
:4
2

01
:4
7

01
:5
1

n
u
m
b
e
r
o

Time (mm:ss)

1 2 3 4

100

150

200

250

f
cl
ie
n
ts
 p
e
r
se
rv
e
r

average
minimum
maximum

0

50

00
:0
0

00
:0
5

00
:0
9

00
:1
3

00
:1
8

00
:2
2

00
:2
6

00
:3
1

00
:3
5

00
:3
9

00
:4
4

00
:4
8

00
:5
2

00
:5
7

01
:0
1

01
:0
5

01
:1
0

01
:1
4

01
:1
8

01
:2
3

01
:2
7

01
:3
1

01
:3
6

n
u
m
b
e
r
o
f

Time (mm:ss)

1 2 3 4

Figure 10: Load balancing using consistent hashing, with k = 1 (left), k = 5 (middle), and k = 20 (right).

100

150

200

250

f
cl
ie
n
ts
 p
e
r
se
rv
e
r

average

minimum

maximum

0

50

00
:0
0

00
:0
4

00
:0
9

00
:1
3

00
:1
8

00
:2
2

00
:2
6

00
:3
0

00
:3
5

00
:3
9

00
:4
3

00
:4
8

00
:5
2

00
:5
6

01
:0
1

01
:0
5

01
:0
9

01
:1
3

01
:1
8

01
:2
2

01
:2
7

01
:3
1

01
:3
5

01
:4
0

01
:4
4n
u
m
b
e
r
o
f

Time (mm:ss)

1 2 3 4

Figure 11: Load balancing using our method (Section 4).

implementing Paxos (such as Chubby and Boxwood)
have one outstanding decree at-a-time, which in fact
achieves primary-order. This is done primarily to
simplify implementation and recovery [19]. Unlike
such approaches, we do not limit the the concurrent
processing of operations.

Unlike systems such as RAMBO [9], Boxwood [19],
GFS [8], Chubby [5], chain replication [20] and Paci-
ficA [21] that use an external reconfiguration service,
we use the system itself as the reconfiguration engine,
exploiting the primary order property to streamline re-
configurations with other operations. Zookeeper is of-
ten used by other systems for the exact same purpose,
and thus relying on another system for reconfiguring
Zookeeper would simply push the problem further as
well as introduce additional management overhead. An
additional difference from RAMBO is that in our design,
every backup has a single “active” configuration in which
it operates, unlike in RAMBO where servers maintain a
set of possible configurations, and operate in all of them
simultaneously. Finally, RAMBO and several other re-
configurable systems (see [1] for a survey), are designed
for reconfiguring read/write storage, whereas Zookeeper
provides developers with arbitrary functionality, i.e., a
universal object via consensus [10]; the read/write recon-
figuration problem is conceptually different [2] than the
one we address in this paper.

SMART [18] is perhaps the most practical implemen-
tation of Paxos [15] SMR published in detail. SMART
uses Lamport’s α parameter to bound the number of
operations that may be executed concurrently (see Sec-

tion 2). In addition, SMART uses configuration-specific
replicas: if the cluster consists of replicas A, B, and C
and we are replacing C with D, SMART runs two repli-
cas of A and two of B, one in the new configuration
and one in the old, each running its own instance of the
replication protocol. An important design consideration
in our work has been to introduce minimal changes to
Zookeeper, as it is used in production by many com-
mercial companies. Dynamically creating additional
Zookeeper replicas just for the purpose of reconfigura-
tion adds an implementation and management overhead
that would not be acceptable to Zookeeper users. Un-
like SMART, we do not limit concurrency or require any
additional resources to reconfigure.

FRAPPE [4] proposes a different solution. Each server
in FRAPPE works with a set of possible configurations,
similarly to RAMBO. If a reconfiguration is proposed for
history slot n, any number of operations can be proposed
after n, however their completion is speculative – users
are aware that even though these operations commit they
may later be rolled back if a different operation is chosen
for slot n. This requires servers to maintain a speculative
execution tree, each branch corresponding to an assump-
tion on the decision on some reconfiguration for a par-
ticular history slot. In case the reconfiguration is chosen
for slot n and once state transfer is complete, the spec-
ulative operations become permanently committed and
the corresponding tree-branch is merged into the “trunk”.
Otherwise, the branch is simply abandoned. Similarly to
SMART and FRAPPE, we do not require any intersec-
tion between the memberships of consecutive configura-
tions. The algorithm presented in this paper processes
updates speculatively, similar to FRAPPE. However, our
algorithm does not require servers to work with or ex-
plicitly manage multiple configurations and it does not
expose speculative operation completions to the clients.

Group communication systems that provide virtual
synchrony [7, 3] are perhaps closer to Zookeeper than
Paxos-style replicated state machines. In such systems, a
group of processes may exchange messages with others
in the group, and the membership of the group (called a
view) may change. Virtual synchrony guarantees that all
processes transferring from one view to the next agree on
the set of messages received in the previous view. Note

12

that they do not necessarily agree on the order of mes-
sages, and processes that did not participate in the pre-
vious view do not have to deliver these messages. Still,
virtual synchrony is similar to primary order in the sense
that it does not allow messages sent in different con-
figurations to interleave just as primary order does not
allow messages sent by different leaders to interleave.
Unlike state-machine replication systems, which remain
available as long as a quorum of the processes are alive,
group communication systems must react to every fail-
ure by removing the faulty process from the view. While
this reconfiguration is in progress, client operations are
not processed. Other systems, such as Harp [17] and
Echo [11] follow similar methodology, stopping all client
operations during reconfigurations. Conversely, our de-
sign (similarly to state-machine replication systems) tol-
erates failures as long as a quorum of the replicas remains
available, and allows executing client operations while
reconfiguration and state-transfer are in progress.

7 Conclusions
Reconfiguration is hard in general. It becomes espe-
cially hard when reconfiguring the configuration service.
While intuitively it seems simple, care must be taken to
address all failure cases and execution orderings.

Our reconfiguration protocol builds on properties of
Primary/Backup systems to achieve high performance
reconfigurations without imposing a bound on concur-
rent processing of operations or stalling them, and with-
out the high management price of previous proposals.

The load balancing algorithm for distributing clients
across servers in a new configuration involves decisions
made locally at the client in a completely distributed
fashion. We guarantee uniform expected load while
moving a minimum number of clients between servers.

We implemented our protocols in an existing open-
source primary/backup system, and are currently work-
ing on integrating it into production. This involved sim-
ple changes, mostly to the commit and recovery opera-
tions of Zookeeper. Our evaluation shows that there are
minimal disruptions in both throughput and latency using
our approach.

While the methods described in this paper were im-
plemented in the context of ZooKeeper, the primary or-
der property we have taken advantage of is commonly
provided by Primary/Backup systems.

Acknowledgments

We would like to thank Marshall McMullen for his
valuable contributions to this project. We thank the
Zookeeper open source community and in particular to
Vishal Kher, Mahadev Konar, Rakesh Radhakrishnan
and Raghu Shastry for their support, helpful discussions,

comments and thorough reviews of this work. Finally,
we would like to thank the anonymous reviewers and our
shepherd, Christopher Small, for their comments.

References
[1] AGUILERA, M. K., KEIDAR, I., MALKHI, D., MARTIN, J.-P.,

AND SHRAER, A. Reconfiguring replicated atomic storage: A
tutorial. Bulletin of the EATCS 102 (2010), 84–108.

[2] AGUILERA, M. K., KEIDAR, I., MALKHI, D., AND SHRAER,
A. Dynamic atomic storage without consensus. J. ACM 58, 2
(2011), 7.

[3] BIRMAN, K., MALKHI, D., AND VAN RENESSE, R. Virtually
synchronous methodology for dynamic service replication. Tech.
Rep. 151, MSR, Nov. 2010.

[4] BORTNIKOV, V., CHOCKLER, G., PERELMAN, D., ROYTMAN,
A., SHACHOR, S., AND SHNAYDERMAN, I. Frappé : Fast repli-
cation platform for elastic services. In ACM LADIS (2011).

[5] BURROWS, M. The chubby lock service for loosely-coupled dis-
tributed systems. In OSDI (2006), pp. 335–350.

[6] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos
made live: an engineering perspective. In PODC (2007), pp. 398–
407.

[7] CHOCKLER, G., KEIDAR, I., AND VITENBERG, R. Group com-
munication specifications: a comprehensive study. ACM Comput.
Surv. 33, 4 (2001), 427–469.

[8] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system. In SOSP (2003), pp. 29–43.

[9] GILBERT, S., LYNCH, N. A., AND SHVARTSMAN, A. A.
Rambo: a robust, reconfigurable atomic memory service for dy-
namic networks. Distributed Computing 23, 4 (2010), 225–272.

[10] HERLIHY, M. Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13, 1 (1991), 124–149.

[11] HISGEN, A., BIRRELL, A., JERIAN, C., MANN, T.,
SCHROEDER, M., AND SWART, G. Granularity and semantic
level of replication in the echo distributed file system. In Pro-
ceedings of the IEEE Workshop on the Management of Replicated
Data (November 1990).

[12] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
Zookeeper: Wait-free coordination for internet-scale systems. In
USENIX Annual Technology Conference (2010) (2010).

[13] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Zab:
High-performance broadcast for primary-backup systems. In
DSN (2011), pp. 245–256.

[14] KARGER, D. R., LEHMAN, E., LEIGHTON, F. T., PANIGRAHY,
R., LEVINE, M. S., AND LEWIN, D. Consistent hashing and
random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In STOC (1997), pp. 654–663.

[15] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst. 16, 2 (1998), 133–169.

[16] LAMPORT, L., MALKHI, D., AND ZHOU, L. Reconfiguring a
state machine. SIGACT News 41, 1 (2010), 63–73.

[17] LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P.,
SHRIRA, L., AND WILLIAMS, M. Replication in the harp file
system. In SOSP (1991), pp. 226–238.

[18] LORCH, J. R., ADYA, A., BOLOSKY, W. J., CHAIKEN, R.,
DOUCEUR, J. R., AND HOWELL, J. The smart way to migrate
replicated stateful services. In EuroSys (2006), pp. 103–115.

[19] MACCORMICK, J., MURPHY, N., NAJORK, M., THEKKATH,
C. A., AND ZHOU, L. Boxwood: Abstractions as the foundation
for storage infrastructure. In OSDI (2004), pp. 105–120.

[20] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain replication
for supporting high throughput and availability. In OSDI (2004),
pp. 91–104.

[21] WEI LIN, MAO YANG, L. Z., AND ZHOU, L. Pacifica: Replica-
tion in log-based distributed storage systems. Tech. Rep. MSR-
TR-2008-25, MSR, Feb. 2008.

[22] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUNDARAM,
L. N., AND PASUPATHY, S. An empirical study on configuration
errors in commercial and open source systems. In SOSP (2011),
pp. 159–172.

13

