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Abstract
This paper presents the design and implementation of

a complete embedded Python run-time system for the
ARM Cortex-M3 microcontroller. The Owl embedded
Python run-time system introduces several key innova-
tions, including a toolchain that is capable of producing
relocatable memory images that can be utilized directly
by the run-time system and a novel foreign function in-
terface that enables the efficient integration of native C
code with Python.

The Owl system demonstrates that it is practical to run
high-level languages on embedded microcontrollers. In-
strumentation within the system has led to an overall sys-
tem design that enables Python code to be executed with
low memory and speed overheads. Furthermore, this pa-
per presents an evaluation of an autonomous RC car that
uses a controller written entirely in Python. This demon-
strates the ease with which complex embedded software
systems can be built using the Owl infrastructure.

1 Introduction

For every microprocessor in a traditional computer sys-
tem, there are dozens of microcontrollers in cars, appli-
ances, and consumer electronics. These systems have
significant software requirements, as users demand elab-
orate user interfaces, networking capabilities, and re-
sponsive controls. However, the programming environ-
ments and run-time systems for microcontrollers are ex-
tremely primitive compared to conventional computer
systems.

Modern microcontrollers are almost always pro-
grammed in C, either by hand or generated automatically
from models. This code, which runs at a very low level
with no reliance on operating systems, is extremely dif-
ficult to debug, analyze, and maintain. At best, a sim-
ple real-time operating system (RTOS) is used to facili-
tate thread scheduling, synchronization, and communica-
tion [1, 3, 8, 11]. Typically, such RTOS’s provide primi-
tive, low-level mechanisms that require significant exper-
tise to use and do very little to simplify programming.

As the capabilities of embedded systems increase, this
situation is becoming untenable. Programming must be
simplified to meet the demand for increasingly complex
microcontroller applications.

This paper presents one mechanism for doing so:
an efficient embedded Python run-time system named
Owl. The Owl system is a complete Python development
toolchain and run-time system for microcontrollers that
do not have enough resources to run a real operating sys-
tem, but are still capable of running sophisticated soft-
ware systems. These microcontrollers typically operate
at 50–100 MHz, have 64–128 KB of SRAM, and have
up to 512 KB of on-chip flash. One example of such
a microcontroller is the ARM Cortex-M3. ARM pre-
dicts that in 2015, the market for these Cortex-M class
microcontrollers will be around 18 billion units [7]. In
contrast, Gartner, Inc. predicts that 404 million x86 pro-
cessors will ship in 2012 [9].

Owl is a complete system designed for ARM Cortex-
M microcontrollers that includes an interactive develop-
ment environment, a set of profilers, and an interpreter. It
is derived from portions of several open-source projects,
including CPython and Baobab. Most notably, the core
run-time system for Owl is a modified version of Dean
Hall’s Python-on-a-Chip (p14p).1

We have developed a comprehensive set of profilers
and analysis tools for the Owl system. Using the data
from these static and dynamic profiling tools, as well
as experience from having a large user base at Rice,
we significantly expanded, re-architected, and improved
the robustness of the original p14p system. The Owl
toolchain we developed includes simple tools to program
the microcontroller on Windows, OS X, and Linux. We
have also added two native function interfaces, stack pro-
tection, autoboxing, a code cache, and many other im-
provements to the run-time system. Furthermore, the
toolchain and run-time system have been re-architected
to eliminate the need for dynamic loading.

The Owl system demonstrates that it is possible to de-
velop complex embedded systems software using a high-

1http://code.google.com/p/python-on-a-chip/



level programming language. Many software applica-
tions have been developed within the Owl system, in-
cluding a GPS tracker, a web server, a read/write FAT32
file system, and an artificial horizon display. Further-
more, Owl is capable of running a soft real-time system,
an autonomous RC car. These applications were writ-
ten entirely in Python by programmers with no prior em-
bedded systems experience, showing that programming
microcontrollers with a managed run-time system is not
only possible but extremely productive. Additionally,
Owl is used as the software platform for Rice Univer-
sity’s r-one educational robot [15]. A class of twenty-
five first-semester students programmed their robots in
Python without the interpreter ever crashing.

The cornerstone of this productivity is the interactive
development process. A user can connect to the micro-
controller and type statements to be executed immedi-
ately. This allows easy experimentation with peripherals
and other functionality, making incremental program de-
velopment for microcontrollers almost trivial. In a tra-
ditional development environment, the programmer has
to go through a tedious compile/link/flash/run cycle re-
peatedly as code is written and debugged. Alternatively,
in the Owl system a user can try one thing at the inter-
active prompt and then immediately try something else
after simply hitting “return”. The cost of experimenta-
tion is almost nothing.

Microcontrollers are incredibly hard to program. They
have massive peripheral sets that are typically exposed
directly to the programmer. As embedded systems con-
tinue to proliferate and become more complex, better
programming environments are needed. The Owl sys-
tem demonstrates that a managed run-time system for a
high-level language is not only practical to implement for
modern microcontrollers, but also makes programming
complex embedded applications dramatically easier.

2 Related Work and Background

Early commercial attempts to build embedded run-time
systems, such as the BASIC Stamp [12], required mul-
tiple chips and have not been used much beyond educa-
tional applications. Academic projects have largely fo-
cused on extremely small 8-bit devices [10, 13]. These
systems are built to run programs that are only dozens of
lines long and are simply not designed for more modern
and capable 32-bit microcontrollers.

The Java Card system ran an embedded JVM sub-
set to allow smartcards to perform some limited com-
putation [6]. While there were some small proof-of-
concept applications developed for it such as a basic
web-server [16], the limited computational and I/O ca-
pabilities of smartcards rendered building large applica-
tions in Java Card impractical [17].

While Android uses an interpreter, Dalvik, that runs on
embedded systems, it has very different design goals than
these projects [5]. Dalvik relies on the underlying Linux
kernel to provide I/O, memory allocation, process isola-
tion and a file system. It is designed for systems with at
least 64 MB of memory, three orders of magnitude more
than is available on ARM Cortex-M microcontrollers.

Arduino2 is a simple microcontroller platform that has
been widely adopted by hobbyists and universities. It has
shown that there is great interest in making programming
microcontrollers easier. However, Arduino focuses on
raising the abstraction level of I/O by providing high-
level libraries, while Owl raises the abstraction level of
computation with a managed run-time system.

Recently, two open-source run-time systems for high-
level languages on microcontrollers have been devel-
oped: python-on-a-chip (p14p) and eLua. p14p is a
Python run-time system that has been ported to several
microcontrollers, including AVR, PIC and ARM. The
p14p system is a portable Python VM that can run with
very few resources and supports a significant fraction of
the Python language. Similarly, eLua is a Lua run-time
system that runs on ARM microcontrollers.3 The over-
all objectives and method of operation of eLua are very
similar to p14p, so they will not be repeated here.

The fundamental innovation of p14p is the read-eval-
print-loop that utilizes the host Python compiler to trans-
late source code into Python bytecodes at run-time. A
p14p memory image is built from the compiled code ob-
ject and then sent to the microcontroller. On the micro-
controller, an image loader reads the image, creates the
necessary Python objects, and then executes the byte-
codes. In this manner, an interactive Python prompt op-
erating on the host computer can be used to interact with
the embedded run-time system over USB or other serial
connection. This leads to an extremely powerful sys-
tem in which microcontrollers can be programmed in-
teractively without the typical compile/link/flash/run cy-
cle. This process has been re-architected and improved
in Owl, as described in Section 3.2.

The interactive Python prompt also gives unprece-
dented visibility into what is happening on the embed-
ded system. Typically, a user is presented with a prim-
itive command system that only enables limited interac-
tion and debugging on the microcontroller. Debuggers,
such as gdb, are needed for additional capability. In con-
trast, an interactive prompt allows users to run arbitrary
code, print out arbitrary objects, and very easily under-
stand the state of the system. This leads to much more
rapid software development and debugging.

In p14p, native C functions can be wrapped in a
Python function. This allows arbitrary C functions to be

2http://arduino.cc/
3http://www.eluaproject.net/
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Figure 1: The Owl toolchain.

called from Python, enabling access to the microcontrol-
ler’s peripherals. However, the C functions are special-
ized to p14p, use cryptic macros to access parameters and
return values, and must be rewritten for every platform to
which p14p is ported. The maintainers of p14p leave it
to the user to figure out how to best provide access to I/O
devices for their platform and application.

The Owl system is based upon a snapshot of p14p
from April 2010. Using experience gained from having
a large user base at Rice, we then significantly expanded,
re-architected, and improved the robustness of p14p.

3 The Owl Toolchain

This section describes the Owl toolchain, as shown in
Figure 1. The toolchain transforms code on the host into
a form that is directly runnable on the microcontroller.
Code starts on the host and is entered either into a file
or an interactive prompt. It is compiled into a code ob-
ject by the standard Python compiler, which is then trans-
formed into a memory image. This image is copied into
the microcontroller’s flash memory. The images in flash
can then be executed by the virtual machine, which will
be described in Section 4.

3.1 Code sources
The Owl toolchain supports all of the functionality of
p14p. Furthermore, it provides an interactive prompt
over USB and drivers for Windows, OS X, and Linux.
It also provides several additional capabilities that do not
exist in p14p. Most notably, Owl includes a bootloader
so that once the virtual machine has been programmed
in flash, no C compiler or programming tools are needed
by the user to program Python code onto the microcon-
troller. Directly from the Python interpreter on the host
computer, the user can:

1. Type Python code at an interactive prompt con-
nected to the virtual machine on the microcontroller.
This code gets dynamically compiled on the host,
stored in SRAM on the microcontroller, and is then
executed immediately.

2. Load code from a Python source file on the host via
the interactive prompt. The file gets dynamically

compiled on the host, stored in SRAM on the micro-
controller, and is then executed immediately.

3. Store code from one or more Python source files
in flash on the microcontroller after being compiled
on the host. This code can then be executed at any
future time.

While p14p has the first capability, the latter two are
unique to Owl. Therefore, one can program Owl systems
using only Python without writing any C, needing a C
compiler, or needing any specialized knowledge or hard-
ware to program flash. Furthermore, code executed from
all three sources can interact. At the command prompt,
for instance, one can import a module that was previ-
ously stored in flash.

3.2 Memory images
Loaders and dynamic linkers are integral parts of tradi-
tional computer systems. They enable the compiler to
generate code that is relocatable and can be combined
with other libraries when the program is first run, as well
as throughout its execution.

Dynamic loading and linking are also an integral part
of run-time systems for most interpreted languages. For
example, the desktop Python implementation (CPython)
uses the marshal format to store compiled source files:
each object used by the source is loaded from the file,
wrapped in an object header, and placed on the Python
heap. Java .class files are loaded similarly [14]. The
p14p system also uses a similar architecture.

These design decisions are predicated on the assump-
tion that programs cannot be directly executed off the
disk and that memory is effectively infinite. On an em-
bedded system, the situation is different. First, flash is
fast enough (often with 1–2 cycle access times), that pro-
grams can be stored in, and executed directly from, flash.
Second, memory (SRAM) is scarce. Therefore, it makes
sense to do everything possible to keep programs in flash,
copying as little as possible into SRAM.

To accomplish this, the Owl system architecture elim-
inates the need for dynamic code loading. Instead, the
Owl toolchain compiles Python source code into a relo-
catable memory image, which contains all of the objects
needed to run the user program. The run-time system
then executes programs in these memory images directly
from flash without copying anything to SRAM.

One of the key challenges in eliminating dynamic
loading is handling compound objects which contain
other objects. Compound objects created at run-time
simply keep references to the objects they contain, which
are located elsewhere in the heap. However, the com-
pound objects within memory images cannot be han-
dled in this way. They must be relocatable and therefore
cannot contain references. In a traditional system with



a dynamic loader, such as p14p or Java, the compiler
toolchain would generate special relocatable compound
objects that are stored in a memory image. At run-time,
the dynamic loader would first copy the relocatable com-
pound object’s constituent sub-objects from the memory
image to the heap. Then, the loader would generate the
compound object itself on the heap, populating it with
references to the sub-objects.

To avoid these copies, Owl introduces packed tuples
and code objects, which store objects internally rather
than using references. Each internal object is a complete
Python object, with all associated header and type infor-
mation. The packed types therefore enable the internal
objects to be referenced directly, completely eliminat-
ing the need to copy them into SRAM. The compiler
toolchain never places compound objects that are not
packed into a memory image, guaranteeing that a mem-
ory image is completely usable without any modification.
The run-time system recognizes these packed objects and
handles them appropriately. These novel compound ob-
jects are therefore both relocatable and directly usable
without the need for dynamic loading. They also can be
stored anywhere, including flash, SRAM, or an SD card,
and can even be sent across a network.

4 The Owl Run-time System

The Owl run-time system executes the memory images
prepared by the toolchain. It interprets bytecodes, man-
ages memory and calls external functions through both
wrapped functions and the embedded foreign function
interface.

4.1 Python Interpreter
The main component of the run-time system is the in-
terpreter, which executes Python bytecodes from the
memory image. These bytecodes operate with one or
more Python objects on a stack. For example, they
may add values (BINARY ADD), load a variable name
(LOAD NAME), or switch execution to a new code object
(CALL FUNCTION). The Owl interpreter is derived di-
rectly from p14p, uses bytecodes identical to CPython,
and matches the overall structure of the CPython in-
terpreter. The heap is managed by a mark-and-sweep
garbage collector which automatically runs during idle
periods and under memory pressure.

One of the key advantages of using an interpreter is
that the virtual machine is the only code that can directly
access memory. If the virtual machine and all native
functions are stable, it is impossible for a user to crash the
system. Additionally, error detection code can optionally
be included throughout the system to ensure that bugs in-
side the interpreter are detected at run-time and reported

as exceptions. Normally, such events would be silent,
difficult to trace, errors. Partly because of these features,
the Owl system itself does not crash, even though it has
been heavily used.

The Owl interpreter also includes several additions to
the original p14p interpreter. First, Owl includes stack
protection, via optional run-time checks to ensure that
stack frames are not overflowed and that uninitialized
portions of the stack are not dereferenced. Second, Owl
includes transparent conversion from basic types to ob-
jects through autoboxing. Basic types are automatically
converted to an object when their attributes and meth-
ods are accessed. This means that basic types still have
small memory overhead, since they don’t generally need
attribute dictionaries, but can be used like an object, as
in traditional Python. Finally, Owl caches modules so
that only one instance is ever present in memory. This
saves considerable memory when multiple user modules
include a common set of library modules.

4.2 Native C functions

While the use of Python on embedded systems provides
enormous benefits in terms of productivity and reliabil-
ity, it is necessary to write portions of many programs in
C in order to to provide access to existing C libraries and
to allow critical sections of code to run quickly. This is
especially critical on a microcontroller where programs
need to access memory-mapped peripherals via vendor-
provided I/O libraries. For example, Texas Instruments
provides a C interface to the entire peripheral set on their
Cortex-M class microcontrollers, called StellarisWare,
that simplifies the use of on-chip peripherals.

This section presents and compares two different tech-
niques in Owl for allowing user code to call C functions:
wrapped and foreign functions. While their implemen-
tations differ significantly, both systems make a native C
library appear exactly like any other Python library.

While interpreters on the desktop have allowed pro-
grams to access external C libraries for some time, they
have typically relied on features such as dynamic linking
and run-time readable symbol tables that are too large
for a microcontroller. In contrast, this section shows that
a light-weight foreign function interface can be imple-
mented in very little space without these features, and
serve as an efficient bridge between Python and C code.

Providing the ability to execute native C functions in-
troduces a way for the user to crash the system. How-
ever, all C functions must be compiled directly into the
run-time system. Therefore, when discussing robustness
and stability, they must be considered part of the run-
time system itself. For peripheral and other library rou-
tines, such as StellarisWare, that are reused among appli-
cations, these functions are likely to be heavily tested and



/∗ V a r i a b l e d e c l a r a t i o n s ∗ /
PmReturn t r e t v a l = PM RET OK ;
pPmObj t p0 ;
u i n t 3 2 t p e r i p h e r a l ;

/∗ I f wrong number o f arguments , r a i s e TypeError ∗ /
i f (NATIVE GET NUM ARGS ( ) != 1 ) {

PM RAISE ( r e t v a l , PM RET EX TYPE ) ;
re turn r e t v a l ;

}

/∗ Get Python argument ∗ /
p0 = NATIVE GET LOCAL ( 0 ) ;

/∗ I f wrong argument t ype , r a i s e TypeError ∗ /
i f ( OBJ GET TYPE ( p0 ) != OBJ TYPE INT ) {

PM RAISE ( r e t v a l , PM RET EX TYPE ) ;
re turn r e t v a l ;

}

/∗ Conver t Python argument t o C argument ∗ /
p e r i p h e r a l = ( ( p P m I n t t ) p0)−>v a l ;

/∗ A c t u a l c a l l t o n a t i v e f u n c t i o n ∗ /
S y s C t l P e r i p h e r a l E n a b l e ( p e r i p h e r a l ) ;

/∗ Re tu rn Python o b j e c t ∗ /
NATIVE SET TOS (PM NONE ) ;
re turn r e t v a l ;

Figure 2: Body of autowrapped native function.

as stable as the rest of the run-time system. For applica-
tion code that is ported to C for performance, special care
must be taken to preserve the stability of the system.

4.2.1 Wrapped functions

A Python program calls a function by loading a callable
Python object and executing the CALL FUNCTION byte-
code. The callable object can be a Python code object
or a native code object which serves as an interface to
a native C function. In p14p, the native functions them-
selves are responsible for pulling arguments off of the
Python stack, checking argument types, executing the ac-
tual code of the function, and generating a Python object
as a return value. Argument and return values are read/
written via a set of C macros that provide access to the
Python stack. With this interface, functions can be writ-
ten in C and then accessed or called like any other Python
object. In fact, p14p provides the ability to embed such
C code in the document string of a Python function.

Figure 2 shows the C code required to wrap a call to
the native function with the prototype:
void S y s C t l P e r i p h e r a l E n a b l e ( u i n t 3 2 t p e r i p h e r a l ) ;

In this function, one Python integer is first type checked
and then converted into the variable peripheral.
This variable is used as the argument for the call to
SysCtlPeripheralEnable. Since this function does
not return anything, the Python object None is pushed
back on to the Python stack and the function returns.

Note that SysCtlPeripheralEnable could have
been inlined, but was instead called indirectly for clarity.

In this case, the underlying function is a StellarisWare
function that manipulates hardware registers to enable an
on-chip peripheral. This cannot be written in Python and
is a prime example of the value of native functions.

Given that the argument and return value marshalling
is tedious and mechanical, it is a prime target for automa-
tion. The Owl toolchain includes an autowrapper: an au-
tomated tool that generates a wrapper function for each
function in a library. The wrapper is a small stub func-
tion that converts arguments from Python objects into C
variables, calls the function, and, if necessary, converts
the return value into a Python object and places it on the
Python stack. In fact, the code shown in Figure 2 was
generated by the autowrapper. Autowrapping functions
is similar to the technique used by SWIG, which is com-
monly used to provide access to C code from high-level
languages [4].

While this approach is conceptually simple, these con-
versions and type checks must be repeated for each func-
tion that is wrapped. This results in a massive amount of
object code that is essentially repeated in the final binary.

4.2.2 Embedded foreign function interface

Given that the wrapper code can be generated mechani-
cally, it is also a prime candidate for elimination. Foreign
function interfaces, such as libffi4, have been devel-
oped for precisely this reason: to enable access to na-
tive functions from an interpreted language. Typically, a
C compiler generates the code necessary to call a func-
tion. When one function calls another, it includes code
that places arguments and a return address into regis-
ters and/or the stack according to that platform’s calling
convention. Then, the address of the called function is
loaded into the program counter. libffi does this pro-
cess dynamically at run-time. A user can call libffi
with a list of arguments and a pointer to a function; it
then loads this data into registers and the stack and calls
the given function. Java, Python, and PLT Scheme all use
libffi to allow programmers to call external functions.

eFFI, a light-weight foreign function interface devel-
oped for the Owl system, builds upon these concepts in
a fashion suitable for embedded run-time systems. It is
a rewrite of libffi for the Cortex-M3 with some crit-
ical modifications. Specifically, embedded systems do
not typically include the ability to dynamically link na-
tive code, so all native libraries must be statically linked.
eFFI links target libraries when the run-time system is
compiled, therefore requiring much less support from ei-
ther the user or the host system.

First, the header file of the library that is accessed by
user programs is read into a variant of the autowrapping
tool discussed in Section 4.2.1. This tool reads the names

4http://sourceware.org/libffi/



and signatures of each function to be exposed. For each
function, a Python callable object is generated containing
argument types, return type, and a reference to the func-
tion itself. Since this object is generated automatically at
compile time, the programmer never needs to specify the
number or types of arguments, eliminating one possible
source of error when using foreign functions.

The signatures and addresses of all the foreign func-
tions to be exposed to the virtual machine are stored in
a compact data structure. These are each made available
to the user as foreign function objects, stored in flash.

When a foreign function object is called at run-time,
each argument is converted into a C variable and placed
onto the C stack or loaded into registers. The address
of the function is then written into the program counter,
jumping into the function. When the function returns, the
result is copied off the stack or out of registers, converted
into the proper Python type (as specified in the foreign
function object) and pushed back onto the Python stack.

The key to the lightweight implementation of eFFI
is that unlike the FFI implementations in desktop in-
terpreters, foreign functions are not referenced by name
in eFFI. Before the run-time system is compiled, arrays
of function pointers are generated which are then linked
into the program. The (static) linker is responsible for in-
cluding the library functions in the interpreter’s address
space and placing a reference to them inside these ar-
rays. The Python callable objects generated for each li-
brary function include indices into these arrays of func-
tion pointers rather than direct references to the functions
themselves, eliminating the need for any run-time linking
to determine the function address.

When a Python program calls one of these foreign
functions, the interpreter first references the arrays of
function pointers to find the address of the function to
call. Since the function was already loaded into the in-
terpreter’s address space by the compiler, there is no
run-time library load process like there is in the desk-
top libffi implementation. From here, arguments are
converted automatically from Python objects to C vari-
ables and the address of the function is loaded into the
program counter, as in the desktop version.

5 Profiling and Analysis

There are many trade-offs in the design of an embedded
run-time system. It is critical to measure the character-
istics of both programs and the run-time system itself in
order to better understand these trade-offs. Owl is the
first embedded run-time system to provide a rich suite
of performance and memory analyzers that offer insight
into these design issues. With very few exceptions, space
is more critical than performance for the studied embed-
ded applications, so Owl is designed to favor memory

efficiency over performance.
Building a general-purpose C profiler for microcon-

trollers is exceptionally difficult because the execution
environment can vary so much between systems; there is
no common file system and no heap. A profiler must be
customized for each particular system. For example, the
commercial toolchain used for this project (which costs
thousands of dollars from a major vendor) leaves much
of the provided gprof implementation incomplete. The
user needs to write assembly code to be called during ev-
ery function call, somehow recording data from registers
into a file on the host for post-processing.

In contrast, building a profiler as a part of a managed
run-time system is much easier. Since the interpreter in-
directly executes the program one step at a time, it can
easily be modified to record information about that exe-
cution. This information can be recorded in scratchpad
regions of memory, or even inside of other objects on
the heap. Since the virtual machine has complete control
over the memory space, this is completely transparent to
the user’s running program.

The Owl run-time system includes a line number pro-
filer and a call trace profiler that can be turned on and
off by the programmer. These are statistical profilers
that operate similarly to gprof and provide information
about the time spent on individual Python lines or func-
tions. It also includes two profilers that measure the per-
formance of the virtual machine itself. Furthermore, the
Owl run-time system also includes a memory analyzer,
which would not even be possible for conventional C
programs. Additionally, the Owl toolchain includes a
novel static binary analyzer to visualize which portions
of the virtual machine take up the most space in flash.

These profilers are useful not only for writing high-
performance applications but also for tuning the vir-
tual machine itself. Furthermore, they demonstrate that
building tools for run-time analysis is straightforward
with an embedded interpreter. This comprehensive suite
of measurement tools is unique to Owl; eLua and p14p
have no built-in profilers.

All of these profilers operate transparently to the user
and store all data directly within the Python heap. This
works even when the microcontroller is disconnected
from the host. Therefore, these profilers can be used in
mobile, untethered systems, which is not possible with
any other microcontroller profiler.

5.1 Memory Analyzer

A managed run-time system imposes structure on the
memory within the system. Everything in the heap is
a Python object with an object descriptor that includes
its type and size. Furthermore, all data is stored within
the Python heap, including stack frames and other global
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Figure 3: Owl memory analyzer.

and local data. Therefore, it is possible to build tools that
can analyze the entire memory space of a Python pro-
gram. Such tools would actually be impossible to build
for C applications, due to the existence of pointers, the
fact that data is scattered through the address space, and
the lack of a well-defined structure to objects in memory.

The Owl system includes a novel memory analyzer,
shown in Figure 3, that provides the programmer with
complete access to the entire memory space on the
microcontroller. No other system has such a capabil-
ity. This is accomplished by transferring the entire con-
tents of the Python heap (which is only tens of KB on a
Cortex-M3 microcontroller) to the host. The host can
then parse the heap and present information about all
Python objects that have not yet been garbage collected.
Objects in flash that are referenced from the heap can be
requested and transferred as well.

The Owl memory analyzer operates by building and
traversing a directed graph of the memory objects stored
in both the heap and flash. Two tables, one for objects
stored in SRAM and one for those in flash, display all ob-
jects organized by type. An object can be selected from
these tables or looked up by address in order to display
additional information about that object, both textually
and graphically. Additionally, the memory analyzer can
trace the stack frames to show the scope of the objects.
These features allow the programmer to easily view how
objects are stored, see which objects exist at a given point
in the programs execution, and identify costly objects.

5.2 Static Binary Analyzer
The on-chip flash memory of a microcontroller con-
strains the complexity of the programs and data that
the microcontroller can utilize. It is critical to use this
scarce resource efficiently. Despite this, most embed-
ded toolchains provide little feedback on flash utilization.
The Owl static binary analyzer visualizes the size of the
virtual machine in flash, broken down by which portions
of the source tree use the most space. An example of its
output is shown in Figure 5.

It uses the nm tool to extract the list of symbols from

the compiled and linked binary. Then, it generates a
graphical output showing the size of different parts of
the system. Each C source file is shown as a band whose
size is proportional to the space that code consumes in
the final binary. The bands are sorted by category or di-
rectory in the source tree. Larger files are annotated with
their file name. This tool was invaluable in identifying
sections of the virtual machine that were unnecessarily
large, such as newlib’s printf suite and wrapped func-
tions.

5.3 Python and VM Profilers
The three profilers that measure execution time—the
Python line number profiler, the call-graph profiler and
the VM bytecode profiler—work in fundamentally sim-
ilar fashions. A hardware timer fires periodically, stop-
ping the interpreter. The profiler determines which part
of the user code the interpreter is currently running. This
information is then recorded in a set of counters inside
the Python heap. In the case of the line number and call-
graph profiler, the profiler records the location of execu-
tion inside the user’s program. In the VM bytecode pro-
filer, the currently executing bytecode is recorded. After
the profiler is turned off, the host can read these records
and present them in a human-readable format.

The Python line number and call-graph profilers are
useful for writing high-performance Python code. How-
ever, the VM profiler is extremely useful in determining
bottlenecks in the virtual machine itself. For instance, it
revealed that a significant portion of the execution time
of most programs was spent looking up variable names.

Since Python is dynamically linked, the VM stores
variable names as strings and maintains a dictionary
mapping those strings to their values for each namespace.
Every time a variable is accessed the interpreter searches
this dictionary. This can take a long time since multi-
ple variable names may be looked up during a single line
of execution. Additionally, the lookup currently uses a
linear scan, so it is inefficient. A dedicated profiler that
measures the performance of dictionary lookups quanti-
fies this inefficiency, as discussed in Section 7.



1 f o r l o c a t i o n in s e l f . r o u t e :
2 . . .
3 a t T a r g e t = F a l s e
4 whi le not a t T a r g e t :
5 . . .
6 i f c u r t i m e > r a n g e u p d a t e t i m e :
7 . . . # Read range f i n d e r ;
8 # g e t d i s t a n c e t o n e a r e s t o b s t a c l e
9 i f d i s t t o o b s t a c l e < RANGE MAX:

10 . . . # S e t motor p r o p o r t i o n a l and s e r v o
11 # i n v e r s e l y p r o p o r t i o n a l t o d i s t a n c e
12 . . .
13 r a n g e u p d a t e t i m e = c u r t i m e + RANGE PERIOD
14
15 i f c u r t i m e > l o c u p d a t e t i m e :
16 . . . # Read GPS ; g e t c u r r e n t l o c a t i o n ,
17 # heading , and d i s t a n c e t o d e s t i n a t i o n
18 i f d i s t t o g o a l < ERROR MARGIN:
19 . . . # S e t motor t o min speed
20 a t T a r g e t = True
21 e l s e :
22 . . . # S e t motor p r o p o r t i o n a l t o d i s t t o g o a l
23 l o c u p d a t e t i m e = c u r t i m e + LOC PERIOD
24
25 i f c u r t i m e > h e a d i n g u p d a t e t i m e :
26 . . . # C a l c u l a t e d e g r e e s t o t u r n ( d e g t o t u r n )
27 h e a d i n g u p d a t e t i m e = c u r t i m e + HEADING PERIOD
28
29 i f c u r t i m e > g y r o u p d a t e t i m e :
30 . . . # Read gyro ; upd a t e s t e e r i n g and i n t e g r a l
31 i f d i s t t o o b s t a c l e == RANGE MAX:
32 . . . # S e t s t e e r i n g t o gyro ’ s recommendat ion
33 g y r o u p d a t e t i m e = c u r t i m e + GYRO PERIOD
34
35 . . . # S top t h e car when i t r e a c h e s t h e f i n a l l o c a t i o n

Figure 4: Python event loop for autonomous RC car.

6 Applications

This paper demonstrates the Owl system on the Texas In-
struments Stellaris LM3S9B92 (9B92), an ARM Cortex-
M3 microcontroller that operates at up to 80 MHz, has
96 KB of SRAM, and has 256 KB of flash. In the exper-
iments, the 9B92 is connected to a GPS receiver, three-
axis accelerometer, three-axis MEMS gyroscope, digital
compass, TFT display, microSD card reader, ultrasonic
range finder, steering servo, and motor controller. The
applications use these devices to implement an artificial
horizon display (using the display and accelerometer), a
GPS tracker (using the GPS, compass, microSD, and dis-
play), and an autonomous RC car (using the gyroscope,
GPS, range finder, steering servo, and motor controller).

The diversity of peripherals demonstrates the ease of
use of a high-level language for microcontroller devel-
opment. In general, figuring out how to initialize and
utilize such peripherals with a microcontroller is a long
and tedious process. With Python, however, the ability to
experiment within the interactive prompt often shortens
the process from days to less than an hour.

In all experiments, the only native C code outside of
the run-time system is the StellarisWare libraries; no
other foreign functions were utilized. Specifically, no
application code has been rewritten in C for performance
optimization. Only the profilers discussed in Section 5

were used to measure and improve performance.

6.1 Autonomous RC Car

The autonomous RC car demonstrates the capability,
flexibility, and ease of use of the Owl system. The elec-
tronics from an off-the-shelf RC car (the Exceed RC
Electric SunFire Off-Road Buggy) were replaced with
a 9B92 microcontroller and associated peripherals. The
car is controlled entirely by the microcontroller.

The code skeleton in Figure 4 shows the main event
loop running on the car to implement a feedback con-
troller that performs GPS-based path-following with ob-
stacle avoidance. An ultrasonic range finder, GPS re-
ceiver, and three-axis gyroscope connected to the micro-
controller transmit feedback from the car’s surroundings,
while connections to the car’s motor and steering servo
provide control of the car’s movements.

First, if the range finder detects an obstacle in lines
7–8 of the code, the controller translates the distance to
that obstacle into a proportional motor speed and an in-
versely proportional steering servo setting. Second, the
controller uses the GPS location to calculate the distance
to its destination in lines 16–17. If the car has reached its
destination, the controller slows the motor and updates
to the next destination. Otherwise, it scales the motor’s
speed proportionally to the distance and calculates a goal
heading. Finally, the a proportional-integral controller
steers the car, using the gyro’s feedback to control the
rate of turn and the GPS’ heading calculation to deter-
mine the degrees to turn.

The range finder can update every 49 ms, the gyro ev-
ery 10 ms, and the GPS every second; the controller uti-
lizes these sensors fully by requesting updates every 60,
30, and 1000 ms, respectively.

6.2 Microbenchmarks

A small subset of the Computer Language Shootout5

shows the computational performance of the system.
These benchmarks were ported to the Owl system sim-
ply by converting Python 3 code into Python 2 code and
removing the command-line arguments.
ackermann is a simple, eight line implementation of

Ackermann’s function that computes A(3,4). It exercises
the recursive function call and compute stack. heapsort
sorts a 1000-element array of random floating point num-
bers. This implementation is contained in a single func-
tion call and exercises the garbage collector and list ca-
pabilities. matrix multiplies a pair of 30x30 matrices
of integers using an O(n3) algorithm. Finally, nbody is

5http://dada.perl.it/shootout/craps.html

http://shootout.alioth.debian.org/
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Figure 5: Static binary analysis, from top to bottom, of the Owl virtual machine using wrapped functions, using the
foreign function interface, of the eLua virtual machine and of an example program using SafeRTOS.

a floating-point benchmark that simulates the motion of
the Sun and the four planets of the outer solar system.

7 Results

This section presents an analysis of the Owl system. The
overhead of including the virtual machine in flash can
be quite small, as low as 32 KB compared to 22 KB for
a simple RTOS. We show that for the embedded work-
loads, garbage collection has almost no impact on run-
time performance. Finally, we show that using a loader-
less architecture uses four times less SRAM than a tradi-
tional system.

7.1 Static binary analysis

Figure 5 shows the output of the static binary analyzer.
The four rows in the figure are the Owl run-time sys-
tem using autowrapping, the Owl run-time system using
eFFI, the eLua interpreter, and the SafeRTOS demonstra-
tion program. SafeRTOS is an open-source real-time op-
erating system that is representative of the types of run-
time systems in use on microcontrollers today.

Consider the Owl run-time system using autowrap-
ping. The virtual machine section includes the interpreter
and support code to create and manage Python objects.
The math section includes support for software floating
point and mathematical functions, while the IP section
provides support for Ethernet networking. The platform

section is the StellarisWare peripheral and USB driver li-
braries. The lib sections (C and Python) are the Python
standard libraries for the Owl run-time system. Finally,
the I/O sections (C and Python) are the calls to the pe-
ripheral library, wrapped by the autowrapper tool.

The Python standard libraries consume a significant
fraction of the total flash memory required for the Owl
run-time system. The capabilities that these libraries pro-
vide are mostly optional, and therefore can be removed
to save space. However, they provide many useful and
convenient functionalities beyond the basic Python byte-
codes, such as string manipulation. These sections also
include optional debugging information (5 KB).

With eFFI, the binary is roughly 19 KB smaller, illus-
trating the advantage of using a foreign function inter-
face. While the code required to manually create stack
frames and call functions marginally increases the size of
the virtual machine and stores some additional informa-
tion in the Python code objects, it completely eliminates
the need for C wrappers.

The Owl virtual machine itself is actually quite small,
approximately 35 KB. It contains all of the code nec-
essary for manipulating objects, interpreting bytecodes,
managing threads, and calling foreign functions. This
is significantly smaller than eLua’s core, which takes up
63 KB, and not much larger than the so-called “light
weight” SafeRTOS, which requires 22 KB (the Source
and Minimal sections). Note also that the supposed com-
pactness of SafeRTOS is deceptive, as it is statically



Bytecode/Benchmark ar
tifi

ci
al

ho
ri

zo
n

gp
s-

tr
ac

ke
r

ca
r

ra
ng

e

ca
r

gy
ro

ca
r

ra
ng

e
gy

ro

ca
r

gp
s

gy
ro

ca
r

gp
s

gy
ro

ra
ng

e

ac
ke

rm
an

n

he
ap

so
rt

m
at

ri
x

nb
od

y

Running time

M
em

or
y

BINARY SUBSCR 1% - - - - - - - 9% 11% 4% 7 µs
LOAD ATTR 23% 10% 7% 18% 14% 18% 21% - 5% - - 64 µs

LOAD CONST 3% 1% - - - - - 11% 5% 1% 8% 8 µs
LOAD FAST 1% 1% 1% - 3% 3% 3% 12% 18% 12% 14% 4 µs

LOAD GLOBAL 24% 21% 41% 24% 68% 64% 59% 16% 5% 1% - 75 µs
STORE FAST - - - - - - - - 2% 3% 6% 4 µs

STORE SUBSCR - - - - - - - - 2% - 3% 6 µs

M
at

h

BINARY ADD - - - - - - - 3% 2% - 2% 10 µs
BINARY MULTIPLY - - - - - - - - - 3% 16% 11 µs

BINARY POWER - - - - - - - - - - 11% 116 µs
BINARY SUBTRACT - - - - - - - 6% - - 3% 10 µs

INPLACE ADD - - - - - - - - 3% 3% 5% 10 µs
INPLACE SUBTRACT - - - - - - - - - - 3% 11 µs

C
on

tr
ol

F
lo

w

CALL FUNCTION 33% 60% 44% 41% 3% 4% 5% 33% 3% 4% - 148 µs
COMPARE OP 4% - 1% - 2% 1% 1% - 7% - - 13 µs

DUP TOPX - - - - - - - - - - 3% 4 µs
FOR ITER - - - - - - - - - 5% 1% 6 µs

JUMP ABSOLUTE - - - - 1% 1% - - 2% 3% 1% 7 µs
JUMP IF FALSE - - 1% - 2% 2% 2% - 5% - - 5 µs
JUMP IF TRUE - - - - - - - 6% - - - 5 µs

POP BLOCK - - - - - - - - - 2% - 137 µs
POP TOP - - - - 1% 1% 1% 3% 2% - - 2 µs

RETURN VALUE - - - - - - - 4% 1% 2% - 74 µs
ROT THREE - - - - - - - - - - 2% 3 µs

SETUP LOOP - - - - - - - - - 1% - 15 µs
UNPACK SEQUENCE - - - - - - - - - - 7% 12 µs

(garbage collector) 1% - - - - - 11% - 17% 40% 3% 3-65 ms

Table 1: Fraction of each workload’s running time spent in each bytecode and the average execution time of each
bytecode. (Bytecodes that occur few or no times are not shown.)

linked directly into the user application. Therefore, with
a complex application, more libraries will need to be in-
cluded and the gap to Owl, which already contains these
libraries, will shrink.

The size of the standard Owl distribution is on the or-
der of 150 KB. Much of this size, however, comes from
C libraries. Any C application that uses these libraries
needs include them, just as Owl does. While the stan-
dard Owl distribution includes a large standard library,
Owl can just as easily be compiled without unused li-
braries. Therefore, the space overhead of using Owl can
be as low as 35 KB, the size of the interpreter itself.

7.2 Performance
This section presents the performance of the Owl run-
time system using the profilers discussed in Section 5.3.
Table 1 shows the profiling results of the benchmarks and
applications described in Section 6. Each column (before
the last column) shows one workload. The autonomous
car workload is shown using the GPS, range finder, gy-
roscope, or some combination thereof. Each entry shows

the percentage of the run-time spent executing any given
bytecode. If a bytecode is executed less than 1% of the
running time of the program, it is shown as a dash. The
average run-time of the bytecode is calculated as an av-
erage across all executions from all workloads and is
shown on the right. For the purposes of this table, the
garbage collector is treated as its own bytecode.

For most applications, the single largest contributer
to running time is the CALL FUNCTION bytecode. This
bytecode is particularly complex, as it is responsible for
creating call frames, instantiating objects, and calling ex-
ternal functions. When a program calls a foreign C func-
tion, the CALL FUNCTION bytecode does not finish until
that function completes, so the profiler attributes the for-
eign function’s execution time to CALL FUNCTION.

For the embedded workloads, loading and storing val-
ues takes a large fraction of the execution time. Python
stores variables in a set of dictionaries that map a vari-
able’s name, a string, to its value. The LOAD GLOBAL
bytecode loads objects (including functions) from the
global namespace, and is particularly slow due to the
large size of this namespace.



Lookups Hit Rate Search len Avg size

LOAD GLOBAL 129232 0.88 25 41.2
LOAD ATTR 174374 0.71 10.4 17.0

Table 2: Profiler results showing how dictionaries are
used by the interpreter.

Specifically, in the artificial horizon workload, nearly
half of the running time is spent in the LOAD ATTR and
LOAD GLOBAL bytecodes. Table 2 shows how the in-
terpreter uses dictionaries in these two bytecodes. When
the user references a global variable, the compiler loads
a constant representing the string name of the variable,
then calls LOAD GLOBAL. The interpreter searches the
local module’s scope for that variable. If it is not found
there, the interpreter searches the built-in namespace,
which mostly contains built-in functions like max() or
int(). In other words, the interpreter may have to search
multiple dictionaries per name lookup. However, these
dictionaries are reasonably small. As Table 2 shows,
each lookup only needs to search an average of 25 en-
tries to find a global variable and 10 entries to find an ob-
ject attribute. Since the microcontroller has single-cycle
memory access, this means that using a less space effi-
cient, faster data structure may not be appropriate.

Owl’s garbage collector (GC) is a simple mark-and-
sweep collector that occasionally stops execution for a
variable period of time. This uncertainty makes Owl
unsuitable for hard real-time applications. However, in
practice, Owl’s GC has no significant impact on our soft
real-time embedded workloads. In these applications,
data structures are reasonably simple, and there are only
a few small objects (around 1,500 for the artificial hori-
zon benchmark). This means that GC runs very rarely,
and only for a short period of time. For the worst case
embedded workload, this is never more than 8ms, 11%
of the application’s running time.

Further reducing the impact of GC on embedded
workloads, our virtual machine runs the collector when
the system is otherwise idle. For example, all GC invo-
cations for the car workload occur during sleep times.
In other words, the garbage collector never interrupts
or slows useful work. Moreover, while Owl’s current
garbage collector does not provide hard real-time guar-
antees, different garbage collectors exist that do [2].

Unsurprisingly, in the CPU benchmarks garbage col-
lection can be a more significant factor. These CPU
benchmarks store more complex data structures on the
heap, which take a long time to traverse during the mark
phase. Additionally, there are a large number of ob-
jects (over 7,500) in the heapsort benchmark that take
a long time to go through in the sweep phase. Overall,
garbage collection can take up to 65 ms and up to 41%
of execution time. Similarly, the bytecodes that manip-

Object Avg size Total size Fraction of
Type count (bytes) (bytes) total heap

pr
im

iti
ve

s None 2 8.0 16 0%
int 180 12.2 2188 7%

float 3 12.0 36 0%
string 29 19.9 576 2%
bool 2 12.0 24 0%

se
qu

en
ce

s

tuple 47 15.2 716 2%
packed tuple 5 8.0 40 0%

set 1 12.0 12 0%
seglist 92 16.5 1520 5%

segment 251 40.0 10048 32%
list 7 12.0 84 0%
dict 200 16.3 3252 10%

xrange 0 0.0 0 0%

O
O

P

module 22 36.4 800 3%
class 14 12.0 168 1%

function 317 36.1 11440 36%
instance 2 12.0 24 0%

in
te

rn
al

code obj 2 44.0 88 0%
packed cobj 1 12.0 12 0%

thread 1 36.0 36 0%
method 0 0.0 0 0%
frame 5 94.4 472 1%
block 2 20.0 40 0%

(all) 1185 26.7 31592 100%

Table 3: A snapshot of the heap, broken down by object
type, for the artificialhorizon workload.

ulate objects (BINARY ADD, etc.) are only significant
for the CPU benchmarks. The embedded workloads are
dominated by the bytecodes that perform control flow
(JUMP *, COMPARE OP, etc.).

Calling I/O functions is relatively fast. A simple mi-
crobenchmark that repeatedly calls a basic peripheral I/O
function, accumulating the result in a variable, illustrates
the overhead of I/O. This loop was calibrated by accumu-
lating a constant into the variable and using this time as
a baseline. For functions accessed with a wrapper func-
tion, this I/O call takes 11.4 µs. The foreign function
interface is more complex, increasing the call time to
20.8 µs. This time increase is significant, but it is out-
weighed by the savings in flash.

7.3 Memory use

Table 3 shows a snapshot of the contents of the heap for
the artificial horizon workload. It contains roughly 1200
objects for a total of 31 KB of data, which is less than
half the available space on the 9B92 microcontroller.

In general, the embedded workloads do not need to
store a great deal of dynamic data on the heap. The bulk
of the space used on the heap consists of references to
other constants. A segment object is a portions of a list,
and a function object points to a code object and the
variables in its scope. In contrast, the heapsort bench-



mark stores over 7500 dynamic objects, most of which
are integers and lists.

In the artificial horizon workload, the objects in
SRAM point to 5056 objects in flash, consuming a to-
tal of 98 KB. Most of this space is used by code objects
which contain bytecodes, constants, and strings. These
are all immutable, so the Owl system keeps them in flash,
as discussed in Section 3.2. However, other systems,
such as p14p and eLua, would have to copy most of this
data out of flash and into SRAM, increasing SRAM us-
age by over a factor of four. This is a critical advantage
of design of the Owl toolchain. Program complexity is
limited by flash, not by the much more scarce SRAM.

8 Conclusions

This paper has presented the design and implementa-
tion of Owl, a powerful and robust embedded Python
run-time system. The Owl system demonstrates that it
is both possible and practical to build an efficient, em-
bedded run-time system for modern microcontrollers.
Furthermore, this paper has shown that it is straightfor-
ward to implement complex embedded control software
in Python on top of such a run-time system.

This paper has also illustrated several key points about
embedded run-time systems through careful analysis of
Owl. First, a large fraction of the binary consists of sup-
port libraries that would also need to be included in a
native C executable. Second, the run-time characteristics
of embedded applications are very different from tradi-
tional computational workloads. For instance, garbage
collector and math performance have much less of an im-
pact on the types of programs that are likely to be run on
a microcontroller than they do on data intensive work-
loads. Instead, the execution speed is limited by efficient
variable lookup and function calls. Finally, an embedded
control program often uses many more constants than dy-
namic objects. By keeping these constants in flash, the
overall dynamic memory footprint in SRAM of a com-
plex embedded application can be kept relatively small.

Traditionally, microcontrollers are programmed with
hand-coded C or auto-generated code from MATLAB.
While this paper has presented many of the advantages
of a managed run-time system for microcontrollers, it
does not present a comparison to more traditional sys-
tems. Such comparisons are an important direction for
future work to further quantify the trade-offs of embed-
ded managed run-time systems.

There are orders of magnitude more embedded micro-
controllers in the world than conventional microproces-
sors, yet they are much harder to program. This persists
because software development for embedded microcon-
trollers is mired in decades old technology. As a re-
sult, there has been a proliferation of low-level embed-

ded software that is difficult to write, difficult to test,
and difficult to port to new systems. The Owl system
helps to improve this situation by enabling interactive
software development in a high-level language on em-
bedded microcontrollers. We believe this will lead to
enormous productivity gains that cannot be overstated.
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