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Abstract

We present a large scale study of primary data dedupli-
cation and use the findings to drive the design of a new
primary data deduplication system implemented in the
Windows Server 2012 operating system. File data was
analyzed from 15 globally distributed file servers hosting
data for over 2000 users in a large multinational corpora-
tion.

The findings are used to arrive at a chunking and com-
pression approach which maximizes deduplication sav-
ings while minimizing the generated metadata and pro-
ducing a uniform chunk size distribution. Scaling of
deduplication processing with data size is achieved us-
ing a RAM frugal chunk hash index and data partitioning
– so that memory, CPU, and disk seek resources remain
available to fulfill the primary workload of serving IO.

We present the architecture of a new primary data
deduplication system and evaluate the deduplication per-
formance and chunking aspects of the system.

1 Introduction

Rapid growth in data and associated costs has motivated
the need to optimize storage and transfer of data. Dedu-
plication has proven a highly effective technology in
eliminating redundancy in backup data. Deduplication’s
next challenge is its application to primary data - data
which is created, accessed, and changed by end-users,
like user documents, file shares, or collaboration data.
Deduplication is challenging in that it requires compu-
tationally costly processing and segmentation of data
into small multi-kilobyte chunks. The result is large
metadata which needs to be indexed for efficient lookups
adding memory and throughput constraints.

Primary Data Deduplication Challenges. When
applied to primary data, deduplication has additional
challenges. First, expectation of high or even duplication
ratios no longer hold as data composition and growth is
not driven by a regular backup cycle. Second, access
to data is driven by a constant primary workload, thus
heightening the impact of any degradation in data access
performance due to metadata processing or on-disk
fragmentation resulting from deduplication. Third,
deduplication must limit its use of system resources such
that it does not impact the performance or scalability
of the primary workload running on the system. This
is paramount when applying deduplication on a broad

platform where a variety of workloads and services
compete for system resources and no assumptions of
dedicated hardware can be made.

Our Contributions. We present a large and diverse
study of primary data duplication in file-based server
data. Our findings are as follows: (i) Sub-file deduplica-
tion is significantly more effective than whole-file dedu-
plication, (ii) High deduplication savings previously ob-
tained using small ∼4KB variable length chunking are
achievable with 16-20x larger chunks, after chunk com-
pression is included, (iii) Chunk compressibility distri-
bution is skewed with the majority of the benefit of com-
pression coming from a minority of the data chunks, and
(iv) Primary datasets are amenable to partitioned dedu-
plication with comparable space savings and the par-
titions can be easily derived from native file metadata
within the dataset. Conversely, cross-server deduplica-
tion across multiple datasets surprisingly yields minor
additional gains.
Finally, we present and evaluate salient aspects of a
new primary data deduplication system implemented in
the Windows Server 2012 operating system. We focus
on addressing the challenge of scaling deduplication
processing resource usage with data size such that
memory, CPU, and disk seek resources remain available
to fulfill the primary workload of serving IO. The design
aspects of our system related to primary data serving
(beyond a brief overview) have been left out to meet the
paper length requirements. The detailed presentation
and evaluation of those aspects is planned as a future
paper.

Paper Organization. The rest of this paper is structured
as follows. Section 2 provides background on deduplica-
tion and related work. Section 3 details data collection,
analysis and findings. Section 4 provides an overview
of the system architecture and covers deduplication pro-
cessing aspects of our system involving data chunking,
chunk indexing, and data partitioning. Section 5 high-
lights key performance evaluations and results involving
these three aspects. We summarize in Section 6.

2 Background and Related Work

Duplication of data hosted on servers occurs for various
reasons. For example, files are copied and potentially
modified by one or more users resulting in multiple fully
or partially identical files. Different documents may



share embedded content (e.g., an image) or multiple
virtual disk files may exist each hosting identical OS and
application files. Deduplication works by identifying
such redundancy and transparently eliminating it.

Related Work. Primary data deduplication has received
recent interest in storage research and industry. We re-
view related work in the area of data deduplication, most
of which was done in the context of backup data dedu-
plication.
Data chunking: Deduplication systems differ in the
granularity at which they detect duplicate data. Mi-
crosoft Storage Server [5] and EMC’s Centera [12]
use file level duplication, LBFS [18] uses variable-
sized data chunks obtained using Rabin fingerprint-
ing [22], and Venti [21] uses individual fixed size disk
blocks. Among content-dependent data chunking meth-
ods, Two-Threshold Two-Divisor (TTTD) [13] and bi-
modal chunking algorithm [14] produce variable-sized
chunks. Winnowing [23] has been used as a document
fingerprinting technique for identifying copying within
large sets of documents.
Backup data deduplication: Zhu et al. [26] describe an
inline backup data deduplication system. They use two
techniques to reduce lookups on the disk-based chunk
index. First, a bloom filter [8] is used to track existing
chunks in the system so that disk lookups are avoided
on non-existing chunks. Second, portions of the disk-
based chunk index are prefetched into RAM to exploit
sequential predictability of chunk lookups across succes-
sive backup streams. Lillibridge et al. [16] use sparse
indexing to reduce in-memory index size at the cost of
sacrificing deduplication quality. HYDRAstor [11] is
a distributed backup storage system which is content-
addressable and implements global data deduplication,
and serves as a back-end for NEC’s primary data storage
solutions.
Primary data deduplication: DEDE [9] is a decen-
tralized host-driven block-level deduplication system de-
signed for SAN clustered file systems for VMware ESX
Server. Sun’s ZFS [6] and Linux SDFS [1] provide inline
block-level deduplication. NetApp’s solution [2] is also
at the block level, with both inline and post-processing
options. Ocarina [3] and Permabit [4] solutions use vari-
able size data chunking and provide inline and post-
processing deduplication options. iDedup [24] is a re-
cently published primary data deduplication system that
uses inline deduplication and trades off capacity savings
(by as much as 30%) for performance.

3 Data Collection, Analysis, and Findings

We begin with a description of datasets collected and
analysis methodology and then move on to key findings.

Workload Srvrs Users Total
Data

Locations

Home Folders
(HF)

8 1867 2.4TB US, Dublin,
Amster-
dam, Japan

Group File Shares
(GFS)

3 * 3TB US, Japan

Sharepoint 1 500 288GB US
Software Deploy-
ment Shares (SDS)

1 † 399GB US

Virtualization
Libraries (VL)

2 † 791GB US

Total 15 6.8TB

Table 1: Datasets used for deduplication analysis.
∗Number of authors (users) assumed in 100s but not
quantifiable due to delegated write access. †Number of
(authors) users limited to < 10 server administrators.

3.1 Methodology

We selected 15 globally distributed servers in a large
multinational corporation. Servers were selected to re-
flect the following variety of file-based workload data
seen in the enterprise:

• Home Folder servers host the file contents of user
home folders (Documents, Photos, Music, etc.) of
multiple individual users. Each file in this work-
load is typically created, modified, and accessed by
a single user.

• Group File Shares host a variety of shared files used
within workgroups of users. Each file in this work-
load is typically created and modified by a single
user but accessed by many users.

• Sharepoint Servers host collaboration office doc-
ument content within workgroups. Each file in
this workload is typically modified and accessed by
many users.

• Software Deployment shares host OS and applica-
tion deployment binaries or packed container files
or installer files containing such binaries. Each file
in this workload is typically created once by an ad-
ministrator and accessed by many users.

• Virtualization Libraries are file shares containing
virtualization image files used for provisioning of
virtual machines to hypervisor hosts. Each file in
this workload is typically created and updated by an
administrator and accessed by many users.

Table 1 outlines the number of servers, users, location,
and total data size for each studied workload. The count
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Dataset Dedup Space Savings
File Level Chunk Level Gap

VL 0.0% 92.0% ∞
GFS-Japan-1 2.6% 41.1% 15.8x
GFS-Japan-2 13.7% 39.1% 2.9x
HF-Amsterdam 1.9% 15.2% 8x
HF-Dublin 6.7% 16.8% 2.5x
HF-Japan 4.0% 19.6% 4.9x
GFS-US 15.9% 36.7% 2.3x
Sharepoint 3.1% 43.8% 14.1x

Table 2: Improvement in space savings with chunk-level
dedup vs. file-level dedup as a fraction of the origi-
nal dataset size. Effect of chunk compression is not in-
cluded. (The average chunk size is 64KB.)
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Figure 1: CDF of original (un-deduplicated) files by
bytes, as a function of the fraction of chunks in a file
that are duplicate, for various datasets.

of users reflects the number of content authors, rather
than consumers, on the server.

Files on each server were chunked using a Rabin fin-
gerprint [22] based variable sized chunker at different
chunk sizes and each chunk was hashed using a SHA-
1 [19] hash function. Each chunk was then compressed
using gzip compression [25]. The resulting chunk size
(before and after compression), chunk offset, SHA-1
hash, and file information for each chunk were logged
and imported into a database for analysis.

To allow for detailed analysis of the effects of differ-
ent chunking and compression techniques on specific file
types, file group specific datasets where extracted from
the largest dataset (GFS-US) to represent Audio-Video,
Images, Office-2003, Office-2007, PDF and VHD (Vir-
tualization) file types.

3.2 Key Findings
Whole-file vs. sub-file dedup: In Table 2, we com-
pare whole-file and sub-file chunk-level deduplication.
Whole-file deduplication has been considered earlier for
primary data in the form of single instance storage [7].
The study in Meyer et al. [17], involving full desktop
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Figure 2: Dedup space savings (%) for chunking with
∼4KB/∼64KB variable chunk sizes, with impact of
compression, for GFS-US dataset.

file systems in an enterprise setting, found that file-level
deduplication achieves 75% of the savings of chunk-level
deduplication. Table 2 shows a significant difference in
space savings for sub-file dedup over whole-file dedup,
ranging from 2.3x to 15.8x to ∞ (the latter in cases where
whole file dedup gives no space savings). The difference
in our results from Meyer’s [17] is likely due to the in-
clusion of OS and application binary files which exhibit
high whole file duplication in the earlier study [17] while
this study focuses on user authored files which are more
likely to exhibit sub-file duplication.

Figure 1 provides further insight into the big gap in
space savings between chunk-level dedup and file-level
dedup for several datasets. On the x-axis, we sort the
files in increasing order of fraction of chunks that are
duplicate (i.e., also occur in some other file). On the y-
axis, we plot the CDF of files by bytes. We calculate a
CDF of deduplication savings contributed by files sorted
as in this graph, and find that the bulk of the duplicate
bytes lie between files having 40% to 95% of duplicate
chunks. Hence, sub-file dedup is necessary to identify
duplicate data that occurs at a granularity smaller than
that of whole files.

We also found reduced space savings for chunking
with 64KB fixed size blocks when comparing it with
∼64KB variable size chunking (chunk compression
included in both cases). This is because chunking with
fixed size blocks does not support the identification
of duplicate data when its duplicate occurrence is not
aligned along block boundaries. Our findings agree with
and confirm prior understanding in the literature [18].

Average Chunk Size: Deduplication systems for backup
data, such as in [26], use typical average chunk sizes
of 4 or 8KB. The use of smaller chunk sizes can give
higher space savings, arising from duplicate detection at
finer granularities. On the flip side, this is associated
with larger index sizes and increased chunk metadata.
Moreover, when the chunk is compressed, usually by a
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Figure 3: Chunk compressibility analysis for GFS-US
dataset.

LZW-style [25] dictionary based lossless compressor, the
smaller chunk size leads to reduced compression perfor-
mance, as the adaptive dictionary in the lossless com-
pressor has to be reset for each chunk and is not allow
to grow to significant size. The adverse impact of these
effects is more pronounced for a primary data deduplica-
tion system that is also serving live data.

We resolve the conflict by looking for reasonable
tradeoffs between larger average chunk sizes and higher
deduplication space savings. In Figure 2, we plot the
deduplication space savings with and without chunk
compression on the GFS-US dataset when the average
chunk size is varied from 4KB to 64KB. We see that
high deduplication savings achieved with 4KB chunk
size are attainable with larger 64KB chunks with chunk
compression, as the loss in deduplication opportunities
arising from use of larger chunk sizes is canceled out by
increased compressibility of the larger chunks.

Chunk compressibility: In Figure 3, we examine the
distribution of chunks by compression ratio for the GFS-
US dataset. We define the compression ratio c as (size of
compressed chunk)/(size of original chunk). Therefore,
a chunk with c = 0.7 saves 30% of its space when com-
pressed. On the x-axis, we sort and bin unique chunks in
the dataset by their compression ratio. On the y-axis, we
plot the cumulative distribution of those unique chunks
by both count and bytes. We also plot the cumulative dis-
tribution of the compression savings (bytes) contributed
by those unique chunks across the same compression ra-
tio bins.

We find significant skew in where the compression
savings come from – 50% of the unique chunks are
responsible for 86% of the compression savings and
those chunks have a compression ratio of 0.5 or lower.
On the other hand, we find that roughly 31% of the
chunks (42% of the bytes) do not compress at all (i.e.,
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Figure 4: Chunk duplication analysis for GFS-Japan-1
dataset.

fall at compression ratio = 1.0). This result is consistent
across all datasets studied (including subsets of datasets
created by grouping files of the same type) and it implies
that it is feasible for a primary data deduplication system
to be selective when compressing chunks. By checking
compression ratios and storing compressed only those
chunks whose compression ratios meet a certain thresh-
old, the amount of decompression involved during data
access can be reduced (assuming each chunk is equally
likely to be accessed which is at least true for full file
read IO requests). This allows for capturing most of the
savings of chunk compression while eliminating the cost
of decompression on the majority of chunks.

Chunk duplication analysis: In Figure 4, we examine
the distribution of chunk duplication in primary data. On
the x-axis, we bin the chunks by number of times they
are duplicated in the dataset in power of 2 intervals. The
rightmost bin contains unique chunks. Thereafter, mov-
ing towards the left, each bin contains chunks duplicated
in the interval [2i,2i+1) for i ≥ 1. On the y-axis, the bars
represent the total number of unique chunks in each bin
and the CDFs show the distribution of unique chunks by
both count and bytes across the bins. First, we see that
about 50% of the chunks are unique, hence a primary
data deduplication system should strive to reduce the
overhead for serving unique data. Second, the majority
of duplicate bytes reside in the middle portion of the
distribution (between duplication bins of count 2 and
32), hence it is not sufficient to just deduplicate the top
few bins of duplicated chunks. This points to the design
decision of deduplicating all chunks that appear more
than once. This trend was consistent across all datasets.

Data partitioning: We examine the impact of partition-
ing on each dataset by measuring the deduplication sav-
ings (without compression) within partitions and across
partitions. We partition each dataset using two meth-
ods, namely (i) partitioning by file type (extension), and
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Dataset Dedup Space Savings

Global Clustered by
File type File path

GFS-US 36.7% 35.6% 24.3%
GFS-Japan-1 41.1% 38.9% 32.3%
GFS-Japan-2 39.1% 36.7% 24.8%
HF-Amsterdam 15.2% 14.7% 13.6%
HF-Dublin 16.8% 16.2% 14.6%
HF-Japan 19.6% 19.0% 12.9%

Table 3: Space savings for global dedup vs. dedup within
partitioned file clusters, by file type or file path similarity.
(See text on why some datasets were excluded.)

Dataset Total
Size

Per-
Server
Dedup
Savings

Cross-
Server
Dedup
Savings

Cross-
Server
Dedup
Benefit

All Home-
Folder Srvrs

2438GB 386GB 424GB 1.56%

All File-
Share Srvrs

2897GB 1075GB 1136GB 2.11%

All Japan
Srvrs

1436GB 502GB 527GB 1.74%

All US Srvrs 3844GB 1292GB 1354GB 1.61%

Table 4: Dedup savings benefit of cross-server dedupli-
cation, as fraction of original dataset size.

(ii) partitioning by directory hierarchy where partitions
correspond to directory subtrees with total bytes at most
10% of the overall namespace. We excluded two datasets
(Virtualization and Sharepoint) because all or most files
were of one type or had a flat directory structure, so no
meaningful partitioning could be done for them. The re-
maining datasets produced partitions whose size varied
from one-third to less than one-tenth of the dataset.

As seen in Table 3, we find the loss in deduplication
savings when partitioning by file type is negligible for
all datasets. On the other hand, we find partitioning by
directory hierarchy to be less effective in terms of dedup
space savings.

Since the original datasets were naturally partitioned
by server, we then inspect the effect of merging datasets
to find out the impact of deduplication savings across
servers. In Table 4, we combine datasets both by work-
load type and location. We find that the additional sav-
ings of cross-server deduplication to be no more than 1-
2% above per-server savings.

This implies that it is feasible for a deduplication
system to reduce resource consumption by performing
partitioned deduplication while maintaining comparable
space savings.

4 System Design

We first enumerate key requirements for a primary data
deduplication system and discuss some design implica-
tions arising out of these and the dataset analysis in Sec-
tion 3. We then provide an overview of our system.
Specific aspects of the system, involving data chunking,
chunk indexing, and data partitioning are discussed next
in more detail.

4.1 Requirements and Design Implications
Data deduplication solutions have been widely used in
backup and archive systems for years. Primary data
deduplication systems, however, differ in some key
workload constraints, which must be taken into account
when designing such systems.

1. Primary data: As seen in Section 3, primary data
has less duplication than backup data and more than
50% of the chunks could be unique.

2. Primary workload: The deduplication solution
must be able to deduplicate data as a background
workload since it cannot assume dedicated re-
sources (CPU, memory, disk I/O). Furthermore,
data access must have low latency - ideally, users
and applications would access their data without
noticing a performance impact.

3. Broadly used platform: The solution cannot as-
sume a specific environment – deployment config-
urations may range from an entry-level server in a
small business up to a multi-server cluster in an en-
terprise. In all cases, the server may have other soft-
wares installed, including software solutions which
change data format or location.

Based on these requirements and the dataset analysis in
Section 3, we made some key design decisions for the
system which we outline here.

Deduplication Granularity: Our earlier data analysis
has shown that for primary datasets, whole file and sub-
file fixed-size chunk deduplication were significantly
inferior to sub-file variable size chunk deduplication.
Furthermore, we learned that chunk compression yields
significant additional savings on top of deduplication
with greater compression savings on larger chunks,
hence closing the deduplication savings gap with smaller
chunk sizes. Thus, an average chunk size of about
80KB (and size range 32-128KB) with compression
yields savings comparable to 4KB average chunk size
with compression. Maximizing savings and minimizing
metadata are both highly desirable for primary data
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deduplication where tighter system resource constrains
exist and there’s less inherent duplication in the data.
Our system uses variable size chunking with optional
compression, and an average chunk size of about 80KB.

Inline vs. Post-processing Deduplication: An impor-
tant design consideration is when to deduplicate the data.
Inline deduplication processes the data synchronously on
the write path, before the data is written to disk; hence,
it introduces additional write latencies and reduces write
throughput. On a primary data server, however, low write
latency is usually a requirement as writes are common,
with typical 1:3 write/read ratios [15].

Post-processing deduplication processes the data
asynchronously, after it has been written to disk in its
original format. This approach has the benefit of ap-
plying time-based policies to exploit known file access
patterns. On file servers, most files are not accessed
after 24 hours from arrival [15]. Therefore, a solution
which deduplicates only older files may avoid additional
latency for most accessed files on the server. Further-
more, post processing deduplication has the flexibility to
choose when (e.g., idle time) to deduplicate data.

Our system is based on a post-processing approach,
where the agility in deduplication and policies is a better
fit for a primary data workload than inline approach.

Resource Usage Scaling with Data Size: One major
design challenge a deduplication solution must face is
scale and performance - how to scale to terabytes of data
attached to a single machine, where (i) CPU memory and
disk IOPS are scarce and used by the primary workload,
(ii) the deduplication throughput must keep up with the
data churn, (iii) dedicated hardware cannot be assumed
and (iv) scale out to other machines is optional at best
but cannot be assumed. Most, if not all, deduplication
systems use a chunk hash index for identifying chunks
that are already stored in the system based on their hash.
The index size is proportional to the hash size and the
number of unique chunks in the system.

Reducing the memory footprint for post-processing
deduplication activity is a necessity in primary data
servers so that enough memory is available for serving
primary workloads. Common index designs in dedu-
plication systems minimize the memory footprint of the
chunk hash index by trading some disk seeks with using
less memory. The index size is still relative to number of
chunks, therefore, beyond a certain data scale, the index
will just not fit within the memory threshold assigned to
the deduplication system.

In our system, we address that level of scale by using
two techniques that can work in concert or separately to
reduce the memory footprint for the deduplication pro-
cess. In the first technique, we use a low RAM footprint
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Figure 5: Deduplication engine architecture.

chunk hash index that uses about 6 bytes of RAM for ev-
ery unique chunk stored in the system. This is discussed
in more detail in Section 4.4.

In the second technique, we partition the data into
smaller buckets or partitions and deduplicate within each
partition. Partitioning may be either permanent, in which
case duplicate data may exist across partitions, or tempo-
rary, in which case data will be deduplicated across par-
titions in a subsequent phase called reconciliation. This
implies that the deduplication process needs to scale only
to the maximum partition size. This is discussed in more
detail in Section 4.5.

4.2 System Architecture
In Sections 4.3, 4.4, and 4.5, we expand on the post-
processing deduplication aspects of our system, includ-
ing data chunking, chunk indexing, and data partition-
ing and reconciliation. To provide context for this dis-
cussion, we provide here an overview of our overall pri-
mary data deduplication system, as illustrated in Figure
5. The design aspects of our system related to primary
data serving (beyond a brief overview in this section)
have been left out to meet the paper length requirements.
The detailed presentation and evaluation of those aspects
is planned as a future paper.
Deduplication engine. The deduplication engine con-
sists of a file system filter driver and a set of background
jobs (post-processing deduplication, garbage collection,
compaction, scrubbing) necessary to maintain continu-
ous deduplication process and to maintain the integrity
of the underlying store. The deduplication filter redirects
the file system interactions (read, write, etc.) to transpar-
ently enable the same file semantics as for a traditional
server. The background jobs are designed to run in paral-
lel with the primary server IO workload. The engine ac-
tively monitors the primary work load (file serving) and
the load of the background jobs. It automatically allo-
cates resources and backs off background jobs to ensure
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that these jobs do not interfere with the performance of
the primary workload. Under the cover, the deduplica-
tion engine maintains the chunks and their metadata in
large container files (chunk store) which enable fast se-
quential IO access on management operations.
Background jobs. The functionalities of background
jobs in the deduplication engine are as follows. The post-
processing deduplication job progressively scans the un-
derlying volume and identifies candidate deduplication
files, which are all files on the server that meet a certain
deduplication policy criteria (such as file age). It scans
the candidate file, chunks it into variable size chunks
(Section 4.3), detects duplicate chunks using a chunk
hash index (Section 4.4), and inserts unique chunks in
the underlying chunk store, after an optional compres-
sion phase. Subsequently, the file itself is transactionally
replaced with a virtual file stub, which contains a list of
references to the associated chunks in the chunk store.
Optionally, the stub may also contain extra references
to sub-streams representing ranges of non-deduplicated
data within the file. This is particularly useful when a
deduplicated file is modified, as the modified portion can
be represented as sub-streams of non-deduplicated data
to support high speed and low latency primary writing
operation. The candidate files are incrementally dedu-
plicated – progress state is periodically saved to mini-
mize expensive restarts on a large file in case of job in-
terruptions such as job back-off (triggered by yielding
resources to the primary workload) or cluster failover.

The garbage collection job periodically identifies or-
phaned chunks, i.e., chunks not referenced by any files.
After garbage collection, the compaction job is periodi-
cally invoked to compact the chunk store container files,
to reclaim space from unreferenced chunks, and to min-
imize internal fragmentation. Finally, the scrubbing job
periodically scans the file stubs and the chunk store con-
tainer files to identify and fix storage-level corruptions.
File reads. File reads are served differently depending
on how much file data is deduplicated. For a regular,
non-deduplicated file, reads are served from the under-
lying file system. For fully-deduplicated files, a read re-
quest is fulfilled in several steps. In the first step, a file-
level read request is translated into a sequence of read re-
quests for each of the underlying chunks through the file-
level redirection table. This table essentially contains a
list of chunk-IDs and their associated offsets within that
particular file. In a second step, the chunk-ID is parsed
to extract the index of its container and the virtual off-
set of the chunk body within the container. In some
cases, if the container was previously compacted, the vir-
tual chunk offset is not identical with the physical offset
– in that case, a secondary address translation is done
through another per-container redirection table. Finally,
the read request data is re-assembled from the contents

of the corresponding chunks. A similar sequence of op-
erations applies to partially-deduplicated files, with one
important difference – the system maintains an extra per-
file bitmap to keep track of the non-deduplicated regions
within the file, which are kept in the original file contents
as a “sparse” stream.
File writes. File writes do not change the content of the
chunk store. A file write simply overwrites a range of
bytes in the associated sparse stream for that file. Af-
ter this operation, some chunks may hold data that is old
(obsolete) with respect to this file. No explicit dealloca-
tion of these chunks is done during the write, as these
chunks will be garbage collected later (provided they are
not referenced by any other file in the system). The dedu-
plication filter has the metadata and logic to rebuild a file
from ranged allocated in the sparse stream and ranges
backed up by chunks in the chunk store.

4.3 Data Chunking

The chunking module splits a file into a sequence of
chunks in a content dependent manner. A common prac-
tice is to use Rabin fingerprinting based sliding window
hash [22] on the data stream to identify chunk bound-
aries, which are declared when the lower order bits of
the Rabin hash match a certain pattern P. The length of
the pattern P can be adjusted to vary the average chunk
size. For example, we use a |P| = L = 16 bit pattern,
giving an average chunk size of Savg = 64KB.
Minimum and maximum chunk sizes. It is desirable
for the chunking module in a primary dedup system to
generate a chunk size distribution where both very small
and very large chunks are undesirable. The very small
sized chunks will lead to a larger number of chunks to
be indexed, which increases the load of the indexing
module. Moreover, for small chunks, the ratio between
the chunk metadata size to chunk size is high, leading
to performance degradation and smaller dedup savings.
The very large sized chunks may exceed the allowed unit
cache/memory size, which leads to implementation diffi-
culties in other parts of the dedup systems.

A standard way to avoid very small and very large
chunk sizes is to use Smin and Smax thresholds for mini-
mum and maximum chunk sizes respectively. To enforce
the former, a chunk boundary within Smin bytes of the last
chunk boundary is simply suppressed. The latter is en-
forced by declaring a chunk boundary at Smax bytes when
none has been found earlier by the hash matching rule.

One consequence of this size dependent boundary en-
forcement is the accumulation of peaks around Smin and
Smax in the chunk size distribution and the possible reduc-
tion in dedup space savings due to declaration of chunk
boundaries that are not content dependent. For exam-
ple, with Smax = 2× Savg, it can be shown that for ran-
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dom data, 14% of chunks will not find a chunk boundary
within Smax, which is a significant fraction. We design
a regression chunking algorithm that aims to reduce the
peaks in the chunk size distribution around Smax, while
preserving or even improving the dedup space savings.
Reducing forced boundary declaration at maximum
chunk size. The basic idea involves relaxing the strict
pattern matching rule – we allow matches on suffixes of
the bit pattern P so as to avoid forced boundary decla-
ration at maximum chunk size when possible. Let k de-
note the maximum number of prefix bits in the pattern
P whose matching can be relaxed. Then, we attempt to
match the last L− i bits of the pattern P with the lower
order bits of the Rabin hash, with decreasing priority
for i = 0,1, . . . ,k. A boundary is declared at maximum
chunk size only when no relaxed suffixes match after
Smax bytes are scanned. For ties within the same suffix
match, the later match position in the sequence is used.

In summary, this technique enables the maximum
chunk size bound to be satisfied in a content dependent
manner more often through gradual regression to larger
match sets with smaller number of matching bits. With
k = 1 level of regression, the probability of forcing a
chunk boundary at Smax for random data reduces to 1.8%.
At k = 4 levels of regression, the probability is extremely
low at 10−14. We use this value of k in our system.
Chunking throughput performance. To maintain fast
chunking throughput performance, it is crucial not to
break out of the core matching loop often, or increase the
complexity of the core loop through additional compar-
isons. By using regression chunking with nested match-
ing bits, we need to match against only the smallest
(L− k)-bit suffix of the pattern in the core loop. Only
when the smallest suffix match is satisfied do we break
out of the core loop and further evaluate the largest suffix
match. Regression chunking can be implemented by for-
ward processing the data only once (without ever needing
to track back); the only additional state needed is the last
match position for each relaxed suffix match.

For the case k = 2, regression chunking has some sim-
ilarities with the TTTD chunking algorithm [13] which
uses a second smaller size pattern to declare chunk
boundaries when a maximum chunk size is reached. Re-
gression chunking uses additional match patterns to re-
duce the probability of forcing a chunk boundary at Smax
to a very small number. Moreover, by making the match
patterns progressive suffixes of a base pattern, it main-
tains fast chunking performance as explained above.

4.4 Chunk Indexing

In a typical deduplication system, the hash index is a de-
sign challenge for scale and resource consumption since
the index size is relative to the data size. On a pri-

Figure 6: Chunk hash index.

mary data deduplication system, conserving memory and
disk IOPS resources is crucial. This paper discusses
two methods for addressing the index scale. In this sec-
tion, we present a hash index designed to have a low
memory footprint and use reduced read/write disk IOPS
so that it can scale to larger datasets and deliver high
insert/lookup performance. It incorporates ideas from
ChunkStash [10], but the use of flash memory for index
storage is not mandatory. In the next section, we present
a design for partitioning the index. The two methods can
be used independently or in conjunction with each other.
The index design is summarized in Figure 6.
Log-structured organization. The chunk metadata
records, comprising of SHA-256 hash and location infor-
mation, are organized in a log-structured manner on sec-
ondary storage. Newly inserted chunk records are held
in a write buffer in RAM and appended to this log in a
batched manner so that write IOPS are amortized across
multiple index insert operations.
Low RAM footprint index. A specialized in-memory
hash table is used to index chunk metadata records on
secondary storage, with hash collisions resolved by a
variant of cuckoo hashing [20]. The in-memory hash ta-
ble stores 2-byte compact key signatures instead of full
32-byte SHA-256 chunk hashes so as to strike trade-
offs between RAM usage and false secondary storage
reads. The compressed key signature also serves to elim-
inate disk accesses for lookups on non-existent chunks
(with very low false positives). The index footprint is
extremely low at about 6 bytes of RAM per chunk.
Prefetch cache. This technique aims to reduce disk
IOPS during lookups and has been used for backup data
dedup in [26]. When a chunk record R is read from the
log, a total of p= 1000 sequential records are read in one
single IO, starting from the location of record R, and in-
serted into a prefetch cache maintained in RAM. While
sequential predictability of chunk hash lookups for pri-
mary data dedup is expected to be much less than that
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for backup data dedup, we did not use smaller values of
p since disk seek times dominate for prefetching. The
prefetch cache is sized to contain c = 100,000 entries,
which consumes (an acceptable) 5MB of RAM. It uses
an LRU replacement policy.
Disk accesses for index lookups. An index lookup hits
the disk only when the associated chunk is a duplicate
and is not present in the prefetch cache (modulo a low
false positive rate). The fraction of index lookups hitting
disk during deduplication is in the 1% ballpark for all
evaluated datasets.

4.5 Data Partitioning and Reconciliation

In Section 4.1, we motivated the need to reduce memory
footprint for scale and presented partitioning as one of
the techniques used. Partitioning scopes the deduplica-
tion task to a smaller namespace, where the namespace
size is controlled by the deduplication engine. Therefore,
the resource consumption (RAM, IOPS) can be very pre-
cise, possibly provided as an external threshold to the
system. In this section, we discuss a design for dedu-
plicating within partitions and then reconciling the parti-
tions. The space savings are comparable to deduplicating
the entire namespace without partitioning.
Data Partitioning Methods. In Section 3, we demon-
strated that partitioning by server or file type is effective
- most of the space savings are achieved by deduplicat-
ing within the partition, additional savings by dedupli-
cating across partitions are minimal. Other methods may
partition by namespace (file path), file time, or file simi-
larity fingerprint. Partitions need to be constructed such
that the maximum partition size can be indexed within
a defined memory threshold. As the system scales, the
number of partitions grow, but the memory consumption
remains constant. A solution may consider a hybrid hi-
erarchical partitioning technique, where permanent par-
titioning is applied at one level and then temporary par-
titioning is applied at the next level when indexing a per-
manent partition is too large to fit in memory. The tem-
porary partitions may then be reconciled while the per-
manent partitions are not. In our design, we use perma-
nent partitioning based on servers, then apply temporary
partitioning based on file type or file time bound by a
memory threshold. We then reconcile the temporary par-
titions with an efficient reconciliation algorithm, which
is memory bound and utilizes large sequential reads to
minimize IOPS and disk seeks.
Two-phase Deduplication. We divide the deduplication
task into two phases:

1. Deduplication within a partition: The deduplica-
tion process is similar to deduplicating an entire
dataset except that the hash index loads only the

hashes belonging to chunks or files within the parti-
tion. We divide the hashes into partitions based on
either file type or file age and then, based on mem-
ory threshold, we load hashes to the index such that
the index size is within the threshold. In this dedu-
plication phase, new chunks ingested into the sys-
tem are deduplicated only if they repeat a chunk
within the partition. However, if a new chunk re-
peats a chunk in another partition, the duplication
will not be detected and the chunk will be stored in
the system as a new unique chunk.

2. Reconciliation of partitions: Reconciliation is the
process of deduplication across partitions to detect
and remove duplicate chunks resulting from the pre-
vious phase. The design for the reconciliation pro-
cess has the same goals of minimizing RAM foot-
print and disk seeks. Given two partitions, the rec-
onciliation process will load the hashes of one par-
tition (say, partition 1) into a hash index, and then
scan the chunks belonging to the second partition
(say, partition 2), using sequential I/O. We assume
that the chunk store is designed to allow sequential
scan of chunks and hashes. For each chunk of parti-
tion 2, the reconciliation process looks up the hash
in the index loaded with all the hashes of partition
1 to detect duplication. One efficient way of per-
sisting the detected duplicates is to utilize a merge
log. The merge log is a simple log where each en-
try consists of the two chunk ids that are a duplicate
of each other. The engine appends to the merge log
with sequential writes and may batch the writing of
merge log entries for reducing IOPS further.

Once the chunk duplication is detected, reconcilia-
tion uses a chunk-merge process whose exact imple-
mentation depends on the chunk store. For example,
in a chunk store that stores chunks within container
files, chunk-merge process may read the merge log
and then create new revision of the containers (us-
ing sequential read and write), omitting the dupli-
cate chunks. At the end of the second phase, there
are no duplicate chunk instances and the many par-
titions turn into a single reconciled partition.

Reconciliation Strategies. While reconciliation is ef-
ficient, it still imposes some I/O overhead on the sys-
tem. The system may self-tune based on availability of
resources and idle time whether to reconcile all partitions
or selectively. In the case that reconciliation across all
partitions is the selected strategy, the following method
is used. The basic idea is to consider some number of
unreconciled partitions at a time and grow the set of rec-
onciled partitions by comparing the current group of un-
reconciled partitions to each of those in the already rec-
onciled set. This is done by indexing in memory the
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current group of unreconciled partitions and then scan-
ning sequentially the entire reconciled set of partitions
and building merge logs for all. This process repeats it-
self until all unreconciled partitions join the reconciled
set. The number of unreconciled partitions considered in
each iteration depends on the amount of available mem-
ory – this allows a tradeoff between the speed of the rec-
onciliation process and the amount of memory used.

Our reconciliation strategy above uses the hash join
method. An alternative method is sort-merge join, which
is not only more CPU intensive (since sorting is more
expensive than building a hash table) but is also disk IO
expensive (as it requires reading and writing buckets of
sorted partitions to disk).

Selective reconciliation is a strategy in which only
some subsets of the partitions are reconciled. Select-
ing which partitions to reconcile may depend on several
criteria, such as file types, signature computed from the
data within the partition, or some other criteria. Selec-
tive reconciliation is a tradeoff between reducing IOPS
and achieving maximal deduplication savings.

Another useful strategy is delayed reconciliation –
rather than reconciling immediately after deduplication
phase, the deduplication engine may defer it to server’s
idle time. With this strategy, the tradeoff is with how long
it takes to achieve maximal savings. As seen in Section
3, deduplication across (appropriately chosen) partitions
yields incremental additional savings, therefore both se-
lective or delayed reconciliation may be the right tradeoff
for many systems.

5 Performance Evaluation

In Section 3, we analyzed our datasets around multiple
aspects for dedup space savings and used those findings
to design our primary data deduplication system. In
this section, we evaluate some other aspects of our
primary data deduplication system that are related to
post-processing deduplication.

Post-processing deduplication throughput. Using the
GFS-US dataset, we examined post-processing dedupli-
cation throughput, calculated as the amount of original
data processed per second. An entry-level HP ProLiant
SE326M1 system with one quad-core Intel Xeon 2.27
GHz L5520 and 12 GB of RAM was used, with a 3-
way RAID-0 dynamic volume on top of three 1TB SATA
7200 RPM drives.

To perform an apples-to-apples comparison, we ran
a post-processing deduplication session multiple times
with different indexing options in a controlled environ-
ment. Each deduplication session uses a single thread.
Moreover, we ensured that there were no CPU-intensive

tasks running in parallel for increased measurement ac-
curacy. The baseline case uses a regular index where the
full hash (SHA-256, 32 bytes) and location information
(16 bytes) for each unique chunk is stored in RAM. The
optimized index uses the RAM space efficient design de-
scribed in Section 4.4. The number of data partitions for
this workload was chosen as three by the system accord-
ing to a implementation heuristic; however, partitioning
could be done with as many partitions as needed. The
resource usage and throughput numbers are summarized
in Table 5. The following important observations can be
drawn from Table 5:

1. RAM frugality: Our optimized index reduces the
RAM usage by about 8x. Data partitioning can re-
duce RAM usage by another 3x (using 3 partitions
as chosen for this workload). The overall RAM us-
age reduction with optimized index and data parti-
tioning is as much as 24x.

2. Low CPU utilization: The median single core uti-
lization (measured over a single run) is in the 30-
40% range for all four cases. Compared to the base-
line case, it is slightly higher with optimized index
and/or data partitioning because of indexing work
and reconciliation respectively. Note that modern
file servers use multi-core CPUs (typically, quad
core or higher), hence this leaves enough room for
serving primary workload.

3. Low disk usage: (not shown in Table 5) The me-
dian disk queue depth is zero in all cases. At the 75-
th percentile, the queue depth increases by 2 or 3 as
we move from baseline to optimized index and/or
data partitioning. In the optimized index case, the
increase is due to extra time spent in disk-based in-
dex lookups. With data partitioning, the increase is
mainly due to reconciliation (which uses mostly se-
quential IOs).

4. Sustained deduplication throughput: Even as
RAM usage goes down significantly with optimized
index and data partitioning, the overall throughput
performance remains mostly sustained in the range
of 26-30 MB/sec, with only about a 10% decrease
for the lowest RAM usage case. This through-
put is sufficient to keep up with data ingestion rate
on typical file servers, which is small when com-
pared to total stored data. In a four month dy-
namic trace study on two file servers hosting 3TB
and 19TB of data, Leung et al. [15] reported that
177.7GB and 364.4GB of data was written respec-
tively. This computes to an average ingestion rate of
0.03 MB/sec and 0.04 MB/sec respectively, which
is three orders of magnitude lower than the obtained
single deduplication session throughput.
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Regular Optimized Regular Optimized
Index index index w/ index w/
(Baseline) partitions partitions

Throughput
(MB/s)

30.6 28.2 27.6 26.5

Partitioning
factor

1 1 3 3

Index entry
size (bytes)

48 6 48 6

Index mem-
ory usage

931MB 116MB 310MB 39MB

Single core
utilization

31.2% 35.2% 36.8% 40.8%

Table 5: Deduplication processing metrics for regular
and optimized indexes, without and with data partition-
ing, for GFS-US dataset. Disk queue depth (median) is
zero in all cases and is not shown.

The above two observations confirm that we meet our de-
sign goal of sustained post-processing deduplication per-
formance at low overhead so that server memory, CPU,
and disk resources remains available for serving primary
workload. We also verified that deduplication process-
ing is parallelizable across datasets and CPU cores/disks
– when datasets have disk diversity and the CPU has at
least as many cores as dataset deduplication sessions, the
aggregate deduplication throughput scales as expected,
assuming sufficient RAM is available.

It is also interesting to note that the extra lookup time
spent in the optimized index configuration (for lookups
going to disk) is comparable with the time spent in rec-
onciliation in the regular index with partitioning case. To
explore this further, we have compared the contribution
of various sub-components in the deduplication session
in Table 6. As can be seen, in the case of optimized index
without partitioning, the main impact on throughput
reduction comes from the index lookup time, when
lookups miss in the prefetch cache and hit disk. In the
case of data partitioning with regular index, the index
lookup time is greatly reduced (at the cost of additional
memory) but the main impact is deferred to the partition
reconciliation phase. We also observe that the CPU
time taken by the data chunking algorithm remains low
compared with the rest of the post-processing phase.

Chunk size distribution. We compare the chunk size
distribution of the regression chunking algorithm de-
scribed in Section 4.3 with that of basic chunking on
the GFS-US dataset. In Figure 7, we see that regres-
sion chunking achieves a more uniform chunk size dis-
tribution – it flattens the peak in the distribution around
maximum chunk size (128KB) (by relaxing the chunk
boundary declaration rule) and spreads out the distribu-

Deduplication Optimized Regular
Activity index index w/

partitioning

Index lookup 10.7% 0.4%
Reconciliation n/a 7.0%
Compression 15.1% 15.3%
SHA hashing 14.3% 14.6%
Chunking 9.7% 9.7%
Storing unique data 11.3% 11.5%
Reading existing data 12.6% 12.8%

Table 6: Percentage time contribution to the overall post-
processing session for each component of deduplication
activity for GFS-US dataset.
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Figure 7: Distribution of chunk size for GFS-US dataset.

tion more uniformly between minimum and maximum
chunk sizes. Regression chunking obtains an average
chunk size of 80KB on this dataset, which is a 5% de-
crease over that obtained by basic chunking. This can
also be attributed to the effect discussed above.

In Table 7, we plot the improvement in dedup space
savings obtained by regression chunking over basic
chunking on this dataset. Although the overall improve-
ment is about 3%, we see significant improvements for
some file types contained in that dataset – for example,
the dedup savings increases by about 27% for pdf file
types. Thus, depending on the mix of file types in the
dataset, regression chunking can provide marginal to
significant additional dedup space savings. This effect
can be attributed to regression chunking declaring more

Dataset Dedup Space Savings
Basic Regression RC

Chunking Chunking (RC) Benefit
Audio-Video 2.98% 2.98% 0%
PDF 9.96% 12.70% 27.5%
Office-2007 35.82% 36.65% 2.3%
VHD 48.64% 51.39% 5.65%
GFS-US 36.14% 37.2% 2.9%

Table 7: Improvement in dedup space savings with
regression chunking over basic chunking for GFS-US
dataset. Effect of chunk compression is not included.
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chunk boundaries in a content dependent manner instead
of forcing them at the maximum chunk size.

6 Conclusion

We presented a large scale study of primary data dedu-
plication and used the findings to inform the design of a
new primary data deduplication system implemented in
the Windows Server 2012 operating system. We found
duplication within primary datasets to be far from ho-
mogenous, existing in about half of the chunk space and
naturally partitioned within that subspace. We found
chunk compressibility equally skewed with the majority
of compression savings coming from a minority of the
chunks.

We demonstrated how deduplication of primary file-
based server data can be significantly optimized for both
high deduplication savings and minimal resource con-
sumption through the use of a new chunking algorithm,
chunk compression, partitioning, and a low RAM foot-
print chunk index.

We presented the architecture of a primary data
deduplication system designed to exploit our findings to
achieve high deduplication savings at low computational
overhead. In this paper, we focused on aspects of the
system which address scaling deduplication processing
resource usage with data size such that memory, CPU,
and disk resources remain available to fulfill the primary
workload of serving IO. Other aspects of our system re-
lated to primary data serving (beyond a brief overview),
reliability, and resiliency are left for future work.
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