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Abstract

The high degree of storage consolidation in modern vir-
tualized datacenters requires flexible and efficient ways
to allocate IO resources among virtual machines (VMs).
Existing IO resource management techniques have two
main deficiencies: (1) they are restricted in their ability to
allocate resources across multiple hosts sharing a storage
device, and (2) they do not permit the administrator to set
allocations for a group of VMs that are providing a single
service or belong to the same application.

In this paper we present the design and implementation
of a novel software system called Storage Resource Pools
(SRP). SRP supports the logical grouping of related VMs
into hierarchical pools. SRP allows reservations, limits
and proportional shares, at both the VM and pool levels.
Spare resources are allocated to VMs in the same pool in
preference to other VMs. The VMs may be distributed
across multiple physical hosts without consideration of
their logical groupings. We have implemented a proto-
type of storage resource pools in the VMware ESX hyper-
visor. Our results demonstrate that SRP provides hierar-
chical performance isolation and sharing among groups
of VMs running across multiple hosts, while maintaining
high utilization of the storage device.

1 Introduction

Shared storage access and data consolidation is on the
rise in virtualized environments due to its many benefits:
universal access to data, ease of management, and support
for live migrations of virtual machines (VMs). Multi-
tiered SSD-based storage devices, with high IO rates, are
driving systems towards ever-higher consolidation ratios.
A typical virtualized cluster consists of tens of servers,
hosting hundreds of VMs running diverse applications,
and accessing shared SAN or NAS based storage devices.

To maintain control over workload performance, stor-
age administrators usually deploy separate storage de-

vices (also called as LUNs or datastores) for applications
requiring strong performance guarantees. This approach
has several drawbacks: growing LUN sprawl, higher
management costs, and over-provisioning due to reduced
benefits from multiplexing. Encouraging LUN sharing
among diverse clients requires systems to provide better
controls to isolate the workloads and enable QoS differ-
entiation. Recently, PARDA [6] and mClock [8] have
been proposed to provide storage QoS support. However,
these and other existing approaches like SFQ(D) [12],
Triage [13] , Façade [15], Zygaria [24], pClock [7] etc.
either provide only proportional allocation or require a
centralized scheduler (see Section 2.2).

In this paper, we present a new software system called
storage resource pools (SRPs) with the following desir-
able properties:
Rich Controls: QoS can be specified using throughput
reservations (lower bounds), limits (upper bounds) and
shares (proportional sharing). These may be set for in-
dividual VMs or collectively for a group of related VMs
known as a resource pool. Reservations are absolute guar-
antees, that specify the minimum amount of service that
a VM (or group) must receive. Limits specify the maxi-
mum allocation that should be made to the VM or the
group. These are useful for enforcing strict isolation
and restricting tenants to contractually-set IOPS based
on their SLOs. Shares provide a measure of relative im-
portance between VMs or groups, and are used for pro-
portional allocation when capacity is constrained.
Hierarchical Pooling: Storage administrators can define
storage resource pools (SRPs) to logically partition IO
resources in a hierarchical manner. SRPs allow related
VMs to be treated as a single unit for resource alloca-
tion. These units can be aggregated into larger SRPs to
create a resource pool hierarchy. Resource pooling has
several advantages; it (1) spares the user from having to
set per-VM controls that are hard to determine; (2) al-
locates resources to divisions or departments based on
organizational structure; and (3) allocates resources to a



group of VMs that are working together to provide a sin-
gle service. The latter scenario is becoming increasingly
common with dynamic websites like e-Commerce and
social-networking, where a webpage may be constructed
by involving several virtual machines.
Dynamic Allocation based on Demand: SRPs can dy-
namically reallocate LUN capacity (IOPS) among VMs
based on the current workload demands, while respecting
user-set constraints (see Section 2).
Distributed and Scalable Operation: VMs comprising
a resource pool may be distributed across multiple servers
(hosts), and a single server may run VMs belonging to
many different resource pools. Such distributed architec-
tures are very common in virtualized datacenters.

Providing these controls is quite challenging for sev-
eral reasons: (1) VMs in the same pool may be distributed
across multiple hosts; (2) there is no central location to
implement an IO scheduler that sees the requests from
all the hosts; and (3) workload demands and device IOPS
are highly variable and need to be tracked periodically
for an effective implementation of resource pooling.

We have implemented a prototype of storage resource
pools on the VMware ESX Server hypervisor [19]. In
our prototype, an administrator can create one resource
pool per storage device. Our extensive evaluation with
multiple devices and workloads shows that SRPs are able
to provide the desired isolation and aggregation of IO
resources across various VM groups, and dynamically
adapt allocation to the current VM demands.

The rest of the paper is organized as follows. Section 2
presents an example to motivate the need for storage re-
source pools and discusses related work in this area. Sec-
tion 3 presents the SRP design in detail. In Section 4
we discuss implementation details and storage-specific
issues. Section 5 presents the results of extensive perfor-
mance evaluation that demonstrates the power and effec-
tiveness of storage resource pools. Finally we conclude
with some directions for future work in Section 6.

2 Motivation and Related Work

In this section we first motivate the need for storage re-
source pools using a simple example and discuss the chal-
lenges in implementing them in a distributed cluster. We
then review the literature on IO resource management
and the limitations of existing QoS techniques.

2.1 Need For Storage Resource Pools

Consider an enterprise that has virtualized its infrastruc-
ture and consolidated its IO workloads on a small set of
storage devices. VMs from several different divisions,
(say sales and finance for example), may be deployed

on the same device (also called as datastore). The ad-
ministrator sets up a pool for the divisions with settings
reflecting the importance of their workloads. The VMs of
the sales division (handling sales in different continents)
may need an overall reservation of 1000 IOPS. This to-
tal reservation is flexibly shared by these VMs based on
the peaks and troughs of demand in different time zones.
The finance division is running background data analytics
in their VMs and the administrator wants to restrict their
combined throughput to 500 IOPS, to reduce their impact
on critical sales VMs.

In addition to reservation and limit controls, the admin-
istrator may want the VMs from the sales division to get
more of the spare capacity (i.e.capacity left after satis-
fying reservations) than VMs from the finance division.
This is only relevant during contention periods when de-
mand is higher than the current capacity. For this, one can
set shares at the resource pool level and the allocation is
done in proportion to the share values. Shares can also be
used to do prioritized allocation among the VMs within
the same pool.

Many of these requirements can be met by using hard
VM-level settings. However, that will not allow the IOPS
to be dynamically shared among VMs of a group based
on demand, as needed by the sales division. Similarly,
one will have to individually limit each VM, which is
more restrictive than setting the limit on a group of them.
Moreover if a VM gets idle, the resource should flow first
to the VMs of the same group rather than to a different
group.

Figure 1(a) shows a storage resource pool with two
children Sales and Finance. These child nodes have reser-
vation (R) and limit (L) settings as per the company pol-
icy. Both of them also have two child VMs with settings
as shown. The reservation for the Sales node (1000) is
higher than the sum of the reservations (300) of its child
VMs; the excess amount will be dynamically allocated to
the children to increase their statically-set reservations (r),
based on their current demand and other settings. Sim-
ilarly, in the case of the Finance node, the parent limit
(500) is less than the sum of the limits (1000) of the indi-
vidual child VMs; hence, we need to dynamically set the
limit on the two child VMs to sum to the parent’s value.
Once again the allocation is made dynamically based on
the current distribution of demand among these VMs, and
the other resource control settings.

Also note that we have assigned twice the number of
shares to the Sales pool, which means that the capacity
at the root will be allocated among the Sales and Finance
pools in the ratio 2:1, unless that would lead to violating
the reservation or limit settings at the node. We have
also allocated different shares to VMs in the Sales pool
to allow them to get differentiated service during periods
of contention.



Technique Distributed Reservation Limit Share Hierarchical Storage Allocation
Proportional sharing techniques No No No Yes No Yes

Distributed mechanisms (PARDA [6]) Yes No No Yes No Yes
Centralized IO schedulers No Yes Yes Yes Some Yes

ESX CPU scheduler No Yes Yes Yes Yes No
ESX Memory scheduler No Yes Yes Yes Yes No
Storage Resource Pools Yes Yes Yes Yes Yes Yes

Table 1: Comparison of storage resource pools with existing resource allocation schemes
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Figure 1: Storage resource pools description and mapping to physical resources

This task of enforcing the desired controls in SRP is
challenging because the storage device is accessed by
multiple hosts in a distributed manner using a clustered
file system like VMFS [1] (in our case) or NFS, with no
centralized control on the IO path as shown in Figure 1(b).
Finally, based on the requirements for other resources
such as CPU and memory, the VMs may get dynamically
placed or moved among hosts using live migration. Thus,
the system should adapt to the dynamic placement of
VMs and cannot rely on static settings. Figure 1(c) shows
an example mapping of the VMs to hosts.

Resource Pool Semantics: In summary, the resource
pool semantics dictate the following allocation at each
level of the resource pool (RP) tree: (1) Distribute the
parent’s reservation among its children in proportion to
their shares while ensuring that each child gets at least
its own reservation and no more than its demand or static
limit; (2) Distribute the parent’s limit among its children
in proportion to their shares while making sure that no
child gets more than its own static limit or demand; and
(3) Distribute the parent’s share to its children in propor-
tion to their shares.

2.2 Previous Work

We classified existing work on QoS controls for storage
into three categories, as discussed below. Table 1 pro-

vides a summary of existing approaches and their com-
parison with Storage Resource Pools.

Proportional Sharing: Many approaches such as
Stonehenge [10], SFQ(D) [12] have been proposed for
proportional or weighted allocation of IO resources.
These techniques are based on fair-queuing algorithms
proposed for network bandwidth allocation (WFQ [3],
SFQ [5]) but they deploy storage-specific optimizations
to maintain higher efficiency of the underlying storage
system. DSFQ [23] proposed proportional allocation for
distributed storage, but it needs specific cooperation be-
tween the underlying storage device and storage clients.

Different from throughput allocation, Argon [21] and
Fahrrad [16] proposed time-sliced allocation of disk ac-
cesses to reduce interference across multiple streams ac-
cessing the device. Façade [15] presented a combina-
tion of EDF based scheduling and queue depth manip-
ulation to provide SLOs to each workload in terms of
IOPS and latency. The reduction in queue depth to meet
latency bounds can have severe impact on the overall ef-
ficiency of the underlying device. SARC+Avatar [25]
improved upon that concern by providing better bounds
on the queue depth and a trade-off between throughput
and latency.

Unlike these centralized schedulers, PARDA [6] pro-
vided a distributed proportional-share algorithm to allo-
cate LUN capacity to VMs running on different hosts.



PARDA also runs across a cluster of ESX hosts, but it
doesn’t support reservation and limit controls. A limita-
tion of pure share-based allocation is that it cannot guar-
antee a lower bound on absolute VM throughput. Conse-
quently, VMs with strict QoS requirements suffer when
the aggregate IO rate of the LUN drops or if new VMs
are added on the same LUN. In addition, PARDA does
not support resource pooling so VMs running on different
hosts are completely independent.

Triage [13] uses a centralized control mechanism that
creates an adaptive model of the storage system and sets
per-client bandwidth caps to allocate a specific share of
the available capacity. Doing per-client throttling using
bandwidth caps can underutilize array resources if the
workloads become idle. Triage also doesn’t support re-
source pooling unlike SRP.

Algorithms with Reservation Support: The problem
of resource reservations for CPU, memory and storage
management are well studied. Several approaches [4, 17]
have been proposed to support CPU reservations for
real-time applications while maintaining proportional
resource sharing. Since CPU capacity is fixed and
not significantly affected by workloads, it is relatively
straightforward to provide CPU reservation in MHz. The
VMware ESX server [20, 22] has been providing reser-
vation, limit and shares based allocation to VMs for both
CPU and memory since 2003.

For the allocation of storage resources, mClock [8]
proposed a per-host local scheduler that provides all three
controls (reservation, limit and shares) for VMs running
on a single host. mClock does this by using three separate
tags per client, one for each of the controls. The tags
are assigned using real-time instead of virtual time and
the scheduler dynamically switches between the tags for
scheduling. However, in a clustered environment, a host-
level algorithm alone cannot control the LUN capacity
available to a specific host due to workload variations
on other hosts in the cluster. Hence, any solution local
to a single host is unable to provide guarantees across a
cluster and is not sufficient for our use case.

Hierarchical Resource Management: CPU and
memory resource pools [20] implemented by the
VMware ESX server since 2003, were proposed for hi-
erarchical resource management. However, the existing
solutions were not designed for storage devices which
are stateful and have fluctuating capacity. More impor-
tantly, both CPU and memory are local to a host and a
centralized algorithm suffices to do resource allocation.
Zygaria [24] proposed a hierarchical token-bucket based
centralized IO scheduler to provide hierarchical resource
allocation while supporting reservations, limits and a sta-
tistical notion of shares.

Storage resource pools, by contrast, need to work
across a cluster of hosts that are accessing a storage de-

vice in a distributed manner. This makes it harder to
use any centralized IO scheduler. Furthermore, earlier
approaches use a fixed queue depth for the underlying de-
vice, which is hard to determine in practice; SRP varies
the queue depth in order to ensure high device utilization.
Finally, SRP adjusts VM-level controls adaptively based
on the demand, so a user does not have to specify all of
the per-VM settings.

3 Storage Resource Pool Design
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Figure 2: SRP system architecture

In this section, we discuss the key concepts and overall
design of storage resource pools. Figure 2 shows the over-
all system architecture with multiple virtualized hosts ac-
cessing a shared storage array. Each host has two main
components: an SRP module and a local IO scheduler
mClock [8], that synergistically control the allocations
to the VMs. The SRP module is responsible for determin-
ing how much of the array capacity should be provided
to each VM and each host. mClock is responsible for
scheduling the VMs on each host in accordance with the
allocations.

The SRP module is a user-level process that runs di-
rectly on the ESX hypervisor. Each SRP module periodi-
cally decides how much of the array capacity to allocate
to this host and the VMs running on it for the next inter-
val. The amount is based on several factors, both static
and dynamic: the structure of the RP tree, the control
settings (static R,L,S) on the nodes, the dynamic demand
of the VMs, the dynamic array capacity for the current
workload mix, and the mapping of the VMs to hosts.

SRP computes two quantities periodically: (1) the dy-
namic VM settings (R,L,S) in accordance with the global
resource pool constraints and VM demands, and (2) the
issue queue depth per host. The maximum number of
requests that a host can keep outstanding at the array is
bounded by the issue queue depth (also called host queue
depth), as shown in Figure 2. The size of the issue queue
reflects the array capacity currently allocated to the host.
Next we discuss the functionality of SRP Module in more
detail.



3.1 SRP Module
Algorithm 1 provides a high-level description of the SRP
module. It performs three major tasks: 1) updates de-
mand on the RP-tree nodes; 2) computes new values for
the reservations, limits, and shares for the VMs for use
by the mClock scheduler – these are also called dynamic
R,L,S values respectively; and 3) estimates the new array
capacity and divides it among the hosts. The inputs to
the module are the statistics collected during the previous
monitoring interval, specifically the VM demands and
measured latency.

Algorithm 1: SRP Module
/* Run periodically to reallocate IO resources */

1. Update demand in RP Tree
(a) Update demand of VMs in RP tree
(b) Update demands at internal RP-tree nodes by
aggregating demands of its children

2. Compute dynamic R,L,S
(a) Update VM Reservation (R Divvy)
(b) Update VM Limits (L Divvy)
(c) Update VM Shares (S Divvy)

3. Update Array and Host Queue Depths
(a) Estimate new array queue depth
(b) Compute VM entitlement
(c) Set host queue depth

3.1.1 Update and Aggregate Demand

The ESX hypervisor maintains stats on the aggregated
latency and total number of IOs performed by each VM.
Using these stats, the SRP module determines the aver-
age latency (avgLatency) and average IOPS (avgIops),
and computes the VM demand in terms of the average
number of outstanding IOs (demandOIO) using Little’s
law [14] (see equation 1). Each SRP module owns a block
in a shared file on the underlying datastore and updates
the VM-level stats in that file. By reading this file, every
host can get the VM demand values in terms of outstand-
ing IOs (also called as OIOs). The SRP module on each
host then converts the demandOIO (see equation 2) to
a normalized demand IOPS value (demandIops), based
on the storage device congestion threshold latency (Lc).
This helps to avoid overestimating a VM’s demand based
on local latency variations.

demandOIO = avgLatency × avgIops (1)
demandIops = demandOIO/Lc (2)
demandIops = min(max(demandIops,R),L) (3)

The congestion threshold is the maximum latency at
which the storage device is operated. This ensures a high
utilization of the underlying device. Based on our exper-
iments we have found the range between 20 to 30 ms to
be good enough for disk-based storage devices. For SSD-
backed LUNs, Lc can be set to a lower value (e.g. 5 ms).
Our implementation is not sensitive to this control but
the utilization of the underlying device may get impacted.
The SRP module controls the array queue depth to keep
the latency close to Lc, so that we utilize the device in an
efficient manner.

The demandIops value is then adjusted to make sure
that it lies within the lower and upper bounds represented
by the reservation and limit settings for each VM (see
equation 3). Finally the demand is aggregated level-by-
level at each node of the tree by summing the demandIops
of its children and then applying the bound checks (equa-
tion 3) at the parent.

3.1.2 Computing Dynamic R,L,S for VMs

This step computes dynamic reservation, limit and share
values for VMs based on the structure of the RP tree, the
static (user-specified) reservation, limit and shares set-
tings on the nodes, as well as the demand of VMs and
internal nodes computed in Step 1. These operations are
called R-divvy, L-divvy and S-divvy respectively. The ex-
act divvy algorithm is explained in Section 3.2 followed
by an example divvy computation in Section 3.3.

The R-divvy distributes the total reserved capacity at
the root node among the currently active VMs. The allo-
cation proceeds in a top-down hierarchical manner. First
the root reservation is divided among its children based
on their control settings. For the divvy, the limit of a child
node is temporarily capped at its demand. This allows re-
sources to preferentially flow to the nodes with higher
current demand. Since the reservation at a node usually
exceeds the sum of the reservations of its currently ac-
tive children, the R-divvy will assign a higher reservation
value per VM than its static setting.

The L-divvy is similarly used to provide higher dy-
namic limits to VMs with higher shares and demands.
For instance, the user may set each VM limit to max (un-
limited), but place an aggregate limit on the RP node. At
run time, the aggregate limit needs to be allocated to indi-
vidual VMs. The S-divvy similarly divides up the shares
at a node among its children. Unlike the R and L divvies,
the S-divvy does not use the demands but only the static
share settings in doing the computation.

3.1.3 Update Array and Host Queue Depths

In this step, the SRP module computes the new array
capacity, and the portion to be allocated to each host.



Since there is no centralized place to do scheduling across
hosts, it is not possible to directly allocate IOPS to the
hosts. Instead, we use the host queue depth (Qh) as a
control to do across-host allocation. We describe the three
steps briefly below.
Update Array Queue Depth: To determine the new ar-
ray queue depth we use a control strategy inspired by
PARDA [6]. The queue depth is adjusted to keep the
measured latency within the congestion threshold, using
equation 4 below.

Q(t +1) = (1− γ)Q(t) + γ

(
Lc

Lat(t)
Q(t)

)
(4)

Here Q(t) denotes the array queue depth at time t, Lat(t)
is the current measured average latency, γ ∈ [0,1] is a
smoothing parameter, and Lc is the device congestion
threshold.
Compute VM OIO Entitlement: We first convert the
array queue depth value computed above to an equivalent
array IOPS capacity using Little’s law:

arrayIOPS = Q(t +1)/Lc. (5)

We then use the divvy algorithm (Algorithm 2) de-
scribed in Section 3.2, to divide this capacity among all
the VMs based on their settings. This results in the VM
IOPS entitlement denoted by Ei. The conversion from
queue depth to IOPS is done because the resource pool
settings used for the divvy are in terms of user-friendly
IOPS, rather than the less transparent OIO values.
Set Host Queue Depth: Finally, we set the host queue
depth (Qh) to be the fraction of the array queue depth
that the host should get based on its share of the VM
entitlements in the whole cluster (using equation 6).

Qh = Q(t +1)× ∑i∈V M on host Ei

arrayIOPS
(6)

At each host, the local mClock scheduler is used to
allocate the host’s share of the array capacity (represented
by the host queue depth Qh) among its VMs. mClock uses
the dynamic VM reservations, limits, and shares settings
computed by SRP in step 2 to do the scheduling.

3.2 Divvy Algorithm
The root of the RP tree holds four resource types that
need to be divided among the nodes of the tree: (1) RP
reservation (R), (2) RP limit (L ), (3) RP shares (S ),
and (4) array IOPS. The first three values are divvied to
compute the dynamic R,L,S settings, and the fourth value
(array IOPS) is divvied to compute per VM entitlement.
We use the same divvy algorithm for all these except for
shares. The divvying of shares (S ) is much simpler and
is based only on the static share values of the child nodes.

The shares at a node are divided among the children in the
ratio of the children’s share settings. Next, we explain the
common divvy algorithm for the remaining values. We
use the generic term capacity to denote the resource being
divvied.

Intuitively, the divvy will allocate the parent’s capacity
to its children in proportion to their shares, subject to their
reservations and limit controls. Algorithm 2 presents an
efficient algorithm to do the divvying for a given capacity
C . The goal is to assign each child to one of three sets:
RB, LB, or PS. These represent children whose allocation
either equals their reservation (RB), equals their limit
(LB), or lies between the two (PS). The children in PS
get allocations in proportion to their shares.

We use wi to denote the fraction of shares assigned
to child i relative to the total shares of all the children.
We use the terms normalized reservation and normalized
limit to denote the quantities ri/wi and li/wi respectively.
V is the ordered set of all normalized reservations and
limits, arranged in increasing order. Ties between nor-
malized reservation and limit values of child i are broken
to ensure that ri/wi appears earlier than li/wi.

Initially we allocate all children their reservations, and
place them in set RB. At each step k, we see if there is
enough capacity to increase the allocation of the current
members of PS to a new target value vk. This is either
the normalized reservation or limit of some child denoted
by index[k]. In the first case the child is moved from
RB to PS, and in the latter case the child is moved from
PS to LB. The total weight of the children in PS is ad-
justed accordingly. This continues till either the capacity
is exhausted or all elements in V have been examined.

The complexity of the algorithm is O(n logn), bounded
by the time to create the sorted sequence V . At the end
of the process, children in LB are allocated their limit,
those in RB are allocated their reservation, and the rest
receive allocation of the remaining capacity in proportion
to their shares.

This divvy algorithm is used by the SRP module for
R-divvy, L-divvy and entitlement computation. The only
difference in these is the parameters with which the divvy
algorithm is called. In all cases, the demand of a node
is used as its temporary l value during the divvy, while
its r and s values are the user set values. If the sum of
the demands of the children is smaller than the capacity
being divvied at the parent, the user set limits are used
instead of the demand. For R-divvy, the reservation set
at the root (R) is used as the capacity to divvy, while for
L-divvy and entitlement computation they are the root
limit setting (L ) and the arrayIOPS respectively.



Algorithm 2: O(n log n) Divvy Algorithm
Data: C : Capacity to divvy

Child ci, 1≤ i≤ n, parameters: ri, li, si.
Result: ai: allocation computed for child ci.
Variables: wi = si/∑

n
j=1 s j

V : Ordered set {v1,v2, · · ·v2n, vi ≤ vi+1} of elements
from set {ri/wi, li/wi, 1≤ i≤ n}.
index[i]; equals k if vi is either rk or lk.
type[i]: equals L (R) if vi is a limit (reservation).
Sets: RB = {1, · · ·n}, LB = {}, PS = {}.
RBcap = ∑

n
j=1 r j, LBcap = 0, PSwt = 0.

foreach k = 1, · · · ,2n do
/*Can allocation in PS be increased to vk?*/
if (PSwt * vk + LBcap+RBcap > C ) then

break
/* If type[k] is the limit of a child in PS: Transfer the
child from PS set to LB set */
if (type[k] = L) then

LB = LB∪{index[k]}
LBcap = LBcap+ lindex[k]
PS = PS−{index[k]}
PSwt = PSwt−windex[k]

else
/* type[k] is R: Move child from RB to PS*/
PS = PS∪{index[k]}
PSwt = PSwt +windex[k]
RB = RB−{index[k]}
RBcap = RBcap− rindex[k]

if i ∈ RB ai = ri; /*allocation equals reservation */
if i ∈ LB ai = li; /*allocation equals limit */
/* PS members get rest of capacity in shares ratio.*/
if i ∈ PS ai = (wi/∑ j∈PS w j)× (C −LBcap−RBcap);

3.3 A Divvy Example

We illustrate the divvy operation using the RP tree in Fig-
ure 3. The tuple U denotes static user settings, and the
tuple D shows the dynamic reservation, limit and share
values of each node as computed by the divvy algorithm.
The demand is also shown for each VM (leaf-nodes).
The first step is to aggregate VM demands (step 1 of Al-
gorithm 1), and use it as a temporary cap on the limit set-
tings of the nodes. Hence the limits on nodes A through
D are temporarily set to 600, 400, 400, and 100 respec-
tively. The limit for a non-leaf node is set to the smaller
of its static limit and the sum of its children’s limits. For
nodes E and F the limits are set to 1000 and 500 respec-
tively.

R Divvy: The algorithm then proceeds level-by-level
down from the root using Algorithm 2 to divvy the parent
reservation among its children. At the root of the tree,
R = 1200 is divvied between nodes E and F in the ra-
tio of their shares 3 : 1, resulting in allocations of 900
and 300 respectively. Since these values lie between the
reservation and limit values for the nodes, this is the final

U:<R=1200, L=2300, S=1000>

U:<600, Max,3> 

D:(900,1800,750)

U:<0,500,1>

D:(300,500,250)

VMs

U:<400,Max,1>

Demand: 600

D:(400,600,250)

U:<200,Max,2>

Demand: 400

D:(500,1200,500)

U:<0,500,1>

Demand: 400

D:(200,400,125)

U:<0,500,1>

Demand: 100

D:(100,100,125)

A B C D

E F

Figure 3: Divvy example for R, L and S

result of the R-divvy at the root node.
At the next level, the reservation of R = 900 at node

E is divvied up among VMs A and B. Based on shares
(1 : 2), A would be allocated 300, which is below its reser-
vation of 400. Hence, the algorithm would actually give
A its reservation amount (400) and B would get the rest
(500). For VMs C and D, divvying the parent reserva-
tion in the 1 : 1 share ratio would lead to an allocation of
150 each; however, since D’s limit has been temporarily
capped at its demand, it is given 100 while C gets the
remaining amount 200.
L Divvy: The L-divvy is similar and uses Algorithm 2
to divide the parent’s limit among its children, level-by-
level. The limit of L = 2300 at the root is divided in the
ratio of 3 : 1 among E and F , but is capped at the limit
setting of the child; so the resulting allocations to nodes
E and F are 1800 and 500 respectively. The dynamic
limit settings at the other nodes can be similarly verified.
S-divvy: At each level the shares at the parent are simply
divided in the ratio of the user set S values of the children.

Notice that although VMs C and D have identical
static settings, due to the difference in their demands,
the dynamic settings are different: (200,400,125) and
(100,100,125) respectively. Similarly, excess reservation
was given to VM B over VM A since it has a higher share
value; however, to meet A’s user-set reservation, B re-
ceived less than twice A’s reservation.

4 Implementation Issues

In this section, we discuss some of the implementation
issues and storage-specific challenges that we handled
while building our prototype for storage resource pools.

Shared Files. In order to share information across mul-
tiple hosts, we use three shared files on the underlying
storage device running VMFS [1] clustered file system.
The first file contains that structure of the resource pool
tree and the static RP node settings. The second file al-
lows hosts to share the current VM demands with each
other. Each host is allotted a unique 512-byte block in



this file, that can be read by other hosts when performing
the entitlement computation. Heart-beats using genera-
tion numbers are used in this file to detect host failures.
The mapping of hosts to blocks is kept in a third file, and
is the only structure that needs locking when a new host
joins or leaves the resource pool.

This information could alternatively be disseminated
via a broadcast or multicast network channel between the
hosts. We chose to use shared files in our design because
it reduces the dependence on other subsystems, so that a
failure or congestion in the network does not affect SRP.
Our approach only allocates 512 bytes per host and does
2 IOs per host every 4 seconds. We also use a special
MULTI WRITER mode for opening the file, which doesn’t
involve any locking. We have not seen any scalability
issues in our testing of up to 32 hosts and don’t expect
scalability to be a major problem in the near future.

Local Scheduler. As shown in Figure 2, the mClock
scheduler [8] is used on each host to allocate the host’s re-
sources among its VMs. In some cases, we noticed long
convergence times before the scheduling reflected the
new policy settings. To fix this, we modified the mClock
algorithm to reset the internally used tags whenever con-
trol settings are changed by SRP. The update frequency
of 4 seconds seems to work fine for mClock.

System Scalability. Scalability is a critical issue for
VMware ESX server clusters that may support up to thou-
sands of VMs. Two of the design choices that help us
avoid potential performance bottlenecks are: (1) Every
host makes its allocation decisions locally after reading
the shared VM-demand file using a single IO. Having no
central entity makes the system robust to host failures
and, together with the efficient file access mentioned ear-
lier, allows it to scale to a large number of hosts. (2) The
implementation can also handle slightly stale VM data,
and doesn’t require a consistent snapshot of the per-VM
demand values.

4.1 Storage-specific Challenges

A key question that arises in the SRP implementation is:
How many IOPS can we reserve on a storage device?
This R value for the root of the RP tree, is an upper
bound on the total VM reservations that will be allowed
on this LUN by admission control. This is a well-known
(and difficult) problem since the throughput is highly de-
pendent on the workload’s access pattern.

We suggest and use the following approach in this
work: compute the throughput (in IOPS) for the stor-
age device using random read workloads. This can be
done either at the time of installation or later by running
a micro-benchmark. Some of the light-weight techniques
proposed in Pesto [9] can also be used to determine this
value. Once this is known, we use that as an upper bound

on reservable capacity, providing a conservative bound
for admission control and leaving some buffer capacity
for use by VMs with no (or low) reservations.

IO sizes pose another problem in estimating the reserv-
able capacity. To handle this we compute the value using
a base IO size of 16KB, and treat large IO sizes as mul-
tiple IOs. Many functions can be used to determine this
relationship as described in PARDA [6] and mClock [8].
We use a simple step function where we charge one extra
IO for every 32 KB of IO size. This seems to provide a
good approximation to more fine-grained approaches.

We also perform certain optimizations to help with se-
quential workloads. For instance, mClock schedules a
batch of IOs from one VM if the IOs are close to each
other (within 4 MB). Similarly, arrays try to detect se-
quential streams and do prefetching for them. In most
virtual environments, however, blending of IOs happens
at the array and sequentiality doesn’t get preserved well
at the backend. Features like thin-provisioning and de-
duplication also make it difficult to maintain sequentiality
of IOs.

An interesting issue that needs to be faced when deal-
ing with IO reservation is the concurrency required of
the workload. If the array is being operated at a latency
equal to the congestion threshold Lc and the reservation
is R IOPS, steady-state operation requires the number of
outstanding IOs to be Lc x R. For example, if the conges-
tion threshold is 20ms, a single threaded VM application
(doing synchronous IOs) can get a maximum throughput
of 50 IOPS. In order to get a reservation of 200 IOPS, the
application or VM should have 4 outstanding IOs most
of the time. This issue is similar to meeting CPU reser-
vations in a multi-vcpu VM. A VM with 8 1GHz virtual
CPUs and 8 GHz reservation requires at least 8 active
threads to get its full reservation.

Impact of SSD Storage. We expect SRP to work even
better for SSD-based LUNs. First, the overall IOPS ca-
pacity is much higher and more predictable for SSDs,
making it is easier to figure out the IOPS that can be re-
served. Second, the issue of random vs. sequential IOs
is also less pronounced in case of SSDs. Given the small
response times, we can even run the algorithm more fre-
quently than every 4 seconds to react faster to workload
changes. This is something that we plan to explore as
part of future work.

5 Experimental Evaluation

In this section, we present results from a detailed evalua-
tion of our prototype implementation of storage resource
pools in the VMware ESX server hypervisor [19]. Our
experiments examine the the following four questions:
(1) How well can SRP enforce resource controls (reser-
vations, limits and shares) for VMs and resource pools



spanning multiple hosts? (2) How effective is SRP in
flowing resources between VMs in the same pool? (3)
How does SRP compare with PARDA and mClock run-
ning together? (4) How well do we handle enterprise
workloads with dynamic behavior in terms of IO type,
locality and IO sizes?

5.1 System Setup
We implemented storage resource pools as a user level
process running on ESX, and implemented the necessary
APIs to set mClock controls in the hypervisor. We use
mClock as the underlying local IO scheduler in ESX. For
the experiments, we used a cluster consisting of five ESX
hosts accessing a shared storage array. Each host is a HP
DL380 G5 with a dual-core Intel Xeon 3.0GHz proces-
sor, 16GB of RAM and two Qlogic HBAs connected to
multiple arrays. We used two arrays for our experiments:
(1) EMC CLARiiON CX over a FC SAN, and (2) Dell
Equallogic array with iSCSI connection. The storage vol-
umes are hosted on a 10-disk RAID-5 disk group on the
EMC array, and a 15-disk (7 SSD, 8 SAS) pool on the
Dell Equallogic array.

We used multiple micro and macro benchmarks run-
ning in separate VMs for our experiments. These include
Iometer, DVDStore and Filebench based oltp, varmail
and webserver workloads. The Iometer VMs have 1 vir-
tual CPU, 1 GB RAM, 1 OS virtual disk of size 4GB
and a 8 GB data disk. The DVDStore VM is a Windows
Server 2008 machine with 2 virtual CPUs, 4 GB RAM,
and three virtual disks of sizes 50 (OS disk), 25 (database
disk) and 10 (log disk) GB respectively. The Filebench
VMs have 4 virtual CPUs, 4 GB RAM and an OS disk of
size 10 GB. For mail and webserver workloads we use a
separate 16 GB virtual disk and for the oltp workload we
use two separate disks of sizes 20 GB (data disk) and 1
GB (log disk) respectively.

5.2 Micro Benchmark Evaluations
In this section we present several experiments based on
micro-benchmarks that show the effectiveness of SRP in
doing allocations within and across resource pools.

5.2.1 Enforcement of Resource Pools Controls

First we show that the resource controls set at the VM and
resource pool level are respected. For this experiment, we
ran six VMs distributed across two hosts as shown in Fig-
ure 4. Host 1 runs VMs 1, 2 and 3, and the other VMs run
in Host 2. All the VMs are accessing the EMC CLARi-
iON array.There are three resource pools RP1, RP2 and
RP3 each with two VMs; all the resource pools have one
VM on each of the two hosts. VMs 1 and 4 are in RP1,

Figure 4: SRP tree configuration for micro benchmark
based experiments

VMs 2 and 5 are in RP2 and VMs 3 and 6 are in RP3.
The initial resource pool settings are shown in Table 2.

Resource Pool Reservation Shares Limit VMs
RP1 1500 1000 Max 1, 4
RP2 0 2000 Max 2, 5
RP3 0 1000 Max 3, 6

Table 2: Initial resource pool settings

VM Size, Read%,Random% Host Resource Pool
VM1 4K, 75%, 100% 1 RP1
VM2 8K, 90%, 80% 1 RP2
VM3 16K, 75%, 20% 1 RP3
VM4 8K, 50%, 60% 2 RP1
VM5 16K, 100%, 100% 2 RP2
VM6 8K, 100%, 0% 2 RP3

Table 3: VM workload configurations

To demonstrate the practical effectiveness of SRP, we
experimented with workloads having very different IO
characteristics. We used six workloads, generated using
Iometer on Windows VMs. All VMs are continuously
backlogged with a fixed number of outstanding IOs. The
workload configurations are shown in Table 3. The VMs
do not have any reservation or limits set (which default
to 0 and max respectively), and they all have equal shares
of 1000.

At the start of the experiment, RP1 has a reservation
of 1500 IOPS and 1000 shares. SRP should give RP1
its reservation of 1500 IOPS, and allocate additional ca-
pacity between RP2 and RP3 in the ratio of their shares
(2 : 1), until their allocations catch up with RP1. The allo-
cation to RP1 should be divided equally between VMs 1
and 4, which should receive allocation of 750 IOPS each.
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Figure 5: RP1’s reservation is changed to 0 and its limit
is set to 500 at t = 1000 sec. SRP always satisfies reser-
vations and limits while doing allocation in proportion to
shares.

Figure 5 shows the experimentally measured throughputs
of all the VMs. The throughputs of VMs 1 and 4 are
close to 750 IOPS as expected. The total throughput of
RP2 (VMs 2 and 5) is a little less than twice that of RP3
(VMs 3 and 6). The reason is because VMs 3 and 6 have
highly sequential workloads (80% and 100%), and get
some preferential treatment from the array, resulting in
a little higher throughput than their entitled allocations.
After about 1000 seconds, the reservation of RP1 is set to
0 and its limit is reduced to 500 IOPS. Now VMs 1 and
4 only get 250 IOPS each, equally splitting the parent’s
limit of 500 IOPS. The rest of the capacity is divided
between RP2 and RP3 as before in a rough 2 : 1 ratio.

We also experimented with setting the controls directly
on the VMs instead of the RP nodes. We set reservations
of 750 each for the VMs in RP1, and shares of 2000
(1000) to each of the VMs in RP2 (respectively RP3).
The observed VM througphputs were similar to the ini-
tial portion of Figure 5. The ability to set controls at the
RP nodes instead of individual VMs provides a very con-
venient way to share resources using very few explicit
settings.

5.2.2 VM Isolation in Resource Pools

In this experiment we show how RPs allow for stronger
sharing and better multiplexing among VMs in a pool so
that resources stay within it. This has advantages when
VMs are not continuously backlogged; the capacity freed
up during idle periods is preferentially allocated to other
(sibling) VMs within the pool rather than spread across
all VMs.

The setup is identical to the previous experiment. At
the start, the throughputs of the VMs shown in Figure 6
match the initial portion of Figure 5 as expected. Starting
at time 250 seconds, VM 1 goes idle. We see that the en-
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Figure 6: VMs 1, 2 and 3 get idle at t = 250, 500 and 750
sec respectively. Spare IOPS are allocated to the sibling
VMs first

tire slack is picked up by VM4, its sibling in RP1, whose
throughput rises from 750 to 1500. The other VMs do
not get to use this freed-up reservation since VM4 has
first priority for it and it has enough demand to use it
completely.

At time 550 seconds, VM2 goes idle, and its sibling
VM5 on the other host sees the benefit within just a few
seconds. VM6 which runs on the same host as VM5 also
gets a slight boost from the increase in queue depth allo-
cated to this host. The array also becomes more efficient
and this benefit is given to all the active VMs in propor-
tion to their shares. After VM2 becomes idle, RP2 gets
higher IOPS than RP3 due to its higher shares.

Finally VM3 goes idle and VM6 gets the benefit. There
is not much benefit to the other workloads when the se-
quential workload becomes idle. But still the reservations
are always met and the workloads under RP2 and RP3 are
roughly in the ratio of 2 : 1. This experiment shows the
flow of resources within a resource pool and the isolation
between pools.

5.2.3 Comparison with Parda+mClock

We compared Storage Resource Pool with a state-of-the-
art system that supports reservation, limit and shares. We
ran both PARDA [6] and mClock [8] together on ESX
hosts. PARDA does proportional allocation for VMs
based on the share settings. PARDA works across a clus-
ter of hosts by leveraging a control algorithm that is very
similar to FAST TCP [11] for flow control in networks.
mClock is used as the local scheduler which supports
reservations, limits and shares for VMs on the same host.

Since PARDA and mClock do not support resource
pools, we created a single pool with VMs as its children
and set the controls only at the VM-level. We found that



VM Ri Li Si
VM1(Host1) 750 Max 1000
VM2(Host1) 750 Max 1000
VM3(Host1) 0 Max 1000
VM4(Host2) 0 Max 1000
VM5(Host2) 0 Max 1000
VM6(Host2) 0 Max 1000

Table 4: VM settings used for comparison of SRP versus
PARDA+mClock
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Figure 7: Comparison of throughput by SRP versus
PARDA+mClock

even without the benefit of setting controls at the resource
pool level, SRP is better than PARDA+mClock in two
aspects. First PARDA+mClock could not satisfy VM
reservations because PARDA adjusted the window sizes
based solely on shares, while mClock tried to satisfy the
reservation based on whatever window size was allocated
by PARDA. This also showed that the local reservation
penalized some VMs more than the others.

The second benefit of SRP is that when the settings
are changed or when the workload changes in the VMs,
SRP converges much faster than PARDA+mClock. We
discuss each of these in more detail below.
Reservation Enforcement. We used six VMs running
on two different ESX hosts. Per VM settings and VM-to-
host mappings are shown in Table 4. We picked a simple
case where a reservation of 750 IOPS was set for VMs
1 and 2. All the VMs have equal shares of 1000. VMs
1, 2 and 3 ran on host 1 and VMs 4, 5 and 6 ran on host
2. Both hosts ran PARDA and mClock initially. PARDA
sees equal amount of shares on both hosts and allocates
a host queue depth of 45 to both hosts. However, host 1
has two VMs with reservations of 750, and mClock tries
to satisfy this by penalizing the third VM.

As seen in Figure 7, the third VM only gets 149 IOPS;
the first two VMs are also not able to meet their reser-
vations due to interference from host 2. When SRP is
enabled in lieu of PARDA, it increases host 1’s queue

depth to 55 and reduces host 2’s queue depth to 32. This
enables VM1 and VM2 to meet their reservations and
VM3 also gets IOPS that are much closer to VMs 4, 5 and
6. Thus with SRP the reservations are met and the other
VMs get IOPS roughly in proportional to their shares.
Convergence Time. The response time to react to dy-
namic changes and converge to new settings is one of
the critical performance factors in a distributed system.
Quick convergence is usually desired to react to changes
in a timely manner. In this section, we compare the con-
vergence times of SRP to PARDA+mClock.

Figure 8: Average throughput of hosts while using (a)
PARDA + mClock (top figure) and (b) SRP (bottom
figure). SRP converges much faster as compared to
PARDA+mClock.

To do the comparison, we ran VM1, VM2 and VM3
on separate hosts, with an initial shares ratio of 1 : 2 : 2.
The VMs did not have reservations or limits set. Later
the shares of VM3 were doubled at t = 60 second and
reduced by half at t = 120 second. Each VM was running
Windows IOmeter with the same configuration of 4KB,
100% random read, and 32 outstanding IOs at all times.
Figure 8 shows the average throughput for the hosts using
PARDA+mClock (top) and SRP (bottom) respectively. In
general, both of the algorithms achieve resource sharing
in proportion to their shares.

PARDA takes much longer (30 seconds) to converge
to the new queue depth settings as compared to SRP (8
seconds). This is because PARDA runs a local control
equation to react to global changes, where as SRP does a
quick divvy of overall queue depth.



5.3 Enterprise Workloads

Next we tested storage resource pools for more realis-
tic enterprise workloads with bursty arrivals, variable
locality of reference, variable IO sizes and variable de-
mand. We used four different workloads for this experi-
ment: Filebench-Mail, Filebench-Webserver, Filebench-
Oltp and DVDStore.

The first three workloads are based on different per-
sonalities of the well-known Filebench workload emula-
tor [18], and the fourth workload is based on DVDStore
[2] database test suite, which represents a complete on-
line e-commerce application running on SQL database.
For each VM, we used one OS disk and one or more data
disks. These eight VMs, with a total of nineteen virtual
disks, were spread across three ESX hosts accessing the
same underlying device using VMFS.

Root

RP-ws
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RP-mail

100,1500,2000

ws1 ws2

RP-oltp

100,1500,2000

Host1 Host2

RP-dvdstore
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ws3 mail1 mail2 oltp1 oltp2 dvdstore

Figure 9: SRP configuration for Enterprise workloads
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Figure 10: Comparison of application level throughput
with and without SRP

For this experiment, we partitioned these four work-
loads into four different resource pools. These pools are
called RP-mail, RP-oltp, RP-ws and RP-dvdstore respec-
tively. RP-mail contains two VMs running the mail server
workload, RP-ws contains three VMs running the web-
server workload, RP-oltp contains two VMs running the
oltp workload and RP-dvdstore contains one VM running
the DVDStore workload.

Figure 9 shows the settings for these resource pools
and the individual VMs. First we ran these workloads
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Figure 11: Comparison of application level average la-
tency with and without SRP

with no reservation, infinite limit and equal shares. Then
we set reservations and limit at the pool level to favor
some workloads over others. The VM-level settings were
unchanged. We set a reservation of 600 IOPS for web-
server pool (RP-ws) and a reservation of 200 IOPS for
RP-dvdstore. This reflects the user’s concern that these
workloads have a smaller latency. We also set a limit of
1500 IOPS for both RP-mail and RP-oltp pools. This is
done to contain the impact of these very bursty VMs on
others. We ran all these workloads together on the same
underlying Equallogic datastore for 30 minutes, once for
each setting.

Figures 10 and 11 show the overall application-level
throughput in terms of Ops/sec (orders/min in case of
DVDStore) and application-level average latency (in ms)
for all VMs. Since we had set a reservation on the web-
server and dvdstore pools, those VMs got lower latency
and higher IOPS compared to other VMs. On the other
hand the mail server VMs got higher latency because their
aggregate demand is higher than the limit of 1500 IOPS.
Interestingly, the effect on oltp VMs was much smaller
because their overall demand is close to 1500 IOPS, so
the limit didn’t have as much of an impact.

This shows that by setting controls at the resource pool
level, one can effectively isolate the workloads from one
another. An advantage of setting controls at the resource
pool level is that one doesn’t have to worry about per VM
controls, and VMs within a pool can take advantage of
each other’s idleness.

6 Conclusions

In this paper we studied the problem of doing hierarchi-
cal IO resource allocation in a distributed environment,
where VMs running across multiple hosts are accessing
the same underlying storage. We propose a novel and
powerful abstraction called storage resource pools (SRP),



which allows setting of rich resource controls such as IO
reservations, limits and proportional shares at VM or pool
level. SRP does a two-level allocation by controlling per
host queue depth and computing dynamic resource con-
trols for VMs based on their workload demand using a
resource divvying algorithm.

We implemented storage resource pools in VMware
ESX hypervisor. Our evaluation with a diverse set of
workloads shows that storage resource pools can guaran-
tee high utilization of resources, while providing strong
performance isolation for VMs in different resource
pools. As future work, we plan to automate the resource
control settings in order to provide application level SLOs
and test our approach on multi-tiered storage devices.
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