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Abstract

The scalability of multithreaded applications on current
multicore systems is hampered by the performance of
lock algorithms, due to the costs of access contention and
cache misses. In this paper, we propose a new lock algo-
rithm, Remote Core Locking (RCL), that aims to improve
the performance of critical sections in legacy applications
on multicore architectures. The idea of RCL is to replace
lock acquisitions by optimized remote procedure calls
to a dedicated server core. RCL limits the performance
collapse observed with other lock algorithms when many
threads try to acquire a lock concurrently and removes
the need to transfer lock-protected shared data to the core
acquiring the lock because such data can typically remain
in the server core’s cache.

We have developed a profiler that identifies the locks
that are the bottlenecks in multithreaded applications and
that can thus benefit from RCL, and a reengineering tool
that transforms POSIX locks into RCL locks. We have
evaluated our approach on 18 applications: Memcached,
Berkeley DB, the 9 applications of the SPLASH-2 bench-
mark suite and the 7 applications of the Phoenix2 bench-
mark suite. 10 of these applications, including Mem-
cached and Berkeley DB, are unable to scale because of
locks, and benefit from RCL. Using RCL locks, we get
performance improvements of up to 2.6 times with respect
to POSIX locks on Memcached, and up to 14 times with
respect to Berkeley DB.

1 Introduction

Over the last twenty years, a number of studies [2, 3, 5,
12, 13, 15, 17, 24, 26, 27] have attempted to optimize the
execution of critical sections on multicore architectures,
either by reducing access contention or by improving
cache locality. Access contention occurs when many
threads simultaneously try to enter critical sections that
are protected by the same lock, causing the cache line

containing the lock to bounce between cores. Cache lo-
cality becomes a problem when a critical section accesses
shared data that has recently been accessed on another
core, resulting in cache misses, which greatly increase the
critical section’s execution time. Addressing access con-
tention and cache locality together remains a challenge.
These issues imply that some applications that work well
on a small number of cores do not scale to the number of
cores found in today’s multicore architectures.

Recently, several approaches have been proposed to
execute a succession of critical sections on a single server
core to improve cache locality [13, 27]. Such approaches
also incorporate a fast transfer of control from other client
cores to the server, to reduce access contention. Suleman
et al. [27] propose a hardware-based solution, evaluated
in simulation, that introduces new instructions to per-
form the transfer of control, and uses a special fast core
to execute critical sections. Hendler et al. [13] propose
a software-only solution, Flat Combining, in which the
server is an ordinary client thread, and the role of server
is handed off between clients periodically. This approach,
however, slows down the thread playing the role of server,
incurs an overhead for the management of the server role,
and drastically degrades performance at low contention.
Furthermore, neither Suleman et al.’s algorithm nor Hen-
der et al.’s algorithm can accommodate threads that block
within a critical section, which makes them unable to
support widely used applications such as Memcached.

In this paper, we propose a new locking technique,
Remote Core Locking (RCL), that aims to improve the
performance of legacy multithreaded applications on mul-
ticore hardware by executing remotely, on one or several
dedicated servers, critical sections that access highly con-
tended locks. Our approach is entirely implemented in
software and targets commodity x86 multicore architec-
tures. At the basis of our approach is the observation that
most applications do not scale to the number of cores
found in modern multicore architectures, and thus it is
possible to dedicate the cores that do not contribute to
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improving the performance of the application to serving
critical sections. Thus, it is not necessary to burden the
application threads with the role of server, as done in Flat
Combining. RCL also accommodates blocking within
critical sections as well as nested critical sections. The
design of RCL addresses both access contention and lo-
cality. Contention is solved by a fast transfer of control
to a server, using a dedicated cache line for each client to
achieve busy-wait synchronization with the server core.
Locality is improved because shared data is likely to re-
main in the server core’s cache, allowing the server to
access such data without incurring cache misses. In this,
RCL is similar to Flat Combining, but has a much lower
overall overhead.

We propose a methodology along with a set of tools to
facilitate the use of RCL in a legacy application. Because
RCL serializes critical sections associated with locks man-
aged by the same core, transforming all locks into RCLs
on a smaller number of servers could induce false seri-
alization. Therefore, the programmer must first decide
which locks should be transformed into RCLs and on
which core(s) to run the server(s). For this, we have de-
signed a profiler to identify which locks are frequently
used by the application and how much time is spent on
locking. Based on this information, we propose a set of
simple heuristics to help the programmer decide which
locks must be transformed into RCLs. We also have de-
signed an automatic reengineering tool for C programs
to transform the code of critical sections so that it can be
executed as a remote procedure call on the server core:
the code within the critical sections must be extracted
as functions and variables referenced or updated by the
critical section that are declared by the function contain-
ing the critical section code must be sent as arguments,
amounting to a context, to the server core. Finally, we
have developed a runtime for Linux that is compatible
with POSIX threads, and that supports a mixture of RCL
and POSIX locks in a single application.

RCL is well-suited to improve the performance of a
legacy application in which contended locks are an obsta-
cle to performance, since using RCL enables improving
locality and resistance to contention without requiring a
deep understanding of the source code. On the other hand,
modifying locking schemes to use fine-grained locking or
lock-free data structures is complex, requires an overhaul
of the source code, and does not improve locality.

We have evaluated the performance of RCL as com-
pared to other locks on a custom latency microbenchmark
measuring the execution time of critical sections that ac-
cess a varying number of shared memory locations. Fur-
thermore, based on the results of our profiler, we have
identified Memcached, Berkeley DB with two types of
TPC-C transactions, two benchmarks in the SPLASH-2
suite, and three benchmarks in the Phoenix2 suite as appli-

cations that could benefit from RCL. In each of these ex-
periments, we compare RCL against the standard POSIX
locks and the most efficient approaches for implementing
locks of which we are aware: CAS spinlocks, MCS [17]
and Flat Combining [13]. Comparisons are made for a
same number of cores, which means that there are fewer
application threads in the RCL case, since one or more
cores are dedicated to RCL servers.

On an Opteron 6172 48-core machine running a 3.0.0
Linux kernel with glibc 2.13, our main results are:

• On our latency microbenchmark, under high con-
tention, RCL is faster than all the other tested ap-
proaches, over 3 times faster than the second best ap-
proach, Flat Combining, and 4.4 faster than POSIX.

• On our benchmarks, we found that contexts are
small, and thus the need to pass a context to the
server has only a marginal performance impact.

• On most of our benchmarks, only one lock is fre-
quently used and therefore only one RCL server is
needed. The only exception is Berkeley DB which
requires two RCL servers to prevent false serialisa-
tion.

• On Memcached, for Set requests, RCL provides a
speedup of up to 2.6 times over POSIX locks, 2.0
times over MCS and 1.9 times over spinlocks.

• For TPC-C Stock Level transactions, RCL provides
a speedup of up to 14 times over the original Berke-
ley DB locks for 40 simultaneous clients and out-
performs all other locks for more than 10 clients.
Overall, RCL resists better when the number of si-
multaneous clients increases.

The rest of the paper is structured as follows. Sec. 2
presents RCL and the use of profiling to automate the
reengineering of a legacy application for use with RCL.
Sec. 3 describes the RCL runtime. Sec. 4 presents the
results of our evaluation. Sec. 5 presents other work
that targets improving locking on multicore architectures.
Finally, Sec. 6 concludes.

2 RCL Overview

The key idea of RCL is to transfer the execution of a
critical section to a server core that is dedicated to one or
more locks (Fig. 1). To use this approach, it is necessary
to choose the locks for which RCL is expected to be
beneficial and to reengineer the critical sections associated
with these locks as remote procedure calls. In this section,
we first describe the core RCL algorithm, then present a
profiling tool to help the developer choose which locks
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Fig. 1: Critical sections with POSIX locks vs. RCL.
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Fig. 2: The request array. Client c2 has requested execu-
tion of the critical section implemented by foo.

to implement using RCL and a reengineering tool that
rewrites the associated critical sections.

2.1 Core algorithm
Using RCL, a critical section is replaced by a remote
procedure call to a procedure that executes the code of
the critical section. To implement the remote procedure
call, the clients and the server communicate through an
array of request structures, specific to each server core
(Fig. 2). This array has size C · L bytes, where C is a
constant representing the maximum number of allowed
clients (a large number, typically much higher than the
number of cores), and L is the size of the hardware cache
line. Each request structure reqi is L bytes and allows
communication between a specific client i and the server.
The array is aligned so that each structure reqi is mapped
to a single cache line.

The first three machine words of each request reqi con-
tain respectively: (i) the address of the lock associated
with the critical section, (ii) the address of a structure
encapsulating the context, i.e., the variables referenced
or updated by the critical section that are declared by the
function containing the critical section code, and (iii) the
address of a function that encapsulates the critical section
for which the client ci has requested the execution, or
NULL if no critical section is requested.

Client side To execute a critical section, a client ci first
writes the address of the lock into the first word of the
structure reqi, then writes the address of the context struc-
ture into the second word, and finally writes the address
of the function that encapsulates the code of the critical
section into the third word. The client then actively waits

for the third word of reqi to be reset to NULL, indicating
that the server has executed the critical section. In order
to improve energy efficiency, if there are less clients than
the number of cores available, the SSE3 monitor/mwait
instructions can be used to avoid spinning: the client will
sleep and be woken up automatically when the server
writes into the third word of reqi.

Server side A servicing thread iterates over the re-
quests, waiting for one of the requests to contain a non-
NULL value in its third word. When such a value is found,
the servicing thread checks if the requested lock is free
and, if so, acquires the lock and executes the critical sec-
tion using the function pointer and the context. When the
servicing thread is done executing the critical section, it
resets the third word to NULL, and resumes the iteration.

2.2 Profiling
To help the user decide which locks to transform into
RCLs, we have designed a profiler that is implemented as
a dynamically loaded library and intercepts calls involv-
ing POSIX locks, condition variables, and threads. The
profiler returns information about the overall percentage
of time spent in critical sections, as well as about the
percentage of time spent in critical sections for each lock.
We define the time spent in a critical section as the total
time to acquire the lock (blocking time included), execute
the critical section itself, and release the lock. It is mea-
sured by reading the cycle counter before and after each
critical section, and by comparing the total measured time
in critical sections with the total execution time, for each
thread. The overall percentage of time spent in critical
sections can help identify applications for which using
RCL may be beneficial, and the percentage of time spent
in critical sections for each lock helps guide the choice
of which locks to transform into RCLs. For each lock,
the profiler also produces information about the number
of cache misses in its critical sections, as these may be
reduced by the improved locality of RCL.

Fig. 3 shows the profiling results for 18 applications, in-
cluding Memcached v1.4.6 (an in-memory cache server),
Berkeley DB v5.2.28 (a general-purpose database), the
9 applications of the SPLASH-2 benchmark suite (par-
allel scientific applications), and the 7 applications of
the Phoenix v2.0.0 benchmark suite (MapReduce-based
applications) with the “medium” dataset.1 Raytrace and
Memcached are each tested with two different standard
working sets, and Berkeley DB is tested with the 5 stan-
dard transaction types from TPC-C. A gray box indicates

1More information about these applications can be found
at the following URLs: http://memcached.org (Memcached),
http://www.oracle.com/technetwork/database/berkeleydb (Berke-
ley DB), http://www.capsl.udel.edu/splash (SPLASH-2) and
http://mapreduce.stanford.edu (Phoenix2).
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that the application has not been run for the number of
cores because even at 48 cores, locking is not a problem.

Ten of the tests spend more than 20% of their time in
critical sections and thus are candidates for RCL. Indeed,
for these tests, the percentage of time spent in critical sec-
tions directly depends on the number of cores, indicating
that the POSIX locks are one of the main bottlenecks of
these applications. We see in Sec. 4.1 that if the percent-
age of time executing critical sections for a given lock is
over 20%, then an RCL will perform better than a POSIX
lock, and if it is over 70%, then an RCL will perform
better than all other known lock algorithms. We also ob-
serve that the critical sections of Memcached/Set incur
many cache misses. Finally, Berkeley DB uses hybrid
Test-And-Set/POSIX locks, which causes the profiler to
underestimate the time spent in critical sections.

2.3 Reengineering legacy applications

If the results of the profiling show that some locks
used by the application can benefit from RCL, the
developer must reengineer all critical sections that may
be protected by the selected locks as a separate function
that can be passed to the lock server. This reengineering
amounts to an “Extract Method” refactoring [10]. We
have implemented this reengineering using the program
transformation tool Coccinelle [21], in 2115 lines of code.
It has a negligible impact on performance.

The main problem in extracting a critical section into
a separate function is to bind the variables needed by
the critical section code. The extracted function must
receive the values of variables that are initialized prior
to the critical section and read within the critical section,
and return the values of variables that are updated in
the critical section and read afterwards. Only variables
local to the function are concerned; alias analysis is not
required because aliases involve addresses that can be
referenced from the server. The values are passed to and
from the server in an auxiliary structure, or directly in
the client’s cache line in the request array (Fig. 2) if only
one value is required. The reengineering also addresses a
common case of fine-grained locking, illustrated in lines
5-9 of Fig. 4, where a conditional in the critical section
releases the lock and returns from the function. In this
case, the code is transformed such that the critical section
returns a flag value indicating which unlock ends the
critical section, and then the code following the remote
procedure call executes the code following the unlock
that is indicated by the flag value.

Fig. 5 shows the complete result of transforming the
code of Fig. 4. The transformation furthermore modifies
various other lock manipulation functions to use the RCL
runtime. In particular, the function for initializing a lock
receives additional arguments indicating whether the lock

1 INT GetJob(RAYJOB *job, INT pid) {
2 . . .
3 ALOCK(gm−>wplock, pid) /* lock acquisition */
4 wpentry = gm−>workpool[pid][0];
5 if (!wpentry) {
6 gm−>wpstat[pid][0] = WPS EMPTY;
7 AULOCK(gm−>wplock, pid) /* lock release */
8 return (WPS EMPTY);
9 }

10 gm−>workpool[pid][0] = wpentry−>next;
11 AULOCK(gm−>wplock, pid) /* lock release */
12 . . .
13 }

Fig. 4: Critical section from raytrace/workpool.c.

1 union instance {
2 struct input { INT pid; } input;
3 struct output { WPJOB *wpentry; } output;
4 };
5
6 void function(void *ctx) {
7 struct output *outcontext = &(((union instance *)ctx)−>output);
8 struct input *incontext = &(((union instance *)ctx)−>input);
9 WPJOB *wpentry; INT pid=incontext−>pid;

10 int ret=0;
11 /* start of original critical section code */
12 wpentry = gm−>workpool[pid][0];
13 if (!wpentry) {
14 gm−>wpstat[pid][0] = WPS EMPTY;
15 /* end of original critical section code */
16 ret = 1;
17 goto done;
18 }
19 gm−>workpool[pid][0] = wpentry−>next;
20 /* end of original critical section code */
21 done:
22 outcontext−>wpentry = wpentry;
23 return (void *)(uintptr t)ret;
24 }
25
26 INT GetJob(RAYJOB *job, INT pid) {
27 int ret;
28 union instance instance = { pid, };
29 . . .
30 ret = liblock exec(&gm−>wplock[pid], &instance, &function);
31 wpentry = instance.output.wpentry;
32 if (ret) { if (ret == 1) return (WPS EMPTY); }
33 . . .
34 }

Fig. 5: Transformed critical section.

should be implemented as an RCL. Finally, the reengi-
neering tool also generates a header file, incorporating
the profiling information, that the developer can edit to
indicate which lock initializations should create POSIX
locks and which ones should use RCLs.

3 Implementation of the RCL Runtime

Legacy applications may use ad-hoc synchronization
mechanisms and rely on libraries that themselves may
block or spin. The core algorithm, of Sec. 2.1, only refers
to a single servicing thread, and thus requires that this
thread is never blocked at the OS level and never spins
in an active waitloop. In this section, we describe how
the RCL runtime ensures liveness and responsiveness in
these cases, and present implementation details.
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Application
% in CS = f(# cores) Lock usage for # max. core

1 4 8 16 32 48 Description # # L2 cache % in CSmisses/CS

SPLASH-2

Radiosity 4.3% 8.8% 15.6% 43% 79.3% 84.5% Linked list access 1 1.6 82.0 %
Raytrace Balls4 0.5% 1.3% 1.9% 3.3% 17% 40.1% Counter increment 1 1.3 32.32 %
Raytrace Car 12.2% 25.9% 51.4% 71.9% 85.5% 87.6% Counter increment 1 0.6 79.95 %
Barnes 3.1%
FMM 5.0%
Ocean Cont. 0.3%†

Ocean Non Cont. 0.3%†

Volrend 6.8%
Water-nsquared 3.6%
Water-spatial 0.5%

Phoenix 2

Linear Regression 0.9% 25.2% 43.7% 66.9% 60.8% 83.6% Task queue access 1 4.0 83.6%
String Match 0.1% 4.7% 11.7% 24.2% 35.0% 63.4% Task queue access 1 3.9 63.4%
Matrix Multiply 0.9% 26.2% 45.9% 64.8% 79.2% 92.7% Task queue access 1 3.4 92.7%
Histogram 12.7%
PCA 11.6%
KMeans 1.5%
Word Count 3.2%

Memcached Get 6.7% 30.2% 50.1% 76.3% 22 cores: 84.9%‡ Hashtable access 1 3.6 84.7%
Set 4.8% 28.7% 44.6% 54.4% 22 cores: 55.4%‡ Hashtable access 1 32.7 55.3%
Payment 5.80%

Berkeley DB New Order 1.55%

with TPC-C Order Status 0.8% 0.8% 0.3% 2.0% 35.8% 52.9% DB struct. access 11 4.2 52.9%
Delivery 1.58%
Stock Level 0.0% 0.4% 0.2% 2.2% 0.4% 55.5% DB struct. access 11 3.2 55.5%

† Number of cores must be a power of 2. ‡ Other cores are executing clients.

Fig. 3: Profiling results for the evaluated applications.

3.1 Ensuring liveness and responsiveness

Three sorts of situations may induce liveness or respon-
siveness problems. First, the servicing thread could be
blocked at the OS level, e.g., because a critical section
tries to acquire a POSIX lock that is already held, per-
forms an I/O, or waits on a condition variable. Indeed,
we have found that roughly half of the multithreaded ap-
plications that use POSIX locks in Debian 6.0.3 (October
2011) also use condition variables. Second, the servicing
thread could spin if the critical section tries to acquire a
spinlock or a nested RCL, or implements some form of
ad hoc synchronization [29]. Finally, a thread could be
preempted at the OS level when its timeslice expires [20],
or because of a page fault. Blocking and waiting within a
critical section risk deadlock, because the server is unable
to execute critical sections associated with other locks,
even when doing so may be necessary to allow the blocked
critical section to unblock. Additionally, blocking, of any
form, including waiting and preemption, degrades the
responsiveness of the server because a blocked thread is
unable to serve other locks managed by the same server.

Ensuring liveness To ensure liveness, the RCL runtime
manages a pool of threads on each server such that when
a servicing thread blocks or waits there is always at least
one other free servicing thread that is not currently ex-
ecuting a critical section and this servicing thread will
eventually be elected. To ensure the existence of a free ser-
vicing thread, the RCL runtime provides a management
thread, which is activated regularly at each expiration of
a timeout (we use the Linux time-slice value) and runs at

highest priority. When activated, the management thread
checks that at least one of the servicing threads has made
progress since its last activation, using a server-global
flag is_alive that is set by the servicing threads. If it finds
that this flag is still cleared when it wakes up, it assumes
that all servicing threads are either blocked or waiting and
adds a free thread to the pool of servicing threads.

Ensuring responsiveness The RCL runtime imple-
ments a number of strategies to improve responsiveness.
First, it avoids thread preemption from the OS sched-
uler by using the POSIX FIFO scheduling policy, which
allows a thread to execute until it blocks or yields the
processor. Second, it tries to reduce the delay before an
unblocked servicing thread is rescheduled by minimiz-
ing the number of servicing threads, thus minimizing the
length of the FIFO queue. Accordingly, a servicing thread
suspends when it observes that there is at least one other
free servicing thread, i.e., one other thread able to handle
requests. Third, to address the case where all servicing
threads are blocked in the OS, the RCL runtime uses a
backup thread, which has lower priority than all servicing
threads, that simply clears the is_alive flag and wakes up
the management thread. Finally, when a critical section
needs to execute a nested RCL managed by the same
core and the lock is already owned by another servicing
thread, the servicing thread immediately yields, to allow
the owner of the lock to release it.

The use of the FIFO policy raises two further liveness
issues. First, FIFO scheduling may induce a priority inver-
sion between the backup thread and the servicing threads
or between the servicing threads and the management
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thread. To avoid this problem, the RCL runtime uses only
lock-free algorithms and threads never wait on a resource.
Second, if a servicing thread is in an active wait loop, it
will not be preempted, and a free thread will not be elected.
When the management thread detects no progress, i.e.,
is_alive is false, it thus also acts as a scheduler, electing a
servicing thread by first decrementing and then increment-
ing the priorities of all the servicing threads, effectively
moving them to the end of the FIFO queue. This is ex-
pensive, but is only needed when a thread spins for a long
time, which is a sign of poor programming, and is not
triggered in our benchmarks.

3.2 Algorithm details
We now describe in detail some issues of the algorithm.

Serving RCLs Alg. 1 shows the code executed by a ser-
vicing thread. The fast path (lines 6-16) is the only code
that is executed when there is only one servicing thread
in the pool. A slow path (lines 17-24), is additionally
executed when there are multiple servicing threads.

Lines 9-15 of the fast path implement the RCL server
loop as described in Sec. 2.1 and indicates that the ser-
vicing thread is not free by decrementing (line 8) and
incrementing (line 16) number_of_free_threads. Because
the thread may be preempted due to a page fault, all
operations on variables shared between the threads, in-
cluding number_of_free_threads, must be atomic.2 To
avoid the need to reallocate the request array when new
client threads are created, the size of the request array is
fixed and chosen to be very large (256K), and the client
identifier allocator implements an adaptive long-lived re-
naming algorithm [6] that keeps track of the highest client
identifier and tries to reallocate smaller ones.

The slow path is executed if the active servicing thread
detects that other servicing threads exist (line 17). If the
other servicing threads are all executing critical sections
(line 18), the servicing thread simply yields the processor
(line 19). Otherwise, it goes to sleep (lines 21-24).

Executing a critical section A client that tries to ac-
quire an RCL or a servicing thread that tries to acquire
an RCL managed by another core submits a request and
waits for the function pointer to be cleared (Alg. 2, lines 6-
9). If the RCL is managed by the same core, the servicing
thread must actively wait until the lock is free. During this
time it repetitively yields, to give the CPU to the thread
that owns the lock (lines 11-12).

Management and backup threads If, on wake up,
the management thread observes, based on the value of

2Since a server’s atomic operations are core-local, we have imple-
mented optimized atomic CAS and increment operations without using
the costly x86 instruction prefix lock that cleans up the write buffers.

Algorithm 1: Structures and server thread
structures:1

lock_t: { server_t* server, bool is_locked };
request_t: { function_t* code, void* context, lock_t* lock };
thread_t: { server_t* server, int timestamp, bool is_servicing };
server_t: { List<thread_t*> all_threads,

LockFreeStack<thread_t*> prepared_threads,
int number_of_free_threads, number_of_servicing_threads,
int timestamp, boolean is_alive, request_t* requests }

global variables: int number_of_clients;2
function rcl_servicing_thread(thread_t* t)3

var server_t∗ s := t->server;4
while true do5

s->is_alive := true;6
t->timestamp := s->timestamp;7
// This thread is not free anymore.
local_atomic(s->number_of_free_threads--);8
for i := 0 to number_of_clients do9

r := s->requests[i];10
if r->code 6= null and11

local_CAS(&r->lock->is_locked, false, true) = false12
then

// Execute the critical section
r->code(r->context);13
// Indicate client execution completion
r->code := null;14
r->lock->is_locked := false;15

// This thread is now free
local_atomic(s->number_of_free_threads++);16
// More than one servicing thread means blocked threads exist
if s->number_of_servicing_threads > 1 then17

if s->number_of_free_threads <= 1 then18
yield(); // Allow other busy servicing threads to run19

else20
// Keep only one free servicing thread
t->is_servicing := false;21
local_atomic(s->number_of_servicing_threads--);22
local_atomic_insert(s->prepared_threads, t);23
// Must be atomic because the manager could wake

up the thread before the sleep (use futex).
atomic(if not t->is_servicing then sleep)24

is_alive, that none of the servicing threads has progressed
since the previous timeout, then it ensures that at least one
free thread exists (Alg. 3, lines 8-19) and forces the elec-
tion (lines 20-27) of a thread that has not been recently
elected. The backup thread (lines 31-34) simply sets
is_alive to false and wakes up the management thread.

4 Evaluation

We first present a microbenchmark that identifies when
critical sections execute faster with RCL than with the
other lock algorithms. We then correlate this information
with the results of the profiler, so that a developer can use
the profiler to identify which locks to transform into RCLs.
Finally, we analyze the performance of the applications
identified by the profiler for all lock algorithms. Our
evaluations are performed on a 48-core machine having
four 12-core Opteron 6172 processors, running Ubuntu
11.10 (Linux 3.0.0), with gcc 4.6.1 and glibc 2.13.
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Algorithm 2: Executing a critical section
thread local variables:1

int th_client_index; bool is_server_thread; server_t* my_server;2
function execute_cs(lock_t* lock, function_t* code, void* context)3

var request_t * r := &lock->server->requests[th_client_index];4
if ¬is_server_thread or my_server 6= lock->server then5

// RCL to a remote core
r->lock := lock; r->context := context; r->code := code;6
while r->code 6= null do7

;8

return;9

else10
// Local nested lock, wait until the lock is free
while local_CAS(&lock->is_locked, false, true) = true do11

// Another thread on the server owns the lock
yield();12

// Execute the critical section
code(context);13
lock->is_locked := false;14
return;15

4.1 Comparison with other locks

We have developed a custom microbenchmark to mea-
sure the performance of RCL relative to four other lock
algorithms: CAS Spinlock, POSIX, MCS [18] and Flat
Combining [13]. These algorithms are briefly presented
in Fig. 6. To our knowledge, MCS and Flat Combining
are currently the most efficient.

Spinlock CAS loop on a shared cache line.
POSIX CAS, then sleep.

MCS CAS to insert the pending CS at the end of a shared queue.
Busy wait for completion of the previous CS on the queue.

Flat Combining

Periodic CAS to elect a client that acts as a server, periodic
collection of unused requests. Provides a generic interface,
but not combining, as appropriate to support legacy
applications: server only iterates over the list of pending
requests.

Fig. 6: The evaluated lock algorithms.

Our microbenchmark executes critical sections repeat-
edly on all cores, except one that manages the lifecycle
of the threads. For RCL, this core also executes the RCL
server. We vary the degree of contention on the lock by
varying the delay between the execution of the critical
sections: the shorter the delay, the higher the contention.
We also vary the locality of the critical sections by varying
the number of shared cache lines each one accesses (ref-
erences and updates). To ensure that cache line accesses
are not pipelined, we construct the address of the next
memory access from the previously read value [30].

Fig. 7(a) presents the average number of L2 cache
misses (top) and the average execution time of a criti-
cal section (bottom) over 5000 iterations when critical
sections access one shared cache line. This experiment
measures the effect of lock access contention. Fig. 7(b)
then presents the increase in execution time incurred when
each critical section instead accesses 5 cache lines. This

Algorithm 3: Management
function management_thread(server_t ∗s)1

var thread_t* t;2
s->is_alive := false;3
s->timestamp := 1;4
while true do5

if s->is_alive = false then6
s->is_alive := true;7
// Ensure that a thread can handle remote requests
if s->number_of_free_threads = 0 then8

// Activate a prepared thread or create a new thread
local_atomic(s->number_of_servicing_threads++);9
local_atomic(s->number_of_free_threads++);10
t := local_atomic_remove(s->prepared_threads);11
if t = null then12

t := allocate_thread(s);13
insert(s->all_threads, t);14
t->is_servicing := true;15
t.start(prio_servicing);16

else17
t->is_servicing := true;18
wakeup(t);19

// Elect a thread that has not recently been elected
while true do20

for t in s->all_threads do21
if t->is_servicing = true22

and t->timestamp < s->timestamp then23
t->timestamp = s->timestamp;24
elect(t);25
goto end;26

// All threads were elected once, begin a new cycle
s->timestamp++27

else28
s->is_alive := false;29

sleep(timeout);30

function backup_thread(server_t ∗s)31
while true do32

s->is_alive := false;33
wakeup the management thread;34

experiment measures the effect of data locality of shared
cache lines. Highlights are summarized in Fig.7(c).

With one shared cache line, at high contention, RCL
has a better execution time than all other lock algorithms,
with an improvement of at least 3 times.3 This improve-
ment is mainly due to the absence of CAS in the lock
implementation. Flat Combining is second best, but RCL
performs better because Flat Combining has to periodi-
cally elect a new combiner. At low contention, RCL is
slower than Spinlock by only 209 cycles. This is neg-
ligible since the lock is seldom used. In this case, Flat
Combining is not efficient because after executing its crit-
ical section, the combiner must iterate over the list of
requests before resuming its own work.

RCL incurs the same number of cache misses when
each critical section accesses 5 cache lines as it does for

3Using the SSE3 monitor/mwait instructions on the client side
when waiting for a reply from the server, as described in Sec. 2.1, in-
duces a latency overhead of less than than 30% at both high and low
contention. This makes the energy-efficient version of RCL quantita-
tively similar to the original RCL implementation presented here.
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High contention (102 cycles) Low contention (2.106 cycles)
CAS/CS Execution time (cycles) Locality (misses) CAS/CS Execution time (cycles) Locality (misses)

Spinlock N Bad (672889) Very Bad (+53.0 misses) N Good (1288) Bad (+5.2)
POSIX 1 Medium (73024) Bad (+3.8 misses) 1 Medium (1826) Bad (+4.0)
MCS 1 Medium (63553) Bad (+4.0 misses) 1 Good (1457) Bad (+4.8)
Flat Combining ε Medium (50447) Good (+0.3 misses) 1 Bad (15060) Medium (+2.4)
RCL 0 Good (16682) Good (+0.0 misses) 0 Good (1494) Good (+0.0)

(c) Comparison of the lock algorithms

Fig. 7: Microbenchmark results. Each data point is the average of 30 runs.

one cache line, as the data remains on the RCL server.
At low contention, each request is served immediately,
and the performance difference is also quite low. At
higher contention, each critical section has to wait for
the others to complete, incurring an increase in execution
time of roughly 47 times the increase at low contention.
Like RCL, Flat Combining has few or no extra cache
misses at high contention, because cache lines stay with
the combiner, which acts as a server. At low contention,
the number of extra cache misses is variable, because
the combiner often has no other critical sections to ex-
ecute. These extra cache misses increase the execution
time. POSIX and MCS have 4 extra cache misses when
reading the 4 extra cache lines, and incur a corresponding
execution time increase. Finally, Spinlock is particularly
degraded at high contention when accessing 5 cache lines,
as the longer duration of the critical section increases the
amount of time the thread spins, and thus the number of
CAS it executes.

To estimate which locks should be transformed into
RCLs, we correlate the percentage of time spent in criti-
cal sections observed using the profiler with the critical
section execution times observed using the microbench-
mark. Fig. 8 shows the result of applying the profiler
to the microbenchmark in the one cache line case with
POSIX locks.4 To know when RCL becomes better than
all other locks, we focus on POSIX and MCS: Flat Com-
bining is always less efficient than RCL and Spinlock is

4Our analysis assumes that the targeted applications use POSIX
locks, but a similar analysis could be made for any type of lock.

only efficient at very low contention. We have marked
the delays at which, as shown in Fig. 7(a), the critical
section execution time begins to be significantly higher
when using POSIX and MCS than when using RCL. RCL
becomes more efficient than POSIX when 20% of the
application time is devoted to critical sections, and it be-
comes more efficient than MCS when this ratio is 70%.
These results are preserved, or improved, as the number of
accessed cache lines increases, because the execution time
increases more for the other algorithms than for RCL.
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Fig. 8: CS time in the microbenchmark with POSIX locks.

4.2 Application performance

The two metrics offered by the profiler, i.e. the time spent
in critical sections and the number of cache misses, do
not, of course, completely determine whether an applica-
tion will benefit from RCL. Many other factors (critical
section length, interactions between locks, etc.) affect
critical section execution. We find, however, that using
the time spent in critical sections as our main metric and
the number of cache misses in critical sections as a sec-
ondary metric works well; the former is a good indicator
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Fig. 9: Best performance for each type of lock relative to the best performance for POSIX locks.

of contention, and the latter of data locality.
To evaluate the performance of RCL, we have mea-

sured the performance of applications listed in Fig. 3 with
the lock algorithms listed in Fig. 7. Memcached with Flat
Combining is omitted, because it periodically blocks on
condition variables, which Flat Combining does not sup-
port. We present only the results for the applications (and
locks) that the profiler indicates as potentially interesting.
Replacing the other locks has no performance impact.

Fig. 9(a) presents the results for all of the applications
for which the profiler identified a single lock as the bot-
tleneck. For RCL, each of these applications uses only
one server core. Thus, for RCL, we consider that we use
N cores if we have N−1 threads and 1 server, while we
consider that we use N cores if we have N threads for the
other lock algorithms. The top of the figure (xα : n/m)
reports the improvement α over the execution time of the
original application on one core, the number n of cores
that gives the shortest execution time (i.e., the scalability
peak), and the minimal number m of cores for which RCL
is faster than all other locks. The histograms show the
ratio of the shortest execution time for each application
using POSIX locks to the shortest execution time with
each of the other lock algorithms.5

Fig. 9(b) presents the results for Berkeley DB with 100
clients (and hence 100 threads) running TPC-C’s Order
Status and Stock Level transactions. Since MCS cannot
handle more than 48 threads, due to the convoy effect, we
have also implemented MCS-TP [12], a variation of MCS
with a spinning timeout to resist convoys. In the case of
RCL, the two most used locks have been placed on two
different RCL servers, leaving 46 cores for the clients.
Additionally, we study the impact of the number of simul-
taneous clients on the number of transactions treated per
second for Stock Level transactions (see Fig. 11).

Performance analysis For the applications that spend
20-70% of their time in critical sections when using

5For Memcached, the execution time is the time for processing
10,000 requests.

POSIX locks (Raytrace/Balls4, String Match, and Mem-
cached/Set), RCL gives significantly better performance
than POSIX locks, but in most cases it gives about the
same performance as MCS and Flat Combining, as pre-
dicted by our microbenchmark. For Memcached/Set,
however, which spends only 54% of the time in criti-
cal sections when using POSIX locks, RCL gives a large
improvement over all other approaches, because it sig-
nificantly improves cache locality. When using POSIX
locks, Memcached/Set critical sections have on average
32.7 cache misses, which roughly correspond to accesses
to 30 shared cache lines, plus the cache misses incurred
for the management of POSIX locks. Using RCL, the 30
shared cache lines remain in the server cache. Fig. 10
shows that for Memcached/Set, RCL performs worse than
other locks when fewer than four cores are used due to the
fact that one core is lost for the server, but from 5 cores
onwards, this effect is compensated by the performance
improvement offered by RCL.
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Fig. 10: Memcached/Set speedup.

For most of the applications that spend more than 70%
of their time in critical sections when using POSIX locks
(Radiosity, Raytrace/Car, and Linear Regression), RCL
gives a significant improvement over all the other lock
algorithms, again as predicted by our microbenchmark.
Matrix Multiply, however, spends over 90% of its time
in critical sections when using POSIX locks, but shows
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only a slight performance improvement. This application
is intrinsically unable to scale for the considered data set;
even though the use of RCL reduces the amount of time
spent in critical sections to 1% (Fig. 12), the best resulting
speedup is only 5.8 times for 20 cores. Memcached/Get
spends more than 80% of its time in critical sections,
but is only slightly improved by RCL as compared to
MCS. Its critical sections are long and thus acquiring
and releasing locks is less of a bottleneck than with other
applications.

In the case of Berkeley DB, RCL achieves a speedup of
4.3 for Order Status transactions and 7.7 for Stock Level
transactions with respect to the original Berkeley DB im-
plementation for 100 clients. This is better than expected,
since, according to our profiler, the percentage of time
spent in critical sections is respectively only 53% and
55%, i.e. less than the 70% threshold. This is due to the
fact that Berkeley DB uses hybrid Test-And-Set/POSIX
locks, and our profiler was designed for POSIX locks: the
time spent in the Test-And-Set loop is not included in the
"time in critical sections" metric.

When the number of clients increases, the throughput
of all implementations degrades. Still, RCL performs
better than the other lock algorithms, even though two
cores are reserved for the RCL servers and thus do not
directly handle requests. In fact, the cost of the two server
cores is amortized from 5 clients onwards. The best RCL
speedup over the original implementation is for 40 clients
with a ratio of 14 times. POSIX is robust for a large
number of threads and comes second after RCL. MCS-
TP [12] resists convoys but with some overhead. MCS-TP
and Flat Combining have comparable performance.
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Fig. 11: Berkeley DB/Stock Level throughput.

Locality analysis Figure 12 presents the number of L2
cache misses per critical section observed on the RCL
server for the evaluated applications. Critical sections
trigger on average fewer than 4 cache misses, of which
the communication between the client and the server it-
self costs one cache miss. Thus, on average, at most 3
cache lines of context information are accessed per criti-
cal section. This shows that passing variables to and from

the server does not hurt performance in the evaluated
applications.

Application L2 cache misses on the RCL server
Radiosity 2.2

Raytrace/Car 1.8
Raytrace/Balls4 1.8

Linear Regression 2.4
Matrix Multiply 3.2

String Match 3.2
Memcached/Get N/A†

Memcached/Set N/A†

Berkeley DB/Order Status 3.3
Berkeley DB/Stock Level 3.6

† We are currently unable to collect L2 cache misses when using blocking
on RCL servers.

Fig. 12: Number of L2 cache misses per CS.

False Serialization A difficulty in transforming Berke-
ley DB for use with RCL is that the call in the source
code that allocates the two most used locks also allocates
nine other less used locks. The RCL runtime requires
that for a given lock allocation site, all allocated locks are
implemented in the same way, and thus all 11 locks must
be implemented as RCLs. If all 11 locks are on the same
server, their critical sections are artificially serialized. To
prevent this, the RCL runtime makes it possible to choose
the server core where each lock will be dispatched.

To study the impact of this false serialization, we con-
sider two metrics: false serialization rate and use rate.
The false serialization rate is the ratio of the number of
iterations over the request array where the server finds crit-
ical sections associated with at least two different locks to
the number of iterations where at least one critical section
is executed.6 The use rate measures the server workload.
It is computed as the total number of executed critical
sections divided by the number of iterations where at
least one critical section is executed, giving the average
number of clients waiting for a critical section on each
iteration, which is then divided by the number of cores.
Therefore, a use rate of 1.0 means that all elements of the
array contain pending critical section requests, whereas
a low use rate means that the server mostly spins on the
request array, waiting for critical sections to execute.

Fig. 13 shows the false serialization rate and the use rate
for Berkeley DB (100 clients, Stock Level): (i) with one
server for all locks, and (ii) with two different servers for
the two most used locks as previously described. Using
one server, the false serialization rate is high and has a
significant impact because the use rate is also high. When
using two servers, the use rate of the two servers goes
down to 5% which means that they are no longer saturated
and that false serialization is eliminated. This allows us
to improve the throughput by 50%.

6We do not divide by the total number of iterations, because there
are many iterations in application startup and shutdown that execute no
critical sections and have no impact on the overall performance.
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False serialization rate Use rate Transactions/s
One server 91% 81% 18.9
Two servers <1% / <1% 5%/5% 28.7

Fig. 13: Impact of false serialization with RCL.

5 Related Work

Many approaches have been proposed to improve lock-
ing [1, 8, 13, 15, 24, 26, 27]. Some improve the fairness
of lock algorithms or reduce the data bus load [8, 24].
Others switch automatically between blocking locks and
spinlocks depending on the contention rate [15]. Others,
like RCL, address data locality [13, 27].

GLocks [1] addresses at the hardware level the prob-
lem of latency due to cache misses of highly-contended
locks by using a token-ring between cores. When a core
receives the token, it serves a pending critical section, if
it has one, and then forwards the token. However, only
one token is used, so only one lock can be implemented.
Suleman et al. [27] transform critical sections into remote
procedure calls to a powerful server core on an asym-
metric multicore. Their communication protocol is also
implemented in hardware and requires a modified proces-
sor. They do not address blocking within critical sections,
which can be a problem with legacy library code. RCL
works on legacy hardware and allows blocking.

Flat Combining [13], temporarily transforms the owner
of a lock into a server for other critical sections. Flat Com-
bining is unable to handle blocking in a critical section,
because there is only one combiner. At low contention,
Flat Combining is not efficient because the combiner has
to check whether pending requests exist, in addition to
executing its own code. In RCL, the server may also use-
lessly scan the array of pending requests, but as the server
has no other code to execute, it does not incur any overall
delay. Sridharan et al. [26] increase data locality by asso-
ciating an affinity between a core and a lock. The affinity
is determined by intercepting Futex [9] operations and
the Linux scheduler is modified so as to schedule the lock
requester to the preferred core of the lock. This technique
does not address the access contention that occurs when
several cores try to enter their critical sections.

Roy et al. [23] have proposed a profiling tool to identify
critical sections that work on disjoint data sets, in order to
optimize them by increasing parallelism. This approach
is complementary to ours. Lock-free structures have been
proposed in order to avoid using locks for traditional
data structures such as counters, linked lists, stacks, or
hashtables [14, 16, 25]. These approaches never block
threads. However, such techniques are only applicable
to the specific types of data structures considered. For
this reason, locks are still commonly used on multicore
architectures. Finally, experimental operating systems
and databases designed with manycore architectures in

mind use data replication to improve locality [28] and
even RPC-like mechanisms to access shared data from
remote cores [4, 7, 11, 19, 22]. These solutions, however,
require a complete overhaul of the operating system or
database design. RCL, on the other hand, can be used with
current systems and applications with few modifications.

6 Conclusion

RCL is a novel locking technique that focuses on both re-
ducing lock acquisition time and improving the execution
speed of critical sections through increased data locality.
The key idea is to migrate critical-section execution to
a server core. We have implemented an RCL runtime
for Linux that supports a mixture of RCL and POSIX
locks in a single application. To ease the reengineering of
legacy applications, we have designed a profiling-based
methodology for detecting highly contended locks and
implemented a tool that transforms critical sections into
remote procedure calls. Our performance evaluations on
legacy benchmarks and widely used legacy applications
show that RCL improves performance when an applica-
tion relies on highly contended locks.

In future work, we will consider the design and imple-
mentation of an adaptive RCL runtime. Our first goal
will be to be able to dynamically switch between locking
strategies, so as to dedicate a server core only when a lock
is contented. Second, we want to be able to migrate locks
between multiple servers, to dynamically balance the load
and avoid false serialization. One of the challenges will be
to implement low-overhead run-time profiling and migra-
tion strategies. Finally, we will explore the possibilities
of RCL for designing new applications.

Availability The implementation of RCL as well as
our test scripts and results are available at http://
rclrepository.gforge.inria.fr.
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